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Abstract

Unsupervised domain adaptation has emerged as a pivotal paradigm for mitigat-
ing distribution shifts in time series analysis. The fundamental challenge in time
series domain adaptation arises from the entanglement of domain shifts and in-
tricate temporal patterns. Crucially, the latent continuous-time dynamics, which
are often inaccessible due to sensor constraints, are only partially observable
through discrete time series from an explicit sensor-limited single view. This
partial observability hinders the modeling of intricate temporal patterns, impeding
domain invariant representation learning. To mitigate the limitation, we propose
EDEN (multiple Explicit Domain Enhanced adaptation Network), expanding the
raw dataset to multi-scale explicit domains, multi-subspace explicit domains and
multi-segment explicit domains. EDEN enhances domain adaptation with three
coordinated modules tailored to integrate multiple explicit domains: (1) Multi-
Scale Curriculum Adaptation implements progressive domain alignment from
coarse-scale to fine-scale. (2) Quality-Aware Feature Fusion evaluates feature
quality in multi-subspace explicit domains and adaptively integrates temporal-
frequency features. (3) Temporal Coherence Learning enforces segment-level
consistency with multi-segment explicit domains. The representation enriched
by multiple explicit domains bridges the gap between partially observed discrete
samples and the underlying implicit temporal dynamics, enabling more accurate
approximation of implicit temporal patterns for effective cross-domain adapta-
tion. Our comprehensive evaluation across 6 time series benchmarks demonstrates
EDEN’s consistent superiority, achieving average accuracy improvements of 4.8%
over state-of-the-art methods in cross-domain scenarios. Code is available at the
anonymous link:https://github.com/mingyangliu1024/EDEN.

1 Introduction

Time series classification has been studied with immense interest in extensive applications and has
made significant progress [15, 40, 37]. Nevertheless, practical deployment of the models often
encounters severe performance degradation caused by distribution shifts between training and testing
environments [27]. Unsupervised domain adaptation (UDA) [21, 12], leveraging knowledge transfer
from a related source domain to the unlabeled target domain, can be a promising solution.

The core challenge of time series domain adaptation (TSDA) stems from the entanglement of domain
shifts and intricate temporal patterns, which is further compounded by the partial observability of
latent continuous-time dynamics. Unlike images or text, where raw observations capture rich semantic
information, time series data constitutes an explicit sensor-limited single domain, whose discrete
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observations are constrained by acquisition parameters (e.g., sampling rates or record durations) that
only partially reflect the underlying implicit domain of continuous-time processes [10], and hinder
the modeling of intricate temporal patterns. Critically, modifying these sensor constraints yields
different explicit domains, each emphasizing distinct aspects of the implicit temporal dynamics that
must be effectively captured. Conventional approaches relying on a single explicit domain exhibit
limited representational modeling capabilities, impeding domain invariant representation learning.

Current advanced methods primarily focus on extracting temporal representation directly from raw
observational data [38, 25], demonstrating limited effectiveness in simultaneously capturing intricate
temporal patterns and addressing their associated domain shifts. While recent advancements incor-
porating representations from frequency subspace show improved domain adaptation performance
[14, 18], these approaches remain fundamentally constrained by fixed temporal-frequency integration
paradigms. To unravel implicit temporal dynamics and enhance domain adaptation, it is essential to
break through the limitations of the single view in the raw dataset.

In light of the above motivations, we propose EDEN (multiple Explicit Domain Enhanced adaptation
Network) for TSDA based on the integration of multiple explicit domains. By expanding the
restrictions slightly, we expand the original dataset to (1) multi-scale explicit domains at fine-scale
and coarse-scale, (2) multi-subspace explicit domains containing temporal subspace and frequency
subspace, and (3) multi-segment explicit domains with nearby segments. Furthermore, EDEN
investigates interactions among multiple explicit domains and achieves their effective integration with
three coordinated modules: (1) For multi-scale explicit domains, we highlight that the coarse-scale
features manifest smaller domain discrepancy, which is the metric proposed in domain adaptation
theory [2]. Based on that, Multi-Scale Curriculum Adaptation is proposed to progressively align
the source and target domain from coarse-scale to fine-scale. This curriculum learning strategy
stabilizes global feature alignment before refining local discriminating details. (2) For multi-subspace
explicit domains, we reveal that the discriminative capability of models for the same class may vary
significantly between two subspaces. Based on that, we propose Quality-Aware Feature Fusion, an
adaptive fusion mechanism that weighs subspace contributions based on their representation quality
for specific instances. (3) For multi-segment explicit domains, we identify that nearby segments
inherently possess similar class-related semantic information. Based on that, we propose Temporal
Coherence Learning, encouraging the model to exhibit consistent and stable behavior on adjacent
temporal windows. Main contributions are as follows:

1. Going beyond previous methods, we break through the sensor-limited single view and expand
to multiple explicit domains, taking advantage of rich semantic information and comprehensive
reflection of domain shift from multiple explicit domains, unraveling implicit temporal dynamics.

2. We propose EDEN, which integrates multiple explicit domains and enhances TSDA in three
coordinate modules: Multi-Scale Curriculum Adaptation to align the source and target domain
from coarse-scale to fine-scale; Quality-Aware Feature Fusion to adaptively integrate temporal-
frequency features; Temporal Coherence Learning to encourage consistent and stable behavior.

3. EDEN achieves average accuracy improvements of 4.8% over state-of-the-art methods across a
wide range of time series datasets in cross-domain scenarios.

2 Related Work

General Unsupervised Domain Adaptation Unsupervised domain adaptation leverages the la-
beled source domain to predict the labels of a different but related, unlabeled target domain. It
has a wide range of applications [41, 42, 13]. To achieve this, UDA methods aim to minimize the
domain discrepancy and thereby decrease the upper bound of the target error [2]. Existing UDA
methods can be classified into three categories: (1) Methods based on adversarial training introduce
a domain discriminator to distinguish source samples from target ones, while the feature extractor
learns domain-invariant representations to fool the domain discriminator. Advanced methods include
DANN [12], CDAN [22] and DIRT-T [31]. (2) Methods based on statistical divergence aim to extract
transferable features by minimizing statistical domain discrepancy in a latent feature space. Widely
used methods include DAN [21], DeepCoral [33] and HoMM [6]. (3) Methods based on self-training
assign pseudo-labels on unlabeled target data and select confident samples to combine with source
samples in the next iteration of training. Widely used methods include PFAN[7], CST [17] and
AdaMatch [4]. Overall, these methods are generally designed. Although these methods can be
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applied to time series through tailored feature extractors, they often yield suboptimal performance
due to neglecting the unique characteristics of time series.

Unsupervised Domain Adaptation for Time Series To date, limited methods have been tailored
to unsupervised domain adaptation for time series. Early works focus on modeling features in the
temporal subspace. VRADA [26] and CoDATS [38] consider suitable feature extractors based on
the temporal structure. SASA [5] adopts LSTM [30] to capture the domain-invariant association.
AdvSKM [19] adapts MMD [34] to fit time series characteristics. CLUDA [25] learns contextual
representation via contrastive learning. Recently, several works have highlighted the necessity of
simultaneously modeling features in the temporal and frequency subspace for UDA. RAINCOAT
[14] firstly introduces frequency features into domain adaptation, aligning temporal features and
frequency features respectively via Sinkhorn divergence. ACON [18] proposes mutual learning and
adversarial learning in temporal-frequency subspace. Despite remarkable progress, existing methods
fail to exploit richer semantic in potential explicit domains, restricting domain shift mitigation.

3 Multiple Explicit Domains of Time Series

3.1 Problem Setup

In this paper, we study Unsupervised Domain Adaptation (UDA) problem for time series classification.
Discrete time series are often a series of data points obtained by observing a continuous-time process
at a discrete sequence of equally spaced points in time [10]. In time series classification problems,
the dataset can be formalized as D = {(ri,yi)}ni=1, where i-th raw sample ri ∈ RC×T is sampled
from i-th continuous-time process ρi, containing observation of C variates over T time steps.

In UDA setup, we are given ns raw labeled samples P̂ = {(rsi ,ys
i )}ns

i=1 drawn from the source
distribution P and nt raw unlabeled samples Q̂ = {(rti)}nt

i=1 drawn from the target distribution Q.
Due to the domain shift between the source and target distribution, the model trained only on labeled
source data encounters severe performance drops when deployed in the target domain. UDA for time
series classification aims to learn a time series classification model with labeled source sample set P̂
and unlabeled target sample set Q̂, which can make accurate predictions on the target domain.

3.2 From Raw Time Series to Multiple Explicit Domains

Discrete time series datasets inherently include two explicit restrictions: sampling rate and record
duration. The sampling rate determines how frequently observations are made, impacting the
resolution and fidelity of captured data. The record duration defines the temporal extent, influencing
the model’s ability to capture trends and patterns within segments. Given i-th continuous-time process
ρi, we obtain different samples by modifying the sampling rate and record duration. In mathematics,
the continuous-time process set P = {ρi}ni=1 forms an implicit domain, which is inaccessible due to
sensor limitations. With explicit restrictions, the raw input set {ri}ni=1 forms an explicit domain.

Existing domain adaptation methods tailored for time series are mostly limited to a single explicit
domain. By expanding the restrictions slightly, we treat frequency data as an explicit domain under
the restriction of temporal-frequency transformation. To break through the limitations of the single
view in the raw dataset and comprehensively reflect implicit temporal dynamics, we expand the
original dataset into multiple explicit domains from three perspectives: record duration, sampling
rate, and temporal-frequency transformation. As shown in Figure 1(a), given a raw time series dataset
{ri}ni=1, for each instance r, we expand it to three kinds of explicit domains:

(1) Given a raw sample r, we segment it and obtain the set of segments {xj}Kj=1, where xj is a
sub-series of r or r itself. The segments in {xj}Kj=1 may have different length. After this step, each r

in the original dataset is expanded to include {xj}Kj=1 in the multi-segment explicit domains.

(2) Given a segment xj , we downsample xj with a coarser scale M , and obtain the coarser-scale data
xc
j . The segment xj contains finer-scale information, denoted as xf

j . Each raw sample r is expanded
to include {xf

j ,x
c
j}Kj=1 in the multi-scale explicit domains.
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<latexit sha1_base64="EQaAVFPyp2jdN8+hiLjmcMSSH8c=">AAAB7nicbVDLSgMxFL1TX7W+qi7dBIvgqsyItC6LblxWsA9oh5JJM21oJjMkd4Qy9CPcuFDErd/jzr8xbWehrQcCh3PuIfeeIJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNM7uZ+54lrI2L1iNOE+xEdKREKRtFKHTPIuMLZoFxxq+4CZJ14OalAjuag/NUfxiyNbJhJakzPcxP0M6pRMMlnpX5qeELZhI54z1JFI278bLHujFxYZUjCWNunkCzU34mMRsZMo8BORhTHZtWbi/95vRTDGz8TKkmRK7b8KEwlwZjMbydDoTlDObWEMi3sroSNqaYMbUMlW4K3evI6aV9VvVq19nBdadzmdRThDM7hEjyoQwPuoQktYDCBZ3iFNydxXpx352M5WnDyzCn8gfP5A8Boj9w=</latexit>sent

<latexit sha1_base64="W60Imn8YwCQ7ocs7rMRJWfJsRME=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48VTFtoQ9lstu3SzSbsToQS+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZemEph0HW/nNLa+sbmVnm7srO7t39QPTxqmyTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJ7dzvPHJtRKIecJryIKYjJYaCUbSSbwZ5NBtUa27dXYD8JV5BalCgNah+9qOEZTFXyCQ1pue5KQY51SiY5LNKPzM8pWxCR7xnqaIxN0G+OHZGzqwSkWGibSkkC/XnRE5jY6ZxaDtjimOz6s3F/7xehsPrIBcqzZArtlw0zCTBhMw/J5HQnKGcWkKZFvZWwsZUU4Y2n4oNwVt9+S9pX9S9Rr1xf1lr3hRxlOEETuEcPLiCJtxBC3xgIOAJXuDVUc6z8+a8L1tLTjFzDL/gfHwDGb6O5Q==</latexit>sd

…
<latexit sha1_base64="UZTCkHjC3zaDQgyIZgPqxTYvYzI=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyURqS6LgrisaB/QhjCZTtuhk0mYmQg15EvcuFDErZ/izr9x0mah1QMDh3Pu5Z45QcyZ0o7zZZVWVtfWN8qbla3tnd2qvbffUVEiCW2TiEeyF2BFORO0rZnmtBdLisOA024wvcr97gOVikXiXs9i6oV4LNiIEayN5NvVQYj1hGCe3mV+ep35ds2pO3Ogv8QtSA0KtHz7czCMSBJSoQnHSvVdJ9ZeiqVmhNOsMkgUjTGZ4jHtGypwSJWXzoNn6NgoQzSKpHlCo7n6cyPFoVKzMDCTeUy17OXif14/0aMLL2UiTjQVZHFolHCkI5S3gIZMUqL5zBBMJDNZEZlgiYk2XVVMCe7yl/+SzmndbdQbt2e15mVRRxkO4QhOwIVzaMINtKANBBJ4ghd4tR6tZ+vNel+Mlqxi5wB+wfr4BiFok2o=</latexit>SF

MSCA

<latexit sha1_base64="JzeGqJpo/nc4vOTsUGEfP6CmayI=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKVI9FLx4r2A9ol5JNs21okl2SrFCW/gUvHhTx6h/y5r8x2+5Bqw8GHu/NMDMvTAQ31vO+UGltfWNzq7xd2dnd2z+oHh51TJxqyto0FrHuhcQwwRVrW24F6yWaERkK1g2nt7nffWTa8Fg92FnCAknGikecEptLg8TwYbXm1b0F8F/iF6QGBVrD6udgFNNUMmWpIMb0fS+xQUa05VSweWWQGpYQOiVj1ndUEclMkC1uneMzp4xwFGtXyuKF+nMiI9KYmQxdpyR2Yla9XPzP66c2ug4yrpLUMkWXi6JUYBvj/HE84ppRK2aOEKq5uxXTCdGEWhdPxYXgr778l3Qu6n6j3ri/rDVvijjKcAKncA4+XEET7qAFbaAwgSd4gVck0TN6Q+/L1hIqZo7hF9DHNyfRjlU=</latexit>

 

…

<latexit sha1_base64="/efRt8qdlq/8quMukSCXe798Mvc=">AAAB/HicbVDLSsNAFL2pr1pf0S7dBIvgqiQi1WXRjQsXFfuCNoTJdNIOnUzCzEQoIf6KGxeKuPVD3Pk3TtostPXAwOGce7lnjh8zKpVtfxultfWNza3ydmVnd2//wDw86sooEZh0cMQi0feRJIxy0lFUMdKPBUGhz0jPn97kfu+RCEkj3lazmLghGnMaUIyUljyzOgyRmmDE0rvMSx+8tJ1lnlmz6/Yc1ipxClKDAi3P/BqOIpyEhCvMkJQDx46VmyKhKGYkqwwTSWKEp2hMBppyFBLppvPwmXWqlZEVREI/rqy5+nsjRaGUs9DXk3lUuezl4n/eIFHBlZtSHieKcLw4FCTMUpGVN2GNqCBYsZkmCAuqs1p4ggTCSvdV0SU4y19eJd3zutOoN+4vas3roo4yHMMJnIEDl9CEW2hBBzDM4Ble4c14Ml6Md+NjMVoyip0q/IHx+QNg+ZVD</latexit>LST

<latexit sha1_base64="nYdZw2akyrZrLO7ev7ef8/nft1w=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBbBVUlEqsuiIC5cVLQPaEOYTCft0MmDmYlQQvwVNy4UceuHuPNvnLRZaOuBgcM593LPHC/mTCrL+jZKK6tr6xvlzcrW9s7unrl/0JFRIghtk4hHoudhSTkLaVsxxWkvFhQHHqddb3KV+91HKiSLwgc1jakT4FHIfEaw0pJrVgcBVmOCeXqbuem9m15nmWvWrLo1A1omdkFqUKDlml+DYUSSgIaKcCxl37Zi5aRYKEY4zSqDRNIYkwke0b6mIQ6odNJZ+Awda2WI/EjoFyo0U39vpDiQchp4ejKPKhe9XPzP6yfKv3BSFsaJoiGZH/ITjlSE8ibQkAlKFJ9qgolgOisiYywwUbqvii7BXvzyMumc1u1GvXF3VmteFnWU4RCO4ARsOIcm3EAL2kBgCs/wCm/Gk/FivBsf89GSUexU4Q+Mzx9LpZU1</latexit>LSF

(b) Multi-Scale Curriculum Adaptation

<latexit sha1_base64="6in4JB1g1NB6aw7fgKHzBSfOPU0=">AAAB/nicbVDLSgMxFM34rPU1Kq7cBIvgQsqMSHVZdOOygn1AOw6ZNNPGZjJDkhFLGPBX3LhQxK3f4c6/MdPOQlsPBA7n3Ms9OUHCqFSO820tLC4tr6yW1srrG5tb2/bObkvGqcCkiWMWi06AJGGUk6aiipFOIgiKAkbawegq99sPREga81s1TogXoQGnIcVIGcm393sRUsMg1I/ZncaZr+kJvM98u+JUnQngPHELUgEFGr791evHOI0IV5ghKbuukyhPI6EoZiQr91JJEoRHaEC6hnIUEenpSfwMHhmlD8NYmMcVnKi/NzSKpBxHgZnMw8pZLxf/87qpCi88TXmSKsLx9FCYMqhimHcB+1QQrNjYEIQFNVkhHiKBsDKNlU0J7uyX50nrtOrWqrWbs0r9sqijBA7AITgGLjgHdXANGqAJMNDgGbyCN+vJerHerY/p6IJV7OyBP7A+fwCsnJX1</latexit>

xc
i,j

<latexit sha1_base64="CC/xK7zoWlGL5PisSyi5oFXnLf4=">AAAB/nicbVDLSgMxFM34rPU1Kq7cBIvgQsqMSHVZdOOygn1AOw6ZNNPGZjJDkhFLGPBX3LhQxK3f4c6/MdPOQlsPBA7n3Ms9OUHCqFSO820tLC4tr6yW1srrG5tb2/bObkvGqcCkiWMWi06AJGGUk6aiipFOIgiKAkbawegq99sPREga81s1TogXoQGnIcVIGcm393sRUsMg1I/ZnQ4zX9MTeJ/5dsWpOhPAeeIWpAIKNHz7q9ePcRoRrjBDUnZdJ1GeRkJRzEhW7qWSJAiP0IB0DeUoItLTk/gZPDJKH4axMI8rOFF/b2gUSTmOAjOZh5WzXi7+53VTFV54mvIkVYTj6aEwZVDFMO8C9qkgWLGxIQgLarJCPEQCYWUaK5sS3Nkvz5PWadWtVWs3Z5X6ZVFHCRyAQ3AMXHAO6uAaNEATYKDBM3gFb9aT9WK9Wx/T0QWr2NkDf2B9/gCxQJX4</latexit>

xf
i,j

<latexit sha1_base64="juO7+d0dL0lrldsgjGfEe6TJ1oQ=">AAAB/nicbVDLSgMxFM3UV62vUXHlJlgEF1JmRKrLohuXFewD2nHIpJk2NpMZkkyhhAF/xY0LRdz6He78GzPtLLR6IHA4517uyQkSRqVynC+rtLS8srpWXq9sbG5t79i7e20ZpwKTFo5ZLLoBkoRRTlqKKka6iSAoChjpBOPr3O9MiJA05ndqmhAvQkNOQ4qRMpJvH/QjpEZBqCfZvcaZr+kpfMh8u+rUnBngX+IWpAoKNH37sz+IcRoRrjBDUvZcJ1GeRkJRzEhW6aeSJAiP0ZD0DOUoItLTs/gZPDbKAIaxMI8rOFN/bmgUSTmNAjOZh5WLXi7+5/VSFV56mvIkVYTj+aEwZVDFMO8CDqggWLGpIQgLarJCPEICYWUaq5gS3MUv/yXts5pbr9Vvz6uNq6KOMjgER+AEuOACNMANaIIWwECDJ/ACXq1H69l6s97noyWr2NkHv2B9fAOpfJXz</latexit>

vc
i,j

<latexit sha1_base64="xLzxo6bCVFOtDkI25g9soy7IM0Y=">AAAB/nicbVDLSgMxFM3UV62vUXHlJlgEF1JmRKrLohuXFewD2nHIpJk2NpMZkkyhhAF/xY0LRdz6He78GzPtLLR6IHA4517uyQkSRqVynC+rtLS8srpWXq9sbG5t79i7e20ZpwKTFo5ZLLoBkoRRTlqKKka6iSAoChjpBOPr3O9MiJA05ndqmhAvQkNOQ4qRMpJvH/QjpEZBqCfZvQ4zX9NT+JD5dtWpOTPAv8QtSBUUaPr2Z38Q4zQiXGGGpOy5TqI8jYSimJGs0k8lSRAeoyHpGcpRRKSnZ/EzeGyUAQxjYR5XcKb+3NAoknIaBWYyDysXvVz8z+ulKrz0NOVJqgjH80NhyqCKYd4FHFBBsGJTQxAW1GSFeIQEwso0VjEluItf/kvaZzW3XqvfnlcbV0UdZXAIjsAJcMEFaIAb0AQtgIEGT+AFvFqP1rP1Zr3PR0tWsbMPfsH6+AauIJX2</latexit>

vf
i,j

<latexit sha1_base64="Z0jHIkzAQ0DlpHKZs1PhaXXob/U=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V2lpoQ9lsN+3SzSbuToQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEY3878hyeujYhVEycJ9yM6VCIUjKKVOr3EiH7WnPbLFbfqzkFWiZeTCuRo9MtfvUHM0ogrZJIa0/XcBP2MahRM8mmplxqeUDamQ961VNGIGz+b3zslZ1YZkDDWthSSufp7IqORMZMosJ0RxZFZ9mbif143xfDaz4RKUuSKLRaFqSQYk9nzZCA0ZygnllCmhb2VsBHVlKGNqGRD8JZfXiXti6pXq9buLyv1mzyOIpzAKZyDB1dQhztoQAsYSHiGV3hzHp0X5935WLQWnHzmGP7A+fwBS+WQKA==</latexit>

 T

…Batch

… …

<latexit sha1_base64="47vljz0mC1FCHUEaDimj5sZMesI=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KolI9VgUxGMF+wFtKJvtpF262cTdjVBC/4QXD4p49e9489+4bXPQ1gcDj/dmmJkXJIJr47rfzsrq2vrGZmGruL2zu7dfOjhs6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/VbT6g0j+WDGSfoR3QgecgZNVZqdxPNe9ntpFcquxV3BrJMvJyUIUe9V/rq9mOWRigNE1Trjucmxs+oMpwJnBS7qcaEshEdYMdSSSPUfja7d0JOrdInYaxsSUNm6u+JjEZaj6PAdkbUDPWiNxX/8zqpCa/8jMskNSjZfFGYCmJiMn2e9LlCZsTYEsoUt7cSNqSKMmMjKtoQvMWXl0nzvOJVK9X7i3LtOo+jAMdwAmfgwSXU4A7q0AAGAp7hFd6cR+fFeXc+5q0rTj5zBH/gfP4ANp+QGg==</latexit>

 F

…

… …

Batch

<latexit sha1_base64="1OwPT8RWzjXQwXBpRuSjXgajN+E=">AAACA3icbVDLSsNAFJ3UV62vqDvdBIvgqiQi1WXRjcsKfUETwmRy0w6dPJiZKCUE3Pgrblwo4tafcOffOGmz0NYDFw7n3Mu993gJo0Ka5rdWWVldW9+obta2tnd29/T9g56IU06gS2IW84GHBTAaQVdSyWCQcMChx6DvTW4Kv38PXNA46shpAk6IRxENKMFSSa5+ZD9QHyRlPmR2iOXYC7Igz92sk7t63WyYMxjLxCpJHZVou/qX7cckDSGShGEhhpaZSCfDXFLCIK/ZqYAEkwkewVDRCIcgnGz2Q26cKsU3gpiriqQxU39PZDgUYhp6qrM4Uyx6hfifN0xlcOVkNEpSCRGZLwpSZsjYKAIxfMqBSDZVBBNO1a0GGWOOiVSx1VQI1uLLy6R33rCajebdRb11XcZRRcfoBJ0hC12iFrpFbdRFBD2iZ/SK3rQn7UV71z7mrRWtnDlEf6B9/gBVzJig</latexit>efT
<latexit sha1_base64="b6KHiye3NgZ7otDU1OYe/DYIisU=">AAACA3icbVDLSsNAFJ3UV62vqDvdBIvgqiQi1WVREJcV7AOaECaTm3bo5MHMRCkh4MZfceNCEbf+hDv/xkmbhbYeuHA4517uvcdLGBXSNL+1ytLyyupadb22sbm1vaPv7nVFnHICHRKzmPc9LIDRCDqSSgb9hAMOPQY9b3xV+L174ILG0Z2cJOCEeBjRgBIsleTqB/YD9UFS5kNmh1iOvCAL8tzNrnNXr5sNcwpjkVglqaMSbVf/sv2YpCFEkjAsxMAyE+lkmEtKGOQ1OxWQYDLGQxgoGuEQhJNNf8iNY6X4RhBzVZE0purviQyHQkxCT3UWZ4p5rxD/8wapDC6cjEZJKiEis0VBygwZG0Ughk85EMkmimDCqbrVICPMMZEqtpoKwZp/eZF0TxtWs9G8Pau3Lss4qugQHaETZKFz1EI3qI06iKBH9Ixe0Zv2pL1o79rHrLWilTP76A+0zx9AhpiS</latexit>efF

<latexit sha1_base64="Z7yMjf43slEyfXE03qMliRjtCk4=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KolIdVl047JCX9DGMplO2qGTSZiZiCXkV9y4UMStP+LOv3HSZqGtBwYO59zLPXP8mDOlHefbWlvf2NzaLu2Ud/f2Dw7to0pHRYkktE0iHsmejxXlTNC2ZprTXiwpDn1Ou/70Nve7j1QqFomWnsXUC/FYsIARrI00tCuDEOuJH6RB9pCSbJi2sqFddWrOHGiVuAWpQoHm0P4ajCKShFRowrFSfdeJtZdiqRnhNCsPEkVjTKZ4TPuGChxS5aXz7Bk6M8oIBZE0T2g0V39vpDhUahb6ZjJPqpa9XPzP6yc6uPZSJuJEU0EWh4KEIx2hvAg0YpISzWeGYCKZyYrIBEtMtKmrbEpwl7+8SjoXNbdeq99fVhs3RR0lOIFTOAcXrqABd9CENhB4gmd4hTcrs16sd+tjMbpmFTvH8AfW5w/WgpT6</latexit>

f c
T

<latexit sha1_base64="w87ymgY7UCy6+20h6XnEkT42Q5o=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KolIdVl047JCX9DGMplO2qGTSZiZiCXkV9y4UMStP+LOv3HSZqGtBy4czrmXOXP8mDOlHefbWlvf2NzaLu2Ud/f2Dw7to0pHRYkktE0iHsmejxXlTNC2ZprTXiwpDn1Ou/70Nve7j1QqFomWnsXUC/FYsIARrI00tCuDEOuJH6RB9mBmmLayoV11as4caJW4BalCgebQ/hqMIpKEVGjCsVJ914m1l2KpGeE0Kw8SRWNMpnhM+4YKHFLlpfPsGTozyggFkTQjNJqrvy9SHCo1C32zmSdVy14u/uf1Ex1ceykTcaKpIIuHgoQjHaG8CDRikhLNZ4ZgIpnJisgES0y0qatsSnCXv7xKOhc1t16r319WGzdFHSU4gVM4BxeuoAF30IQ2EHiCZ3iFNyuzXqx362OxumYVN8fwB9bnD9sdlP0=</latexit>

ff
T

<latexit sha1_base64="YEQsR0Te2lALMjs47SIRC/28eFo=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KolIdVkUxGUF+4A2lsl00g6dTMLMRCwhv+LGhSJu/RF3/o2TNgttPTBwOOde7pnjx5wp7Tjf1srq2vrGZmmrvL2zu7dvH1TaKkokoS0S8Uh2fawoZ4K2NNOcdmNJcehz2vEn17nfeaRSsUjc62lMvRCPBAsYwdpIA7vSD7Ee+0EaZA8pyQbpTTawq07NmQEtE7cgVSjQHNhf/WFEkpAKTThWquc6sfZSLDUjnGblfqJojMkEj2jPUIFDqrx0lj1DJ0YZoiCS5gmNZurvjRSHSk1D30zmSdWil4v/eb1EB5deykScaCrI/FCQcKQjlBeBhkxSovnUEEwkM1kRGWOJiTZ1lU0J7uKXl0n7rObWa/W782rjqqijBEdwDKfgwgU04Baa0AICT/AMr/BmZdaL9W59zEdXrGLnEP7A+vwBwTyU7A==</latexit>

f c
F

<latexit sha1_base64="MVQzQ7TJEE0rLQcTnmw5tf//0Gk=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KolIdVkUxGUF+4A2lsl00g6dTMLMRCwhv+LGhSJu/RF3/o2TNgttPXDhcM69zJnjx5wp7Tjf1srq2vrGZmmrvL2zu7dvH1TaKkokoS0S8Uh2fawoZ4K2NNOcdmNJcehz2vEn17nfeaRSsUjc62lMvRCPBAsYwdpIA7vSD7Ee+0EaZA9mBulNNrCrTs2ZAS0TtyBVKNAc2F/9YUSSkApNOFaq5zqx9lIsNSOcZuV+omiMyQSPaM9QgUOqvHSWPUMnRhmiIJJmhEYz9fdFikOlpqFvNvOkatHLxf+8XqKDSy9lIk40FWT+UJBwpCOUF4GGTFKi+dQQTCQzWREZY4mJNnWVTQnu4peXSfus5tZr9bvzauOqqKMER3AMp+DCBTTgFprQAgJP8Ayv8GZl1ov1bn3MV1es4uYQ/sD6/AHF15Tv</latexit>

ff
F

<latexit sha1_base64="oNH7+d4G8OZBjboPUtAxCACOJio=">AAAB/3icbVDLSsNAFJ34rPUVFdy4GSyCq5KIVJdFNy4r2Ac0oUwmN+3QyYOZiVJiFv6KGxeKuPU33Pk3TtostPXAwOGce7lnjpdwJpVlfRtLyyura+uVjerm1vbOrrm335FxKii0acxj0fOIBM4iaCumOPQSAST0OHS98XXhd+9BSBZHd2qSgBuSYcQCRonS0sA8dB6YD4pxHzInJGrkBVmQ5wOzZtWtKfAisUtSQyVaA/PL8WOahhApyomUfdtKlJsRoRjlkFedVEJC6JgMoa9pREKQbjbNn+MTrfg4iIV+kcJT9fdGRkIpJ6GnJ4uIct4rxP+8fqqCSzdjUZIqiOjsUJByrGJclIF9JoAqPtGEUMF0VkxHRBCqdGVVXYI9/+VF0jmr24164/a81rwq66igI3SMTpGNLlAT3aAWaiOKHtEzekVvxpPxYrwbH7PRJaPcOUB/YHz+ABJgls0=</latexit>ef…Batch<latexit sha1_base64="foEXyBG0stHHkZ+psn+P5BRRP/E=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiHjxWMG2hDWWz3bZLN5uwOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwkQKg6777RTW1jc2t4rbpZ3dvf2D8uFR08SpZtxnsYx1O6SGS6G4jwIlbyea0yiUvBWOb2d+64lrI2L1iJOEBxEdKjEQjKKV/GEvu5v2yhW36s5BVomXkwrkaPTKX91+zNKIK2SSGtPx3ASDjGoUTPJpqZsanlA2pkPesVTRiJsgmx87JWdW6ZNBrG0pJHP190RGI2MmUWg7I4ojs+zNxP+8ToqD6yATKkmRK7ZYNEglwZjMPid9oTlDObGEMi3srYSNqKYMbT4lG4K3/PIqaV5UvVq19nBZqd/kcRThBE7hHDy4gjrcQwN8YCDgGV7hzVHOi/PufCxaC04+cwx/4Hz+ANavjrk=</latexit>gD

QFusion

(a) Multiple Explicit Domains

Multi-Subspace

Multi-Segment

FFT

<latexit sha1_base64="6in4JB1g1NB6aw7fgKHzBSfOPU0=">AAAB/nicbVDLSgMxFM34rPU1Kq7cBIvgQsqMSHVZdOOygn1AOw6ZNNPGZjJDkhFLGPBX3LhQxK3f4c6/MdPOQlsPBA7n3Ms9OUHCqFSO820tLC4tr6yW1srrG5tb2/bObkvGqcCkiWMWi06AJGGUk6aiipFOIgiKAkbawegq99sPREga81s1TogXoQGnIcVIGcm393sRUsMg1I/ZncaZr+kJvM98u+JUnQngPHELUgEFGr791evHOI0IV5ghKbuukyhPI6EoZiQr91JJEoRHaEC6hnIUEenpSfwMHhmlD8NYmMcVnKi/NzSKpBxHgZnMw8pZLxf/87qpCi88TXmSKsLx9FCYMqhimHcB+1QQrNjYEIQFNVkhHiKBsDKNlU0J7uyX50nrtOrWqrWbs0r9sqijBA7AITgGLjgHdXANGqAJMNDgGbyCN+vJerHerY/p6IJV7OyBP7A+fwCsnJX1</latexit>
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<latexit sha1_base64="JWIF0ihYtFOfjnj5+Hfu3Y8iJVI=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqDPulsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzQ6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LitetVJtXJVrt3kcBTiFM7gAD66hBvdQhyYwQHiGV3hzHp0X5935WLSuOfnMCfyB8/kD0AeM9g==</latexit>g <latexit sha1_base64="JWIF0ihYtFOfjnj5+Hfu3Y8iJVI=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqDPulsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzQ6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LitetVJtXJVrt3kcBTiFM7gAD66hBvdQhyYwQHiGV3hzHp0X5935WLSuOfnMCfyB8/kD0AeM9g==</latexit>g
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{Xi,j}K
j=1
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SF (efF )

Figure 1: The schematic of EDEN, enhancing TSDA with expanded multiple explicit domains and
three coordinated modules tailored to integrate multiple explicit domains. (a) Expanding the raw
inputs into multiple explicit domains from three perspectives: record duration, sampling rate, and
temporal-frequency transformation. (b) Multi-Scale Curriculum Adaptation implements progressive
domain alignment through multi-scale explicit domains. (c) Quality-Aware Feature Fusion evaluates
feature quality and adaptively integrates temporal-frequency features. (d) Temporal Coherence
Learning enforces segment-level consistency constraints via multi-segment explicit domains.

(3) Given a fine-scale data xf and corresponding coarse-scale data xc, we transform xf and xc into
the frequency subspace by Fast Fourier Transform, resulting in complex variables vf and vc. Each
raw sample r is expanded to include {(xf

j ,x
c
j ,v

f
j ,v

c
j)}Kj=1 in the multi-subspace explicit domains.

To simplify, multiple explicit domains {Xi}ni=1 derived from raw dataset {ri}ni=1 are formalized as:

{Xi}ni=1,Xi = {Xi,j}Kj=1,

Xi,j = (xf
i,j ,x

c
i,j ,v

f
i,j ,v

c
i,j).

(1)

The above three steps do not alter the relevant category concepts, and thus Xi share the same
ground-truth label with ri. With the expanded multiple explicit domains, we have the labeled source
domain P̂ = {(Xs

i ,y
s
i )}ns

i=1 and the unlabeled target domain Q̂ = {(Xt
i)}nt

i=1. Superscripts s and t
are adopted to distinguish the source domain and the target domain.

4 Approach

Figure 1 illustrates the overall structure of EDEN, consisting of a temporal feature extractor ψT , a
frequency feature extractor ψF , a domain discriminator gD, a classifier g, and two auxiliary feature
scorers ST , SF . Specifically, (1) To effectively utilize the multi-scale explicit domains, we propose
Multi-Scale Curriculum Adaptation (MSCA) in Section 4.1. (2) To fully exploit the multi-subspace
explicit domains, we propose Quality-Aware Feature Fusion (QFusion) in Section 4.2. (3) To utilize
the multi-segment explicit domains, we propose Temporal Coherence Learning (TCL) in Section 4.3.

4.1 Multi-Scale Curriculum Adaptation

Intuitively, coarse-scale time series highlights macroscopic variations, i.e., low-frequency informa-
tion, while deep neural networks demonstrate strong generalization capabilities for low-frequency
information [39]. Fine-scale time series contain subtle changes in local regions, i.e., high-frequency
information, which may enhance feature discriminability but pose substantial challenges for domain
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(a) dA in T-subspace
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(b) dA in F-subspace
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Figure 2: Fine-scale vs. Coarse-scale: Denote the original sampling rate as r0. Scale-M refers to
downsampling time series to a sampling rate of r0

M . (a) A-distance in T-subspace. (b) A-distance
in F-subspace. (c) DANN performance ratio of Scale-M to original data (Scale-1) in T-subspace.
(d) DANN performance ratio of Scale-M to original data (Scale-1) in F-subspace. Reduced domain
discrepancy may not guarantee accuracy gains due to the loss of discriminative information.

transfer. Transfer performance is jointly determined by transferability and discriminability. Therefore,
multi-scale collaborative training may provide more performance gains compared to single-scale.

To validate the intuition, we investigate how representations with different scales influence the domain
adaptation process. Based on the domain adaptation theory [2], the risk of the target domain can be
bounded by the following proposition:
Proposition 4.1 (Domain Adaptation Bound). Let H be a hypothesis space, P , Q represent the
source and target domain respectively. For every h ∈ H, the target risk ϵQ(h) is bounded as:

ϵQ(h) ≤ ϵP (h) +
1

2
dH∆H(P,Q) + λ∗, (2)

where ϵP (h) denotes the source risk, H∆H-distance dH∆H(P,Q) = 2 suph,h′∈H |ϵP (h, h′) −
ϵQ(h, h

′)| measures domain shift as the discrepancy between the disagreement of two hypotheses
h, h′, and λ∗ = ϵP (h

∗) + ϵQ(h
∗) is the error of the ideal joint hypothesis h∗.

Under the supervision of source labels, ϵP (h) is usually smaller, while ϵQ(h) is mainly determined
by the latter two terms. We adopt the proxy of H∆H-distance, A-distance [2], to quantify the domain
discrepancy, defined as dA = 2(1 − 2ϵ), where ϵ is the error rate of a domain classifier trained to
discriminate source domain and target domain. As shown in Figure 2(a) and Figure 2(b), both in
the temporal subspace and frequency subspace, it is consistently observed that the model trained on
coarse-scale time series learns more domain-invariant features with smaller A-distance. However, as
scale M increases, the discriminative information gradually diminishes, potentially compromising
prediction accuracy. In Figure 2(c) and Figure 2(d), we observe that reduced domain discrepancy
may not guarantee accuracy gains with increasing M . This indicates that the coarse-scale features
are easier for cross-domain transfer but potentially compromise discriminability. Consequently,
multi-scale collaborative training emerges as a better choice.

Inspired by curriculum learning [9, 29, 3], we propose Multi-Scale Curriculum Adaptation to align
the source and target distribution in an easy-to-hard way. In early training, coarse-scale features with
stronger transferability guide the model to first stabilize global feature alignment. As the training
progresses, fine-scale features gradually take the lead and refine local discriminating details.

Given multi-scale input X = (xf ,xc,vf ,vc), taking (xf ,xc) as the example, we extract fine-scale
features and coarse-scale features respectively in the temporal subspace, i.e., ffT , f

c
T = ψT

(
xf ,xc

)

(similar to (vf ,vc)), and mix the two features in a curriculum manner as follows:

f̃T = λffT + (1 + 2λ0 − λ)f cT ,

λ =
1− exp(−p)
1 + exp(−p) + λ0,

(3)

where λ is progressively increased, p is the ratio of the current number to the maximum number of
iterations, and the λ0 is the initial value of λ. Denoting the mixing operation as hλ(·), we extract the
temporal feature f̃T = hλ

(
ψT

(
xf ,xc

))
and frequency feature f̃F = hλ

(
ψF

(
vf ,vc

))
, and then

concatenate them to obtain the final representation f̃ . The progress is formulated as follows:

ψ(X ) = [hλ
(
ψT

(
xf ,xc

))
, hλ

(
ψF

(
vf ,vc

))
], (4)
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Figure 3: Error matrices: (a) Temporal subspace. (b) Frequency subspace. (c) Temporal-frequency
subspace. (d)Temporal-frequency subspace with QFusion.

where ψ is denoted as the holistic extractor containing ψT and ψF . Based on the feature representation
f̃ = ψ(X ), we use the classifier g to make the prediction g(ψ(X )) and minimize LC with the labeled
source samples to guarantee lower source risk:

LC = E(Xs
i ,y

s
i )∼P̂ ,X s

i,j∼Xs
i

[
CE

(
g
(
ψ
(
X s

i,j

))
,ys

i

)]
, (5)

where CE denotes cross-entropy loss. Meanwhile, we adopt the domain discriminator gD to align the
source feature distribution and the target feature distribution via the minimax optimization problem:

LD = −EXs
i∼P̂ ,X s

i,j∼Xs
i
log

[
gD

(
ψ
(
X s

i,j

))]

− EXt
i∼Q̂,X t

i,j∼Xt
i
log

[
1− gD

(
ψ
(
X t

i,j

))]
,

(6)

where LD is minimized over gD but maximized over ψ.

4.2 Quality-Aware Feature Fusion

To explore the relationship between temporal subspace and frequency subspace, we delve into the
error matrices of the target domain. We find that the classification performance of the same class may
vary significantly between two subspaces. As shown in Figure 3(a) and Figure 3(b), the “sit” class
is completely misclassified in the temporal subspace, while the class is classified correctly in the
frequency subspace. Similarly, the “stairs up” class is classified correctly in the temporal subspace,
but 21% of the class is incorrectly classified as “sits” in the frequency subspace. This suggests that the
intrinsic characteristics of a certain class can be more effectively captured in the feature representation
of one subspace compared to the other. In other words, each subspace has its advantageous classes.

Ideally, a model trained jointly in both subspaces, using the concatenation of temporal and frequency
features as final features, would achieve optimal performance in each subspace for every class, which
can classify both the “sit” class and the “stairs up” class correctly. However, as shown in Figure 3(c),
the model does not actively select the best performance in the two subspaces; instead, it only achieves
a compromise between the temporal and frequency subspace performance, or even worse.

This prompts us to seek a criterion for measuring the quality of features across different subspaces
to achieve optimal subspace fusion. As shown in Figure 1(c), we introduce Quality-Aware Feature
Fusion, which contains feature scorers ST , SF into the temporal and frequency subspace respectively,
responsible for measuring feature quality based on transferability, discriminability, and diversity,
enabling adaptive temporal-frequency integration. With ST and SF , Equation (4) is modified to:

ψ(X ) = [ST (f̃T ) · f̃T ,SF (f̃F ) · f̃F ]. (7)

Each score S(f) is comprised of three components: transferability criterion, discriminability criterion
and diversity perturbation. The first two are key criteria to characterize the performance of domain
adaptation [8], while the latter ensures that different classes score diversely within the same subspace.

Transferability Criterion Transferability indicates the ability to learn domain-invariant features.
Inspired by A-distance [2], a domain classifier is employed to measure transferability. The objective
of the domain classifier is to predict source samples as 1 and target samples as 0. The closer the
prediction d̂ is to 0.5, the more difficult it is to distinguish the feature across domains, indicating
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more domain-invariant. Thus, d̂ can be used to quantify the transferability of each feature:

d̂ = Sigmoid (MLP(f)) ∈ [0, 1],

sd = 2|d̂− 0.5| ∈ [0, 1],
(8)

To train the domain classifier, ℓt = CE(d̂, d) is calculated, where d is the true domain label.

Discriminability Criterion Discriminability is the easiness of separating different categories by a
supervised classifier trained over the feature. Therefore, we use 1-layer MLP to classify the feature
and the prediction ŷ contains the discriminative information about the feature. The entropy and
confidence of ŷ are two uncertainty measurements on the discriminability. Smaller entropy, or
higher confidence, means more discriminative features. Considering the complementarity of the two
measurements [28], we use them simultaneously to quantify the discriminability of each feature:

ŷ = Softmax (MLP(f)) ,

sent = 1−H(ŷ) ∈ [0, 1],

sconf = maxŷ ∈ [0, 1],

(9)

where H(·) denotes the entropy, both H(ŷ) and maxŷ are min-max normalize. To train the MLP,
ℓd = CE(ŷ,y) is calculated on the source domain, where y is the ground-truth label of feature f .

Diversity Perturbation To enhance the diversity of scores within a subspace, we introduce diversity
perturbation to facilitate an implicit competition between classes:

spert = Sigmoid (MLP(f)) ∈ [0, 1],

ℓcv = CV(spert),
(10)

where CV(·) denotes the calculation of the coefficient of variation. The diversity perturbation
encourages different classes to score diversely within the same subspace, especially promoting better
scores for advantageous classes, thereby enhancing the discriminability of the features.

The overall score S(f) is formalized as follows:

S(f) = sd + sent + sconf
3

+ ηspert, (11)

where η controls the perturbation intensity and is set to 0.1 in all experiments. The training loss of
the scorer S is calculated as follows:

ℓS = ℓt + ℓd + ℓcv. (12)

Given the heterogeneity of temporal and frequency subspace, we use ST and SF to measure their
respective features independently, rather than sharing the same scorer. Consequently, we have two
training losses, ℓST

and ℓSF
. The overall auxiliary loss is denoted as LS = ℓST

+ ℓSF
.

4.3 Temporal Coherence Learning

During the continuous-time process ρi, participants were required to adhere to a specific activity
protocol to ensure the validity of the data collection [1]. Therefore, given the raw series ri, its
segments share similar class-related semantics, e.g., consistently in a running or standing state.

Based on the intrinsic coherence of time series, we propose Temporal Coherence Learning. Given
Xi = {Xi,j}Kj=1, any Xi,j ,Xi,k ∈ Xi that contain nearby segments exhibit temporal coherence,
which can be reflected in logit-level and score-level. We achieve logit-level coherence by conditioning
the logit distributions of Xi,j and Xi,k by minimizing the Kullback-Leibler divergence as follows:

LTCL-logit = DKL(g(ψ(Xi,j)), g(ψ(Xi,k))). (13)

To further complement the regularization, we impose score-level coherence learning and explicitly
constrain the feature scores of QFusion assigned to nearby segments:

LTCL-score = |ST (f̃Tj)− ST (f̃Tk)|+ |SF (f̃Fj)− SF (f̃Fk)|. (14)

Overall, temporal coherence learning guides the feature extractors, scorers and classifier to exhibit
consistent and stable behavior, especially in the unsupervised target domain.

LTCL = LTCL-score + LTCL-logit. (15)
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Figure 4: Average Accuracy (%) across multiple datasets.

Table 1: Accuracy (%) on EMG for unsupervised domain adaptation.

Method 0→1 0→2 0→3 1→2 1→3 2→0 2→1 2→3 3→1 3→2 Average
Source-only 84.94 74.38 73.38 74.38 73.88 73.88 82.16 73.69 79.38 72.31 76.24
CDAN 87.84 76.63 77.63 77.44 81.63 73.94 87.10 75.13 83.98 77.63 79.89
DeepCoral 87.50 76.44 76.19 77.63 77.63 74.69 84.72 75.50 81.93 74.88 78.71
AdaMatch 89.03 75.94 79.38 76.94 80.00 76.31 89.94 81.31 84.26 73.81 80.69
HoMM 87.61 76.50 75.75 77.00 77.94 73.94 84.89 75.88 82.61 75.31 78.74
DIRT-T 89.77 75.25 78.69 75.88 80.06 70.63 84.77 77.69 83.30 76.69 79.27
CLUDA 78.18 75.00 76.75 74.75 74.19 75.94 79.43 70.00 76.88 75.13 75.62
AdvSKM 86.42 75.94 76.25 77.25 78.00 74.88 85.06 77.25 81.76 75.31 78.81
CoDATS 88.24 77.44 78.31 78.44 81.81 73.75 86.65 78.88 84.43 78.06 80.60
RAINCOAT 89.60 77.00 78.56 78.25 83.13 73.06 85.68 76.88 83.13 74.00 79.93
ACON 92.50 79.06 81.75 80.13 83.13 77.94 90.91 79.75 85.11 78.88 82.91
Ours 93.92 82.31 83.38 81.19 86.50 77.12 92.78 82.88 87.61 78.38 84.61

4.4 Overall Training Objective

During training, our method trains the temporal feature extractor ψT , frequency feature extractor ψF

and classifier g by minimizing the supervised classification loss LC on the labeled source domain. To
learn domain-invariant features, our method adopts the adversarial training facilitated with Gradient
Reversal Layer between ψT , ψF and the domain discriminator gD by minimizing the adversarial loss
LD. Simultaneously, we train the feature scorers ST and SF to evaluate feature quality through the
auxiliary loss LS . Furthermore, the coherence loss LTCL is minimized to preserve temporal coherence
of ψT , ψF , ST , SF and g. The overall training objectives is formulated as:

L = LC + LD + LS + βLTCL. (16)

5 Experiments

5.1 Setup

Datasets We conduct extensive experiments using six benchmark datasets: (1) UCIHAR [1],
HHAR-P [32, 27], WISDM[16] and HHAR-D [32, 11] for sensor-based human activity recognition.
(2) FD [27] for machine fault diagnosis. (3) EMG [20, 23] for gesture recognition. For each dataset,
following the existing DA methods on time series [4, 14, 18], we sample 10 source-target domain
pairs for evaluation. Further details, processing and domain splits are included in Appendix A.

Baselines (1) We report the performance of the model without UDA (Source-only) in the temporal
domain to show the overall contribution of UDA methods. (2) We implement the following state-
of-the-art baselines for TSDA: CODATS [38], AdvSKM [19], CLUDA [25], RAINCOAT [14] and
ACON [18]. (3) We additionally implement general UDA methods: CDAN [22], DeepCoral [33],
AdaMatch [4], HoMM [6] and DIRT-T [31]. For each baseline, we ensure fair implementations by
maintaining identical backbones, frameworks, and hyperparameter settings from prior works.

Implementation We adopt the implementation of AdaTime [27] as the benchmarking suites for
domain adaptation on time series data. We use 1D-CNN as temporal feature extractor base and
complex-valued linear as frequency feature extractor base. We report accuracy and Macro-F1 Score
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calculated using target test set as evaluation metrics. Each experiment is repeated 5 times with
different random seeds. Detailed model architectures and optimal hyperparameters are included in
Appendix B. Computational cost is included in Appendix C.1.

5.2 Results

Figure 4 shows the average accuracy and error bars of each method for 10 source-target domain pairs
on the datasets. Overall, EDEN consistently improves the performance of the best baseline by a
large margin. It’s worth noting that EDEN also reduces the error bars, demonstrating the reliability.
EDEN has won 6 out of 6 tests and makes an average improvement of 4.80% for the accuracy metric.
Specifically, EDEN improves prediction accuracy by 6.87% on the HHAR-P dataset, 6.88% on the FD
dataset, and 8.61% on the HHAR-D dataset over the advanced baseline on each dataset respectively.
Due to the limited pages, we report the results for selected source-target domain pairs with metric
accuracy on the EMG dataset. More accuracy results are given in Table 6-10. Average macro-f1
score is provided in Figure 8 and full macro-f1 score results are given in Table 12-17.

5.3 Analysis

Module Ablation We conduct a comprehensive ablation study in Table 2. We investigate the effec-
tiveness of three modules of EDEN and analyze the interaction between them. EDEN’s three modules
show performance gains when added individually (Rows 2-4) and demonstrate mutual promotion in
pairwise combinations (Rows 5-7). Full integration (Row 8) achieves optimal performance.

Table 2: Ablation of EDEN, MSCA and QFusion.
Module Ablation

MSCA QFusion TCL EDEN UCIHAR HHAR-P WISDM Average

1 - - - - 96.19 80.64 82.68 86.50
2 ✓ - - - 97.16 83.47 83.58 88.07
3 - ✓ - - 97.48 85.92 83.79 89.06
4 - - ✓ - 97.21 82.14 84.04 87.80
5 ✓ - ✓ - 97.65 85.75 85.53 89.64
6 ✓ ✓ - - 97.77 86.12 85.43 89.77
7 - ✓ ✓ - 97.88 85.97 85.74 89.86
8 - - - ✓ 98.10 87.36 87.58 91.01

MSCA Ablation

ψT ψF LD MSCA UCIHAR HHAR-P WISDM Average

9 ✓ - - - 75.12 54.25 65.78 65.05
10 ✓ - ✓ - 95.13 76.72 76.48 82.78
11 ✓ - ✓ ✓ 96.17 77.55 81.10 84.94
12 - ✓ - - 66.88 51.08 56.47 58.14
13 - ✓ ✓ - 94.50 75.93 73.03 81.15
14 - ✓ ✓ ✓ 96.37 80.97 76.05 84.46
15 ✓ ✓ ✓ ✓ 97.16 83.47 83.58 88.07

QFusion Ablation

sd sent sconf spert UCIHAR HHAR-P WISDM Average

16 - - - - 96.19 80.64 82.68 86.50
17 ✓ - - - 97.00 83.05 82.77 87.61
18 - ✓ ✓ - 97.42 84.32 82.94 88.23
19 ✓ ✓ ✓ ✓ 97.48 85.92 83.79 89.06

MSCA Ablation We verify the effective-
ness of MSCA in the different subspaces.
MSCA yields an average improvement of
2.61% in the temporal subspace (as shown
in Rows 9-11 of Table 2), and an average
improvement of 4.08% in the frequency
subspace (Rows 12-14). By integrating the
temporal subspace and the frequency sub-
space (Row 15), MSCA achieves the best
performance, outperforming the single-
subspace MSCA variants by 3.68%.

QFusion Ablation We investigate the ef-
fectiveness of three components in QFu-
sion score. Rows 17-18 of Table 2 ap-
ply transferability and discriminability cri-
terion respectively, both showing perfor-
mance gains. In Row 19, by combin-
ing transferability, discriminability, and di-
versity, QFusion achieves the best perfor-
mance, demonstrating synergistic effect.

Sensitivity Analysis The sensitivity analysis on the coarser scale M , the trade-off β of LTCL and
the parameter λ0 are included in Appendix C.2. As shown in Figure 5-7, EDEN exhibits stable
performance across reasonable variations and consistently outperforms baselines on multiple datasets.

6 Conclusion

In this paper, we propose EDEN, a novel framework for TSDA based on multiple explicit domains,
first breaking through the limitations of the sensor-limited single view in the original datasets, taking
advantage of the comprehensive reflection of implicit temporal dynamics. Specifically, Multi-Scale
Curriculum Adaptation is proposed to align the source and the target domain; Quality-Aware Feature
Fusion is proposed to facilitate adaptive integration of temporal and frequency features; Temporal
Coherence Learning is proposed to encourage the model to exhibit consistent and stable behavior.
Notably, EDEN yields significant performance improvements on a wide range of time series datasets.
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A Datasets

A.1 Detailed Statistics

We conduct extensive experiments using a wide range of time series datasets. The detailed statistics
for each dataset is included in Table 3. For UCIHAR, HHAR-P, WISDM and FD datasets, we use the
processed versions released by AdaTime [27]. For HHAR-D datasets, we use the processed versions
released by WOODS [11]. For EMG dataset, we use the processed version released by DIVERSIFY
[24].

Table 3: Summary of datasets.

Dataset Subjects Channels Length Class Total

UCIHAR 30 9 128 6 3290
HHAR-P 9 3 128 6 17934
WISDM 30 3 128 6 2070
HHAR-D 5 6 500 6 13674
EMG 4 8 200 6 6883
FD 4 1 5120 3 10916

A.2 Dataset Processing

Each domain of datasets is randomly divided into 80% training, and 20% testing. We follow Adatime
[27], apply Z-score normalization to both the training and testing splits of the data, using the following
equation:

xnormalize
i =

xi − xmean

xstd
, i = 1, 2, . . . , N (17)

where N = Ns for the source domain data and N = Nt for the target domain data. Note that both
the training and testing splits are normalized based on the training set statistics only.

B Experimental Details

B.1 Model Architecture

Different from existing methods, our method simultaneously captures both coarse-scale and fine-scale
feature representations by tailored feature extractors. Coarse-scale and fine-scale data typically exhibit
varying lengths and contain distinct patterns, making it difficult to extract features simultaneously
using a single CNN or MLP. Recent foundational models tailored for multi-scale in time series
analysis generally employ separate feed-forward layers per scale followed by feature aggregation
[36, 35]. Aligned with the TSDA benchmark’s architectures [27, 18] that are based on 1D-CNN
in temporal subspace and MLP in frequency subspace, we follow the structure and additionally
incorporate a smaller CNN and MLP. In this way, we use a larger feature extractor to capture fine-
scale features and a smaller feature extractor to obtain coarse-scale features. This configuration
enables dedicated extraction of both fine-scale and coarse-scale characteristics.

Table 4: Key hyperparameters for EDEN.

Hyperparameter UCIHAR HHAR-P WISDM HHAR-D EMG FD

Epoch 50 50 50 50 50 50
Batch Size 32 32 32 32 32 32
Coarse Scale 2 4 4 2 4 4
Learning Rate 0.01 0.001 0.003 0.001 0.001 0.01

B.2 Multi-scale explicit domains

As mentioned in Section 4.1, limiting the input to a single scale makes determining the optimal scale
for each dataset time-consuming. Therefore, we model both fine-scale and coarse-scale features
simultaneously, leveraging the advantages of each. The fine-scale data refers to the raw data. Coarse-
scale data is obtained by downsampling fine-scale data at scale M . The coarse scales M chosen
for different datasets are listed in Table 4. Sensitivity analysis of scale M is presented in Figure 5.
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The proposed MSCA consistently achieves performance improvements across viable scales M in
{2, 4, 6, 8}, demonstrating the robustness of scale selection.

B.3 Multi-segment explicit domains

We introduce our segment strategy in two phases: training and testing. For the training phase,
given raw data r ∈ RC×T , we randomly crop two short segments from the original dataset using
a window size of T/2, while retaining the original segment. These segments form multi-segment
explicit domains and are constrained for coherence through Temporal Coherence Learning. For the
testing phase, we divide the original data into two halves using the same window size of T/2 to
ensure consistency in each test. We predict for both segments separately, and the ensemble of these
predictions is recorded as the final prediction result.

C Further Analysis

C.1 Computational cost
Table 5: Training time and model performance on the FD dataset.

FD CDAN Raincoat ACON EDEN

Accuracy 90.56 86.75 91.74 98.05
Training Time 1.08h 2.55h 1.25h 1.38h

Raincoat, ACON, and EDEN vs. CDAN: Due to additional cues like time-frequency transformation,
methods tailored for time series achieve performance improvements while increasing training time.

EDEN vs. Raincoat: EDEN not only significantly outperforms Raincoat but also reduces the training
time. Raincoat has a longer training time due to its reconstruction-correction mechanism.

EDEN vs. ACON: Due to the introduction of multi-scale and multi-segment explicit domains,
the training time of EDEN is slightly longer than ACON. However, considering the significant
performance gains of EDEN (6.88%), the total training time is entirely acceptable.

C.2 Sensitivity Analysis

Sensitivity Analysis of Coarse Scale M As shown in Figure 5, our method exhibits stable perfor-
mance on the multiple datasets across reasonable variations, with optimal performance at scales of 2
or 4. The optimal scale of different datasets is included in Table 4.

Sensitivity Analysis of TCL trade-off β We investigate EDEN’s sensitivity to the hyperparameter
β in Equation (16). As shown in Figure 6, EDEN remains stable within 0.2 ∼ 1.4, with the optimal
average performance at the value of 1. Therefore, β is fixed at 1 in all our experiments.

Sensitivity Analysis of λ0 The hyperparameter λ0 determines the dominant strength of coarse-scale
at the initial training. Coarse-scale features dominate early alignment, with the weight decreasing
from 1 + λ0 → λ0 while fine-scale features progressively intensify, with the weight increasing from
λ0 → 1+λ0. In all our experiments, λ0 is fixed at 0.5. As shown in Figure 7, EDEN exhibits smooth
variations, demonstrating that our Multi-Scale Curriculum Adaptation achieves collaborative training
of multi-scale explicit domains, consistently outperforming single-scale.
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14



0.2 0.4 0.6 0.8 1.0 1.2 1.4
95

96

97

98

99

Ac
cu

ra
cy

 (%
)

Sensitivity analysis of β
UCIHAR

(a) UCIHAR

0.2 0.4 0.6 0.8 1.0 1.2 1.4
84

85

86

87

88

Ac
cu

ra
cy

 (%
)

Sensitivity analysis of β
HHAR-P

(b) HHAR-P

0.2 0.4 0.6 0.8 1.0 1.2 1.4
84

85

86

87

88

Ac
cu

ra
cy

 (%
)

Sensitivity analysis of β
WISDM

(c) WISDM

0.2 0.4 0.6 0.8 1.0 1.2 1.4
95

96

97

98

99

Ac
cu

ra
cy

 (%
)

Sensitivity analysis of β
FD

(d) FD

Figure 6: Sensitivity Analysis of TCL trade-off β.

0.1 0.3 0.5 0.7
95

96

97

98

99

Ac
cu

ra
cy

 (%
)

Sensitivity analysis of λ0

UCIHAR

(a) UCIHAR

0.1 0.3 0.5 0.7
84

85

86

87

88

Ac
cu

ra
cy

 (%
)

Sensitivity analysis of λ0

HHAR-P

(b) HHAR-P

0.1 0.3 0.5 0.7
84

85

86

87

88

Ac
cu

ra
cy

 (%
)

Sensitivity analysis of λ0

WISDM

(c) WISDM

0.1 0.3 0.5 0.7
95

96

97

98

99

Ac
cu

ra
cy

 (%
)

Sensitivity analysis of λ0

FD

(d) FD

Figure 7: Sensitivity Analysis of λ0.

D Broader Impacts

We investigate the unsupervised domain adaptation method for time series classification by exploring
multiple explicit domains. This paper aims to advance the field of time series analysis and the
real-world deployment of time series applications without any negative social impact.

E Full Results
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Figure 8: Average Macro-F1 Score across multiple datasets.

15



Table 6: Accuracy (%) on UCIHAR for unsupervised domain adaptation.

Method 2→11 6→23 7→13 9→18 12→16 13→19 18→21 20→6 23→13 24→12 Average
Source-only 76.56 67.36 83.68 24.65 61.11 88.89 100.0 94.10 71.18 83.68 75.12
CDAN 85.42 87.50 92.01 58.86 66.67 96.52 100.0 95.13 82.64 93.40 85.78
DeepCoral 90.63 84.38 87.50 46.88 65.28 95.49 100.0 95.49 69.79 87.50 82.01
AdaMatch 75.00 80.20 85.76 56.59 49.65 94.79 100.0 84.37 68.75 70.83 76.07
HoMM 74.06 82.71 81.88 73.96 70.21 96.67 98.75 73.33 77.71 80.63 80.99
DIRT-T 80.21 74.31 82.99 59.03 67.01 99.30 98.61 92.36 74.72 94.27 83.26
CLUDA 81.77 92.01 99.31 67.71 65.28 94.44 98.96 97.22 72.92 99.31 85.53
AdvSKM 98.96 88.54 92.71 74.65 69.44 93.05 100.0 85.41 79.51 96.87 83.26
CoDATS 68.23 74.31 77.43 63.89 66.32 94.09 99.65 70.49 56.25 82.81 75.54
RAINCOAT 100.0 95.83 100.0 75.69 86.52 100.0 100.0 93.41 86.52 93.75 94.43
ACON 100.0 96.25 99.16 91.66 85.63 100.0 100.0 97.50 100.0 100.0 97.02
Ours 100.0 99.17 98.96 93.12 90.62 100.0 100.0 99.17 100.0 100.0 98.10

Table 7: Accuracy (%) on HHAR-P for unsupervised domain adaptation.

Method 0→2 1→6 2→4 4→0 4→5 5→1 5→2 7→2 7→5 8→4 Average
Source-only 64.51 70.63 45.42 32.81 78.32 90.63 25.67 32.37 39.26 62.92 54.25
CDAN 76.19 92.57 52.57 29.09 97.27 96.16 35.04 37.05 75.26 96.11 68.73
DeepCoral 84.23 90.14 47.08 28.13 90.49 89.91 38.39 34.45 55.73 76.88 68.03
AdaMatch 84.78 92.31 54.50 36.45 78.45 94.20 41.96 37.65 63.80 64.69 65.91
HoMM 75.67 90.79 52.83 36.61 87.66 90.78 37.23 37.32 61.29 79.88 65.01
DIRT-T 77.83 88.54 50.69 32.22 93.16 91.86 38.62 38.10 72.46 65.83 64.99
CLUDA 79.84 93.40 45.90 38.84 94.08 95.57 33.93 37.80 77.57 96.52 69.35
AdvSKM 78.94 87.91 52.57 33.49 92.64 92.71 36.53 39.95 65.49 83.75 66.41
CoDATS 79.61 90.90 60.07 21.80 97.66 97.66 41.44 38.54 58.15 97.01 68.71
RAINCOAT 87.72 93.33 63.75 46.46 98.05 98.25 42.63 43.32 84.17 93.75 74.21
ACON 86.65 93.45 79.01 53.53 97.15 98.32 65.80 65.71 88.59 89.17 81.74
Ours 89.64 95.17 93.75 76.61 98.40 98.59 59.69 67.95 95.35 98.50 87.36

Table 8: Accuracy (%) on WISDM for unsupervised domain adaptation.

Method 2→32 4→15 7→30 12→7 12→19 18→20 20→30 21→31 25→29 26→2 Average
Source-only 81.16 79.86 89.32 71.53 54.29 83.74 67.96 21.29 26.11 82.52 65.78
CDAN 89.37 65.97 84.79 70.48 51.01 88.62 77.02 46.58 44.33 83.33 70.05
DeepCoral 87.92 62.50 91.26 79.86 51.77 64.23 81.88 54.62 53.89 77.44 70.80
AdaMatch 74.39 78.47 89.64 73.26 55.30 75.20 74.76 31.32 57.78 87.20 69.79
HoMM 77.10 74.58 78.64 68.13 50.61 71.22 72.82 56.39 57.00 66.10 67.26
DIRT-T 77.78 70.83 90.61 70.20 51.51 85.36 71.84 54.41 60.04 66.46 69.62
CLUDA 73.91 67.36 86.40 65.97 49.24 83.74 72.49 49.97 35.00 86.47 67.04
AdvSKM 70.83 95.85 93.85 77.08 47.47 81.30 21.28 44.45 74.79 74.95 66.97
CoDATS 77.29 70.83 83.20 70.17 47.47 76.01 82.85 52.61 53.89 83.29 70.66
RAINCOAT 79.71 97.91 91.28 89.80 85.00 92.23 91.66 59.09 82.97 83.50 76.60
ACON 89.86 86.25 98.06 98.13 77.73 83.66 91.26 63.61 60.00 99.51 84.80
Ours 92.50 90.62 97.29 95.42 82.97 88.44 90.42 76.56 65.00 96.56 87.58

Table 9: Accuracy (%) on FD for unsupervised domain adaptation.

Method 0→1 0→2 0→3 1→0 1→2 2→0 2→1 2→3 3→0 3→2 Average
Source-only 62.21 53.71 62.41 63.91 73.95 64.08 93.17 95.54 57.08 74.31 70.04
CDAN 91.29 71.83 90.13 96.50 90.09 83.10 99.38 99.98 95.40 87.95 90.56
DeepCoral 75.54 71.79 76.03 89.13 83.55 76.34 98.84 98.55 87.50 83.71 84.10
AdaMatch 67.81 55.38 62.88 92.21 98.57 79.08 89.96 90.40 87.23 97.57 82.11
HoMM 81.54 71.63 78.17 89.89 84.78 76.03 98.71 99.55 90.94 85.96 85.72
DIRT-T 75.94 70.85 76.36 98.10 90.27 81.92 100.0 99.98 97.06 90.29 88.08
CLUDA 90.47 82.63 88.68 89.06 92.23 61.92 93.91 90.80 82.01 78.17 84.99
AdvSKM 74.71 66.05 73.30 87.86 86.29 76.85 98.66 99.38 84.89 85.74 83.37
CoDATS 81.79 73.26 83.15 89.22 88.68 81.43 99.89 100.0 85.47 89.00 87.20
RAINCOAT 85.18 79.40 89.04 78.84 90.11 81.43 95.18 96.81 77.39 94.08 86.75
ACON 86.52 69.00 86.96 97.92 99.80 84.29 98.62 98.93 97.72 97.66 91.74
Ours 98.48 97.39 98.71 98.37 100.0 89.22 100.0 100.0 98.37 100.0 98.05
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Table 10: Accuracy (%) on HHAR-D for unsupervised domain adaptation.

Method 0→1 0→2 0→3 0→4 1→0 1→3 1→4 2→1 3→4 4→1 Average
Source-only 65.48 33.59 31.71 39.79 34.69 44.83 49.54 38.17 86.17 44.23 46.82
CDAN 69.86 48.28 38.22 48.42 48.75 60.48 51.33 47.84 87.33 48.89 54.94
DeepCoral 68.94 42.88 40.67 47.96 35.63 55.31 56.21 44.71 87.25 45.96 52.55
AdaMatch 71.78 39.60 39.74 47.50 52.50 55.48 58.33 46.49 85.83 41.15 53.84
HoMM 69.66 40.51 39.16 50.42 35.94 55.02 57.13 42.36 86.79 46.35 52.33
DIRT-T 68.37 42.14 47.21 52.92 41.25 60.14 55.63 46.73 92.25 54.81 56.14
CLUDA 71.78 39.60 39.74 47.50 52.50 55.48 58.33 46.49 85.83 41.15 53.84
AdvSKM 67.93 40.71 40.19 47.33 37.19 55.65 59.54 42.69 87.46 49.33 52.80
CoDATS 72.50 43.35 50.79 45.50 58.44 62.24 54.54 40.14 89.63 45.53 56.27
RAINCOAT 74.47 36.52 48.82 35.29 51.25 41.49 41.50 34.28 88.58 38.46 49.07
ACON 77.50 61.36 54.69 65.46 69.38 71.30 62.13 50.10 93.63 44.86 65.04
Ours 75.67 54.44 51.11 61.04 79.38 89.59 76.38 58.75 94.88 65.19 70.64

Table 11: Accuracy (%) on EMG for unsupervised domain adaptation.

Method 0→1 0→2 0→3 1→2 1→3 2→0 2→1 2→3 3→1 3→2 Average
Source-only 84.94 74.38 73.38 74.38 73.88 73.88 82.16 73.69 79.38 72.31 76.24
CDAN 87.84 76.63 77.63 77.44 81.63 73.94 87.10 75.13 83.98 77.63 79.89
DeepCoral 87.50 76.44 76.19 77.63 77.63 74.69 84.72 75.50 81.93 74.88 78.71
AdaMatch 89.03 75.94 79.38 76.94 80.00 76.31 89.94 81.31 84.26 73.81 80.69
HoMM 87.61 76.50 75.75 77.00 77.94 73.94 84.89 75.88 82.61 75.31 78.74
DIRT-T 89.77 75.25 78.69 75.88 80.06 70.63 84.77 77.69 83.30 76.69 79.27
CLUDA 78.18 75.00 76.75 74.75 74.19 75.94 79.43 70.00 76.88 75.13 75.62
AdvSKM 86.42 75.94 76.25 77.25 78.00 74.88 85.06 77.25 81.76 75.31 78.81
CoDATS 88.24 77.44 78.31 78.44 81.81 73.75 86.65 78.88 84.43 78.06 80.60
RAINCOAT 89.60 77.00 78.56 78.25 83.13 73.06 85.68 76.88 83.13 74.00 79.93
ACON 92.50 79.06 81.75 80.13 83.13 77.94 90.91 79.75 85.11 78.88 82.91
Ours 93.92 82.31 83.38 81.19 86.50 77.12 92.78 82.88 87.61 78.38 84.61

Table 12: Macro-F1 Score on UCIHAR for unsupervised domain adaptation.

Method 2→11 6→23 7→13 9→18 12→16 13→19 18→21 20→6 23→13 24→12 Average
Source-only 0.69 0.63 0.84 0.17 0.58 0.91 1.00 0.94 0.71 0.84 0.73
CDAN 0.85 0.88 0.91 0.61 0.64 0.97 1.00 0.95 0.82 0.92 0.86
DeepCoral 0.91 0.81 0.87 0.44 0.65 0.95 1.00 0.95 0.70 0.88 0.82
AdaMatch 0.73 0.81 0.86 0.55 0.48 0.94 1.00 0.84 0.67 0.70 0.76
HoMM 0.73 0.78 0.81 0.69 0.69 0.96 0.99 0.71 0.75 0.78 0.79
DIRT-T 0.81 0.68 0.82 0.58 0.62 0.99 0.98 0.92 0.74 0.93 0.81
CLUDA 0.81 0.92 0.99 0.67 0.64 0.94 0.99 0.98 0.71 0.99 0.86
AdvSKM 0.99 0.87 0.92 0.73 0.68 0.93 1.00 0.84 0.77 0.96 0.87
CoDATS 0.66 0.71 0.78 0.60 0.64 0.93 0.99 0.65 0.54 0.81 0.72
RAINCOAT 1.00 0.96 1.00 0.76 0.86 1.00 1.00 0.94 0.86 0.94 0.93
ACON 1.00 0.97 0.99 0.91 0.86 1.00 1.00 0.98 1.00 1.00 0.97
Ours 1.00 0.99 0.99 0.94 0.92 1.00 1.00 0.99 1.00 1.00 0.98

Table 13: Macro-F1 Score on HHAR-P for unsupervised domain adaptation.

Method 0→2 1→6 2→4 4→0 4→5 5→1 5→2 7→2 7→5 8→4 Average
Source-only 0.60 0.64 0.32 0.29 0.78 0.90 0.19 0.31 0.36 0.58 0.50
CDAN 0.70 0.93 0.52 0.27 0.98 0.98 0.35 0.32 0.76 0.97 0.68
DeepCoral 0.86 0.91 0.45 0.26 0.90 0.90 0.36 0.32 0.50 0.73 0.62
AdaMatch 0.83 0.93 0.46 0.32 0.76 0.94 0.40 0.37 0.60 0.61 0.62
HoMM 0.70 0.91 0.45 0.37 0.88 0.91 0.34 0.40 0.61 0.79 0.64
DIRT-T 0.76 0.86 0.51 0.30 0.93 0.90 0.36 0.34 0.73 0.64 0.64
CLUDA 0.82 0.94 0.44 0.40 0.94 0.96 0.37 0.36 0.65 0.84 0.67
AdvSKM 0.72 0.88 0.44 0.33 0.93 0.92 0.35 0.41 0.64 0.83 0.65
CoDATS 0.73 0.90 0.46 0.20 0.96 0.94 0.41 0.36 0.59 0.95 0.63
RAINCOAT 0.87 0.93 0.59 0.45 0.98 0.98 0.41 0.44 0.86 0.94 0.75
ACON 0.86 0.93 0.74 0.52 0.97 0.98 0.62 0.65 0.89 0.89 0.80
Ours 0.88 0.95 0.94 0.76 0.98 0.99 0.59 0.67 0.95 0.98 0.87
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Table 14: Macro-F1 Score on WISDM for unsupervised domain adaptation.

Method 2→32 4→15 7→30 12→7 12→19 18→20 20→30 21→31 25→29 26→2 Average
Source-only 0.68 0.52 0.77 0.53 0.36 0.81 0.56 0.10 0.15 0.69 0.52
CDAN 0.72 0.44 0.70 0.50 0.31 0.87 0.64 0.31 0.23 0.71 0.54
DeepCoral 0.71 0.42 0.85 0.67 0.35 0.63 0.67 0.27 0.25 0.64 0.52
AdaMatch 0.59 0.54 0.76 0.67 0.38 0.66 0.54 0.16 0.24 0.74 0.54
HoMM 0.63 0.42 0.62 0.55 0.39 0.63 0.60 0.30 0.26 0.54 0.49
DIRT-T 0.65 0.41 0.78 0.56 0.39 0.67 0.65 0.28 0.21 0.54 0.54
CLUDA 0.64 0.61 0.81 0.59 0.41 0.70 0.70 0.27 0.26 0.75 0.57
AdvSKM 0.61 0.55 0.84 0.53 0.35 0.71 0.61 0.28 0.28 0.55 0.55
CoDATS 0.66 0.41 0.75 0.62 0.37 0.76 0.72 0.30 0.30 0.70 0.56
RAINCOAT 0.68 0.98 0.86 0.72 0.78 0.92 0.87 0.43 0.44 0.75 0.74
ACON 0.81 0.65 0.99 1.00 0.63 0.76 0.87 0.36 0.28 1.00 0.74
Ours 0.88 0.76 0.96 0.91 0.68 0.85 0.87 0.42 0.31 0.94 0.76

Table 15: Macro-F1 Score on FD for unsupervised domain adaptation.

Method 0→1 0→2 0→3 1→0 1→2 2→0 2→1 2→3 3→0 3→2 Average
Source-only 0.41 0.33 0.41 0.65 0.77 0.64 0.95 0.97 0.59 0.78 0.65
CDAN 0.91 0.76 0.90 0.95 0.92 0.86 1.00 1.00 0.94 0.91 0.92
DeepCoral 0.61 0.62 0.62 0.90 0.87 0.77 0.99 0.99 0.89 0.88 0.81
AdaMatch 0.50 0.45 0.46 0.91 0.98 0.80 0.93 0.93 0.87 0.97 0.78
HoMM 0.61 0.52 0.62 0.91 0.88 0.78 0.99 1.00 0.91 0.89 0.81
DIRT-T 0.80 0.62 0.70 0.97 0.93 0.84 1.00 1.00 0.96 0.93 0.88
CLUDA 0.84 0.80 0.79 0.88 0.93 0.50 0.95 0.90 0.84 0.80 0.82
AdvSKM 0.55 0.54 0.57 0.89 0.89 0.76 0.99 1.00 0.87 0.89 0.80
CoDATS 0.80 0.69 0.87 0.90 0.92 0.86 1.00 1.00 0.87 0.92 0.88
RAINCOAT 0.89 0.84 0.92 0.81 0.92 0.85 0.96 0.98 0.81 0.94 0.89
ACON 0.86 0.75 0.89 0.96 1.00 0.88 0.99 0.99 0.96 0.98 0.93
Ours 0.98 0.98 0.99 0.97 1.00 0.92 1.00 1.00 0.97 1.00 0.98

Table 16: Macro-F1 Score on HHAR-D for unsupervised domain adaptation.

Method 0→1 0→2 0→3 0→4 1→0 1→3 1→4 2→1 3→4 4→1 Average
Source-only 0.61 0.27 0.25 0.33 0.44 0.43 0.46 0.32 0.85 0.38 0.43
CDAN 0.67 0.42 0.35 0.42 0.66 0.57 0.50 0.44 0.88 0.44 0.53
DeepCoral 0.65 0.34 0.33 0.40 0.48 0.53 0.53 0.39 0.86 0.41 0.49
AdaMatch 0.69 0.36 0.36 0.41 0.60 0.49 0.56 0.41 0.86 0.36 0.51
HoMM 0.66 0.33 0.31 0.41 0.47 0.52 0.53 0.37 0.86 0.42 0.49
DIRT-T 0.66 0.38 0.40 0.44 0.52 0.60 0.53 0.39 0.93 0.49 0.53
CLUDA 0.69 0.36 0.36 0.41 0.60 0.49 0.56 0.41 0.86 0.36 0.51
AdvSKM 0.63 0.32 0.31 0.38 0.46 0.54 0.56 0.36 0.86 0.44 0.49
CoDATS 0.71 0.38 0.44 0.39 0.70 0.61 0.53 0.38 0.90 0.44 0.55
RAINCOAT 0.72 0.32 0.42 0.32 0.56 0.39 0.38 0.31 0.89 0.35 0.47
ACON 0.76 0.53 0.49 0.56 0.81 0.67 0.59 0.44 0.93 0.41 0.62
Ours 0.73 0.49 0.45 0.54 0.82 0.89 0.76 0.55 0.95 0.61 0.68

Table 17: Macro-F1 Score on EMG for unsupervised domain adaptation.

Method 0→1 0→2 0→3 1→2 1→3 2→0 2→1 2→3 3→1 3→2 Average
Source-only 0.85 0.74 0.74 0.74 0.75 0.75 0.82 0.74 0.78 0.72 0.76
CDAN 0.88 0.77 0.78 0.78 0.82 0.74 0.87 0.76 0.84 0.78 0.80
DeepCoral 0.87 0.76 0.76 0.78 0.78 0.75 0.84 0.76 0.82 0.75 0.79
AdaMatch 0.89 0.76 0.79 0.77 0.80 0.76 0.90 0.81 0.84 0.74 0.81
HoMM 0.87 0.77 0.76 0.77 0.78 0.74 0.84 0.76 0.82 0.75 0.79
DIRT-T 0.90 0.75 0.79 0.76 0.80 0.71 0.84 0.78 0.83 0.77 0.79
CLUDA 0.78 0.75 0.77 0.75 0.74 0.76 0.79 0.70 0.75 0.75 0.75
AdvSKM 0.86 0.76 0.76 0.77 0.78 0.76 0.85 0.77 0.81 0.75 0.79
CoDATS 0.88 0.77 0.78 0.79 0.82 0.74 0.86 0.79 0.84 0.78 0.81
RAINCOAT 0.89 0.77 0.79 0.78 0.83 0.73 0.85 0.77 0.83 0.74 0.80
ACON 0.92 0.79 0.82 0.80 0.83 0.78 0.91 0.80 0.85 0.79 0.83
Ours 0.94 0.82 0.83 0.81 0.87 0.77 0.93 0.83 0.87 0.79 0.85
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We include detailed information in Section 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are included in ??.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The theory assumptions and proof are included in Section 4.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include the detailed experimental settings in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code is available at the anonymous link: https://anonymous.4open.
science/r/2025NeurIPS-EDEN.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We include the detailed experimental settings in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The error bars are included in Figure 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All the experiments in this paper are conducted on a single NVIDIA GeForce
RTX 4090 with 24GiB of memory.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: In every respect in the paper, we follow the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Broader impacts is included in Appendix D.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All data, models, and code in the paper respect the license.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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