Breakthrough Sensor-Limited Single View: Towards Implicit Temporal Dynamics for Time Series Domain Adaptation

Mingyang Liu¹, Xinyang Chen^{1⊠}, Xiucheng Li¹, Weili Guan², Liqiang Nie¹

¹School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen)

²School of Information Science and Technology, Harbin Institute of Technology (Shenzhen)

{mingyangliu1024, chenxinyang95, nieliqiang}@gmail.com, {lixiucheng,guanweili}@hit.edu.cn

Abstract

Unsupervised domain adaptation has emerged as a pivotal paradigm for mitigating distribution shifts in time series analysis. The fundamental challenge in time series domain adaptation arises from the entanglement of domain shifts and intricate temporal patterns. Crucially, the latent continuous-time dynamics, which are often inaccessible due to sensor constraints, are only partially observable through discrete time series from an explicit sensor-limited single view. This partial observability hinders the modeling of intricate temporal patterns, impeding domain invariant representation learning. To mitigate the limitation, we propose **EDEN** (multiple Explicit Domain Enhanced adaptation Network), expanding the raw dataset to multi-scale explicit domains, multi-subspace explicit domains and multi-segment explicit domains. EDEN enhances domain adaptation with three coordinated modules tailored to integrate multiple explicit domains: (1) Multi-Scale Curriculum Adaptation implements progressive domain alignment from coarse-scale to fine-scale. (2) Quality-Aware Feature Fusion evaluates feature quality in multi-subspace explicit domains and adaptively integrates temporalfrequency features. (3) Temporal Coherence Learning enforces segment-level consistency with multi-segment explicit domains. The representation enriched by multiple explicit domains bridges the gap between partially observed discrete samples and the underlying implicit temporal dynamics, enabling more accurate approximation of implicit temporal patterns for effective cross-domain adaptation. Our comprehensive evaluation across 6 time series benchmarks demonstrates EDEN's consistent superiority, achieving average accuracy improvements of 4.8% over state-of-the-art methods in cross-domain scenarios. Code is available at the anonymous link:https://github.com/mingyangliu1024/EDEN.

1 Introduction

Time series classification has been studied with immense interest in extensive applications and has made significant progress [15, 40, 37]. Nevertheless, practical deployment of the models often encounters severe performance degradation caused by distribution shifts between training and testing environments [27]. Unsupervised domain adaptation (UDA) [21, 12], leveraging knowledge transfer from a related source domain to the unlabeled target domain, can be a promising solution.

The core challenge of time series domain adaptation (TSDA) stems from the entanglement of domain shifts and intricate temporal patterns, which is further compounded by the partial observability of latent continuous-time dynamics. Unlike images or text, where raw observations capture rich semantic information, time series data constitutes an explicit sensor-limited single domain, whose discrete

observations are constrained by acquisition parameters (e.g., sampling rates or record durations) that only partially reflect the underlying implicit domain of continuous-time processes [10], and hinder the modeling of intricate temporal patterns. Critically, modifying these sensor constraints yields different explicit domains, each emphasizing distinct aspects of the implicit temporal dynamics that must be effectively captured. Conventional approaches relying on a single explicit domain exhibit limited representational modeling capabilities, impeding domain invariant representation learning.

Current advanced methods primarily focus on extracting temporal representation directly from raw observational data [38, 25], demonstrating limited effectiveness in simultaneously capturing intricate temporal patterns and addressing their associated domain shifts. While recent advancements incorporating representations from frequency subspace show improved domain adaptation performance [14, 18], these approaches remain fundamentally constrained by fixed temporal-frequency integration paradigms. To unravel implicit temporal dynamics and enhance domain adaptation, it is essential to break through the limitations of the single view in the raw dataset.

In light of the above motivations, we propose EDEN (multiple Explicit Domain Enhanced adaptation Network) for TSDA based on the integration of multiple explicit domains. By expanding the restrictions slightly, we expand the original dataset to (1) multi-scale explicit domains at fine-scale and coarse-scale, (2) multi-subspace explicit domains containing temporal subspace and frequency subspace, and (3) multi-segment explicit domains with nearby segments. Furthermore, EDEN investigates interactions among multiple explicit domains and achieves their effective integration with three coordinated modules: (1) For multi-scale explicit domains, we highlight that the coarse-scale features manifest smaller domain discrepancy, which is the metric proposed in domain adaptation theory [2]. Based on that, Multi-Scale Curriculum Adaptation is proposed to progressively align the source and target domain from coarse-scale to fine-scale. This curriculum learning strategy stabilizes global feature alignment before refining local discriminating details. (2) For multi-subspace explicit domains, we reveal that the discriminative capability of models for the same class may vary significantly between two subspaces. Based on that, we propose Quality-Aware Feature Fusion, an adaptive fusion mechanism that weighs subspace contributions based on their representation quality for specific instances. (3) For multi-segment explicit domains, we identify that nearby segments inherently possess similar class-related semantic information. Based on that, we propose Temporal Coherence Learning, encouraging the model to exhibit consistent and stable behavior on adjacent temporal windows. Main contributions are as follows:

- 1. Going beyond previous methods, we break through the sensor-limited single view and expand to multiple explicit domains, taking advantage of rich semantic information and comprehensive reflection of domain shift from multiple explicit domains, unraveling implicit temporal dynamics.
- 2. We propose EDEN, which integrates multiple explicit domains and enhances TSDA in three coordinate modules: Multi-Scale Curriculum Adaptation to align the source and target domain from coarse-scale to fine-scale; Quality-Aware Feature Fusion to adaptively integrate temporal-frequency features; Temporal Coherence Learning to encourage consistent and stable behavior.
- **3.** EDEN achieves average accuracy improvements of 4.8% over state-of-the-art methods across a wide range of time series datasets in cross-domain scenarios.

2 Related Work

General Unsupervised Domain Adaptation Unsupervised domain adaptation leverages the labeled source domain to predict the labels of a different but related, unlabeled target domain. It has a wide range of applications [41, 42, 13]. To achieve this, UDA methods aim to minimize the domain discrepancy and thereby decrease the upper bound of the target error [2]. Existing UDA methods can be classified into three categories: (1) Methods based on adversarial training introduce a domain discriminator to distinguish source samples from target ones, while the feature extractor learns domain-invariant representations to fool the domain discriminator. Advanced methods include DANN [12], CDAN [22] and DIRT-T [31]. (2) Methods based on statistical divergence aim to extract transferable features by minimizing statistical domain discrepancy in a latent feature space. Widely used methods include DAN [21], DeepCoral [33] and HoMM [6]. (3) Methods based on self-training assign pseudo-labels on unlabeled target data and select confident samples to combine with source samples in the next iteration of training. Widely used methods include PFAN[7], CST [17] and AdaMatch [4]. Overall, these methods are generally designed. Although these methods can be

applied to time series through tailored feature extractors, they often yield suboptimal performance due to neglecting the unique characteristics of time series.

Unsupervised Domain Adaptation for Time Series To date, limited methods have been tailored to unsupervised domain adaptation for time series. Early works focus on modeling features in the temporal subspace. VRADA [26] and CoDATS [38] consider suitable feature extractors based on the temporal structure. SASA [5] adopts LSTM [30] to capture the domain-invariant association. AdvSKM [19] adapts MMD [34] to fit time series characteristics. CLUDA [25] learns contextual representation via contrastive learning. Recently, several works have highlighted the necessity of simultaneously modeling features in the temporal and frequency subspace for UDA. RAINCOAT [14] firstly introduces frequency features into domain adaptation, aligning temporal features and frequency features respectively via Sinkhorn divergence. ACON [18] proposes mutual learning and adversarial learning in temporal-frequency subspace. Despite remarkable progress, existing methods fail to exploit richer semantic in potential explicit domains, restricting domain shift mitigation.

3 Multiple Explicit Domains of Time Series

3.1 Problem Setup

In this paper, we study Unsupervised Domain Adaptation (UDA) problem for time series classification. Discrete time series are often a series of data points obtained by observing a continuous-time process at a discrete sequence of equally spaced points in time [10]. In time series classification problems, the dataset can be formalized as $D = \{(\mathbf{r}_i, \mathbf{y}_i)\}_{i=1}^n$, where i-th raw sample $\mathbf{r}_i \in \mathbb{R}^{C \times T}$ is sampled from i-th continuous-time process ρ_i , containing observation of C variates over T time steps.

In UDA setup, we are given n_s raw labeled samples $\hat{P} = \{(\mathbf{r}_i^s, \mathbf{y}_i^s)\}_{i=1}^{n_s}$ drawn from the source distribution P and n_t raw unlabeled samples $\hat{Q} = \{(\mathbf{r}_i^t)\}_{i=1}^{n_t}$ drawn from the target distribution Q. Due to the domain shift between the source and target distribution, the model trained only on labeled source data encounters severe performance drops when deployed in the target domain. UDA for time series classification aims to learn a time series classification model with labeled source sample set \hat{P} and unlabeled target sample set \hat{Q} , which can make accurate predictions on the target domain.

3.2 From Raw Time Series to Multiple Explicit Domains

Discrete time series datasets inherently include two explicit restrictions: sampling rate and record duration. The sampling rate determines how frequently observations are made, impacting the resolution and fidelity of captured data. The record duration defines the temporal extent, influencing the model's ability to capture trends and patterns within segments. Given *i*-th continuous-time process ρ_i , we obtain different samples by modifying the sampling rate and record duration. In mathematics, the continuous-time process set $\mathcal{P} = \{\rho_i\}_{i=1}^n$ forms an implicit domain, which is inaccessible due to sensor limitations. With explicit restrictions, the raw input set $\{\mathbf{r}_i\}_{i=1}^n$ forms an explicit domain.

Existing domain adaptation methods tailored for time series are mostly limited to a single explicit domain. By expanding the restrictions slightly, we treat frequency data as an explicit domain under the restriction of temporal-frequency transformation. To break through the limitations of the single view in the raw dataset and comprehensively reflect implicit temporal dynamics, we expand the original dataset into multiple explicit domains from three perspectives: record duration, sampling rate, and temporal-frequency transformation. As shown in Figure 1(a), given a raw time series dataset $\{\mathbf{r}_i\}_{i=1}^n$, for each instance \mathbf{r} , we expand it to three kinds of explicit domains:

- (1) Given a raw sample \mathbf{r} , we segment it and obtain the set of segments $\{\mathbf{x}_j\}_{j=1}^K$, where \mathbf{x}_j is a sub-series of \mathbf{r} or \mathbf{r} itself. The segments in $\{\mathbf{x}_j\}_{j=1}^K$ may have different length. After this step, each \mathbf{r} in the original dataset is expanded to include $\{\mathbf{x}_j\}_{j=1}^K$ in the multi-segment explicit domains.
- (2) Given a segment \mathbf{x}_j , we downsample \mathbf{x}_j with a coarser scale M, and obtain the coarser-scale data \mathbf{x}_j^c . The segment \mathbf{x}_j contains finer-scale information, denoted as \mathbf{x}_j^f . Each raw sample \mathbf{r} is expanded to include $\{\mathbf{x}_j^f, \mathbf{x}_i^c\}_{i=1}^K$ in the multi-scale explicit domains.

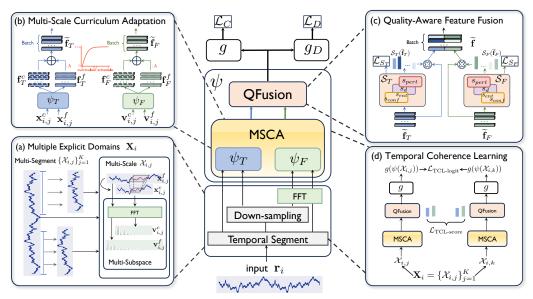


Figure 1: The schematic of EDEN, enhancing TSDA with expanded multiple explicit domains and three coordinated modules tailored to integrate multiple explicit domains. (a) Expanding the raw inputs into multiple explicit domains from three perspectives: record duration, sampling rate, and temporal-frequency transformation. (b) Multi-Scale Curriculum Adaptation implements progressive domain alignment through multi-scale explicit domains. (c) Quality-Aware Feature Fusion evaluates feature quality and adaptively integrates temporal-frequency features. (d) Temporal Coherence Learning enforces segment-level consistency constraints via multi-segment explicit domains.

(3) Given a fine-scale data \mathbf{x}^f and corresponding coarse-scale data \mathbf{x}^c , we transform \mathbf{x}^f and \mathbf{x}^c into the frequency subspace by Fast Fourier Transform, resulting in complex variables \mathbf{v}^f and \mathbf{v}^c . Each raw sample \mathbf{r} is expanded to include $\{(\mathbf{x}_j^f, \mathbf{x}_j^c, \mathbf{v}_j^f, \mathbf{v}_j^c)\}_{j=1}^K$ in the multi-subspace explicit domains.

To simplify, multiple explicit domains $\{X_i\}_{i=1}^n$ derived from raw dataset $\{r_i\}_{i=1}^n$ are formalized as:

$$\{\mathbf{X}_i\}_{i=1}^n, \mathbf{X}_i = \{\mathcal{X}_{i,j}\}_{j=1}^K,$$

$$\mathcal{X}_{i,j} = (\mathbf{x}_{i,j}^f, \mathbf{x}_{i,j}^c, \mathbf{v}_{i,j}^f, \mathbf{v}_{i,j}^c).$$
(1)

The above three steps **do not alter the relevant category concepts**, and thus \mathbf{X}_i share the same ground-truth label with \mathbf{r}_i . With the expanded multiple explicit domains, we have the labeled source domain $\hat{P} = \{(\mathbf{X}_i^s, \mathbf{y}_i^s)\}_{i=1}^{n_s}$ and the unlabeled target domain $\hat{Q} = \{(\mathbf{X}_i^t)\}_{i=1}^{n_t}$. Superscripts s and t are adopted to distinguish the source domain and the target domain.

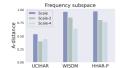
4 Approach

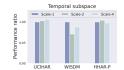
Figure 1 illustrates the overall structure of EDEN, consisting of a temporal feature extractor ψ_T , a frequency feature extractor ψ_F , a domain discriminator g_D , a classifier g, and two auxiliary feature scorers \mathcal{S}_T , \mathcal{S}_F . Specifically, (1) To effectively utilize the multi-scale explicit domains, we propose Multi-Scale Curriculum Adaptation (MSCA) in Section 4.1. (2) To fully exploit the multi-subspace explicit domains, we propose Quality-Aware Feature Fusion (QFusion) in Section 4.2. (3) To utilize the multi-segment explicit domains, we propose Temporal Coherence Learning (TCL) in Section 4.3.

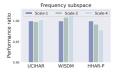
4.1 Multi-Scale Curriculum Adaptation

Intuitively, coarse-scale time series highlights macroscopic variations, i.e., low-frequency information, while deep neural networks demonstrate strong generalization capabilities for low-frequency information [39]. Fine-scale time series contain subtle changes in local regions, i.e., high-frequency information, which may enhance feature discriminability but pose substantial challenges for domain









- (a) d_A in T-subspace
- (b) d_A in F-subspace
- (c) DANN in T-subspace (d) DANN in F-subspace

Figure 2: Fine-scale vs. Coarse-scale: Denote the original sampling rate as r_0 . Scale-M refers to downsampling time series to a sampling rate of $\frac{r_0}{M}$. (a) A-distance in T-subspace. (b) A-distance in F-subspace. (c) DANN performance ratio of Scale-M to original data (Scale-1) in T-subspace. (d) DANN performance ratio of Scale-M to original data (Scale-1) in F-subspace. Reduced domain discrepancy may not guarantee accuracy gains due to the loss of discriminative information.

transfer. Transfer performance is jointly determined by transferability and discriminability. Therefore, multi-scale collaborative training may provide more performance gains compared to single-scale.

To validate the intuition, we investigate how representations with different scales influence the domain adaptation process. Based on the domain adaptation theory [2], the risk of the target domain can be bounded by the following proposition:

Proposition 4.1 (Domain Adaptation Bound). Let \mathcal{H} be a hypothesis space, P, Q represent the source and target domain respectively. For every $h \in \mathcal{H}$, the target risk $\epsilon_Q(h)$ is bounded as:

$$\epsilon_Q(h) \le \epsilon_P(h) + \frac{1}{2} d_{\mathcal{H}\Delta\mathcal{H}(P,Q)} + \lambda^*,$$
(2)

where $\epsilon_P(h)$ denotes the source risk, $\mathcal{H}\Delta\mathcal{H}$ -distance $d_{\mathcal{H}\Delta\mathcal{H}(P,Q)}=2\sup_{h,h'\in\mathcal{H}}|\epsilon_P(h,h')-\epsilon_Q(h,h')|$ measures domain shift as the discrepancy between the disagreement of two hypotheses h,h', and $\lambda^*=\epsilon_P(h^*)+\epsilon_Q(h^*)$ is the error of the ideal joint hypothesis h^* .

Under the supervision of source labels, $\epsilon_P(h)$ is usually smaller, while $\epsilon_Q(h)$ is mainly determined by the latter two terms. We adopt the proxy of $\mathcal{H}\Delta\mathcal{H}$ -distance, A-distance [2], to quantify the domain discrepancy, defined as $d_A=2(1-2\epsilon)$, where ϵ is the error rate of a domain classifier trained to discriminate source domain and target domain. As shown in Figure 2(a) and Figure 2(b), both in the temporal subspace and frequency subspace, it is consistently observed that the model trained on coarse-scale time series learns more domain-invariant features with smaller A-distance. However, as scale M increases, the discriminative information gradually diminishes, potentially compromising prediction accuracy. In Figure 2(c) and Figure 2(d), we observe that reduced domain discrepancy may not guarantee accuracy gains with increasing M. This indicates that the coarse-scale features are easier for cross-domain transfer but potentially compromise discriminability. Consequently, multi-scale collaborative training emerges as a better choice.

Inspired by curriculum learning [9, 29, 3], we propose Multi-Scale Curriculum Adaptation to align the source and target distribution in an easy-to-hard way. In early training, coarse-scale features with stronger transferability guide the model to first stabilize global feature alignment. As the training progresses, fine-scale features gradually take the lead and refine local discriminating details.

Given multi-scale input $\mathcal{X} = (\mathbf{x}^f, \mathbf{x}^c, \mathbf{v}^f, \mathbf{v}^c)$, taking $(\mathbf{x}^f, \mathbf{x}^c)$ as the example, we extract fine-scale features and coarse-scale features respectively in the temporal subspace, i.e., $\mathbf{f}_T^f, \mathbf{f}_T^c = \psi_T(\mathbf{x}^f, \mathbf{x}^c)$ (similar to $(\mathbf{v}^f, \mathbf{v}^c)$), and mix the two features in a curriculum manner as follows:

$$\widetilde{\mathbf{f}}_{T} = \lambda \mathbf{f}_{T}^{f} + (1 + 2\lambda_{0} - \lambda)\mathbf{f}_{T}^{c},$$

$$\lambda = \frac{1 - \exp(-p)}{1 + \exp(-p)} + \lambda_{0},$$
(3)

where λ is progressively increased, p is the ratio of the current number to the maximum number of iterations, and the λ_0 is the initial value of λ . Denoting the mixing operation as $h_{\lambda}(\cdot)$, we extract the temporal feature $\tilde{\mathbf{f}}_T = h_{\lambda} \left(\psi_T \left(\mathbf{x}^f, \mathbf{x}^c \right) \right)$ and frequency feature $\tilde{\mathbf{f}}_F = h_{\lambda} \left(\psi_F \left(\mathbf{v}^f, \mathbf{v}^c \right) \right)$, and then concatenate them to obtain the final representation $\tilde{\mathbf{f}}$. The progress is formulated as follows:

$$\psi(\mathcal{X}) = [h_{\lambda} \left(\psi_{T} \left(\mathbf{x}^{f}, \mathbf{x}^{c} \right) \right), h_{\lambda} \left(\psi_{F} \left(\mathbf{v}^{f}, \mathbf{v}^{c} \right) \right)], \tag{4}$$

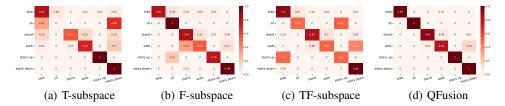


Figure 3: Error matrices: (a) Temporal subspace. (b) Frequency subspace. (c) Temporal-frequency subspace with QFusion.

where ψ is denoted as the holistic extractor containing ψ_T and ψ_F . Based on the feature representation $\tilde{\mathbf{f}} = \psi(\mathcal{X})$, we use the classifier g to make the prediction $g(\psi(\mathcal{X}))$ and minimize \mathcal{L}_C with the labeled source samples to guarantee lower source risk:

$$\mathcal{L}_{C} = \mathbb{E}_{\left(\mathbf{X}_{i}^{s}, \mathbf{y}_{i}^{s}\right) \sim \hat{P}, \mathcal{X}_{i, i}^{s} \sim \mathbf{X}_{i}^{s}} \left[\text{CE}\left(g\left(\psi\left(\mathcal{X}_{i, j}^{s}\right)\right), \mathbf{y}_{i}^{s}\right) \right], \tag{5}$$

where CE denotes cross-entropy loss. Meanwhile, we adopt the domain discriminator g_D to align the source feature distribution and the target feature distribution via the minimax optimization problem:

$$\mathcal{L}_{D} = -\mathbb{E}_{\mathbf{X}_{i}^{s} \sim \hat{P}, \mathcal{X}_{i,j}^{s} \sim \mathbf{X}_{i}^{s}} \log \left[g_{D} \left(\psi \left(\mathcal{X}_{i,j}^{s} \right) \right) \right] - \mathbb{E}_{\mathbf{X}_{i}^{t} \sim \hat{Q}, \mathcal{X}_{i,j}^{t} \sim \mathbf{X}_{i}^{t}} \log \left[1 - g_{D} \left(\psi \left(\mathcal{X}_{i,j}^{t} \right) \right) \right],$$

$$(6)$$

where \mathcal{L}_D is minimized over g_D but maximized over ψ .

4.2 Quality-Aware Feature Fusion

To explore the relationship between temporal subspace and frequency subspace, we delve into the error matrices of the target domain. We find that the classification performance of the same class may vary significantly between two subspaces. As shown in Figure 3(a) and Figure 3(b), the "sit" class is completely misclassified in the temporal subspace, while the class is classified correctly in the frequency subspace. Similarly, the "stairs up" class is classified correctly in the temporal subspace, but 21% of the class is incorrectly classified as "sits" in the frequency subspace. This suggests that the intrinsic characteristics of a certain class can be more effectively captured in the feature representation of one subspace compared to the other. In other words, each subspace has its advantageous classes.

Ideally, a model trained jointly in both subspaces, using the concatenation of temporal and frequency features as final features, would achieve optimal performance in each subspace for every class, which can classify both the "sit" class and the "stairs up" class correctly. However, as shown in Figure 3(c), the model does not actively select the best performance in the two subspaces; instead, it only achieves a compromise between the temporal and frequency subspace performance, or even worse.

This prompts us to seek a criterion for measuring the quality of features across different subspaces to achieve optimal subspace fusion. As shown in Figure 1(c), we introduce Quality-Aware Feature Fusion, which contains feature scorers \mathcal{S}_T , \mathcal{S}_F into the temporal and frequency subspace respectively, responsible for measuring feature quality based on transferability, discriminability, and diversity, enabling adaptive temporal-frequency integration. With \mathcal{S}_T and \mathcal{S}_F , Equation (4) is modified to:

$$\psi(\mathcal{X}) = [\mathcal{S}_T(\widetilde{\mathbf{f}}_T) \cdot \widetilde{\mathbf{f}}_T, \mathcal{S}_F(\widetilde{\mathbf{f}}_F) \cdot \widetilde{\mathbf{f}}_F]. \tag{7}$$

Each score $\mathcal{S}(\mathbf{f})$ is comprised of three components: transferability criterion, discriminability criterion and diversity perturbation. The first two are key criteria to characterize the performance of domain adaptation [8], while the latter ensures that different classes score diversely within the same subspace.

Transferability Criterion Transferability indicates the ability to learn domain-invariant features. Inspired by A-distance [2], a domain classifier is employed to measure transferability. The objective of the domain classifier is to predict source samples as 1 and target samples as 0. The closer the prediction \hat{d} is to 0.5, the more difficult it is to distinguish the feature across domains, indicating

more domain-invariant. Thus, \hat{d} can be used to quantify the transferability of each feature:

$$\hat{d} = \text{Sigmoid} (MLP(\mathbf{f})) \in [0, 1],$$

 $s_d = 2|\hat{d} - 0.5| \in [0, 1],$
(8)

To train the domain classifier, $\ell_t = \text{CE}(\hat{d}, d)$ is calculated, where d is the true domain label.

Discriminability Criterion Discriminability is the easiness of separating different categories by a supervised classifier trained over the feature. Therefore, we use 1-layer MLP to classify the feature and the prediction $\hat{\mathbf{y}}$ contains the discriminative information about the feature. The entropy and confidence of $\hat{\mathbf{y}}$ are two uncertainty measurements on the discriminability. Smaller entropy, or higher confidence, means more discriminative features. Considering the complementarity of the two measurements [28], we use them simultaneously to quantify the discriminability of each feature:

$$\hat{\mathbf{y}} = \text{Softmax} \left(\text{MLP}(\mathbf{f}) \right),
s_{ent} = 1 - H(\hat{\mathbf{y}}) \in [0, 1],
s_{conf} = \max \hat{\mathbf{y}} \in [0, 1],$$
(9)

where $H(\cdot)$ denotes the entropy, both $H(\hat{\mathbf{y}})$ and max $\hat{\mathbf{y}}$ are min-max normalize. To train the MLP, $\ell_d = \text{CE}(\hat{\mathbf{y}}, \mathbf{y})$ is calculated on the source domain, where \mathbf{y} is the ground-truth label of feature \mathbf{f} .

Diversity Perturbation To enhance the diversity of scores within a subspace, we introduce diversity perturbation to facilitate an implicit competition between classes:

$$s_{pert} = \text{Sigmoid}(\text{MLP}(\mathbf{f})) \in [0, 1],$$

 $\ell_{cv} = \text{CV}(s_{pert}),$ (10)

where $\mathrm{CV}(\cdot)$ denotes the calculation of the coefficient of variation. The diversity perturbation encourages different classes to score diversely within the same subspace, especially promoting better scores for advantageous classes, thereby enhancing the discriminability of the features.

The overall score $S(\mathbf{f})$ is formalized as follows:

$$S(\mathbf{f}) = \frac{s_d + s_{ent} + s_{conf}}{3} + \eta s_{pert},\tag{11}$$

where η controls the perturbation intensity and is set to 0.1 in all experiments. The training loss of the scorer S is calculated as follows:

$$\ell_S = \ell_t + \ell_d + \ell_{cv}. \tag{12}$$

Given the heterogeneity of temporal and frequency subspace, we use S_T and S_F to measure their respective features independently, rather than sharing the same scorer. Consequently, we have two training losses, ℓ_{S_T} and ℓ_{S_F} . The overall auxiliary loss is denoted as $\mathcal{L}_S = \ell_{S_T} + \ell_{S_F}$.

4.3 Temporal Coherence Learning

During the continuous-time process ρ_i , participants were required to adhere to a specific activity protocol to ensure the validity of the data collection [1]. Therefore, given the raw series \mathbf{r}_i , its segments share similar class-related semantics, e.g., consistently in a running or standing state.

Based on the intrinsic coherence of time series, we propose Temporal Coherence Learning. Given $\mathbf{X}_i = \{\mathcal{X}_{i,j}\}_{j=1}^K$, any $\mathcal{X}_{i,j}, \mathcal{X}_{i,k} \in \mathbf{X}_i$ that contain nearby segments exhibit temporal coherence, which can be reflected in logit-level and score-level. We achieve logit-level coherence by conditioning the logit distributions of $\mathcal{X}_{i,j}$ and $\mathcal{X}_{i,k}$ by minimizing the Kullback-Leibler divergence as follows:

$$\mathcal{L}_{\text{TCL-logit}} = \mathcal{D}_{KL}(g(\psi(\mathcal{X}_{i,j})), g(\psi(\mathcal{X}_{i,k}))). \tag{13}$$

To further complement the regularization, we impose score-level coherence learning and explicitly constrain the feature scores of QFusion assigned to nearby segments:

$$\mathcal{L}_{\text{TCL-score}} = |\mathcal{S}_T(\widetilde{\mathbf{f}}_{Tj}) - \mathcal{S}_T(\widetilde{\mathbf{f}}_{Tk})| + |\mathcal{S}_F(\widetilde{\mathbf{f}}_{Fj}) - \mathcal{S}_F(\widetilde{\mathbf{f}}_{Fk})|. \tag{14}$$

Overall, temporal coherence learning guides the feature extractors, scorers and classifier to exhibit consistent and stable behavior, especially in the unsupervised target domain.

$$\mathcal{L}_{TCL} = \mathcal{L}_{TCL\text{-score}} + \mathcal{L}_{TCL\text{-logit}}.$$
 (15)

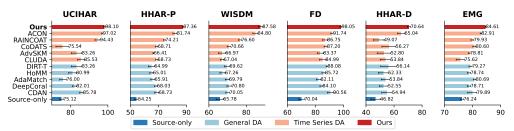


Figure 4: Average Accuracy (%) across multiple datasets.

Table 1: Accuracy (%) on EMG for unsupervised domain adaptation.

Method	$0\rightarrow 1$	$0\rightarrow 2$	$0\rightarrow 3$	$1\rightarrow 2$	$1\rightarrow 3$	$2\rightarrow0$	$2\rightarrow 1$	$2\rightarrow3$	3→1	$3\rightarrow 2$	Average
Source-only	84.94	74.38	73.38	74.38	73.88	73.88	82.16	73.69	79.38	72.31	76.24
CDAN	87.84	76.63	77.63	77.44	81.63	73.94	87.10	75.13	83.98	77.63	79.89
DeepCoral	87.50	76.44	76.19	77.63	77.63	74.69	84.72	75.50	81.93	74.88	78.71
AdaMatch	89.03	75.94	79.38	76.94	80.00	76.31	89.94	81.31	84.26	73.81	80.69
HoMM	87.61	76.50	75.75	77.00	77.94	73.94	84.89	75.88	82.61	75.31	78.74
DIRT-T	89.77	75.25	78.69	75.88	80.06	70.63	84.77	77.69	83.30	76.69	79.27
CLUDA	78.18	75.00	76.75	74.75	74.19	75.94	79.43	70.00	76.88	75.13	75.62
AdvSKM	86.42	75.94	76.25	77.25	78.00	74.88	85.06	77.25	81.76	75.31	78.81
CoDATS	88.24	77.44	78.31	78.44	81.81	73.75	86.65	78.88	84.43	78.06	80.60
RAINCOAT	89.60	77.00	78.56	78.25	83.13	73.06	85.68	76.88	83.13	74.00	79.93
ACON	<u>92.50</u>	<u>79.06</u>	<u>81.75</u>	80.13	<u>83.13</u>	77.94	<u>90.91</u>	<u>79.75</u>	<u>85.11</u>	78.88	82.91
Ours	93.92	82.31	83.38	81.19	86.50	<u>77.12</u>	92.78	82.88	87.61	<u>78.38</u>	84.61

4.4 Overall Training Objective

During training, our method trains the temporal feature extractor ψ_T , frequency feature extractor ψ_F and classifier g by minimizing the supervised classification loss \mathcal{L}_C on the labeled source domain. To learn domain-invariant features, our method adopts the adversarial training facilitated with Gradient Reversal Layer between ψ_T , ψ_F and the domain discriminator g_D by minimizing the adversarial loss \mathcal{L}_D . Simultaneously, we train the feature scorers \mathcal{E}_T and \mathcal{E}_F to evaluate feature quality through the auxiliary loss \mathcal{L}_S . Furthermore, the coherence loss \mathcal{L}_{TCL} is minimized to preserve temporal coherence of ψ_T , ψ_F , \mathcal{E}_T , \mathcal{E}_F and g. The overall training objectives is formulated as:

$$\mathcal{L} = \mathcal{L}_C + \mathcal{L}_D + \mathcal{L}_S + \beta \mathcal{L}_{TCL}. \tag{16}$$

5 Experiments

5.1 Setup

Datasets We conduct extensive experiments using six benchmark datasets: (1) UCIHAR [1], HHAR-P [32, 27], WISDM[16] and HHAR-D [32, 11] for sensor-based human activity recognition. (2) FD [27] for machine fault diagnosis. (3) EMG [20, 23] for gesture recognition. For each dataset, following the existing DA methods on time series [4, 14, 18], we sample 10 source-target domain pairs for evaluation. Further details, processing and domain splits are included in Appendix A.

Baselines (1) We report the performance of the model without UDA (Source-only) in the temporal domain to show the overall contribution of UDA methods. (2) We implement the following state-of-the-art baselines for TSDA: CODATS [38], AdvSKM [19], CLUDA [25], RAINCOAT [14] and ACON [18]. (3) We additionally implement general UDA methods: CDAN [22], DeepCoral [33], AdaMatch [4], HoMM [6] and DIRT-T [31]. For each baseline, we ensure fair implementations by maintaining identical backbones, frameworks, and hyperparameter settings from prior works.

Implementation We adopt the implementation of AdaTime [27] as the benchmarking suites for domain adaptation on time series data. We use 1D-CNN as temporal feature extractor base and complex-valued linear as frequency feature extractor base. We report accuracy and Macro-F1 Score

calculated using target test set as evaluation metrics. Each experiment is repeated 5 times with different random seeds. Detailed model architectures and optimal hyperparameters are included in Appendix B. Computational cost is included in Appendix C.1.

5.2 Results

Figure 4 shows the average accuracy and error bars of each method for 10 source-target domain pairs on the datasets. Overall, EDEN consistently improves the performance of the best baseline by a large margin. It's worth noting that EDEN also reduces the error bars, demonstrating the reliability. EDEN has won 6 out of 6 tests and makes an average improvement of 4.80% for the accuracy metric. Specifically, EDEN improves prediction accuracy by 6.87% on the HHAR-P dataset, 6.88% on the FD dataset, and 8.61% on the HHAR-D dataset over the advanced baseline on each dataset respectively. Due to the limited pages, we report the results for selected source-target domain pairs with metric accuracy on the EMG dataset. More accuracy results are given in Table 6-10. Average macro-f1 score is provided in Figure 8 and full macro-f1 score results are given in Table 12-17.

5.3 Analysis

Module Ablation We conduct a comprehensive ablation study in Table 2. We investigate the effectiveness of three modules of EDEN and analyze the interaction between them. EDEN's three modules show performance gains when added individually (Rows 2-4) and demonstrate mutual promotion in pairwise combinations (Rows 5-7). Full integration (Row 8) achieves optimal performance.

Table 2: Ablation of EDEN, MSCA and QFusion.

Module Ablation											
MSCA	QFusion	TCL	EDEN	UCIHAR	HHAR-P	WISDM	Average				
-	-	-	-	96.19	80.64	82.68	86.50				
✓	-	-	-	97.16	83.47	83.58	88.07				
-	✓	-	-	97.48	85.92	83.79	89.06				
-	-	✓	-	97.21	82.14	84.04	87.80				
✓	-	✓	-	97.65	85.75	85.53	89.64				
✓	✓	-	-	97.77	86.12	85.43	89.77				
-	✓	✓	-	97.88	85.97	85.74	89.86				
-	-	-	\checkmark	98.10	87.36	87.58	91.01				
			MSC	A Ablation							
ψ_T	ψ_F	\mathcal{L}_D	MSCA	UCIHAR	HHAR-P	WISDM	Average				
✓	-	-	-	75.12	54.25	65.78	65.05				
✓	-	✓	-	95.13	76.72	76.48	82.78				
✓	-	✓	✓	96.17	77.55	81.10	84.94				
-	✓	-	-	66.88	51.08	56.47	58.14				
-	✓	✓	-	94.50	75.93	73.03	81.15				
-	✓	✓	✓	96.37	80.97	76.05	84.46				
✓	✓	✓	\checkmark	97.16	83.47	83.58	88.07				
			QFusio	on Ablation							
s_d	s_{ent}	s_{conf}	s_{pert}	UCIHAR	HHAR-P	WISDM	Average				
-	-	-	-	96.19	80.64	82.68	86.50				
✓	-	-	-	97.00	83.05	82.77	87.61				
-	✓	✓	-	97.42	84.32	82.94	88.23				
✓	✓	✓	✓	97.48	85.92	83.79	89.06				
	ψ _T	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MSCA QFusion TCL EDEN - - - - -	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				

MSCA Ablation We verify the effectiveness of MSCA in the different subspaces. MSCA yields an average improvement of 2.61% in the temporal subspace (as shown in Rows 9-11 of Table 2), and an average improvement of 4.08% in the frequency subspace (Rows 12-14). By integrating the temporal subspace and the frequency subspace (Row 15), MSCA achieves the best performance, outperforming the single-subspace MSCA variants by 3.68%.

QFusion Ablation We investigate the effectiveness of three components in QFusion score. Rows 17-18 of Table 2 apply transferability and discriminability criterion respectively, both showing performance gains. In Row 19, by combining transferability, discriminability, and diversity, QFusion achieves the best performance, demonstrating synergistic effect.

Sensitivity Analysis The sensitivity analysis on the coarser scale M, the trade-off β of \mathcal{L}_{TCL} and the parameter λ_0 are included in Appendix C.2. As shown in Figure 5-7, EDEN exhibits stable performance across reasonable variations and consistently outperforms baselines on multiple datasets.

6 Conclusion

In this paper, we propose EDEN, a novel framework for TSDA based on multiple explicit domains, first breaking through the limitations of the sensor-limited single view in the original datasets, taking advantage of the comprehensive reflection of implicit temporal dynamics. Specifically, Multi-Scale Curriculum Adaptation is proposed to align the source and the target domain; Quality-Aware Feature Fusion is proposed to facilitate adaptive integration of temporal and frequency features; Temporal Coherence Learning is proposed to encourage the model to exhibit consistent and stable behavior. Notably, EDEN yields significant performance improvements on a wide range of time series datasets.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (62306085, 62206074, 62476071, U23B2055, U24A20328), Shenzhen College Stability Support Plan (GXWD20231130151329002, GXWD20220811173233001), CCF-ALIMAMA TECH Kangaroo Fund (CCF-ALIMAMA OF 2025001), Guangdong Basic and Applied Basic Research Foundation (2025A1515012932, 2025A1515011732), Shenzhen Science and Technology Program (KQTD20240729102154066, ZDSYS20230626091203008).

References

- [1] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, Jorge Luis Reyes-Ortiz, et al. A public domain dataset for human activity recognition using smartphones. In *Esann*, 2013.
- [2] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman Vaughan. A theory of learning from different domains. *Machine learning*, 2010.
- [3] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In *annual ICML*, 2009.
- [4] David Berthelot, Rebecca Roelofs, Kihyuk Sohn, Nicholas Carlini, and Alexey Kurakin. Adamatch: A unified approach to semi-supervised learning and domain adaptation. In *ICLR*, 2021.
- [5] Ruichu Cai, Jiawei Chen, Zijian Li, Wei Chen, Keli Zhang, Junjian Ye, Zhuozhang Li, Xiaoyan Yang, and Zhenjie Zhang. Time series domain adaptation via sparse associative structure alignment. In *AAAI*, 2021.
- [6] Chao Chen, Zhihang Fu, Zhihong Chen, Sheng Jin, Zhaowei Cheng, Xinyu Jin, and Xian-Sheng Hua. Homm: Higher-order moment matching for unsupervised domain adaptation. In AAAI, 2020.
- [7] Chaoqi Chen, Weiping Xie, Wenbing Huang, Yu Rong, Xinghao Ding, Yue Huang, Tingyang Xu, and Junzhou Huang. Progressive feature alignment for unsupervised domain adaptation. In *CVPR*, 2019.
- [8] Xinyang Chen, Sinan Wang, Mingsheng Long, and Jianmin Wang. Transferability vs. discriminability: Batch spectral penalization for adversarial domain adaptation. In *ICML*, 2019.
- [9] Jeffrey L Elman. Learning and development in neural networks: The importance of starting small. *Cognition*, 1993.
- [10] Ray J Frank, Neil Davey, and Stephen P Hunt. Time series prediction and neural networks. *Journal of intelligent and robotic systems*, 2001.
- [11] Jean-Christophe Gagnon-Audet, Kartik Ahuja, Mohammad Javad Darvishi Bayazi, Pooneh Mousavi, Guillaume Dumas, and Irina Rish. Woods: Benchmarks for out-of-distribution generalization in time series. *TMLR*, 2023.
- [12] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks. *JMLR*, 2016.
- [13] Xiaoqing Guo, Chen Yang, Baopu Li, and Yixuan Yuan. Metacorrection: Domain-aware meta loss correction for unsupervised domain adaptation in semantic segmentation. In CVPR, 2021.
- [14] Huan He, Owen Queen, Teddy Koker, Consuelo Cuevas, Theodoros Tsiligkaridis, and Marinka Zitnik. Domain adaptation for time series under feature and label shifts. In *ICML*, 2023.
- [15] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain Muller. Deep learning for time series classification: a review. *Data mining and knowledge discovery*, 2019.

- [16] Jennifer R Kwapisz, Gary M Weiss, and Samuel A Moore. Activity recognition using cell phone accelerometers. ACM SIGKDD, 2011.
- [17] Hong Liu, Jianmin Wang, and Mingsheng Long. Cycle self-training for domain adaptation. In NeurIPS, 2021.
- [18] Mingyang Liu, Xinyang Chen, Yang Shu, Xiucheng Li, Weili Guan, and Liqiang Nie. Boosting transferability and discriminability for time series domain adaptation. In *NeurIPS*, 2024.
- [19] Qiao Liu and Hui Xue. Adversarial spectral kernel matching for unsupervised time series domain adaptation. In *IJCAI*, 2021.
- [20] Sergey Lobov, Nadia Krilova, Innokentiy Kastalskiy, Victor Kazantsev, and Valeri A. Makarov. Latent factors limiting the performance of semg-interfaces. Sensors, 2018.
- [21] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features with deep adaptation networks. In *ICML*, 2015.
- [22] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial domain adaptation. In NeurIPS, 2018.
- [23] Wang Lu, Jindong Wang, Xinwei Sun, Yiqiang Chen, and Xing Xie. Out-of-distribution representation learning for time series classification. In *ICLR*, 2022.
- [24] Wang Lu, Jindong Wang, Xinwei Sun, Yiqiang Chen, and Xing Xie. Out-of-distribution representation learning for time series classification. In *ICLR*, 2023.
- [25] Yilmazcan Ozyurt, Stefan Feuerriegel, and Ce Zhang. Contrastive learning for unsupervised domain adaptation of time series. In *ICLR*, 2022.
- [26] Sanjay Purushotham, Wilka Carvalho, Tanachat Nilanon, and Yan Liu. Variational recurrent adversarial deep domain adaptation. In *ICLR*, 2017.
- [27] Mohamed Ragab, Emadeldeen Eldele, Wee Ling Tan, Chuan-Sheng Foo, Zhenghua Chen, Min Wu, Chee-Keong Kwoh, and Xiaoli Li. Adatime: A benchmarking suite for domain adaptation on time series data. ACM TKDD, 2023.
- [28] Kuniaki Saito, Donghyun Kim, Stan Sclaroff, and Kate Saenko. Universal domain adaptation through self supervision. In *NeurIPS*, 2020.
- [29] Terence D Sanger. Neural network learning control of robot manipulators using gradually increasing task difficulty. *IEEE transactions on Robotics and Automation*, 1994.
- [30] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo. Convolutional lstm network: A machine learning approach for precipitation nowcasting. In *NeurIPS*, 2015.
- [31] Rui Shu, Hung Bui, Hirokazu Narui, and Stefano Ermon. A dirt-t approach to unsupervised domain adaptation. In *ICLR*, 2018.
- [32] Allan Stisen, Henrik Blunck, Sourav Bhattacharya, Thor Siiger Prentow, Mikkel Baun Kjærgaard, Anind Dey, Tobias Sonne, and Mads Møller Jensen. Smart devices are different: Assessing and mitigatingmobile sensing heterogeneities for activity recognition. In *ACM SenSys*, 2015.
- [33] Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In ECCV, 2016.
- [34] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain confusion: Maximizing for domain invariance. *arXiv preprint arXiv:1412.3474*, 2014.
- [35] Shiyu Wang, Jiawei Li, Xiaoming Shi, Zhou Ye, Baichuan Mo, Wenze Lin, Shengtong Ju, Zhixuan Chu, and Ming Jin. Timemixer++: A general time series pattern machine for universal predictive analysis. In *ICLR*, 2025.

- [36] Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang, and JUN ZHOU. Timemixer: Decomposable multiscale mixing for time series forecasting. In *ICLR*, 2024.
- [37] Yunshi Wen, Tengfei Ma, Tsui-Wei Weng, Lam M Nguyen, and Anak Agung Julius. Abstracted shapes as tokens-a generalizable and interpretable model for time-series classification. In *NeurIPS*, 2024.
- [38] Garrett Wilson, Janardhan Rao Doppa, and Diane J Cook. Multi-source deep domain adaptation with weak supervision for time-series sensor data. In *KDD*, 2020.
- [39] Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency principle: Fourier analysis sheds light on deep neural networks. *arXiv preprint arXiv:1901.06523*, 2019.
- [40] Yuchen Zhang, Mingsheng Long, Kaiyuan Chen, Lanxiang Xing, Ronghua Jin, Michael I Jordan, and Jianmin Wang. Skilful nowcasting of extreme precipitation with nowcastnet. *Nature*, 2023.
- [41] Yue Zhang, Shun Miao, Tommaso Mansi, and Rui Liao. Task driven generative modeling for unsupervised domain adaptation: Application to x-ray image segmentation. In *MICCAI*, 2018.
- [42] Yang Zou, Zhiding Yu, B.V.K. Vijaya Kumar, and Jinsong Wang. Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In *ECCV*, 2018.

A Datasets

A.1 Detailed Statistics

We conduct extensive experiments using a wide range of time series datasets. The detailed statistics for each dataset is included in Table 3. For UCIHAR, HHAR-P, WISDM and FD datasets, we use the processed versions released by AdaTime [27]. For HHAR-D datasets, we use the processed versions released by WOODS [11]. For EMG dataset, we use the processed version released by DIVERSIFY [24].

Dataset	Subjects	Channels	Length	Class	Total
UCIHAR	30	9	128	6	3290
HHAR-P	9	3	128	6	17934
WISDM	30	3	128	6	2070
HHAR-D	5	6	500	6	13674
EMG	4	8	200	6	6883
FD	4	1	5120	3	10916

Table 3: Summary of datasets.

A.2 Dataset Processing

Each domain of datasets is randomly divided into 80% training, and 20% testing. We follow Adatime [27], apply Z-score normalization to both the training and testing splits of the data, using the following equation:

$$x_i^{normalize} = \frac{x_i - x^{mean}}{x^{std}}, \quad i = 1, 2, \dots, N$$
(17)

where $N = N_s$ for the source domain data and $N = N_t$ for the target domain data. Note that both the training and testing splits are normalized based on the training set statistics only.

B Experimental Details

B.1 Model Architecture

Different from existing methods, our method simultaneously captures both coarse-scale and fine-scale feature representations by tailored feature extractors. Coarse-scale and fine-scale data typically exhibit varying lengths and contain distinct patterns, making it difficult to extract features simultaneously using a single CNN or MLP. Recent foundational models tailored for multi-scale in time series analysis generally employ separate feed-forward layers per scale followed by feature aggregation [36, 35]. Aligned with the TSDA benchmark's architectures [27, 18] that are based on 1D-CNN in temporal subspace and MLP in frequency subspace, we follow the structure and additionally incorporate a smaller CNN and MLP. In this way, we use a larger feature extractor to capture fine-scale features and a smaller feature extractor to obtain coarse-scale features. This configuration enables dedicated extraction of both fine-scale and coarse-scale characteristics.

Hyperparameter	UCIHAR	HHAR-P	WISDM	HHAR-D	EMG	FD
Epoch	50	50	50	50	50	50
Batch Size	32	32	32	32	32	32
Coarse Scale	2	4	4	2	4	4
Learning Rate	0.01	0.001	0.003	0.001	0.001	0.01

Table 4: Key hyperparameters for EDEN.

B.2 Multi-scale explicit domains

As mentioned in Section 4.1, limiting the input to a single scale makes determining the optimal scale for each dataset time-consuming. Therefore, we model both fine-scale and coarse-scale features simultaneously, leveraging the advantages of each. The fine-scale data refers to the raw data. Coarse-scale data is obtained by downsampling fine-scale data at scale M. The coarse scales M chosen for different datasets are listed in Table 4. Sensitivity analysis of scale M is presented in Figure 5.

The proposed MSCA consistently achieves performance improvements across viable scales M in $\{2, 4, 6, 8\}$, demonstrating the robustness of scale selection.

B.3 Multi-segment explicit domains

We introduce our segment strategy in two phases: training and testing. For the training phase, given raw data $\mathbf{r} \in \mathbb{R}^{C \times T}$, we randomly crop two short segments from the original dataset using a window size of T/2, while retaining the original segment. These segments form multi-segment explicit domains and are constrained for coherence through Temporal Coherence Learning. For the testing phase, we divide the original data into two halves using the same window size of T/2 to ensure consistency in each test. We predict for both segments separately, and the ensemble of these predictions is recorded as the final prediction result.

C Further Analysis

C.1 Computational cost

Table 5: Training time and model performance on the FD dataset.

FD	CDAN	Raincoat	ACON	EDEN
Accuracy	90.56	86.75	91.74	98.05
Training Time	1.08h	2.55h	1.25h	1.38h

Raincoat, ACON, and EDEN vs. CDAN: Due to additional cues like time-frequency transformation, methods tailored for time series achieve performance improvements while increasing training time.

EDEN vs. Raincoat: EDEN not only significantly outperforms Raincoat but also reduces the training time. Raincoat has a longer training time due to its reconstruction-correction mechanism.

EDEN vs. ACON: Due to the introduction of multi-scale and multi-segment explicit domains, the training time of EDEN is slightly longer than ACON. However, considering the significant performance gains of EDEN (6.88%), the total training time is entirely acceptable.

C.2 Sensitivity Analysis

Sensitivity Analysis of Coarse Scale M As shown in Figure 5, our method exhibits stable performance on the multiple datasets across reasonable variations, with optimal performance at scales of 2 or 4. The optimal scale of different datasets is included in Table 4.

Sensitivity Analysis of TCL trade-off β We investigate EDEN's sensitivity to the hyperparameter β in Equation (16). As shown in Figure 6, EDEN remains stable within $0.2 \sim 1.4$, with the optimal average performance at the value of 1. Therefore, β is fixed at 1 in all our experiments.

Sensitivity Analysis of λ_0 The hyperparameter λ_0 determines the dominant strength of coarse-scale at the initial training. Coarse-scale features dominate early alignment, with the weight decreasing from $1+\lambda_0\to\lambda_0$ while fine-scale features progressively intensify, with the weight increasing from $\lambda_0\to1+\lambda_0$. In all our experiments, λ_0 is fixed at 0.5. As shown in Figure 7, EDEN exhibits smooth variations, demonstrating that our Multi-Scale Curriculum Adaptation achieves collaborative training of multi-scale explicit domains, consistently outperforming single-scale.

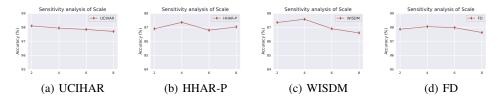


Figure 5: Sensitivity Analysis of Coarse Scale M.

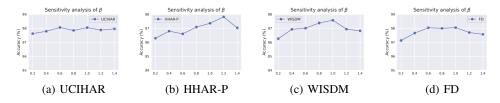


Figure 6: Sensitivity Analysis of TCL trade-off β .

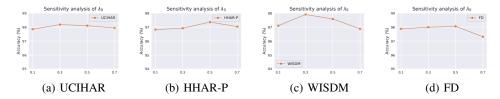


Figure 7: Sensitivity Analysis of λ_0 .

D Broader Impacts

We investigate the unsupervised domain adaptation method for time series classification by exploring multiple explicit domains. This paper aims to advance the field of time series analysis and the real-world deployment of time series applications without any negative social impact.

E Full Results

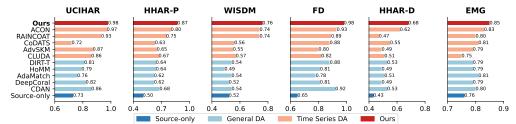


Figure 8: Average Macro-F1 Score across multiple datasets.

Table 6: Accuracy (%) on UCIHAR for unsupervised domain adaptation.

Method	$2\rightarrow11$	$6\rightarrow23$	7→13	9→18	$12\rightarrow16$	13→19	$18\rightarrow21$	20→6	$23\rightarrow 13$	$24 \rightarrow 12$	Average
Source-only	76.56	67.36	83.68	24.65	61.11	88.89	100.0	94.10	71.18	83.68	75.12
CDAN	85.42	87.50	92.01	58.86	66.67	96.52	100.0	95.13	82.64	93.40	85.78
DeepCoral	90.63	84.38	87.50	46.88	65.28	95.49	100.0	95.49	69.79	87.50	82.01
AdaMatch	75.00	80.20	85.76	56.59	49.65	94.79	100.0	84.37	68.75	70.83	76.07
HoMM	74.06	82.71	81.88	73.96	70.21	96.67	98.75	73.33	77.71	80.63	80.99
DIRT-T	80.21	74.31	82.99	59.03	67.01	99.30	98.61	92.36	74.72	94.27	83.26
CLUDA	81.77	92.01	99.31	67.71	65.28	94.44	98.96	97.22	72.92	99.31	85.53
AdvSKM	98.96	88.54	92.71	74.65	69.44	93.05	100.0	85.41	79.51	96.87	83.26
CoDATS	68.23	74.31	77.43	63.89	66.32	94.09	99.65	70.49	56.25	82.81	75.54
RAINCOAT	100.0	95.83	100.0	75.69	86.52	100.0	100.0	93.41	86.52	93.75	94.43
ACON	<u>100.0</u>	<u>96.25</u>	99.16	91.66	85.63	100.0	100.0	<u>97.50</u>	<u>100.0</u>	100.0	<u>97.02</u>
Ours	100.0	99.17	98.96	93.12	90.62	100.0	100.0	99.17	100.0	100.0	98.10

Table 7: Accuracy (%) on HHAR-P for unsupervised domain adaptation.

Method	$0\rightarrow 2$	$1\rightarrow 6$	$2\rightarrow$ 4	$4\rightarrow0$	4→5	5→1	5→2	$7\rightarrow 2$	7→5	8→4	Average
Source-only	64.51	70.63	45.42	32.81	78.32	90.63	25.67	32.37	39.26	62.92	54.25
CDAN	76.19	92.57	52.57	29.09	97.27	96.16	35.04	37.05	75.26	96.11	68.73
DeepCoral	84.23	90.14	47.08	28.13	90.49	89.91	38.39	34.45	55.73	76.88	68.03
AdaMatch	84.78	92.31	54.50	36.45	78.45	94.20	41.96	37.65	63.80	64.69	65.91
HoMM	75.67	90.79	52.83	36.61	87.66	90.78	37.23	37.32	61.29	79.88	65.01
DIRT-T	77.83	88.54	50.69	32.22	93.16	91.86	38.62	38.10	72.46	65.83	64.99
CLUDA	79.84	93.40	45.90	38.84	94.08	95.57	33.93	37.80	77.57	96.52	69.35
AdvSKM	78.94	87.91	52.57	33.49	92.64	92.71	36.53	39.95	65.49	83.75	66.41
CoDATS	79.61	90.90	60.07	21.80	97.66	97.66	41.44	38.54	58.15	<u>97.01</u>	68.71
RAINCOAT	<u>87.72</u>	93.33	63.75	46.46	<u>98.05</u>	98.25	42.63	43.32	84.17	93.75	74.21
ACON	86.65	<u>93.45</u>	<u>79.01</u>	<u>53.53</u>	97.15	<u>98.32</u>	65.80	<u>65.71</u>	<u>88.59</u>	89.17	<u>81.74</u>
Ours	89.64	95.17	93.75	76.61	98.40	98.59	59.69	67.95	95.35	98.50	87.36

Table 8: Accuracy (%) on WISDM for unsupervised domain adaptation.

Method	$2\rightarrow$ 32	$4\rightarrow15$	$7\rightarrow30$	$12 \rightarrow 7$	$12 \rightarrow 19$	$18 \rightarrow 20$	$20\rightarrow30$	$21 \rightarrow 31$	$25\rightarrow29$	$26\rightarrow 2$	Average
Source-only	81.16	79.86	89.32	71.53	54.29	83.74	67.96	21.29	26.11	82.52	65.78
CDAN	89.37	65.97	84.79	70.48	51.01	88.62	77.02	46.58	44.33	83.33	70.05
DeepCoral	87.92	62.50	91.26	79.86	51.77	64.23	81.88	54.62	53.89	77.44	70.80
AdaMatch	74.39	78.47	89.64	73.26	55.30	75.20	74.76	31.32	57.78	87.20	69.79
HoMM	77.10	74.58	78.64	68.13	50.61	71.22	72.82	56.39	57.00	66.10	67.26
DIRT-T	77.78	70.83	90.61	70.20	51.51	85.36	71.84	54.41	60.04	66.46	69.62
CLUDA	73.91	67.36	86.40	65.97	49.24	83.74	72.49	49.97	35.00	86.47	67.04
AdvSKM	70.83	<u>95.85</u>	93.85	77.08	47.47	81.30	21.28	44.45	<u>74.79</u>	74.95	66.97
CoDATS	77.29	70.83	83.20	70.17	47.47	76.01	82.85	52.61	53.89	83.29	70.66
RAINCOAT	79.71	97.91	91.28	89.80	85.00	92.23	91.66	59.09	82.97	83.50	76.60
ACON	<u>89.86</u>	86.25	98.06	98.13	77.73	83.66	<u>91.26</u>	<u>63.61</u>	60.00	99.51	<u>84.80</u>
Ours	92.50	90.62	97.29	95.42	82.97	88.44	90.42	76.56	65.00	96.56	87.58

Table 9: Accuracy (%) on FD for unsupervised domain adaptation.

Method	$0\rightarrow 1$	0→2	0→3	$1\rightarrow0$	$1\rightarrow 2$	$2\rightarrow0$	$2\rightarrow 1$	$2\rightarrow3$	3→0	3→2	Average
Source-only	62.21	53.71	62.41	63.91	73.95	64.08	93.17	95.54	57.08	74.31	70.04
CDAN	91.29	71.83	90.13	96.50	90.09	83.10	99.38	99.98	95.40	87.95	90.56
DeepCoral	75.54	71.79	76.03	89.13	83.55	76.34	98.84	98.55	87.50	83.71	84.10
AdaMatch	67.81	55.38	62.88	92.21	98.57	79.08	89.96	90.40	87.23	97.57	82.11
HoMM	81.54	71.63	78.17	89.89	84.78	76.03	98.71	99.55	90.94	85.96	85.72
DIRT-T	75.94	70.85	76.36	<u>98.10</u>	90.27	81.92	<u>100.0</u>	99.98	97.06	90.29	88.08
CLUDA	90.47	82.63	88.68	89.06	92.23	61.92	93.91	90.80	82.01	78.17	84.99
AdvSKM	74.71	66.05	73.30	87.86	86.29	76.85	98.66	99.38	84.89	85.74	83.37
CoDATS	81.79	73.26	83.15	89.22	88.68	81.43	99.89	100.0	85.47	89.00	87.20
RAINCOAT	85.18	79.40	89.04	78.84	90.11	81.43	95.18	96.81	77.39	94.08	86.75
ACON	86.52	69.00	86.96	97.92	<u>99.80</u>	84.29	98.62	98.93	<u>97.72</u>	<u>97.66</u>	<u>91.74</u>
Ours	98.48	97.39	98.71	98.37	100.0	89.22	100.0	100.0	98.37	100.0	98.05

Table 10: Accuracy (%) on HHAR-D for unsupervised domain adaptation.

Method	$0\rightarrow 1$	0→2	0→3	0→4	$1\rightarrow0$	$1\rightarrow 3$	1→4	$2\rightarrow 1$	3→4	$4\rightarrow 1$	Average
Source-only	65.48	33.59	31.71	39.79	34.69	44.83	49.54	38.17	86.17	44.23	46.82
CDAN	69.86	48.28	38.22	48.42	48.75	60.48	51.33	47.84	87.33	48.89	54.94
DeepCoral	68.94	42.88	40.67	47.96	35.63	55.31	56.21	44.71	87.25	45.96	52.55
AdaMatch	71.78	39.60	39.74	47.50	52.50	55.48	58.33	46.49	85.83	41.15	53.84
HoMM	69.66	40.51	39.16	50.42	35.94	55.02	57.13	42.36	86.79	46.35	52.33
DIRT-T	68.37	42.14	47.21	52.92	41.25	60.14	55.63	46.73	92.25	<u>54.81</u>	56.14
CLUDA	71.78	39.60	39.74	47.50	52.50	55.48	58.33	46.49	85.83	41.15	53.84
AdvSKM	67.93	40.71	40.19	47.33	37.19	55.65	59.54	42.69	87.46	49.33	52.80
CoDATS	72.50	43.35	50.79	45.50	58.44	62.24	54.54	40.14	89.63	45.53	56.27
RAINCOAT	74.47	36.52	48.82	35.29	51.25	41.49	41.50	34.28	88.58	38.46	49.07
ACON	77.50	61.36	54.69	65.46	<u>69.38</u>	71.30	<u>62.13</u>	<u>50.10</u>	93.63	44.86	<u>65.04</u>
Ours	<u>75.67</u>	<u>54.44</u>	<u>51.11</u>	<u>61.04</u>	79.38	89.59	76.38	58.75	94.88	65.19	70.64

Table 11: Accuracy (%) on EMG for unsupervised domain adaptation.

Method	$0\rightarrow 1$	0→2	0→3	$1\rightarrow 2$	$1\rightarrow 3$	$2\rightarrow0$	$2\rightarrow 1$	$2\rightarrow3$	3→1	3→2	Average
Source-only	84.94	74.38	73.38	74.38	73.88	73.88	82.16	73.69	79.38	72.31	76.24
CDAN	87.84	76.63	77.63	77.44	81.63	73.94	87.10	75.13	83.98	77.63	79.89
DeepCoral	87.50	76.44	76.19	77.63	77.63	74.69	84.72	75.50	81.93	74.88	78.71
AdaMatch	89.03	75.94	79.38	76.94	80.00	76.31	89.94	81.31	84.26	73.81	80.69
HoMM	87.61	76.50	75.75	77.00	77.94	73.94	84.89	75.88	82.61	75.31	78.74
DIRT-T	89.77	75.25	78.69	75.88	80.06	70.63	84.77	77.69	83.30	76.69	79.27
CLUDA	78.18	75.00	76.75	74.75	74.19	75.94	79.43	70.00	76.88	75.13	75.62
AdvSKM	86.42	75.94	76.25	77.25	78.00	74.88	85.06	77.25	81.76	75.31	78.81
CoDATS	88.24	77.44	78.31	78.44	81.81	73.75	86.65	78.88	84.43	78.06	80.60
RAINCOAT	89.60	77.00	78.56	78.25	83.13	73.06	85.68	76.88	83.13	74.00	79.93
ACON	<u>92.50</u>	<u>79.06</u>	<u>81.75</u>	80.13	<u>83.13</u>	77.94	<u>90.91</u>	<u>79.75</u>	<u>85.11</u>	78.88	82.91
Ours	93.92	82.31	83.38	81.19	86.50	77.12	92.78	82.88	87.61	78.38	84.61

Table 12: Macro-F1 Score on UCIHAR for unsupervised domain adaptation.

Method	$2\rightarrow11$	6→23	7→13	9→18	12→16	13→19	18→21	20→6	23→13	$24 \rightarrow 12$	Average
Source-only	0.69	0.63	0.84	0.17	0.58	0.91	1.00	0.94	0.71	0.84	0.73
CDAN	0.85	0.88	0.91	0.61	0.64	0.97	1.00	0.95	0.82	0.92	0.86
DeepCoral	0.91	0.81	0.87	0.44	0.65	0.95	1.00	0.95	0.70	0.88	0.82
AdaMatch	0.73	0.81	0.86	0.55	0.48	0.94	1.00	0.84	0.67	0.70	0.76
HoMM	0.73	0.78	0.81	0.69	0.69	0.96	0.99	0.71	0.75	0.78	0.79
DIRT-T	0.81	0.68	0.82	0.58	0.62	0.99	0.98	0.92	0.74	0.93	0.81
CLUDA	0.81	0.92	0.99	0.67	0.64	0.94	0.99	0.98	0.71	0.99	0.86
AdvSKM	0.99	0.87	0.92	0.73	0.68	0.93	1.00	0.84	0.77	0.96	0.87
CoDATS	0.66	0.71	0.78	0.60	0.64	0.93	0.99	0.65	0.54	0.81	0.72
RAINCOAT	1.00	0.96	1.00	0.76	0.86	1.00	1.00	0.94	0.86	0.94	0.93
ACON	<u>1.00</u>	0.97	0.99	0.91	<u>0.86</u>	<u>1.00</u>	<u>1.00</u>	0.98	<u>1.00</u>	<u>1.00</u>	0.97
Ours	1.00	0.99	0.99	0.94	0.92	1.00	1.00	0.99	1.00	1.00	0.98

Table 13: Macro-F1 Score on HHAR-P for unsupervised domain adaptation.

Method	$0\rightarrow 2$	1→6	$2\rightarrow$ 4	$4\rightarrow0$	$4\rightarrow$ 5	5→1	5→2	$7\rightarrow 2$	7→5	8→4	Average
Source-only	0.60	0.64	0.32	0.29	0.78	0.90	0.19	0.31	0.36	0.58	0.50
CDAN	0.70	0.93	0.52	0.27	0.98	0.98	0.35	0.32	0.76	0.97	0.68
DeepCoral	0.86	0.91	0.45	0.26	0.90	0.90	0.36	0.32	0.50	0.73	0.62
AdaMatch	0.83	0.93	0.46	0.32	0.76	0.94	0.40	0.37	0.60	0.61	0.62
HoMM	0.70	0.91	0.45	0.37	0.88	0.91	0.34	0.40	0.61	0.79	0.64
DIRT-T	0.76	0.86	0.51	0.30	0.93	0.90	0.36	0.34	0.73	0.64	0.64
CLUDA	0.82	0.94	0.44	0.40	0.94	0.96	0.37	0.36	0.65	0.84	0.67
AdvSKM	0.72	0.88	0.44	0.33	0.93	0.92	0.35	0.41	0.64	0.83	0.65
CoDATS	0.73	0.90	0.46	0.20	0.96	0.94	0.41	0.36	0.59	0.95	0.63
RAINCOAT	0.87	0.93	0.59	0.45	0.98	0.98	0.41	0.44	0.86	0.94	0.75
ACON	0.86	0.93	0.74	<u>0.52</u>	0.97	0.98	0.62	<u>0.65</u>	0.89	0.89	0.80
Ours	0.88	0.95	0.94	0.76	0.98	0.99	0.59	0.67	0.95	0.98	0.87

Table 14: Macro-F1 Score on WISDM for unsupervised domain adaptation.

Method	$2\rightarrow$ 32	4→15	7→30	12→7	12→19	18→20	20→30	21→31	25→29	$26\rightarrow 2$	Average
Source-only	0.68	0.52	0.77	0.53	0.36	0.81	0.56	0.10	0.15	0.69	0.52
CDAN	0.72	0.44	0.70	0.50	0.31	0.87	0.64	0.31	0.23	0.71	0.54
DeepCoral	0.71	0.42	0.85	0.67	0.35	0.63	0.67	0.27	0.25	0.64	0.52
AdaMatch	0.59	0.54	0.76	0.67	0.38	0.66	0.54	0.16	0.24	0.74	0.54
HoMM	0.63	0.42	0.62	0.55	0.39	0.63	0.60	0.30	0.26	0.54	0.49
DIRT-T	0.65	0.41	0.78	0.56	0.39	0.67	0.65	0.28	0.21	0.54	0.54
CLUDA	0.64	0.61	0.81	0.59	0.41	0.70	0.70	0.27	0.26	0.75	0.57
AdvSKM	0.61	0.55	0.84	0.53	0.35	0.71	0.61	0.28	0.28	0.55	0.55
CoDATS	0.66	0.41	0.75	0.62	0.37	0.76	0.72	0.30	0.30	0.70	0.56
RAINCOAT	0.68	0.98	0.86	0.72	0.78	0.92	0.87	0.43	0.44	0.75	0.74
ACON	0.81	0.65	0.99	1.00	0.63	0.76	0.87	0.36	0.28	1.00	0.74
Ours	0.88	0.76	0.96	0.91	0.68	0.85	0.87	0.42	0.31	0.94	0.76

Table 15: Macro-F1 Score on FD for unsupervised domain adaptation.

Method	$0\rightarrow 1$	$0\rightarrow 2$	0→3	$1\rightarrow0$	$1\rightarrow 2$	$2\rightarrow0$	$2\rightarrow 1$	$2\rightarrow3$	3→0	$3\rightarrow 2$	Average
Source-only	0.41	0.33	0.41	0.65	0.77	0.64	0.95	0.97	0.59	0.78	0.65
CDAN	0.91	0.76	0.90	0.95	0.92	0.86	1.00	1.00	0.94	0.91	0.92
DeepCoral	0.61	0.62	0.62	0.90	0.87	0.77	0.99	0.99	0.89	0.88	0.81
AdaMatch	0.50	0.45	0.46	0.91	0.98	0.80	0.93	0.93	0.87	0.97	0.78
HoMM	0.61	0.52	0.62	0.91	0.88	0.78	0.99	1.00	0.91	0.89	0.81
DIRT-T	0.80	0.62	0.70	0.97	0.93	0.84	<u>1.00</u>	1.00	0.96	0.93	0.88
CLUDA	0.84	0.80	0.79	0.88	0.93	0.50	0.95	0.90	0.84	0.80	0.82
AdvSKM	0.55	0.54	0.57	0.89	0.89	0.76	0.99	1.00	0.87	0.89	0.80
CoDATS	0.80	0.69	0.87	0.90	0.92	0.86	1.00	1.00	0.87	0.92	0.88
RAINCOAT	0.89	0.84	0.92	0.81	0.92	0.85	0.96	0.98	0.81	0.94	0.89
ACON	0.86	0.75	0.89	0.96	<u>1.00</u>	0.88	0.99	0.99	<u>0.96</u>	0.98	0.93
Ours	0.98	0.98	0.99	0.97	1.00	0.92	1.00	1.00	0.97	1.00	0.98

Table 16: Macro-F1 Score on HHAR-D for unsupervised domain adaptation.

Method	$0\rightarrow 1$	$0\rightarrow 2$	$0\rightarrow 3$	0→4	$1\rightarrow0$	$1\rightarrow 3$	$1\rightarrow 4$	$2\rightarrow 1$	3→4	$4\rightarrow 1$	Average
Source-only	0.61	0.27	0.25	0.33	0.44	0.43	0.46	0.32	0.85	0.38	0.43
CDAN	0.67	0.42	0.35	0.42	0.66	0.57	0.50	0.44	0.88	0.44	0.53
DeepCoral	0.65	0.34	0.33	0.40	0.48	0.53	0.53	0.39	0.86	0.41	0.49
AdaMatch	0.69	0.36	0.36	0.41	0.60	0.49	0.56	0.41	0.86	0.36	0.51
HoMM	0.66	0.33	0.31	0.41	0.47	0.52	0.53	0.37	0.86	0.42	0.49
DIRT-T	0.66	0.38	0.40	0.44	0.52	0.60	0.53	0.39	0.93	0.49	0.53
CLUDA	0.69	0.36	0.36	0.41	0.60	0.49	0.56	0.41	0.86	0.36	0.51
AdvSKM	0.63	0.32	0.31	0.38	0.46	0.54	0.56	0.36	0.86	0.44	0.49
CoDATS	0.71	0.38	0.44	0.39	0.70	0.61	0.53	0.38	0.90	0.44	0.55
RAINCOAT	0.72	0.32	0.42	0.32	0.56	0.39	0.38	0.31	0.89	0.35	0.47
ACON	0.76	0.53	0.49	0.56	<u>0.81</u>	<u>0.67</u>	0.59	<u>0.44</u>	0.93	0.41	<u>0.62</u>
Ours	0.73	0.49	0.45	0.54	0.82	0.89	0.76	0.55	0.95	0.61	0.68

Table 17: Macro-F1 Score on EMG for unsupervised domain adaptation.

Method	$0\rightarrow 1$	$0\rightarrow 2$	$0\rightarrow 3$	$1\rightarrow 2$	$1\rightarrow 3$	$2\rightarrow0$	$2\rightarrow 1$	$2\rightarrow3$	$3\rightarrow 1$	$3\rightarrow 2$	Average
Source-only	0.85	0.74	0.74	0.74	0.75	0.75	0.82	0.74	0.78	0.72	0.76
CDAN	0.88	0.77	0.78	0.78	0.82	0.74	0.87	0.76	0.84	0.78	0.80
DeepCoral	0.87	0.76	0.76	0.78	0.78	0.75	0.84	0.76	0.82	0.75	0.79
AdaMatch	0.89	0.76	0.79	0.77	0.80	0.76	0.90	0.81	0.84	0.74	0.81
HoMM	0.87	0.77	0.76	0.77	0.78	0.74	0.84	0.76	0.82	0.75	0.79
DIRT-T	0.90	0.75	0.79	0.76	0.80	0.71	0.84	0.78	0.83	0.77	0.79
CLUDA	0.78	0.75	0.77	0.75	0.74	0.76	0.79	0.70	0.75	0.75	0.75
AdvSKM	0.86	0.76	0.76	0.77	0.78	0.76	0.85	0.77	0.81	0.75	0.79
CoDATS	0.88	0.77	0.78	0.79	0.82	0.74	0.86	0.79	0.84	0.78	0.81
RAINCOAT	0.89	0.77	0.79	0.78	0.83	0.73	0.85	0.77	0.83	0.74	0.80
ACON	0.92	0.79	0.82	0.80	0.83	0.78	0.91	0.80	<u>0.85</u>	0.79	0.83
Ours	0.94	0.82	0.83	0.81	0.87	0.77	0.93	0.83	0.87	0.79	0.85

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: **The papers not including the checklist will be desk rejected.** The checklist should follow the references and follow the (optional) supplemental material. The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For each question in the checklist:

- You should answer [Yes], [No], or [NA].
- [NA] means either that the question is Not Applicable for that particular paper or the relevant information is Not Available.
- Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions) with the final version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While "[Yes]" is generally preferable to "[No]", it is perfectly acceptable to answer "[No]" provided a proper justification is given (e.g., "error bars are not reported because it would be too computationally expensive" or "we were unable to find the license for the dataset we used"). In general, answering "[No]" or "[NA]" is not grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your best judgment and write a justification to elaborate. All supporting evidence can appear either in the main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

- Delete this instruction block, but keep the section heading "NeurIPS Paper Checklist",
- Keep the checklist subsection headings, questions/answers and guidelines below.
- Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: We include detailed information in Section 1.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations are included in ??.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: The theory assumptions and proof are included in Section 4.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include the detailed experimental settings in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.

- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Code is available at the anonymous link: https://anonymous.4open.science/r/2025NeurIPS-EDEN.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We include the detailed experimental settings in Appendix B.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The error bars are included in Figure 4.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: All the experiments in this paper are conducted on a single NVIDIA GeForce RTX 4090 with 24GiB of memory.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.

- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: In every respect in the paper, we follow the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: Broader impacts is included in Appendix D.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All data, models, and code in the paper respect the license.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.