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Abstract

Data from multiple environments offer valuable opportunities to uncover causal relationships among
variables. Leveraging the assumption that the causal outcome model remains invariant across hetero-
geneous environments, state-of-the-art methods attempt to identify causal outcome models by learning
invariant prediction models and rely on exhaustive searches over all (exponentially many) covariate sub-
sets. These approaches present two major challenges: 1) determining the conditions under which the
invariant prediction model aligns with the causal outcome model, and 2) devising computationally effi-
cient causal discovery algorithms that scale polynomially, instead of exponentially, with the number of
covariates. To address both challenges, we focus on the additive intervention regime and propose nearly
necessary and sufficient conditions for ensuring that the invariant prediction model matches the causal
outcome model. Exploiting the essentially necessary identifiability conditions, we introduce Negative
Weight Distributionally Robust Optimization (NegDRO), a nonconvex continuous minimax optimiza-
tion whose global optimizer recovers the causal outcome model. Unlike standard group DRO problems
that maximize over the simplex, NegDRO allows negative weights on environment losses, which break
the convexity. Despite its nonconvexity, we demonstrate that a standard gradient method converges to
the causal outcome model, and we establish the convergence rate with respect to the sample size and
the number of iterations. Our algorithm avoids exhaustive search, making it scalable especially when
the number of covariates is large. The numerical results further validate the efficiency of the proposed
method.

1 Introduction

Establishing causal relationships between an outcome and multiple covariates is a fundamental objective in
various fields, including education [Nye et al., 2000], economics [Duflo et al., 2007, Ludwig et al., 2013],
epidemiology [Baicker et al., 2013], and computer science [Scholkopf et al., 2021, Scholkopf, 2022, Farrell
et al., 2018, Sharma and Kiciman, 2020]. In many cases, the causal structure is unknown: some covariates
may affect the outcome, others may be affected by the outcome, some are confounded with a hidden variable,
and some may have no causal connection at all. In such settings, statistical learning approaches that focus
on minimizing training errors tend to capture correlations present in the data, but fail to disentangle true
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causal relationships. This limitation highlights the need for methods capable of learning not just predictive
models, but also the underlying causal structure, identifying causal variables, and estimating their effects.

A thought experiment from Beery et al. [2018] illustrates the advantage of a causal model compared to
a standard prediction model trained to minimize the training error. Consider the task of classifying images
of cows and camels, where cows are predominantly photographed in green pastures and camels in brown
deserts. Let X represent the animal’s shape and X5 represent the background color, with the outcome label
Y € {cow,camel}. A standard model trained to minimize training error would rely on X, (background
color) for the predictions, leading to errors when cows appear on brown beaches. This scenario underscores
the importance of distinguishing causal features like X (animal’s shape) from spurious correlations such as
Xs (background color). This process - separating the true causes of the outcome from non-causal features
and estimating their effects - is referred to as causal discovery.

The availability of heterogeneous multi-environment data enables causal discovery by learning the in-
variant prediction model across multiple environments [Peters et al., 2016, Meinshausen et al., 2016, Ghas-
sami et al., 2017, Pfister et al., 2019, 2021, Fan et al., 2023]. We illustrate the main idea of the invariant
prediction model by considering a specific scenario of the thought experiment: in one dataset, cows are
commonly photographed in green pastures, while in another dataset, cows appear in both brown beaches
and green pastures. By leveraging such heterogeneous datasets collected from two distinct environments,
we tell that the animal’s shape X7 maintains an invariant relationship with the outcome label Y, whereas the
background color X5 has a changing association with the outcome label across environments. In addition to
identifying the causal effect, invariant prediction models enhance generalization to unseen populations that
may exhibit distributional shifts from the observed environments. This robustness has been demonstrated
across a range of studies, highlighting the practical advantages of (nearly) invariant prediction models for
out-of-distribution performance [Rojas-Carulla et al., 2018, Magliacane et al., 2018, Arjovsky et al., 2019,
Wang et al., 2022].

Despite the success of learning invariant prediction models across environments, there is a lack of un-
derstanding of the following two fundamental questions,

(Q1) When does the invariant prediction model successfully recover the true causal outcome model?
(Q2) How can we design computationally efficient algorithms to learn the invariant prediction model?

In this paper, we address both questions within the additive intervention regime introduced in Section
3.1. For (Q1), we establish nearly necessary and sufficient conditions that delineate when the invariant
prediction model achieves the causal identification, i.e., when the invariant prediction model finds the true
causal relationship. For (Q2), we propose a novel nonconvex continuous minimax optimization framework
for learning invariant prediction models. Despite the inherent nonconvexity, we design a computationally
efficient algorithm that provably converges to global optimality, which corresponds to the causal outcome
model. In particular, our algorithm scales polynomially with the dimension of the covariates.

1.1 Problem Formulations and Gaps

We introduce here the setup of causal invariance learning with data collected from multiple environments.
Particularly, we consider multiple environments denoted as £ = {1, 2, ..., |€|}. For each environment e € &,
we observe n, i.i.d samples {:El(-e),yl(e) e, drawn from the distribution of (X(®),Y(©)), where X(®) € RP
and Y(®) € R represent the covariates and the outcome for the e-th environment, respectively. We use X éi)
with $* C [p] to denote the true observed causal variables for the outcome Y (¢). The essential assumptions
of causal invariance learning go as follows: the causal outcome model from X éi to Y (¢) remains invariant
while the marginal distributions of X (€) vary across environments e € £. The goal of causal invariance



learning is to identify the causal covariates X éi) and estimate the causal effect, provided the data samples

{wge) , yge) ¢,. We note that the setting allows for hidden confounding variables.

Next, we briefly review the existing literature on causal invariance learning, focusing on the gaps in an-
swering (Q1) and (Q2), while other related literature will be discussed in Section 1.3. Regarding the causal
identification question (Q1), prior works such as Fan et al. [2023] and Yin et al. [2024] impose abstract
identification conditions, requiring the multiple environments to exhibit sufficient heterogeneity, in the sense
that, if a subset of variables includes non-direct causes of the outcome, it fails to provide invariant prediction
models across the observed environments. However, these works do not provide concrete guidance on how
to achieve this required level of heterogeneity - an essential consideration in experimental settings where the
researchers intervene in the covariates X (¢) across different environments to uncover causal structures [He
and Geng, 2008, Hauser and Biihlmann, 2015]. Moreover, invariance learning in structural equation models
for inferring causality has been pioneered in Peters et al. [2016] and further developed in [Rothenhéusler
et al., 2019, Shen et al., 2023], but the concrete causal identification conditions proposed along this line of
works are often restrictive and challenging to implement in practice. Further discussions on these concrete
conditions are provided in Section 1.3.

Beyond the gap in establishing causal identification conditions, the huge computation cost is another
significant obstacle for existing causal invariance learning approaches, highlighting (Q2) as an open ques-
tion. Existing methods, such as Peters et al. [2016], Ghassami et al. [2017], rely on exhaustive searches over
all possible subsets of covariates to test the invariance of the outcome model, resulting in a computational
complexity exponentially growing with the number of covariates. While Fan et al. [2023] solves invariant
prediction models using a regularized least squares optimization, the inclusion of the indicator function in
their objective function still necessitates an exhaustive enumeration of subsets. These approaches, whether
explicitly or implicitly, frame causal invariance learning as discrete integer programming, leading to com-
putational costs scaling exponentially with the dimension; see more discussions in Section 2.3. As a result,
they become impractical for even moderately large p. For instance, as shown in our numerical experiments
in Section 6, these methods [Peters et al., 2016, Fan et al., 2023] take over half an hour to complete when
p = 25. See also Section 1.3 where we compare with other computationally feasible methods.

1.2 Our Results and Contributions

In this work, we focus on the additive intervention regime, a structured framework of generating hetero-
geneous multi-environment datasets [Rothenhdusler et al., 2019, 2021, Shen et al., 2023]. This regime
characterizes the full data generation process for each environment via structural equation models (Defini-
tion 1), and attributes distributional heterogeneity by adding environment-specific perturbations to generate
the covariate distributions; see the detailed introduction in Section 3.1.

The first main contribution of this work is addressing (Q1) by establishing concrete identification con-
ditions for causal invariance learning. Specifically, we derive a nearly necessary and sufficient condition
ensuring the uniqueness of the invariant prediction model. Such a condition enables causal discovery as
the causal outcome model is guaranteed to be this unique invariant prediction model. Unlike the abstract
heterogeneity conditions proposed in prior works [Fan et al., 2023, Yin et al., 2024], our identification con-
dition directly leverages the covariate distributions across environments, and our assumptions are essentially
necessary and hence weaker than in previous work [Rothenhidusler et al., 2019, Shen et al., 2023].

Building upon the identification conditions, we formulate causal invariance learning as a continuous
nonconvex optimization problem, referred to as Negative Weight Distributionally Robust Optimization (Neg-
DRO). NegDRO minimizes the worst-case combination of risks across multiple environments while allow-
ing for negative weighted combinations. The inclusion of negative weights is critical in constructing in-
variant risk prediction across environments, which further leads to the causal discovery under our proposed
identification conditions. A key contribution of this work is framing causal invariance learning as a contin-



uous nonconvex optimization problem, in contrast to the discrete integer programming approaches used in
prior works [Peters et al., 2016, Ghassami et al., 2017, Fan et al., 2023]. Moreover, we demonstrate that the
global optimizer of the nonconvex NegDRO recovers the true causal outcome model, providing a principled
approach to causal discovery.

From an optimization perspective, the inclusion of negative weights breaks convexity, which distin-
guishes our work from classical group DRO [Sagawa et al., 2019], where the weights lie within a simplex.
The nonconvex nature of NegDRO presents computational challenges in locating its global optimizer, which
is about the fundamental limit of efficient computation highlighted in (Q2). We overcome this hurdle by
demonstrating that any (generalized) stationary point of NegDRO, under causal identification conditions,
is globally optimal, thereby recovering the causal outcome model. Leveraging this insight, we show that
(sub)gradient descent algorithms, capable of computing stationary points of NegDRO, converge to the causal
outcome model. Unlike exhaustive search approaches, our algorithm avoids the computational burdens of
enumerating over all possible subsets of covariates and is scalable to scenarios involving a large number of
variables, addressing (Q2). Furthermore, we establish the theoretical guarantees for the convergence of our
algorithms to the causal outcome model with respect to both the sample size and iteration times.

Lastly, we validate our proposed algorithm through empirical studies, demonstrating its superior perfor-
mance in terms of both estimation accuracy and computational efficiency within the additive intervention
regime, compared to existing causal invariance learning methods.

To summarize, the main contributions of this paper are as follows:

1. We propose a general class of causal identification conditions in the additive intervention regime,
and identify a nearly necessary and sufficient condition for ensuring the uniqueness of the invariant
prediction model.

2. We formulate causal invariance learning as a continuous nonconvex optimization problem, whose
global optimizer corresponds to the causal outcome model under the proposed identification condition.

3. We show that any (generalized) stationary point of NegDRO is globally optimal, under causal identi-
fication conditions, which leads to a computationally efficient algorithm for causal discovery.

1.3 Related Further Literature

Causal Invariance Learning. In addition to the above mentioned works, another line of research on causal
discovery imposes concrete identification conditions that require a large number of heterogeneous environ-
ments. For example, Rojas-Carulla et al. [2018] demonstrates that causal discovery is achieved with an
infinite number of environments covering all possible covariate interventions, while Arjovsky et al. [2019]
requires at least |£| > p environments, where p is the number of covariates. However, generating numerous
heterogeneous environments through interventions is often costly and impractical, limiting the applicability
of these approaches. In contrast, our identification condition is much weaker and is nearly necessary and
sufficient for ensuring the uniqueness of the invariant prediction model. Moreover, our identification con-
dition demonstrates that causal discovery is achievable even with just two environments, regardless of the
number of covariates p; see Condition 2a for more details.

Causal Discovery for Additive Interventions. CausalDantzig [Rothenhiusler et al., 2019] and DRIG [Shen
et al., 2023] identify the causal effect by matching the loss gradients across pairs of environments. In
contrast, our approach essentially leverages the matching of risks across (all) different environments, which
requires solving a nonconvex optimization problem. Their methodologies rely on assumptions, such as the
non-singularity of Gram matrices or the availability of a reference environment. However, such assumptions
are stronger and the settings more restrictive than ours. In contrast, our proposed NegDRO method remains



effective, achieving causal discovery in substantially greater generality. Further details and comparisons are
provided in Section 5.2.

Group DRO and Maximin Effect. Group DRO [Sagawa et al., 2019, Wang et al., 2023] and Maximin Ef-
fects [Meinshausen and Biihlmann, 2015, Guo, 2024] minimize the worst-case combination of risks across
environments, with the combination weights restricted to lie within a simplex. These methods are not in-
tended to identify the causal outcome model, but construct prediction models that generalize well to unseen
environments. NegDRO extends this framework by permitting negative combination weights, which enforce
invariant risks across environments - a key property for identifying the causal outcome model. Meanwhile,
the inclusion of negative weights results in a nonconvex optimization problem, a complexity which is not en-
countered in these earlier methods. As one of our key contributions, we develop a computationally efficient
algorithm to solve this nonconvex optimization problem and thus achieve causal discovery.

Global Optimality of Nonconvex Optimization. Achieving global optimality in nonconvex optimization is
notoriously challenging, as exhaustive search methods often exhibit exponential dependence on the problem
dimension. Recent advancements in nonconvex optimization have leveraged structured landscape proper-
ties to establish global convergence for gradient-based methods. Key conditions facilitating such results
include hidden convexity [Ben-Tal and Teboulle, 1996], the Polyak-Lojasiewicz (PL) condition [Polyak
et al., 1963, Lojasiewicz, 1963], the Kurdyka-Lojasiewicz (KL) condition [Kurdyka, 1998], and other gra-
dient dominance properties [Karimi et al., 2016]. Hidden convexity suggests the existence of a convex
reformulation via a variable change, enabling efficient algorithmic solutions [Fatkhullin et al., 2023, Chen
et al., 2024a]. The PL, KL, and other gradient dominance conditions ensure that any stationary point is
globally optimal, which allows gradient-based methods to converge globally [Fatkhullin et al., 2022]. How-
ever, verifying these properties is often highly non-trivial and typically requires a case-by-case investigation.
Examples of such investigations can be found in Markov decision processes and operations problems [Feng
and Shanthikumar, 2018, Lan, 2023, Klein et al., 2023, Chen et al., 2024b]. For a more comprehensive
list of efficiently solvable nonconvex problems, we refer interested readers to Sun [2021]. To the best of
our knowledge, the causal invariance learning problem considered in this work does not admit any of these
established properties. We frame causal invariance learning as a continuous nonconvex optimization prob-
lem, termed NegDRO. By exploiting the unique structure of the causal outcome model and the associated
identification conditions, we develop a novel analysis demonstrating that any (generalized) stationary point
of the NegDRO problem is globally optimal. As a result, standard gradient-based algorithms designed to
find stationary points can achieve efficient convergence to global optimality in this setting.

Out-of-distribution Generalization. Inspired by causal invariance learning, approaches such as “Invariant
Risk Minimization” (IRM) [Arjovsky et al., 2019] and its variants [Chuang et al., 2020, Lu et al., 2021,
Liu et al., 2021] focus on finding data representations where optimal predictors remain invariant across all
environments, and such techniques have been applied extensively in machine learning. “Minimax Risk Ex-
trapolation” (MM-REX) [Krueger et al., 2021] leverages the risk invariance principle, aligning conceptually
with our NegDRO, but emphasizes minimizing the variance of environments’ risks. Despite some reported
and partially debated empirical success, the methods’ theoretical understanding remains limited [Rosenfeld
et al., 2020, Kamath et al., 2021]. In contrast, our work focuses on linear models, providing theoretical
analysis including identification conditions, as well as computationally efficient algorithms with rigorous
convergence guarantees. Our results serve as a stepping stone for advancing causal invariance learning in
more complex, nonlinear scenarios.

Directed Acyclic Graphs (DAGs). When the causal structure is unknown, DAG-based methods provide
another framework to infer causal relationships among variables [Verma and Pearl, 1990, Andersson et al.,
1997, Chickering, 2002, Kalisch and Biihlman, 2007, Hauser and Biihlmann, 2012, 2015, Eberhardt et al.,
2024, Taeb et al., 2024]. These approaches aim to construct the entire causal structure of all observed



variables (or its Markov equivalence class) by leveraging the conditional independence relationships to
distinguish between equivalent structures. In contrast, our work focuses on identifying the causal outcome
model, specifically targeting the direct causal effect from covariates to the outcome, rather than constructing
the entire causal graph. The causal invariance learning can be viewed as an alternative pathway of identifying
the causal outcome, requiring different identification conditions and computational algorithms than the ones
from the DAG literature.

1.4 Preliminaries, Notations and Outline

In the following, we provide a brief review of several important concepts in causal inference that facilitate
the discussion of the current paper, and introduce the notations that will be used throughout this paper.

We start with the structural equation model (SEM) [Pearl, 2009, Bollen, 2014], also known as the struc-
tural causal model (SCM) [Pearl et al., 2016], that is commonly used to characterize the causal relationship.

Definition 1 (Structural Equation Models). We consider the SEM on variables Z = (Z1, Za, ..., Zp4+1) With
Zj = fj(Pa(Zj),e;) for 1<j<p+1,

where the set Pa(Z;) C {Z1, ..., Z,+1} denotes the set of direct causes of Zj, or parents, of the variables,
and ¢; represents the random error or disturbance due to omitted factors.

When all functions f;’s are linear, these SEMs are referred to as linear SEMs. The SEMs in Definition
1 naturally induce a directed causal graph G = (V, E'), within the framework of causal graphical models
[Pearl, 2009, Spirtes et al., 2001]. Here V' = {1,...,p + 1} represents the set of nodes (vertices), and F
represents the set of directed edges, where (7, j) € E if and only if node i is the parent of j. A node j is said
to be a (direct) child of node ¢ if and only if ¢ is a parent of j.

Definition 2 (Causal Graph). We say there is a directed path from node i to j if there exists a sequence of
nodes (v1, ..., vi) with k > 2 such that v; = 4, vy = j, and (v, v41) € Eforany 1 <[ <k — 1. Wecall a
directed graph G is a directed acyclic graph (DAG) if there does not exist a direct path from node j to itself
for any node 5 € V. Any node connected by a directed path to ¢ is an ancestor of ¢, and any node connected
by a directed path from 7 is a descendant of i.

We now introduce the notations used in this paper. For a set S, we use |S]| to denote its cardinality,
and Pow(S) = {A : A C S} to denote its power set. Define [m] = {1,2,...,m} for the positive integer
m. For real numbers a and b, define a A b = min{a, b} and a V b = max{a,b}. We use c and C' to
denote generic positive constants that may vary from place to place. For positive sequences a(n) and b(n),
we use a(n) < b(n), a(n) = O(b(n)) or b(n) = Q(a(n)) to represent that there exists some universal
constant C' > 0 such that a(n) < C - b(n) for all n > 1, and denote a(n) =< b(n) if a(n) < b(n) and
b(n) < a(n). We use notations a(n) < b(n) or a(n) = o(b(n)) if limsup,,_,, (a(n)/b(n)) = 0. For a
vector z € RP and a set S C [p], zg represents the |S|-dimensional sub-vector of x consisting of z;’s for
all j € S. We use supp(z) = {j € [p] | z; # 0} to denote the support set of the vector x. For ¢ > 0,
let ||lz[l, = (03P, |2i]9)"/% be its £, norm. When there is no ambiguity, we use ||| to represent the £,
norm of the vector z by default. For a matrix A = [A; j]ic[n] jem]» We denote Ag, s, = [4; jlies, jes, as
the sub-matrix of A. We let || Al|2 be the spectral norm of matrix A, and may abbreviate it as || A|| when
there is no ambiguity. We define Dist(z, A) := min,c4 ||z’ — z||2 for any set A. We use I, to denote the

p-dimensional identity matrix. For two random variables X, Y, we use X 2 Y to indicate they share the
same distribution.

The structure of the paper is outlined as follows. In Section 2, we provide a detailed introduction to
the causal invariance learning problem and present the formulation of NegDRO. Building on this, Section



3 introduces the additive intervention regime, specifies the identification condition for causal discovery, and
shows that the global optimizer of NegDRO recovers the causal outcome model. In Section 4, we propose
a computationally efficient algorithm to achieve causal discovery and establish the convergence rate of our
algorithm output. Following this, Section 5 explores a scenario with limited interventions, and compares
NegDRO with existing approaches specifically designed for the additive intervention regime. Finally, Sec-
tion 6 presents numerical results validating our arguments.

2 Causal Invariance Learning and Negative Weight DRO

Throughout the paper, we focus on the regime that we have access to data collected from multiple environ-
ments £ = {1,---,|€|}, with |£] denoting the total number of environments. For each environment e € &,
we observe the data {:UZ(-E) , yfe) ¢, which are identically and independently distributed (i.i.d) drawn from
the distribution of (X (¢), Y (¢)), where X(¢) € R and Y(¢) € R respectively denote the covariates and the

outcome in the e-th environment.

2.1 Invariant Causal Outcome Model

We assume that for all e € £, there exists a subset S* C [p], such that X éi) are direct causes of Y(e), that is,
a structural equation

Y = (857X + &9, 1)
where 5* € RP represents the causal effect with B(* g)e = 0 and sgf) encodes other (unobserved) factors that

affect the outcome variable. Notably, the remaining covariates X ((g)*)c are not direct causes or may even be

caused by Y (¢), and we allow the existence of unmeasured confounders E[egf) | X éi)] # 0. We consider the
following example to illustrate the model (1) and further demonstrate it in Figure 1.

Example 1. For each environment e € &, the variables (X (¢), Y (¢)) are generated as follows:

x{9 =69, vO=x{9 4+, x{9=v© 4, 2)
where (sge),ege))T ~ N(0, 091,), and sgf) ~ N(0,1) are jointly independent. 3)

As demonstrated in Figure 1, only X fe) is the direct cause of Y(¢) with §* = {1} and 8* = (1,0), even

though Xée) is also associated with the outcome.

K ——)

Figure 1: Ilustration of (1) in Example 1 with S* = {1}.

In this paper, we aim at identifying the causal effect 5* using the data from multiple environments. How-
ever, the identification of 5* is a challenging task, due to the absence of prior knowledge about the causal or-
dering between the outcome of interest and the observed covariates. Some of the observed covariates might

cause the outcome while others might be further affected by the outcome. For instance, in Example 1, X fe)
causes Y (¢) but Y(©) causes X ée). In practice, we only have access to the observations of Y x fe) , Xg(e)
without knowing their causal ordering. A majority of causal inference literature assumes a known causal
ordering between Y and X and mainly focuses on estimating the magnitude of 5* [Wooldridge, 2009, Im-

bens and Rubin, 2015, Morgan, 2015]. For example, in the randomized experiment, the treatment precedes



the outcome, establishing a natural causal ordering before learning the treatment effect. In contrast, the
current paper does not assume prior knowledge of the causal ordering but aims to devise a data-dependent
way of learning the set S* of covariates that cause Y, from the observed data only. An additional challenge
in recovering 3* is the existence of unmeasured confounding with E[ggf) ]Xéi)] # 0. In such cases, even if
we know S*, 5* differs from the best linear projection arg ming, . )—g- E[Y (¢) —bT X (©)]2, which requires
additional identification conditions for recovering 3* in the presence of unmeasured confounding.

The identification of 8* becomes challenging when the causal ordering is unknown or unmeasured con-
founders are present. To enable causal identification in such regimes, we leverage the invariance principle:
the causal relationship in (1) is assumed to remain invariant, while the distributions of the covariates change
across different environments. By distinguishing between the invariant outcome model and the heteroge-
neous covariate distributions, we identify the causal model 5* in (1); see Section 2.2 for an illustrative
example. This general invariance principle has proven effective in learning S* and §5. by leveraging the
data from multiple environments [Peters et al., 2016, Ghassami et al., 2017, Rothenhiusler et al., 2019, Fan
etal., 2023]. We now introduce a specific version of the invariance principle and comment on its connections
to existing work.

The model (1) holds for all e € £ with E[(egf))2] = 0% for some constant o3 > 0. (Invariance Principle)

The above Invariance Principle requires that the residual errors share the same second-order moment across
different environments, that is,
Ve.fe&, E[v© - (55*)Txgi>]2 —E[y") - (85.)7xY) :

Other versions of the invariance principle have been proposed in the literature. Peters et al. [2016], Rojas-
Carulla et al. [2018] considered an invariance condition where the conditional distribution y(© | X ée*) remains
the same across environments. This condition is also termed as “autonomy”, “modularity” [Haavelmo, 1944,
Aldrich, 1989] and “stability” [Dawid and Didelez, 2010]. Such an invariance condition implies our Invari-
ance Principle that mainly requires the identical noise level instead of the whole conditional distribution.
Moreover, other multi-environment studies [Pfister et al., 2021, Fan et al., 2023, Yin et al., 2024] impose
another invariance principle assuming the conditional mean E[Y (¢) \Xéi)] to stay identical across environ-
ments. These approaches are built under the no unmeasured confounder assumption E[ng ) | X ée)] = 0, forall
e € £. However, our model (Invariance Principle) allows E[egf) | X éi)] # 0, accommodating the existence

of unmeasured confounding between the outcome Y (¢) and its parents X (i).

Finally, we define a prediction model b to be an invariant prediction model across environments e € & if
E[(Y(©) — b7 X()2] = E[(Y) — bTX())2] for e, f € £. We further define the set of invariant prediction
models across environments in £ as

Bine(€) = {b eRP: E(Y© —pTXEO2 =By —p5TXU)2 Ve, f e 5} . )
Note that, when the Invariance Principle holds, the causal model 5* belongs to Biyy ().

2.2 An Illustrative Example for Causal Invariance Learning

We now use Example 1 to demonstrate how to identify 5* via contrasting the invariant causal outcome model
against heterogeneous environments. For illustration purposes, we consider two environments & = {1, 2}
with distinct noise levels o!) # ¢(2) as specified in (3). Inspired by the ICP framework [Peters et al., 2016],
we test compliance with the risk invariance principle in all possible subsets of covariates.



To illustrate the main idea, we perform the computation at the population level. For each subset S €
{0,{1},{2},{1,2}}, we run a regression Y (¢) on Xée) to obtain the best linear prediction model bg and
input all other entries of b with zeros. For S € {0, {1}, {2}, {1,2}}, we then compute the corresponding
risk E[¢(X (¢), Y (¢); b)] for the e-th environment. The results are summarized in Table 1. The subset S = {1}

S 0 {1} {2} {12}
— (O.(e))Q_,’_l T (o.(e))Q 1 T
b (0, O)T (1, O)T (07 2(0_(3))2+1) ((O_(e))2+11 (U(e))2+1>
e e). 7 e ()44 (g(e))2 ()2
EU(X©, YD) | (6©@)2+1| 1 e Gt

Table 1: We consider Example 1 and report the best population prediction model b using the covariates
belonging to S, together with the environment specific risk E[¢(X(¢), Y(¢); b)].

produces a prediction model b = (1,0)T, with an invariant risk E[¢/(X (¢), Y(¢): )] = 1 across environments.
In contrast, all other subsets lead to a violation of the invariance principle, as their risks vary across different
environments. Consequently, we identify the causal set S* = {1} and the causal effect 5* = (1,0)T. We
shall comment that the idea presented above is essential to implement an exhaustive searching algorithm,
which is inherently difficult to scale up with a large number of covariates. We mainly use such an exhaustive
searching algorithm to demonstrate how to learn the causal outcome model conceptually. We introduce a
continuous (nonconvex) optimization problem for learning the true causal model * and further devise a
computationally efficient algorithm for causal discovery in the following Section 4.

2.3 Optimization Formulation

As demonstrated in Section 2.2, most existing causal invariance learning methods rely on exhaustive searches
over all possible subsets of covariates, checking each of the 2P subsets for compliance with the invariance
principle. For example, “Invariant Causal Prediction” (ICP) [Peters et al., 2016] involves enumerating and
running regressions on every subset S C [p], and incorporates multiple hypothesis testing throughout the
process. Subsequent works, such as Ghassami et al. [2017], Heinze-Deml et al. [2018], Rojas-Carulla et al.
[2018], Pfister et al. [2019] follow the similar hypothesis-testing approach for causal discovery. Fan et al.
[2023] introduced the “Environment Invariant Linear Least Squares”(EILLS) method to estimate * through
regularized least squares optimization, given by:

a 2
argmin SB[V X O] 47D 1{b; £ 0} x 3[RV - 5 X)X
beRp ey = =

The use of the indicator function 1{b; # 0} in their objective function still requires enumerating every subset
S C [p]. These approaches, whether explicitly or implicitly, frame causal invariance learning as an integer
programming problem by enumerating all subsets S C [p], resulting in a computational complexity that
scales exponentially with the dimension p. Consequently, implementing such exhaustive search algorithms
becomes impractical for even moderately large p; see the numerical results in Section 6 for instance.

To address the computational challenge, we propose a novel continuous optimization formulation for
causal discovery, designed to sidestep the need for exhaustive search. Specifically, we formulate the problem
as a minimax optimization model, inspired by the idea of distributionally robust optimization (DRO) [Ben-
Tal et al., 2013, Namkoong and Duchi, 2016]. For a given v > 0, we define the following set 2/(~):

= RIET e =1, minw, > —7 7.
U) {we D w , Ml we > W} S))

eef
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With the above set, we consider the following minimax optimization problem,

b’Y

Neg = AIgMin max wE[(X ) Y@, p)], (6)

beRr  wEU(7) s

where ((x,y;b) = (y — bTz)? stands for the squared-loss function, and we refer to E[¢(X (), Y (¢); b)] as the
risk in e-th environment. We refer to the minimax optimization in (6) as Negative weight DRO (NegDRO),
since some environments may be assigned negative weights. When v = 0, the optimization problem in (6)
is reduced to the group DRO [Sagawa et al., 2019, Hashimoto et al., 2018]. However, when v > 0, the
NegDRO problem in (6) is fundamentally different from the group DRO [Sagawa et al., 2019, Hashimoto
et al., 2018] as the optimization problem in (6) becomes nonconvex. Similarly to the generalization property
of DRO, the NegDRO algorithm tends to produce more generalizable prediction models for unseen future
environments, compared to the empirical risk minimization (ERM) method, which optimizes the weighted
average of the risk function with the weight being proportional to the sample sizes.

We shall emphasize that, for a positive y > 0, the objective >°_ w E[¢(X (), YV():b)] in (6) becomes
a nonconvex function with respect to b, since its Hessian matrix 3" w.E[X (¢)(X(¢))T] is not necessarily
positive semi-definite in the presence of some negative weights w,. In general, the NegDRO problem in (6)
is a minimax optimization problem with a nonconvex concave objective, and it is challenging to obtain the
global optimizer of such nonconvex optimization problems [Boyd and Vandenberghe, 2004, Bonnans et al.,
2006]. More discussions about nonconvex concave minimax optimization will be provided in the following
Remark 1. As our main contribution, we devise a computationally efficient algorithm to obtain the global

optimizer of NegDRO in the following Section 4.2.

Next, we provide the intuition for why the NegDRO in (6) encourages an invariant prediction model for
a large regularization parameter v > 0. After solving the inner optimization problem of (6), we admit the
following equivalent form of the NegDRO problem in (6):

blieg = arg min {maxE[E(X(e), V)] +~[€| - (magc]E[é(X(e), v©):p)] — % S EpXD, YD b)]) } :
ec

bERP e€f fee

(M
The equivalence between (6) and (7) holds due to the fact that the maximization over the linear weight
w in (6) is attained if we assign the weight 1 4+ v(|€| — 1) to the environment with the largest risk, and
assign the weights —~ to all other environments. Given a predictor b € RP, the objective in (7) balances
the largest risk among environments and the discrepancy between the largest and average environments’
risks, mediated by the regularization parameter v. When v = 0, it aims to minimize the largest risk among
all observed environments. As + increases, the model strives for risk parity across environments, encour-
aging the discrepancy of environments’ risks to be smaller, and minimizes the largest environment’s risk

meanwhile. When v = oo, bKTeg is forced to have the invariant risks across all observed environments:

E[¢(X(©), Yy (), DReg)] = E(xX, v, DXeg)]s for any pairs of e, f € £. Hence, for v = oo, the global
optimizer of (7), denoted as bﬁ’eg, admits the following form:

bRos = arg minE[¢(X©, Y@ p)] st EX©®, v, 0)] =E[e(XD Yy D:p)] Ve, f €& (8)
€RP
Recall that the causal parameter 8* admits the invariant risk across environments as well, as shown in the
Invariance Principle. Therefore, both biijoeg and 3* belong to the set of risk-invariant prediction models
Biny as defined in (4). In the following Section 3.2, we shall introduce the nearly necessary and sufficient
condition ensuring that 5* is the unique invariant risk prediction model such that B;,, = {8*}. This further
implies that our proposed b3, matches the causal parameter 5*. Additionally, for general finite v > 0, we
establish in Section 3.3 that by, , converges to £* with an increasing value of ~.
We now conclude this section with an additional remark discussing minimax optimization.
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Remark 1 (Minimax Optimization). In the case of standard convex-concave minimax optimization, a vast
amount of literature has already shown the convergence to the global optimum via classical gradient-based
methods [Korpelevich, 1976, Chen and Rockafellar, 1997, Nemirovski, 2004, Auslender and Teboulle, 2009,
Nedi¢ and Ozdaglar, 2009, Lin et al., 2020, Rahimian and Mehrotra, 2022]. Recently, there is a growing
interest in solving nonconvex concave minimax optimization [Heusel et al., 2017, Rafique et al., 2022, Lin
et al., 2024], where most existing algorithms, such as two-timescale gradient descent-ascent [Lin et al.,
2024], are guaranteed to converge to a local minimum, while the global optimizer remains mysterious. We
shall emphasize that the nonconvexity in the proposed NegDRO problem (6) arises from the possibly nega-
tive weights instead of the generic nonconvex function as studied in the works Heusel et al. [2017], Lin et al.
[2024]. By leveraging the causal identification condition introduced in Conditions 1 and 2a, we successfully
characterize the global optimizer of the nonconvex concave NegDRO problem. This fundamental distinction
sets our work apart from prior studies, where global optimality remains an open challenge.

3 Additive Intervention and Identification Conditions

We introduce in Section 3.1 the additive intervention regime, which is commonly used to generate multi-
environment data used for causal invariance learning. In Section 3.2, we introduce an identification condition
for causal discovery. Lastly, in Section 3.3, we establish the convergence of the global optimal solution b&eg
in (6) to the causal effect 3*.

3.1 Additive Intervention

In the following, we introduce the additive intervention regime as a concrete way of generating heteroge-
neous multi-source data sets, as adopted in prior works [Hoyer et al., 2008, Janzing and Schoélkopf, 2010,
Daniusis et al., 2012, Janzing et al., 2012, Peters et al., 2014, Ghassami et al., 2017, Rothenhiusler et al.,
2019, 2021, Shen et al., 2023, Polinelli et al., 2024]. For each environment e € &, the data-generating
process of (X (€), Y(e)) follows the structural equation model (SEM) given by:

y(e) y(© ele) . 0 (BT
(X(e)> =B (X(e)> + <€g?) » with B = (BYX BXX> ) )]

where B characterizes the relationships among X and Y and (5§f ), eg?) are the environment-specific errors.

The above SEMs incorporate the causal outcome model (1) as a component and further provide the gen-
erating distribution of the covariates X (), In (9), B5* is the causal effect of interest, By x € RP describes
the effect of the outcome Y (¢) on the covariates X (e), and B xx € RP*P captures interrelationships among

(

covariates themselves. We illustrate the SEM in (9) with concrete examples. In Example 1, X 18) is the sole
cause of Y'(¢), resulting in 3* = (1,0)T; Y(¢) directly causes x4, leading to By x = (0, 1)T. There are no
direct causal relationships among covariates, making B x x = 02x2. To further elucidate each component of
the matrix B, we consider the following Example 2, whose causal diagram is depicted in Figure 2.

Figure 2: Illustration of the SEM (9) for Example 2, where the highlighted orange covariate XQ(E) is the sole

direct cause of the outcome Y (¢),
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Example 2. For each environment e € &, the variables (X (¢), Y(¢)) are generated as follows:

X=X =x94e, vO=ox{4e) x{=05x9 v x{ =

where 6§e), sge) , eée), gf), z-:g/e) represent random noises.

Among the four covariates, X. ée) is the only direct cause of Y'(¢), establishing the causal set S* = {2}

and defining the causal effect vector as 5* = (0, 2,0, 0). The outcome y(e) directly causes X ée) but no other
covariates, yielding By x = (0,0, —1,0)T. Furthermore, there exist causal interactions among covariates
themselves, with [Bx x]21 = 1, [Bxx]3,1 = 0.5, while all other entries in B x x are equal to zero. Notably,

[Bx X]i,j # 0 if and only if X ](.e) is a direct cause of XZ-(E). Here, X ie) is an isolated covariate, which has no

directed causal path with both Y (©) and the remaining covariates.
In the additive intervention regime, the covariate distribution heterogeneity arises from the distributional
shift of the noise 5&?. Following previous works [Rothenhiusler et al., 2019, 2021, Shen et al., 2023], we

consider the following noise decomposition of (5§f) , 5(;)) € Rt

(e)
Ey ) d (Y 0 ) : (eNT] _
4 + with E[n(s =0, 10
<€§?)> (nx> <5(€) - Eln(@=) 1o

where = (ny,nx)T € RPL, with 7y € R and nx € RP, denotes the systematic random error shared
across environments and 6(¢) € R? stands for the environment-specific perturbations added to the environ-

ment e. Here, the notation 4 indicates two random variables share the same distribution.

In the error decomposition model (10), the outcome is not directly intervened, ensuring the Invariance
Principle holds with E[(sgf))2] = E[n?]. Moreover, the systematic random error 7 shared across environ-
ments and the environment-specific noise § (¢) are assumed to be uncorrelated with each other. The additive
intervention defined in (10) indicates that the distributional heterogeneity across environments stems from
the additive noise 6(¢), which justifies the name for the additive intervention as the whole distributional
shift is driven by the additive component §(°). We summarize the data-generating process in the additive
intervention regime in the following condition:

Condition 1 (Additive intervention). For each environment e € &, the random variables (X (), Y (¢)) are
generated following (9) and (10).

In this setup, the SEMs in (9) not only encompass the causal outcome model, as specified in Invari-
ance Principle, but also characterize the full data generation process for each observed environment. We
now provide more discussions on the error decomposition model in (10), which is broadly applicable to
diverse scenarios. As a thought experiment, researchers might begin with a reference environment, where
the random noises (ey, ex )T follow the distribution of 7 without intervention. For the e-th environment, re-
searchers introduce the intervention 6(¢) to the covariates. Once the system stabilizes, they collect data from
the e-th intervened environment. Here, the added intervention 6(¢) encodes various forms of distributional
shifts in the covariates. For instance, consider the case where 6(¢) ~ A/ (u(e), E(e)), then u(e) # ( represents
a mean shift, while X.(¢) = 0 represents a variance shift on the covariates distribution of X (¢),

Moreover, the error decomposition model (10) incorporates scenarios involving hidden confounding

among the noise terms (agf) , eg?). Specifically, when unobserved variables simultaneously affect both 7y

and 7y, we have E[eg,e)sg?] = E[nynx] # 0. This relaxes the no unmeasured confounding assumptions in

prior works [Peters et al., 2014, Ghassami et al., 2017], assuming independent sgf) and sg?).
As a final remark, we focus on the acyclic graph structure in the sense that there is no direct path from

one variable to itself in the directed graph model induced by (9). Throughout the paper, we consider that the
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SEM (9) generates an acyclic causal graph, ensuring that the matrix I — B is invertible [Spirtes et al., 2001,
Pearl, 2009, Rothenhéusler et al., 2019]. Then, the SEM in (9) is expressed as follows:

Y (e)> . <€(e)>
—@-B) (). (11)
) = (€
<X ‘ ele
The acyclic graph assumption also implies that the reverse causal effect By x must have a disjoint support

with S*. In fact, the support of By x is disjoint with all ancestors of the outcome variable; otherwise, the
induced causal graph becomes acyclic.

3.2 Causal Identification Condition

In this subsection, we propose the nearly necessary and sufficient condition for when the set of risk-invariant
prediction models, Biyy, defined in (4), uniquely identifies the causal effect 5* under additive interventions.
The causal identification condition is as follows.

Condition 2a. There exist two nonempty and disjoint collections of environments £1,& C &£, and some
weights w € A€l and w’ € Al€2l such that

Z wE[6€)§E)T] Z w}E[(g(f)(;(f)T]_ (12)
e€&l feée

The inequality (12) indicates that a weighted average intervention strength in one collection of environ-
ments & is strictly larger than that in another collection £. Importantly, the specific weights w € Alé1l and
w’ € Al®2l in (12) do not need to be known a priori, only their existence is required. This condition ensures
that sufficient heterogeneity exists among environments, which is crucial for identifying the causal effect
£*. To illustrate the broad applicability of Condition 2a, we outline three representative scenarios below,
considering a dimensionality of p = 3 for simplicity.

1. Existence of Reference Environment. Suppose that there exists a reference environment e = 1 without
interventions, i.e. 8 = 0. In environment ¢ = 2, the first two covariates are intervened with
6%2), 552) = 0; while in environment e = 3, only the last covariate is intervened with 5§3) # 0. In this
case, (12) is satisfied with &, = {2,3} and & = {1}.

2. Existence of Dominant Environment. Suppose that there exists one environment e that is noiser than
the other environment £, that is E[§()§()T] = E[§()§(/)T] for some e, f € £. In this scenario, (12)
holds if £&; = {e}, and & = {f}.

3. Existence of Combined Dominating Environments. Suppose that across environments £ = {1, 2, 3},
the interventions strength are as follows:

E[6MWsMT] = diag(3,3,0), E[6@6PT) = diag(0,0,3), E[6®§®T] = diag(1,1,1).

Here, environments 1, 2, 3 have interventions on a subset of covariates but there does not exist one
environment dominating others. However, the average of the first two environments dominates the
third, that is, sE[()6(VT] 4 IE[§@)§2)T] - E[5)53)T], thus satisfying (12).

We emphasize again that Condition 2a requires only the existence of two such collections of environ-
ments, without needing to identify or specify them exactly. The following theorem confirms that 5* is
identifiable under Condition 2a in the additive intervention regime, and our proposed NegDRO approach, as
formulated in (8), recovers 5* exactly.
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Theorem 1. Suppose that Conditions 1 and 2a hold. The set of risk-invariant prediction models becomes a
singleton of the causal effect * such that Biny (€) = {*}. Consequently, our proposed b, defined in (8)
recovers 3*.

The implications in Theorem 1 are two-fold. Firstly, if there are two collections of environments such
that the weighted average of interventions in one collection dominates the counterpart in the other collection
(as specified in Condition 2a), the causal effect 8* becomes the only valid prediction model achieving
Invariance Principle. Secondly, our proposed NegDRO identifies the causal effect * when the regularization
parameter -y is set to oo, since b%cjag as defined in (8) enforces identical risk across environments.

Notably, Condition 2a offers concrete requirements on environmental heterogeneity for causal discovery.
In existing literature, such sufficient environmental heterogeneity is often presumed and stated at a high level
in the sense that the observed environments have already been diverse enough that selecting any non-direct
causes of the outcome will violate the invariance principle, as seen in the Identification Condition of Fan
et al. [2023] and the Effectiveness Assumption of Yin et al. [2024]. In contrast, our proposed Condition 2a
establishes concrete conditions directly regarding the added interventions of observed environments, guiding
the applied scientists to assess or even design heterogeneous environments for causal identification.

Next, we present an equivalent expression of Condition 2a, making it especially useful for subsequent
theoretical analysis. For any w € A€l we define the matrix A(w) € RP*? as:

W) =S (w. — L) Ris©@s©r
A(w) Z( . ‘g|)E[5 5. (13)

The matrix A(w) quantifies the discrepancy between the w-weighted average of interventions across all
environments and the simple average of interventions over all environments. The alternative causal identifi-
cation condition based on A(w) is as follows:

Condition 2b. There exists some w’ € Al€l such that A = A\pin(A(w?)) > 0, where Apin(-) denotes the
smallest eigenvalue of a matrix.

Condition 2b indicates the existence of a convex combination of environments’ interventions that strictly
dominates the simple average of interventions, such that ) . wIE[§()5ET] - Y oece ﬁEw(e)é(e)T] for

some unknown w’ € A€l Furthermore, the magnitude of X reflects the degree of heterogeneity among
environments. A large \ implies a greater discrepancy between the w’-weighted average and the simple
average of interventions, signaling more pronounced heterogeneity.

The following proposition establishes the equivalence between Conditions 2a and 2b:

Proposition 1. Conditions 2a and 2b are equivalent.

In the following discussions, we will focus on Condition 2b, as it provides a concise form for envi-
ronmental heterogeneity via the matrix A(w"), facilitating the development of theoretical results. With
the equivalence established in Proposition 1, Condition 2b is sufficient for Bi,, uniquely identifying 5%, as
demonstrated in Theorem 1. Essentially, Condition 2b is not only sufficient, but also nearly necessary, as
shown in the following Theorem.

Theorem 2. Suppose Condition 1 holds, and the additive intervention affects at most one position in each
environment, i.e. ‘supp(é(e))‘ < 1foralle € £ If By (€) = {B*}, then there must exist some w’ € Al
satisfying that A(w®) = 0.

This theorem focuses on a specific pattern of additive interventions, where each environment e € £
intervenes at most one position of covariates’ noises. For instance, in environment e = 1, if we only

14



intervene in the first position of the covariate, i.e., X {1), while others remain unaffected, then [0 (1)]2:p =0

and supp(6(")) = {1}. Within this context, Theorem 1 and 2 together suggest that Condition 2b is both
sufficient and necessary for B;,, uniquely identifying 5*. The following example illustrates the necessity of
Condition 2b:

Example 3. Consider X(©) € R?, and let the additive interventions in environments £ = {1, 2, 3} be:
E[6M5MT] = diag(1,0,0); E[6®§3T] = diag(0,1,0); E[§®§®)T] = diag(0,0,1).

It is evident that Condition 2b is not satisfied in this case. In the Appendix, we demonstrate that there are
multiple prediction models, including the causal effect 8*, achieving identical risks across environments.
That is, 5* € Biyy but By, # {8}

3.3 Causality Discovery with Finite

Thus far, we have established that Condition 2b is both sufficient and nearly necessary for ensuring that the
set of risk invariant prediction models, Bi,y as defined in (4), uniquely identifies the causal effect 5* in the
additive intervention regime. Under this identification condition, our proposed NegDRO exactly recovers
the causal effect when the regularization parameter 7y is set to co. Next, we aim to analyze the behavior of
NegDRO in the scenario with finite v > 0, and demonstrate that b?\Ieg, defined in (6), converges to 5* as ~y
increases to 0o.

To facilitate the discussion, we introduce a transformation of w € U(y): w, = ﬁj‘g' foreach e € £.

It is clear that ) oW, = 1, and @, > 0 for all e € &, implying that @ € Alfl. We rewrite w, as
we = (1 + 7|&|)we — v for each e € €. Using this transformation, the original minimax optimization for
NegDRO in (6) is reformulated as:

bl., = argmin max (1 4+ ~|&)we — ) E[E(X(e), Y(e); b)].
& beRP  weEAIE] s

By dividing 1 + ~y|£|, we obtain an equivalent representation for by, defined in (6),

Neg

b = in ®(b here @ (b) = = — 1V Ex©, v©.p). 14
R = argmin@(0),  where (0 w@g§,e€g<w B0 )

We establish the dependence of Hb&eg — 3*||2 on ~ in the following Proposition.

Proposition 2. Suppose that Conditions 1 and 2b hold. Then, the global optimizer b&eg, defined in (14),
satisfies

Co?
y * Y
6 — 51 < 5 (15)

(1 +~l€])’

where A > 0 is defined in Condition 2b, and C' > 0 represents a positive constant.

This proposition indicates that optimizer b%eg of NegDRO problem is O((7|€])~!)-close to the causal
effect 5*. A few key insights emerge from this result. Firstly, as the regularization parameter -y increases, the
distance between b%eg and 8* decreases, bringing bKIeg closer to 3*. In the extreme case where v = oo, bKIeg
exactly matches 3%, consistent with the result in Theorem 1 that bX;,, = 5. Secondly, with a higher degree
of environmental heterogeneity and more observed environments, as A and |€| being larger, the proposed
NegDRO yields the optimizer closer to the causal effect 5*.

However, finding the global optimizer of the NegDRO problem, as defined in (14), is computationally

challenging due to the nonconvexity of ®(b) with respect to b. Notably, the combination weight in front of
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each environment’s risk is possibly negative, making > e c(we — #W)IE[E(X(G)7 Y(E); b)] a potentially
nonconvex function of b. Consequently, after maximizing over w € A€l the function ®(b) remains a
nonconvex function with respect to b. Classic optimization techniques, such as gradient descent and its
variants (e.g., sub-gradient descent), may get trapped in local minima or saddle points due to the nonconvex
landscape of ®(b) [Boyd and Vandenberghe, 2004, Bonnans et al., 2006, Dauphin et al., 2014]. In the next

Section 4, we establish that causal discovery is still achievable in a computationally efficient manner.

4 Computationally Efficient Causal Invariance Learning

We now turn to devising a computationally efficient algorithm for solving the NegDRO defined in (6).
In the following Section 4.1, we introduce our key finding that any stationary point of NegDRO closely
approximates the causal effect 3*, provided that the regularization parameter v > 0 is sufficiently large.
Building upon this finding, we design in Section 4.2 an efficient algorithm for estimating 5*, with the
convergence rate established in terms of both sample size and iteration time.

4.1 Causal Discovery with Stationary Points

In this subsection, we demonstrate that any stationary point of NegDRO converges to the causal effect
[B* with an increasing regularization parameter y. The NegDRO objective ®(b), as defined in (14), is not
differentiable everywhere because the inner maximization max,,c pje] Y ocg (We— #ISI)E[E (XY () p)]
may have multiple solutions. To simplify the analysis and focus on the core insights, we add a ridge penalty
on computing the optimal weights of the inner maximization such that the inner maximization has a unique
solution and the objective function is differentiable. The full treatment of the original NegDRO, which
involves the nonsmooth optimization problems, is provided later in Section 4.3.
Given a small i > 0, we define the penalized version of ®(b) in (14) as follows:

®,(b) = max {Z <we - 1—1—77|5|> E[¢(X(©),y(©);p)] — NHWH%} : (16)

[€]
weA ecé

Compared to the original ®(b) in (14), where multiple weights may simultaneously maximize the objective,
the penalized ®,(b) yields a unique maximizer weight for each b, as the objective becomes strongly concave
with respect to w. For each prediction model b € RP, we denote w = w(b) as the unique maximizer weight
satisfying:

D = arg max » T © v(e). ] _ 2
W = argmax We El(X', Y9 0)] — pllw } A7)
weAIE| eeg{( 1+7|5]> [4( )] [[wl|z

By the Danskin’s theorem [Danskin, 1966][Bertsekas, 1997, Proposition B.25], <I>M(b) is differentiable for
every b € RP, with the gradient defined as

Vo, () =Y <we - 1+7'y|€\> VE[((X®,Y©); ).

ecf

In the following theorem, we shall leverage NegDRO’s gradient norm || V®,,(b)||2 to control the distance
between any prediction model b and the causal effect 5*.

Theorem 3. Suppose Conditions 1 and 2b hold. For a positive ridge-penalty parameter x > 0, the following
inequality holds for any prediction model b € R?:

* C 0'32/ ol
— < — _
b= B2 < 5 <1ﬂ|5|+||v¢>u<b>ug>+c\ﬂ, 18)

where A > 0 is defined in Condition 2b, and C' > 0 stands for some universal constant.
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This theorem indicates that the distance of ||b— 3*||2, for any prediction model b € RP, is upper bounded
via the gradient norm ||V ®,(b)||2, where ®,(b) is the penalized objective function defined in (16) associated
with NegDRO. The inequality in (18) holds for any A > 0, but for simplicity, we treat X as a fixed constant,
which is determined by the heterogeneity level across observed environments. The roles of the regularization
parameter v > 0 and the ridge-penalty parameter 1 > 0 are key to understanding this result. As -y increases,

the first term diminishes to zero. Meanwhile, the choice of 1 presents a tradeoftf between ||[V®,, () ||,

o}
 THE
and /p/A. Specifically, while a smaller value of y reduces \/ /), it increases the number of iterations
required for algorithms to locate a prediction model b with a sufficiently small || V®,,(b)]|2; see Proposition
3. In later Theorem 5, we provide guidance on choosing the optimal value of p.

Now, we present the main idea for the proof of Theorem 3, which relies on the expression for the risk

E[¢(X(©),Y();b)], under the additive intervention regime specified in Condition 1:

E[((X©,Y©):b)] =0 4+ 20TG(b— ) + (b— 5*)TGT (H + E[d(e)é(e”]) G(b— %), (19)

where the full-rank matrix G € RP*P, the positive definite matrix H > 0 and the vector h € RP are
defined in the Appendix. The risk expression (19) reveals that the first-order term involving b — 5* remains
invariant across environments, while the second-order terms vary with the interventions E[§(®)5(¢)T]. The
proof proceeds in three steps:

Step-1: Expressing ¢, (b) through its gradient V&, (b). Given the quadratic nature of ®,(b) with respect
to b, 3(b — 3*)TV®,,(b) matches ®,,(b) in the second-order terms of b, differing only in the first-order and
constant terms. After cancellatlon across environments, the summation of the constant and first-order terms

of b scales by a factor of 5 JW‘ z , yielding:

1

0u(b) = 5(b—F7)TVE,(b) + (03 + hTG(b— §7)] — pllw]3.

1
1+9[€]
Step-2: Establishing the lower bound of ®,(b). According to (17), ®,(b) is attained with the maximizer
weight w, and thus any other weight w" provides a lower bound for ® u(b).

)2 3 (2~ g BIX YO0 ol

> e [oF 20760 - 3] (b 5)TGTAWG( — ) - e

1 2 * *\ 112 012
> - T _ _ _
2 5 [oy +2hTG(b = 87)] + AIG(b = 85 — pllw”l5,
where the second inequality uses the explicit risk expression (19) and H = 0, and the third inequality
leverages Condition 2b to ensure A(w®) = AL

Step-3: Constructing the error bound using the gradient norm. Combining the above two steps, and
applying Chebyshev’s inequality, we obtain
[2]l2]|Gll2

1
_pQ* 2< -
NG - 513 < (5172, + 12

Since ||h]l2 < c10%, |G|l2 < c2, and ||G(b — 8*)||2 > c3]|b — 8*||2, with ¢1, ¢2, 3 > 0 standing for some
universal constants, together with the fact that || w°||3 — ||w||3 < 1, the desired result in Theorem 3 follows.

Next, we move from the population regime to the finite-sample regime, where observed data samples
{29, 4!V e are drawn iid from the distribution of (X(¢),Y(®)) for each environment e € &. Let
n = min.cg ne denote the smallest sample size across all environments. We substitute the population
risk E[¢(X (e) y (e, b)] in (14) with its empirical counterpart

) 15— B*1ls + (2 - ]2,

E[e(x©,y©:p ZK ©) 419 ),
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resulting in the empirical penalized NegDRO problem:

L= R " S0 v(@) vie). 2
i ,(0), wﬂl@Aw—;gﬁ%g{@k ) O,y O] - ). o)

The analysis of the empirical optimization problem typically requires the tail assumptions of the noise
distributions, such as those in Rothenhdusler et al. [2019], Fan et al. [2023]. We assume the noise to be
sub-Gaussian in the following condition.

Condition 3. 7 € RP*! and 5 e RP for all e € € in (9) are sub-Gaussian random vectors.

The following theorem establishes a finite-sample bound for the distance between any prediction model
b € RP and the causal effect 8*.

Theorem 4. Suppose Conditions 1, 2b, and 3 hold, and the sample size satisfies n > 2p(53 V 1), for some
constant ¢ > 0. For a ridge-penalty parameter ;& > 0, the following inequality holds for any prediction
model b € RP: with probability at least 1 — 2|E|e™*,

C o? ~
b—6%, < — | —X— ®,(b
=5l < § (2 + 1980k ) +

<
VA

1/4
ﬁ+(p+5> ] 1)

n

for any s € (0, (A—c2 A 1)n], where A > 0 is defined in Condition 2b, and C' > 0 stands for some constant.

Compared to the population-level result established in Theorem 3, the roles of the regularization param-
eter v > 0 and the ridge-penalty p > 0 remain consistent. The only difference lies in the introduction of
an additional finite-sample error term of order @ (n~'/4) within the empirical upper bound in (21). In the
subsequent Section 4.2, we present an algorithm to locate a stationary point of ®,(-), ensuring that | ®,(-)||2
approaches zero with a growing number of iterations. Essentially, the number of iterations required is in-
versely proportional to the magnitude of u. To balance the computational cost of finding a prediction model
with a small || V® 1(b)]|2 and the impact of /4:/ A on the bound of (21), we provide guidance on the optimal
selection of 1 in Theorem 5..

4.2 Searching for Stationary Points

We start with designing an algorithm to locate stationary points of @M() and then establish its convergence
rate to 8* with respect to both sample size and iteration times. To identify a stationary point for the non-
convex ® (D), we propose a standard gradient descent Algorithm 1. In each iteration ¢, given the current b’,
the weight w!*! is chosen to maximize the penalized objective as in (22). Since the objective is a strongly
concave function towards w, we apply the Danskin’s theorem to compute the gradient V&)lt(bt) using the
optimal weight w!*!, as in (23).

To facilitate a theoretical analysis of Algorithm 1, we impose an additional assumption concerning the
smoothness of the environment’s risk function. This smoothness assumption is standard in the analysis of
convergence for algorithms solving nonconvex optimization problems [Ghadimi and Lan, 2013, Kingma,
2014, Lee et al., 2016].

Condition 4 (Smoothness). For e € &, the empirical risk E[¢(X(©), Y(©);p)] = n% ey E(xl(e), yz(e); b) is
M -smooth with respect to b € RP, that is, for any b, b’ € RP,

Hvﬁ[e(X@, Y(©. 1) — VE[((X©, Y, p)]

< M=o
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Algorithm 1: Gradient Descent Algorithm for the Penalized NegDRO in (20)

Input : Iteration time 7', step sizes {at}tho, initial point %, regularization parameter v > 0,
ridge-penalty parameter p > 0

Output: b

fort =0,1,...,7 do

Update the optimal weight associated with b:

w't! = arg max <w€ - >E£ X©@ y© ] — pllwl|3 b (22)
g ma ; T [e( ) = pllwl|3

Update b'*! corresponding to the weight w!+!:

41 _ 3t tod (At : 3ty t+1 g = (e) v(e). pt\1.
b = bt — 'V, (b)), with vqh(b)g@e 1+7|5|>V]EWX Y@t (23)

end
Define b7 € arg min{bt}tgl ||V‘/I\)u(bt)”2-

We now establish the convergence rate of Algorithm 1’s output to a stationary point of d u(e).

Proposition 3. Suppose Condition 4 holds. By setting the step size in Algorithm 1 as of = m for
allt =0, ..., T, the output b7 of Algorithm 1 satisfies:

~

T
VD, (b7)]|2 < %Z HVW”)HE < \/4(M+M2/M)«I>#(b0)
t=1

T 9

where bV is the initial point in Algorithm 1, and M is the smoothness parameter defined in Condition 4.

The result aligns with similar findings on stationary convergence rates of gradient descent methods in the
literature [Bottou et al., 2018]. Notably, this stationary convergence rate is optimal for first-order methods,
as established by Carmon et al. [2020], Nesterov et al. [2018].

In the following theorem, we establish the convergence rate of ||b” — 5* ||, by combining Theorem 4 and
Proposition 3.

Theorem 5. Suppose Conditions 1, 2b, 3, 4 hold, and the sample size satisfies n > 2p(y5 V 1) for some
constant ¢ > 0. For a ridge-penalty parameter 1 > 0, by setting the step size in Algprithm las ol =
for all t = 0,..., T, then with probability at least 1 — 2|E|e~*, the output b” of Algorithm 1

. c({ o2 [M + M2/u C p+s\ V4
v % < = Y 1/2 YT

for any s € (0, ()‘—C2 A 1)n], where A > 0 is defined in Condition 2b, M denotes the smoothness parameter
defined in Condition 4, and C' > 0 stands for some constant.

1
2M+2M?2/p
satisfies

Notably, unlike existing methods that require an exhaustive search over all possible subsets of covariates,
Algorithm 1 avoids the computational burden and remains efficient even with a large dimension p. In
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Section 6, we present empirical results demonstrating its computational efficiency and effectiveness in causal
discovery.
A few remarks are provided in order for Theorem 5. For a constant A, when we set the penalty parameter

W= f/—]\% for some constant ¢ > 0, the bound in the preceding theorem is simplified as follows:

) o2 MY p\ s
T B, < Y - £
I ’8‘|2N1+7|6’]+<T) “(3)

This result implies that Algorithm 1 produces an output b that approximates the causal effect 5* up to the
level O((7|&])~" 4+ T~Y* + n=/4). If we treat the count of environments |£| as constant, to achieve an
e-accurate solution, i.e. |7 — 8*||2 < e, it is sufficient to set the regularization parameter as v = Q(e™ 1),
collect a sample size of n = Q(¢~*), and iterate Algorithm 1 for T' = Q(e~*) steps.

As demonstrated in Figure 7 in Section 6, our numerical studies demonstrate that our proposed NegDRO
estimator achieves a convergence rate of O(n_l/ 4), indicating the tightness of our current analysis of b,
the output of Algorithm 1. However, it remains an open question how to design a computationally efficient
algorithm with an output achieving the convergence rate (’)(n_l/ 2), which deserves future investigation.

A natural question arises regarding the optimization convergence rate: can the convergence rate of \|l§'y —
B*||2 with respect to iteration times 7" be further improved? The derived convergence rate for ]]137 — B*|2
is obtained by combining the stationary point convergence result ||</IS u(lAﬂ)Hg from Proposition 3, together
with the upper bound on ||b — 5*|| for any prediction model b € RP as established in Theorem 3. From the
stationary point convergence perspective, the optimal rate for smooth functions is known to be O (T -1/ 2), as
shown in Proposition 3. However, tuning the ridge penalty to ensure smoothness slows the rate to (’)(Tfl/ 4
as shown in Theorem 5. Without imposing additional structural assumptions, these stationary convergence
rates are considered optimal within the framework of optimization theory. Nonetheless, it may be possible to
improve the convergence rate for || b — B* |l2 by directly establishing point convergence using other problem
structures that remain unidentified in this work, rather than relying on stationary convergence. We highlight
that existing nonconvex landscape conditions [Karimi et al., 2016], such as the PL condition, might not hold
for NegDRO problems with a finite «y as the true causal relationship 8* might not be an optimal solution to
such NegDRO problems. Thus, none of the existing lower bounds would apply. We leave the investigation
on the tightness of the convergence rate for future studies.

4.3 NegDRO without the Ridge Penalty

In this subsection, we extend our analysis to the original empirical NegDRO problem, without the ridge
penalty used in previous discussions, defined as follows:

L= LBy __ 7 El(X(© y(e.
&1&@(6)’ with  ®(b) w%gfg'eeg{(we 1+75\>E[£(X Y ,b)}}. (24)

While most results remain consistent with the results in Sections 4.1 and 4.2, the current section requires a
more general definition of stationary points due to the nonsmooth nature of ®(b). To facilitate discussions,
we introduce the concepts of Goldstein subdifferential and generalized stationary points.

Definition 3 (Goldstein Subgradient and Subdifferential). Given a function h : R? — R U {oo}, a vector
¢ € R? is called a subgradient of h at a point b € RP if it satisfies:

h(b") > h(b) + ¢T (V' — b) + o(||t/ — b||2), for all b’ such that b" — b.
The subdifferential of & at b, denoted as Oh(b), is the set of all subgradients at b:

Oh(b) = {¢ € RP|h(V') > h(b) + (T(V' — b) + o(||b — b]|2), forall b’ such thatb’ — b} .
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The distance of subdifferential Oh(b) to the origin is given by Dist(0, k(b)) = inf{||(||2, ¢ € Oh(b)}.

In the following, unless otherwise specified, the terms “subgradient” and “subdifferential” refer to the
Goldstein subgradient and Goldstein subdifferential, respectively. The subdifferential generalizes the no-
tation of gradient. If the function h(-) is differentiable at the point b, the subdifferential reduces to its
gradient with Oh(b) = {Vh(b)}, and its distance to the original becomes the gradient norm such that
Dist(0,0h(b)) = ||Vh(b)||2. Building upon the definition of subdifferential, we define generalized station-
ary points as follows.

Definition 4 (Stationary Point). A point b € RP is a stationary point of the function i : R? — R U {oo} if
and only if 0 € Oh(b), that is, Dist(0, Oh(b)) = 0.

It extends the classic definition of stationary point utilized for differentiable functions, where a point b
is a stationary point of the differentiable function k() if and only if || VA(b)||2 = 0.

As a generalization of Theorem 4, the following theorem establishes the distance ||b — 3*||2 in terms of
the subdifferential O (b).

Theorem 6. Suppose Conditions 1, 2b, 3 hold, and the sample size satisfies n > 210(/\—02 V 1) for some
constant ¢ > 0. The following holds for any prediction model b € RP: with probability at least 1 — 2|E|e~*,

p+s 1/4
n > ’

C o? ~ C
gl < 2 (%Y :
(LRl P <1+v|8! +Dlst(0,8<I>(b))> + 317 ( (25)

for any s € (0, ()‘—c2 A 1)n], where Dist(0,0® (b)) = inf{||¢||l2,¢ € d®(b)} measures the distance of the
subdifferential 8515(1)) to the origin, A > 0 is defined in Condition 2b, and C' > 0 stands for some constant.

This bound closely aligns with the penalized case in Theorem 4, except for two differences: the gradient
norm is replaced with the subdifferential distance, and the term related to the ridge-penalty parameter y is
removed. Moreover, this theorem implies that if b is a stationary point of ®(-) satisfying Dist(0, 0®(b)) = 0,
it closely approximates the causal effect 3* with an error ||b — 5*[|2 = O((y|E])~" + n~1/4), consistent
with the results for the penalized case in Theorem 4.

To compute stationary points of the nonsmooth function &)(b) we introduce a subgradient-based Algo-
rithm 2, which updates the prediction model b’ using subgradient descent and employs a proximal mapping
to facilitate convergence. The proximal mapping, defined for a parameter v > 0, is given by:

. ~ 1
pros,(b) = arg i {80+ 5, 1c- 018} 26)

We now comment on the subtle difference in the last output selection step between the current Algorithm 2
and the earlier Algorithm 1. For the ridge-penalized NegDRO which is differentiable, Algorithm 1 selects
the output by minimizing the gradient norm || V® 41(0Y)]|2- This ensures the selected b approaches a station-
ary point of smooth (i)u() with a nearly zero ||V<i> 1 (b7)]]2. In contrast, for the unpenalized NegDRO which
is not differentiable everywhere, the subdifferential distances to the origin, Dist (0, 6&)(1}’5)) fort =1,...,T,
are not directly observable. To address this issue, the current Algorithm 2 employs the proximal mapping
to ensure that the subdifferential distance to the origin, Dist(0, d® (b)), is close to zero, thereby effectively
approaching a stationary point for the nonsmooth 5() A detailed analysis is provided in the Appendix.
Now, we analyze the output of Algorithm 2 by establishing its convergence rate towards the causal effect

B
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Algorithm 2: Subgradient Descent Algorithm for NegDRO in (24)

Input : Iteration time 7', step sizes {at}tho, initial point %, regularization parameter v > 0,
proximal-mapping parameter v > 0

Output: b

fort =0,1,...,7 do

Update the optimal weight w!*! associated with b':

w'™t € arg max (we S ) Elo(x@, y©. ).
weAIE] ; 1+v|&] [ )

Update b'*! corresponding to the weight w!*1:

p+l — pt _ ot . t+1 7 Elo(x© ye. pt
o {}j(mz g ) VR, YO

ecé

Compute proximal mapping point proxU;I;(th) as in (26).
end
Define b € arg mingr [[prox, & (b*) — b*|2.

Theorem 7. Suppose Conditions 1, 2b, 3, 4 hold, and the sample size satisfies n > 2p(3% V 1), for some

. . . . t _
constant ¢; > 0. By setting the proximal mapping parameter v € (0, c2] and the step size as o' = \/%

forall t = 0,..., T, for some constants cg,c3 > 0, with probability at least 1 — 2|E|e™*, the output b7 of
Algorithm 2 satisfies:

2 1/4 1/4
=Bl S (2w (2] )+ (B
A\ 1+79)€] T A2\ n ’

for any s € (0, (;\—12 A 1)n], where X is defined in Condition 2b, and C' > 0 stands for a universal constant.

The above theorem shows that the output b7 approximates 8* up to an error O((y|E])~! + T—1/4 +
n=1/ 4), aligned with the penalized case in Theorem 5 when the ridge-penalty parameter i is set to cM / VT.
The convergence rates with respect to both the sample size n and iteration times 1" are consistent with those
discussed for Theorem 5. Notably, finding generalized stationary points for non-smooth functions, such as
our NegDRO objective @(b), inherently requires a T-1/4 convergence rate [Davis and Drusvyatskiy, 2018].
This aligns with the optimization convergence rate obtained when smoothing is applied and the ridge penalty
is tuned appropriately, as in the penalized case Theorem 5.

S Minimization Helps

In this section, we explore scenarios where interventions are limited— only a subset of covariates are inter-
vened upon, which frequently happens in practice due to the cost or ethical constraints [Cohen et al., 2008,
Brannath et al., 2009, Banerjee and Duflo, 2009]. These limited intervention settings introduce an addi-
tional challenge for causal discovery: multiple prediction models, including 8*, may yield invariant risks
across environments. Despite this, NegDRO still has the potential of identifying 5*, due to the additional
minimization step embedded in the NegDRO formulation in (8).

In Section 5.1, we introduce the identification Condition 6 which allows NegDRO to identify £* in lim-
ited intervention settings. Building on this, Section 5.2 highlights the advantages of NegDRO in such limited
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intervention settings, particularly when compared to other causal invariance learning methods designed for
the additive intervention [Rothenhdusler et al., 2019, Shen et al., 2023].

5.1 Causal Identification under Limited Interventions

We illustrate causal discovery in the limited intervention regime by considering an important setting as
described in the following Condition 5 and present a more general result in the Appendix. To formalize
this scenario, we define D C [p] as the set of covariates that are direct children of the outcome, with
D = supp(Byx). Here, By x captures the reverse effect of the outcome on the covariates, as defined in
(9). The complement D¢ = [p] \ D corresponds to covariates that are not directly affected by the outcome.
We impose the following specific condition to define this scenario:

Condition 5 (Additive Intervention with No Hidden Confounding and Separated Intervention). The additive
intervention Condition 1 holds with n = (nx,ny)T € RP*! and 5¢) ¢ RP satisfying:

E[nynx] =0, and E[ég)(SSZ] =0, Vecé&. 27)

This condition imposes two additional assumptions within the additive intervention regime:

* No Hidden Confounding. The systematic random error 7 satisfies E[nynx]| = 0, implying E[egf)eg?)] =

0, by the error decomposition model in (10). This aligns with no hidden confounding assumptions
adopted in prior works [Hauser and Biihlmann, 2015, Peters et al., 2016, Ghassami et al., 2017].

(e)

« Separated Interventions. The environment-specific intervention §(¢) satisfies E[ég)é pel = 0, for

e € £. This indicates that the interventions applied to the direct children of the outcome X g) and the
remaining covariates X(Dec) are not correlated. This assumption is naturally satisfied in settings where
interventions target only one covariate per environment or when independent interventions are applied

to all covariates, for example, 6(°) ~ N(0, X(¢)), where X(¢) is a diagonal matrix.
Tailored for this setting, we propose the following identification condition:
Condition 6. Suppose there exists some weight w® € Al€l satisfying Y oece wOE[Eg?) (ES))T] > 0, and
A(w®) =0, [Aw")]pp =0, (28)

where Eg?) represents the error used in (9), and A(-) is defined in (13).

This identification condition serves as a relaxation of the earlier Condition 2b, by accommodating the
limited intervention scenarios where only a subset of covariates are intervened upon, rather than the full set
of covariates. The first requirement, ) o wOE[Eg? (ag?))T] > 0, is automatically satisfied if the systematic
random error 7 satisfies E[1nT] > 0. The key difference emerges in the requirement on the matrix A (w®) in
(6). While the earlier Condition 2b requires A(w) = 0 across all covariates, the current one requires only
[A(w®)]p.p, to be strictly positive, that is, the direct children of Y are sufficiently intervened. This means
that under the new condition, the covariates outside D can remain unintervened across all environments,
that is, 5,(:) = (0 for some k ¢ D across all e € £.

To better illustrate this key relaxation, consider a thought experiment where researchers start with a
reference environment with no interventions and then conduct a series of single-covariate interventions for
each environment. For simplicity, we consider there are three covariates p = 3, and X5 is the only direct
child of the outcome Y, i.e., D = {2}. As demonstrated in Figure 3, Condition 6 requires intervening on
the variable X while Condition 2b requires intervening on all variables X7, X5 and X3.

Now we demonstrate that NegDRO identifies 5* under the relaxed condition in the setting described in
Condition 5.
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Figure 3: Comparison of Conditions 6 and 2b. Condition 6 requires intervening on the outcome’s direct
child (X3) while Condition 2b requires intervening on all covariates (X7, Xo, X3).

Theorem 8. Suppose Conditions 5 and 6 hold. The proposed b%‘;g, as defined as (8), identifies the causal
effect with b&oeg = p*.

Compared to Theorem 1, the above theorem enables the causal identification via the additional min-
imization step embedded in the NegDRO formulation in (8). Previously, in Theorem 1, the condition
A(w") = 0 ensures that 3* is the only prediction model satisfying risk invariance across environments.
Consequently, since b&oeg is enforced to yield identical risks across environments, bl%oeg aligns with 5.
However, under the limited intervention scenarios where some covariates remain unintervened across all
environments, Condition 2b no longer holds and there may exist other invariant prediction models that are
different from g*. If these limited intervention scenarios satisfy the relaxed identification Condition 6, the
additional minimization step in (8) effectively distinguishes 5* from other risk-invariant prediction models,
ensuring the identification of 3* even when there exist multiple invariant prediction models.

Next, we analyze the output of Algorithm 2 by establishing its convergence rate towards the causal effect
B* under the relaxed identification Condition 6 in the regime described by Condition 5.

Theorem 9. Suppose Conditions 3, 4, 5 and 6 hold, and the sample size n satisfies n > v?p. By setting the

proximal-mapping parameter v € (0, ¢1] and the step size as o' = —22— in Algorithm 2 forall ¢t = 0, ..., T,

VT+1 N
for some constants c1, ca > 0, with probability at least 1 — 2|E|e™*, the output b” of Algorithm 2 satisfies:

Vel GlEDMt 1 (pa s\
T1/4 T1/8 (,7|(c/‘|)1/4 n ’

167 = B*|2 < Cot {

for any s € (0, %) where C' > 0 is a universal constant.

This theorem demonstrates that Algorithm 2 achieves causal discovery under the more relaxed causal
identification Condition 6. Specifically, b — B* as the regularization parameter y, sample size n, and
iteration time 7’ become sufficiently large, satisfying v — 0o, n > +%p, and T > (y|&|)*. For T =
Q((~|€])?), the distance ||bY — 5*||, attains the rate O((y|E])~/* +n~1/8). Compared to the upper bound
established in Theorem 7, which relies on the stronger causal identification Condition 2b, the current upper
bound requires larger values for v and n, as well as a longer iteration time 7', to achieve the same level
of accuracy. Specifically, for an e-accurate solution, i.e. H(Aﬂ — B*|l2 < e, the required parameter values
are y = Q(e7*),n > ¢ 8, and T = Q(e?Y), assuming the number of environments |€| and the covariate
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dimension p are constants. It is worth noting that the current finite-sample rate of n~/% and the optimization

iteration complexity 7' = €(e~2°) may not be optimal. Establishing the optimal convergence rate for this
nonconvex problem is an intriguing question that we leave for future investigation.

5.2 Comparison to Gradient Matching Methods

We now compare NegDRO with existing approaches for additive interventions, specifically CausalDantzig
[Rothenhiusler et al., 2019] and DRIG [Shen et al., 2023], in scenarios with limited interventions. We shall
demonstrate that both CausalDantzig and DRIG are inapplicable to the limited intervention regime due to
the fact that their key assumptions are violated in such a regime. In the following, we briefly introduce both
methods and provide detailed introductions in the Appendix for completeness. CausalDantzig leverages the
gradient invariance property inherent to additive interventions, formalized in its Proposition 1. This property
states that for any pair of environments e, f € £, the causal effect 5* satisfies:

EX©E v © — (g7xE)) = B XD (v — (51X 1)), (Grad Invariance)

By assuming the non-singularity of E[X (©) X ()T — X (/) X (/)T], CausalDantzig identifies 5* through:
B = (E[X(e)X(e)T _ X(f)X(f)T])_lE[X(e)Y(e) _ xNy U,

However, this method fails under limited intervention scenarios. For example, suppose k-th covariate is not
intervened upon across all environments,, i.e., 5](:) = 0 for all e € & for some k € [p]. Then according to

the SEMs in (11) and noise decomposition in (10), the difference of Gram matrices becomes

E[X©x T — x()x (N1 = = B)fl] E[5() T — 55 (HT] (1 B)fl]T_ (29)

—1,-1 1,—1°
Here, the absence of interventions on 5,26), forall e € &, renders E[6(9)5()T — §() 5] and E[X () X ()T —
xWNx( )T} rank-deficient, violating the non-singularity assumption required for CausalDantzig. In contrast,
our NegDRO approach remains effective to identify 5* under such limited intervention scenarios, provided
that the identification Condition 6 is satisfied.

Now, we turn to discuss DRIG, which relies on the existence and availability of a reference environment,
denoted as e = 0. This reference environment is characterized by strictly weaker interventions compared
to all other environments £ = {1,2, ..., ||} such that E[§(0§OT) < E[6()§()T] for all e € £. Given a
regularization parameter v > 0: DRIG solves the following optimization problem:

bhri = argmin {wa@, Y O:0)) 4+ 3wt (B, YO:b) - Ee(XO, Y O:p)]) } . (0
beRP Py

where w € Al€l is a pre-specified weight vector. While the primary focus of DRIG is to ensure robust
generalization to unseen populations for finite v, the method can achieve causal discovery with b3z = 8*
when 7 is set as oo, provided the reference environment e = 0 exists.

We emphasize that the reference environment plays a critical role in DRIG’s formulation. With ac-
cess to such an environment ¢ = 0, it holds that E[X(9)(X(€)T] — E[X©O)(X()T] ~ 0 for all e €
£. Consequently, the optimization problem in (30) becomes convex, since its Hessian E[X (0 (X ()] 4
Y e WHEX @ (X)) — E[XO(X(©)T]) = 0. This convexity significantly simplifies the computa-
tional effort, as DRIG requires solving only a convex optimization problem. This is a key distinction from
our proposed NegDRO, which involves solving a nonconvex optimization problem without assuming the
existence of a reference environment. However, it is challenging to identify a reference environment in
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practice, limiting the application of the DRIG method. Moreover, under the limited intervention regime
where some covariates are not intervened, such a reference environment does not exist. As an example, if
5](;) = 0 for all e € £ and for some k € [p], then E[5(®)§(9)T] £ E[6())§(H)T] for any paire, f € £.

Next, we revisit Example 2 to compare the performance of NegDRO with CausalDantzig and DRIG
under different intervention scenarios, including limited, weak, and full interventions.

Example 2 (Continued). Among the four covariates, X. ée) is the only direct child of Y(), i.e. D = {3}. We
consider two environments with £ = {1, 2}. For each environment e € £, the noises (egf) , 5&2)T follow the
distribution (5§f) , 552)T 4 n+ ( 5&) , where the systematic random error  ~ N (04, I). For environment

e = 1, no interventions are applied to any covariates, so 8(!) = 0,. For environment e = 2, the direct child
Xg) is intervened such that 5532) ~ N(0,2). For the remaining covariates X (D22 , we examine the following

intervention scenarios, which are illustrated in Figure 4.

(limited) 6%2) = 03; (weak) 6'2) “X" A7(0,0.01); (strong) 612 "% A/(0,0.25).

~

Env-1 (No Intervention) @w&
~ J
& N

7/~ | (Limited Intervention) @w@
R R

Env-2 < (Weak Intervention) @ @ Y@ @
~ I J

~ (Strong Intervention) &- |&. Y@ & &

~ J

Figure 4: Illustration of Example 2. In environment e = 1, no interventions are applied, while environment
e = 2 features three types of interventions. Red hammers denote “strong” interventions applied to a variable,
blue hammers indicate “weak” interventions, and variables without hammers are not intervened.

Across the three intervention scenarios, the results are displayed in Figure 5, with the sample size fixed
at ne = 10000 for each e € £. For NegDRO and DRIG, we evaluate the distance of the fitted estimators
to the causal effect, as the regularization parameter -y varies in the range [0, 60]. Since CausalDantzig does
not include a regularization parameter, its performance remains unchanged across different v values. The
figure shows that under the limited and weak intervention scenarios, DRIG estimators deviate from 5* as
~ increases. Similarly, CausalDantzig fails to approximate S* in these two scenarios. Only in the strong
intervention setting, both CausalDantzig and DRIG (with a relatively large y)achieve accurate approxima-
tion of S*. In contrast, our proposed NegDRO consistently delivers estimators close to 5* across all three
intervention settings as y grows.
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Figure 5: Comparison of NegDRO with CausalDantzig and DRIG in terms of estimators’ {5 distance to the
causal effect 5*, within three intervention scenarios as described in Example 2 in Section 5.2 with sample
size ne = 10000 for e € £. For NegDRO and DRIG, we vary the regularization parameter -y in the range of
[0, 60], while CausalDantzig does not require it. The results are averaged over 200 simulations.

6 Numerical Results

In this section, we illustrate the performance of our proposed NegDRO through empirical simulations, where
we use Algorithm 1 for implementation and present the full details in the Appendix. We introduce the data
generating mechanism and depict the corresponding causal graph in Figure 6. The covariates X (¢) € R and

Figure 6: Illustration of (31): the highlighted covariates X fe) and X. 3()6) are direct causes of Y(¢).

the outcome Y(¢) € R for each environment e € £ = {1,2,3,4} are generated according to the following
SEMs:

X = e, X0 = X0 o, x09 = x4, ¥ = x4 x4 o2

31
X7 =@+, X\ =y 19, x{) =l
where the noise terms (ng)v € gez)a)T follow the error decomposition model (10) such that (5§f)’5g2)T -

1 + (0,6(¢))T. Here, the systematic random error 17 ~ N (0p41,I,41) is shared across all environments,

while the environment-specific interventions §(¢) € R? satisfy that 5((32 N (0, %) forall e € £, with

01 =05 62 Y N(0,9); ) = (1,1.5,2,2.5,3)T; 6% % Unif(—0.5,0.5).

We simulate samples {a:z(e),yl-(e)}?zel according to (31). For simplicity, the sample size is kept identical
across all environments, with n. = n for all e € £. In this setup, the causal set is S* = {1, 3} with the
causal effect 3* = (1,0, 1,0,_3)7.

Figure 7 illustrates the dependence of \\137 — [*||2, on the regularization parameter  and the sample
size n. The covariate dimension p is varied across {5,20,50}. On the left panel, the sample size is fixed
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at n = 20000, while ~y is varied within the range [0, 25]. The results show that as y increases, the distance

16" — 8*||2 decreases similarly to the curve of &'?& + 0.05, validating our Theorem 5 in terms of the

dependence on ~. On the right panel, we examine the dependence of ||b” — 3*||5 on the sample size n. We
fix the regularization parameter as v = 20, while varying n in the range of [500,20000]. A benchmark
curve 0.8~ /4 is included for comparison. The logarithm-transformed distance log ||” — 5*||» decreases
approximately at a rate of —1/4 - logn + ¢ for a positive constant ¢ > 0, validating our Theorem 5 in terms
of the dependence on the sample size.

Mean Error vs. y Mean Error (Log) vs. n (Log)
0.14 2x%1071
—— p=5 —e— p=5
p=20 p=20
5 012 —s— p=50 Tl —e— p=50
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-—- 08-n71#
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Figure 7: Dependence of || by — B*||2 on the regularization parameter  and the sample size n, where bY is the
output of Algorithm 1. The dimension p is varied in {5,20, 50}. On the left panel, the sample size is fixed
at n = 20000, and the regularization parameter -y is varied within [0, 25]. On the right panel, The logarithm-
transformed distance log ||b” — 3*||2 is plotted against log n. Results are averaged over 200 simulations.

Next, we investigate the intervention scenarios by setting 5((52 = 0p—5 for all e € £ within the SEMs in
(31). We compare our NegDRO with other causal invariance learning methods in terms of both estimation
accuracy (measured as the /o distance to the causal effect 5*) and computational cost (measured in seconds).
The methods included in the comparison are ICP [Peters et al., 2016], CausalDantzig [Meinshausen, 2018],
DRIG [Shen et al., 2023], and EILLS [Fan et al., 2023]. The ERM method is also included for comparative
purposes, which pools all observed data across environments and fits a least-squares model. We set the
regularization parameter v = 20 for our NegDRO. For EILLS, the hyperparameter is also set as v = 20,
following the recommendation in their original work. For other causal invariance learning approaches, their
hyperparameters (if applicable) are chosen in an oracle manner: we enumerate a wide range of hyperpa-
rameter values and select the best one that minimizes ¢ distance to 8*. Detailed implementations for all
methods are provided in the Appendix.

The results are summarized in Figure 8, where we fix the sample size at n = 5000 and vary the di-
mension p in the range of [5, 120]. To ensure timely execution, we impose a 30-minute time limit for each
method; if a method does not finish within this limit, it is terminated automatically. In the left panel of Figure
8, among the evaluated methods, only our NegDRO closely approximates 3*, irrespective of the covariate
dimension p. Notably, ELLIS performs exceptionally well in recovering the causal effect 5*, yielding a
smaller ¢, distance compared to all other methods for lower-dimensional settings when p € {5, 10, 15, 20}.
However, its computational time reaches the 30-minute time limit when p > 25, indicating the hardness of
scaling up such integer programming algorithms for causal discovery. The ICP method, which prioritizes
selecting direct causes through hypothesis testing rather than achieving accurate estimation of the causal ef-
fect, demonstrates conservative behavior in this setting, resulting in poor accuracy for estimating 3*. DRIG
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and Causal Dantzig perform well when p = 5, but fail to approximate 5* for p > 5. This failure arises be-
cause their underlying assumptions are violated in our setting, where certain covariates remain unintervened,
specifically with 5((3:61), = 0,_5 for e € &; see detailed discussions in Section 5.2.

The right panel of Figure 8 tracks the computational time for each method. It is evident that ICP and
EILLS, both of which rely on exhaustive search, quickly exceed the time limit as the covariate dimension
p increases, specifically at p = 20 and p = 25, respectively. In contrast, all other methods, including our
proposed NegDRO, demonstrate computational costs that scale polynomially with the dimension p.
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Figure 8: Comparison of different causal invariance learning methods in terms of the estimation accuracy
and computational time. The covariate dimension p varies within the range of [5,120], while the sample
size is fixed at n, = 5,000 for each e € £. The left panel displays the ¢ distance between each method’s
estimator and the causal effect 5*. The right panel depicts the computational cost (logarithm of seconds) for
each method, with a black dashed horizontal line marking the 30-minute time limit. Methods exceeding this
limit are terminated. Results are averaged over 200 simulations.
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