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MOTIONAURA: GENERATING HIGH-QUALITY
AND MOTION CONSISTENT VIDEOS USING DISCRETE
DIFFUSION
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Figure 1: We introduce MotionAura, a novel Text-to-Video generation model that predicts discrete
tokens obtained from our large scale pre-trained 3D VAE. The displayed frames represent videos
generated by our model when provided with the captions shown below each frame. The following
link hosts the above generated videos along with other samples.

ABSTRACT

The spatio-temporal complexity of video data presents significant challenges in
tasks such as compression, generation, and inpainting. We present four key con-
tributions to address the challenges of spatiotemporal video processing. First,
we introduce the 3D Mobile Inverted Vector-Quantization Variational Autoen-
coder (3D-MBQ-VAE), which combines Variational Autoencoders (VAEs) with
masked token modeling to enhance spatiotemporal video compression. The model
achieves superior temporal consistency and state-of-the-art (SOTA) reconstruction
quality by employing a novel training strategy with full frame masking. Second,
we present MotionAura, a text-to-video generation framework that utilizes vector-
quantized diffusion models to discretize the latent space and capture complex mo-
tion dynamics, producing temporally coherent videos aligned with text prompts.
Third, we propose a spectral transformer-based denoising network that processes
video data in the frequency domain using the Fourier Transform. This method
effectively captures global context and long-range dependencies for high-quality
video generation and denoising. Lastly, we introduce a downstream task of Sketch
Guided Video Inpainting. This task leverages Low-Rank Adaptation (LoRA)
for parameter-efficient fine-tuning. Our models achieve SOTA performance on
a range of benchmarks. Our work offers robust frameworks for spatiotemporal
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modeling and user-driven video content manipulation. We will release the code,
datasets, and models in open-source.

1 INTRODUCTION

Video generation refers to generating coherent and realistic sequences of frames over time, match-
ing the consistency and appearance of real-world videos. Recent years have witnessed significant
advances in video generation based on learning frameworks ranging from generative adversarial net-
works (GANs) (Aldausari et al., 2022), diffusion models (Ho et al., 2022a), to causal autoregressive
models (Gao et al., 2024; Tudosiu et al., 2020; Yu et al., 2023c). Video generative models facilitate
a range of downstream tasks such as class conditional generation, frame prediction or interpolation
(Ming et al., 2024), conditional video inpainting (Zhang et al., 2023; Wu et al., 2024) and video out-
painting (Dehan et al., 2022). Video generation has several business use cases, such as marketing,
advertising, entertainment, and personalized training.

The video generation process includes two broad tasks. The first task is video frame tokenization,
performed using pre-trained variational autoencoders (VAEs) such as 2D VAE used in Stable Dif-
fusion or 3D VQ-VAEs. However, these frameworks fail to achieve high spatial compression and
temporal consistency across video frames, especially with increasing dimensions. The second task
is visual generation. The early VAE models focused on modeling the continuous latent distribution,
which is not scalable with spatial dimension. Recent works have focused on modeling a discrete la-
tent space rather than a continuous one due to its training efficiency. Some works (e.g., Arnab et al.
(2021)) train a transformer on discrete tokens extracted by a 3D VQ-VAE framework. However, an
autoregressive approach cannot efficiently model a discrete latent space for high-dimensional inputs
such as videos.

To address the challenges of visual content generation, we propose MotionAura. At the core of Mo-
tionAura is our novel VAE, named 3D-MBQ-VAE (3D MoBile Inverted VQ-VAE), which achieves
good temporal comprehension for spatiotemporal compression of videos. For the video generation
phase, we use a denoiser network comprising a series of proposed Spectral Transformer blocks
trained using the masked token modeling approach. Our novelty lies both in the architectural
changes in our transformer blocks and the training pipeline. These include using a 2D Fast Fourier
Transform (FFT) layer and Rotary Positional Embeddings (Su et al., 2021). Following an efficient
and robust, non-autoregressive approach, the transformer block predicts all the masked tokens at
once. To ensure temporal consistency across the video latents, during tokenization, we randomly
mask one of the frames completely and predict the index of the masked frame. This helps the model
learn the frame sequence and improve the temporal consistency of frames at inference time. Finally,
we address a downstream task of sketch-guided video inpainting. To our knowledge, ours is the first
work to address the sketch-guided video inpainting task. Using our pre-trained noise predictor as a
base and the LORA adaptors (Hu et al., 2021), our model can be finetuned for various downstream
tasks such as class conditional video inpainting and video outpainting. Figure 1 shows examples of
text-conditioned video generation using MotionAura. Our contributions are:

• We propose a novel 3D-MBQ-VAE for spatio-temporal compression of video frames. The 3D-
MBQ-VAE adopts a new training strategy based on the complete masking of video frames. This
strategy improves the temporal consistency of the reconstructed video frames.

• We introduce MotionAura, a novel framework for text-conditioned video generation that lever-
ages vector quantized diffusion models. That allows for more accurate modeling of motion and
transitions in generated videos. The resultant videos exhibit realistic temporal coherence aligned
with the input text prompts.

• We propose a denoising network named spectral transformer. It employs Fourier transform to
process video latents in the frequency domain and, hence, better captures global context and long-
range dependencies. To pre-train this denoising network, we add contextually rich captions to the
WebVID 10M dataset and call this curated dataset WebVid-10M-recaptioned.

• We are the first to address the downstream task of sketch-guided video inpainting. To realize
this, we perform parameter-efficient finetuning of our denoising network using LORA adaptors.
The experimental results show that 3D-MBQ-VAE outperforms existing networks in terms of
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reconstruction quality. Further, MotionAura attains state-of-the-art (SOTA) performance on text-
conditioned video generation and sketch-guided video inpainting.

• We curated two datasets, with each data point consisting of a Video-Mask-Sketch-Text condition-
ing, for our downstream task of sketch-guided video inpainting. We utilized YouTube-VOS and
DAVIS datasets and captioned all the videos using Video LLaVA-7B-hf. Then, we performed a
CLIP-based matching of videos with corresponding sketches from QuickDraw and Sketchy.

2 RELATED WORKS ON VISUAL CONTENT GENERATION

Image generation: Text-guided image synthesis has resulted in high quality and spatially coherent
data (Esser et al., 2024; Sun et al., 2024b). Generative Adversarial Networks (Sauer et al., 2022;
Karras et al., 2020; 2019; 2021; Goodfellow et al., 2014) model visual distributions to produce per-
ceptually rich images but fail to capture the complete spectrum of data distribution. Moreover, these
networks are difficult to optimize. Kingma & Welling (2019) introduce another approach to generat-
ing visual data wherein the decoders of the autoencoder-like architectures are trained to reconstruct
images by sampling over the distributions provided by encoders. This regularization strategy helps
to learn continuous and meaningful latent space. Quantization of the produced latents (van den Oord
et al., 2018) further improves the quality of generated data using various sampling methods over the
learned latents. While existing sampling methods can capture dense representations in their latent
space, they fail to produce sharp, high-quality images. Diffusion models train networks to learn a
denoising process, appropriately fitting the inductive bias in image data. Recent developments such
as DDPMs (Ho et al., 2020), latent diffusion methods (Rombach et al., 2022a) and diffusion trans-
formers (Esser et al., 2024; Peebles & Xie, 2023; Chen et al., 2024; 2023) have revolutionized the
field of image generation.

Video generation: Video generation is even more challenging than image generation since gener-
ating high-quality videos demands both spatial and temporal consistencies. For video generation,
researchers have used both transformer models and diffusion models. VideoGPT (Yan et al., 2021)
generates videos autoregressively using the latents obtained from the VQ-VAE tokenizer. Process-
ing videos in the latent space rather than the pixel space reduces training and inference latency.
The early diffusion-based video generation models transferred weights from the TextToImage (T2I)
approaches and adapted them by inflating the convolutional backbone to incorporate the temporal
dynamics (Ho et al., 2022b). Latent diffusion models (LDM) based Text2Video (T2V) approaches
generate higher-quality videos of longer duration (Blattmann et al., 2023). However, diffusion-based
approaches using convolution backbones fail to produce high frame-rate videos and generally rely
on other architectures to interpolate intermediate frames. Recent works have combined transformer-
based predictions with diffusion-based pretraining (Yu et al., 2023b; 2024; Kondratyuk et al., 2024).

3 MOTIONAURA: ARCHITECTURE AND TRAINING

We introduce MotionAura, a novel video generation model designed to produce high-quality videos
with strong temporal consistency. At the core of MotionAura is 3D-MBQ-VAE, our novel 3D VAE
that achieves high reconstruction quality. The encoder of this pretrained 3D-MBQ-VAE encodes
videos into a latent space, forming the first essential component of our approach. The second novelty
is a spectral transformer-based diffusion model, which diffuses the encoded latents of videos to
produce high-quality videos. Section 3.1 discusses the large-scale pretraining of 3D-MBQ-VAE for
learning efficient discrete representations of videos. Section 3.2 discusses pretraining of the noising
predictor, whereas Section 3.3 presents the Spectral Transformer module for learning the reverse
discrete diffusion process.

3.1 PRE-TRAINING OF 3D-MBQ-VAE

We employed a 3D-VQ-VAE (Vector Quantized Variational Autoencoder) to tokenize videos in 3D
space; refer Appendix B.1 for the architecture of 3D-MBQ-VAE. We pretrained our network on
the YouTube-100M dataset to ensure that it produces video-appropriate tokens. The extensive con-
tent variety in the YouTube-100M dataset enhances the model’s generalization and representational
capabilities. Figure 2 shows our pretraining approach for learning efficient latents with temporal
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and spatial consistencies. The pretraining leverages two approaches for optimal video compres-
sion and discretization: (i) Random masking of frames (He et al., 2021) using 16×16 and 32×32
patches. This training ensures self-supervised training of the autoencoder to efficiently learn spa-
tial information. (ii) Complete masking of a single frame in the sequence to enforce learning of
temporal information. Let B be the batch size, C be number of channels, N the number of frames
per video, H , and W be the height and width of the video frames, respectively. For a given video
V ∈ R(B,N,3,H,W ), a randomly selected frame fi ∈ R(3,H,W ) is masked completely. The encoder
E(V ) returns zc ∈ R(B,C,N,H/16,W/16). This compressed latent in the continuous domain is fed into
the MLP layer to return P (fi), which shows the probability of ith frame being completely masked.

Codebook

3D-MBQ-VAE
Encoder

3D-MBQ-VAE
Decoder

        

38 14 5
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89

34 12 45

67 31
31

11 22

21

90

56 6 12

10 67
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masked frame

Masked
Frames

Reconstructed
Frames

MLP

Figure 2: Our proposed pre-training method for
3D-MBQ-VAE architecture

The same zc is discretized using the Euclidean
distance-based nearest neighbor lookup from
the codebook vectors. The quantized latent is
z ∈ C where C = {ei}Ki=1. C is the codebook
of size K and e shows the codebook vectors.
This quantized latent is reconstructed using our
pre-trained 3D-MBQ-VAE decoder D(z). Eq.
1 shows the combined loss term for training,
where sg represents the stop gradient. We in-
clude Masked Frame Index Loss or LMFI in the
loss function to learn from feature distributions
across the frames. This loss helps VAE to learn
frame consistency.

LMBQ−V AE = ∥V − V̂ ∥22︸ ︷︷ ︸
Lrec

+ ∥sg[E(V )]− V ∥22︸ ︷︷ ︸
Lcodebook

+β ∥sg[V ]− E(V )∥22︸ ︷︷ ︸
Lcommit

− log(P (fi))︸ ︷︷ ︸
LMFI

(1)

3.2 PRE-TRAINING OF NOISING PREDICTOR FOR TEXT2VIDEO GENERATION

With our pre-trained video 3D-MBQ-VAE encoder E and codebook C, we tokenize video frames
in terms of the codebook indices of their encodings. Figure 3 shows the pretraining approach of
the Spectral Transformer (ϵθ). Given a video V ∈ R(B,N,3,H,W ), the quantized encoding of V is
given by z0 = C(E(V )) ∈ R(B,N,H/16,W/16). In continuous space, forward diffusion is generally
achieved by adding random Gaussian noise to the image latent as a function of the current time step
‘t’. However, in this discrete space, the forward pass is done by gradually corrupting z0 by masking
some of the quantized tokens by a <MASK> token following a probability distribution P (zt | zt−1).
The forward process yields a sequence of increasingly noisy latent variables z1, ..., zT of the same
dimension as z0. At timestep T, the token zT is a pure noise token.
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Figure 3: Discrete diffusion pretraining of the spectral transformer involves processing tokenized
video frame representations from the 3D-MBQ-VAE encoder. These representations are subjected
to random masking based on a predefined probability distribution. The resulting corrupted tokens
are then denoised through a series of N Spectral Transformers. Contextual information from text
representations generated by the T5-XXL-Encoder aids in this process. The denoised tokens are
reconstructed using the 3D decoder

Starting from the noise zT, the reverse process gradually denoises the latent variables and restores
the real data z0 by sampling from the reverse distribution q(zt−1|zt, z0) sequentially. However,
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since z0 is unknown in the inference stage, we must train a denoising network to approximate the
conditional distribution ϵθ(zt|z0, t, T (Xt)). Here, t represents the time step conditioning, which
gives information regarding the degree of masking at step t. T (Xt) represents the text conditioning
obtained by passing the video captions Xt through the T5-XXL (Tay et al., 2022) text encoder T . We
propose a novel Spectral Transformer block ϵθ to model the reverse diffusion process (Section 3.3).
The objective we maximize during training is the negative log-likelihood of the quantized latents
given the text and time conditioning. The likelihood is given by Ldiff = − log (ϵθ (zt|z0, t, T (Xt))).

3.3 PROPOSED SPECTRAL TRANSFORMER

We propose a novel Spectral Transformer, which processes video latents in the frequency domain
to learn video representations more effectively. Consider a quantized latent zt ∈ R(B,N,H/16,W/16)

at time step t. First, the latent is flattened to R(B,N×H/16×W/16) which along with time step t
and FPS (frames per second), are passed to our proposed Spectral Transformer block. Initially,
the passed tokens are fed into an Adaptive Layer Normalization (AdLN) block to obtain Bt, where
Bt = AdLN(zt, t,FPS).

Text embedding
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Zca = Zcross-attn. , Zco = Zcross-out

Figure 4: Architecture of spectral transformer

As shown in Figure 4, before computing the self-attention, the latent representation Bt is trans-
formed into the frequency domain using a 2D Fourier Transform Layer (fft2D) for each of K, V,
and Q. This layer applies two 1D Fourier transforms - along the embedding dimension and the se-
quence dimension thereby converting spatial domain data into the frequency domain. This enables
the segregation of high-frequency features from low-frequency ones, enabling more efficient manip-
ulation and learning of spatial features. We take only the real part of fft2D layer outputs to make all
quantities differentiable (Eq. 2). Here, MSA stands for multi-headed self-attention.

Zattn = MSA(QProj(R(fft2D(Zt))),KProj(R(fft2D(Zt))),VProj(R(fft2D(Zt)))) (2)

The frequency-domain representations are then fed into the self-attention block. Using Rotary Posi-
tional Embeddings (RoPE) at this stage helps increase the context length of the input and results in
faster convergence. The output Zattn undergoes an Inverse 2D Fourier Transform (ifft2D) to revert
to the spatial domain. Then, a residual connection with the AdLN layer is applied to preserve the
original spatial information and integrate it with the learned attention features. This gives the output
zout (Eq. 3).

zout = AdLN(R(ifft2D(Zattn)) + AdLN(zt, t, FPS)) (3)

Similarly, in the cross-attention computation, the text-embedding T (Xt) is first transformed using
learnable Fourier transforms for both K and V. The Q representation from the preceding layer is
also passed through the learnable Fourier transforms (Eq. 4). These frequency-domain representa-
tions are then processed by the text-conditioned cross-attention block.

Zcross-attn = MSA (QProj(R(fft2D(zout))),KProj(R(fft2D(T(Xt)))),VProj(R(fft2D(T(Xt))))) (4)

Then, the frequency domain output is converted back to the spatial domain using ifft2D layer, and a
residual connection is applied (Eq. 5).

zcross-out = AdLN(R(ifft2D(Zcross-attn)) + AdLN(zout, t, FPS)) (5)

Finally, an MLP followed by a softmax layer gives the predicted denoised latent given zt. This
process is repeated until we get the completely denoised latent P (z0 | zt, t, T (Xt)) . Finally, these
output latents are mapped back into video domain using our pre-trained 3D-MBQ-VAE decoder D.

4 MOTIONAURA FOR SKETCH-GUIDED VIDEO INPAINTING

MotionAura can be flexibly adapted to downstream video generation tasks such as sketch-guided
video inpainting. In contrast with the previous works on text-guided video inpainting (Zhang et al.,
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2024; Ceylan et al., 2023), we use both text and sketch to guide the video inpainting. The sketch-
text pair makes the task more customizable. For finetuning the model, we use the datasets curated
from YouTube-VOS and QuickDraw (Appendix C.4). We now explain the parameter-efficient fine-
tuning approach. Figure 5 details the entire process. For a given video V = {fi}Ji=1, we obtain
a masked video Vm using a corresponding mask sequence m = {mi}Ji=1 where Vm is given by
Vm = {fi ⊙ (1−mi)}Ji=1. We then discretize both these visual distributions using our pretrained
3D-MBQ-VAE encoder, such that zm = E(Vm) and z0 = E(V ).
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Figure 5: Sketch-guided video inpainting process. The network inputs
masked video latents, fully diffused unmasked latent, sketch condi-
tioning, and text conditioning. It predicts the denoised latents using
LoRA infused in our pre-trained denoiser ϵθ.

Given a masked video, our
training objective is to ob-
tain the unmasked frames
with the context driven by
sketch and textual prompts.
Hence, we randomly cor-
rupt the discrete latent z0
with <MASK> token (Sec-
tion 3.2) to obtain the fully-
corrupted latent zT. Af-
ter performing the forward
diffusion process, zT and
zm are flattened and con-
catenated. This concate-
nated sequence of discrete
tokens is passed through an
embedding layer to obtain
Z ′
t ∈ R(B,S,E) where Z ′

t
represents the intermediate
input token sequence.

As for the preprocessing of the sketch, we pass the sketch through the pretrained SigLIP image
encoder (Zhai et al., 2023) and consecutively through an MLP layer to finally obtain s′ ∈ R(B,S′,E).
At last, s′ is concatenated with Z ′

t to obtain the final sequence of tokens Zt, where Zt = Z ′
t ⊕ S′

and Zt ∈ R(B,S+S′,E). This input sequence is responsible for the above mentioned context to
the diffusion network. The input sequence already contains the latents of the unmasked regions to
provide the available spatial information. It also contains the sketch information that helps the model
understand and provide desirable visual details.

The base model is frozen during the inpainting task, and only the adapter modules are trained. The
pretrained spectral transformer is augmented with two types of LoRA modules during finetuning: (1)
Attention LoRA, applied to Kproj and Qproj layers of the self-attention and cross-attention layers
of the transformer module, operating in parallel to the attention layers, (2) Feed Forward LoRA,
applied to the output feed-forward layer in a sequential manner. These two adapter modules share
the same architecture wherein the first Fully Connected (FC) layer projects the high-dimensional
features into a lower dimension following an activation function. The next FC layer converts the
lower dimensional information to the original dimension. The operation is shown as L′(x) = L(x)+
Wup(GeLU(Wdown(x))) such that Wup ∈ R(d,l) and Wdown ∈ R(l,d) with l < d. Here Wup and
Wdown represent the LoRA weights, L′(x) represents the modified layer output and L(x) represents
the original layer output. The Wdown is initialized with the distribution of weights of L(x) to
maintain coherence with the frozen layer.

5 EXPERIMENTAL RESULTS

We now present experimental results. The details of experimental setup are provided in Appendices
C and D. Additional qualitative results are provided in Appendices A, G and F.

5.1 LATENT RECONSTRUCTION RESULTS OF 3D-MBQ-VAE

For evaluating our 3D-MBQ-VAE, we selected the COCO-2017 and the WebVID validation
datasets. Following Zhao et al. (2024), we crop each frame to 256×256 resolution and sample
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48 frames per video sequentially. As shown in Table 1, our proposed 3D-MBQ-VAE consistently
outperforms SOTA 3D VAEs across all metrics. This can be attributed to a novel combination of
training strategies and the enhanced loss function. Randomly masking parts of various frames He
et al. (2021) enables our model to efficiently learn spatial information. Further, inclusion of LMFI in
the loss function emphasizes learning efficient temporal features. On removing Lmfi, LPIPS metric
decreases substantially. This highlights its role in preserving perceptual quality. Our 3D-MBQ-VAE
model is also capable of supporting joint image and video training, similar to W.A.L.T Gupta et al.
(2025) and CV-VAE. As shown in Table 1, joint training provides superior results than video training
alone.
Table 1: Quantitative comparison of VAEs for video reconstruction task on COCO-Val and WebVid-Val
datasets. Frame compression rate (FCR) is the ratio between the size of video frame before and after com-
pression. Compatibility (comp.) represents if the model can be used as a VAE for existing generative models.
Our method demonstrates superior performance on all metrics. All models are trained on videos, except the
“3D-MBQ-VAE (Video+Images)” variant that is jointly trained on video and images. Hence, its results are not
compared with other methods.

Method Params FCR Comp. COCO-Val WebVid-Val
PSNR(↑) / SSIM(↑) / LPIPS(↓) PSNR / SSIM / LPIPS

VAE-SD2.1 (Rombach et al., 2022b) 34M + 49M 1× - 26.6 / 0.773 / 0.127 28.9 / 0.810 / 0.145
VQGAN (Esser et al., 2021) 26M + 38M 1× × 22.7 / 0.678 / 0.186 24.6 / 0.718 / 0.179
TATS (Ge et al., 2022) 7M + 16M 4× × 23.4 / 0.741 / 0.287 24.1 / 0.729 / 0.310
VAE-OSP (Lab & etc., 2024) 94M + 135M 4× × 27.0 / 0.791 / 0.142 26.7 / 0.781 / 0.166
CV-VAE(2D+3D) (Zhao et al., 2024) 68M + 114M 4× ✓ 27.6 / 0.805 / 0.136 28.5 / 0.817 / 0.143
CV-VAE(3D) (Zhao et al., 2024) 100M + 156M 4× ✓ 27.7 / 0.805 / 0.135 28.6 / 0.819 / 0.145
3D-MBQ-VAE (Without Lmfi) 140M + 177M 4× ✓ 30.8 / 0.840 / 0.112 31.4 / 0.849 / 0.134
3D-MBQ-VAE 140M + 177M 4× ✓ 31.2 / 0.848 / 0.092 32.1 / 0.858 / 0.108
3D-MBQ-VAE (Video+Images) 140M + 177M 4× ✓ 33.0 / 0.866 / 0.087 34.2 / 0.877 / 0.092

Figure 6 shows the t-SNE plots, where each color represents a different class in the dataset. Ev-
idently, the better clustering and separation by 3D-MBQ-VAE shows that it is most effective in
feature extraction and representation learning. The qualitative results in Figure 7 further confirm
that 3D-MBQ-VAE provides reconstructions of highest quality and consistency.

Figure 6: t-SNE plots showing the representations learned by various VAEs.

5.2 RESULTS OF TEXT CONDITIONED VIDEO GENERATION

Table 2: Comparison of MotionAura variants.

Model Embedding Size Attn head Blocks

S 1024 16 17
M 2048 16 28
L 4096 32 37

For evaluation purposes, we create three variants
of our model, Small (0.89B parameters), Medium
(1.94B parameters), and Large (3.12B parameters)
as shown in Table 2. Here, blocks refers to the num-
ber of spectral transformer blocks (N in Figure 3).
For zero-shot Text2Video generation, we pre-train
our Text2Video models with specific configurations
(refer appendix D.3). We compare our model with AnimateDiff (Guo et al., 2024), CogVideoX-5B
(Yang et al., 2024a) and SimDA (Xing et al., 2023). The texts given as text conditioning to all these
models are taken from the WebVID 10M dataset (with a maximum length of 180). However, we ob-
serve that the captions in the original WebVID 10M dataset lacked contextual richness, which limits
the scope of generation. Hence, we propose our WebVID 10M-recaptioned dataset with contextu-
ally rich textual data (details in Appendix C). We evaluate the pre-trained models on the MSR-VTT
dataset (Chen et al., 2022) using standard metrics such as FVD and CLIPSIM. We also included two
human assessment-based metrics, viz., Motion Quality (MQ) and Temporal Consistency (TC) (Liu
et al., 2024; Feng et al., 2024). The EvalCrafter benchmark helps us quantitively evaluate the qual-
ity of video generation on these aspects. The framework also aligns objective metrics with human
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Figure 7: Comparison of 3D-MBQ-VAE (ours) with ex-
isting VAEs after reconstruction from Stable diffusion-XL
produced latent. Zooming in on the figure reveals signif-
icant differences in image quality, fidelity to the original
latent representations, and the preservation of fine details.

MotionAura-L MotionAura-L(w/o fft)

A female painter with a brush in hand, white
background, painting, looking very powerful.

Figure 8: The videos corresponding to these
frames show the improvement in motion quality
brought by FFT layers. For videos, click on link.

opinions to enhance evaluation accuracy. 100 participants ranked each of the Y models such that the
model ranking first received Y− 1 points and the model ranking last received 0 points.

As shown in Table 3, pretraining on our newly curated dataset improves the performance of all the
models, highlighting the importance of enriched captions. Further, MotionAura-L without the use
of fft2D and ifft2D layers has inferior performance than the full MotionAura-L network, showcasing
the effectiveness of our proposed Spectral Transformer architecture. Finally, our largest model,
MotionAura-L, achieves the best results across all metrics, demonstrating its superior capacity for
capturing both motion dynamics and temporal consistency.

We measure the average inference latency over text sample lengths of 30 to 180 tokens. For generat-
ing a 5-second video, MotionAura-L takes 38 seconds, compared to 41 seconds of CogVideoX-5B
(Table 3). To reduce the latency, the FFT layers can be skipped, or the small/medium variants can be
used. Notably, MotionAura-S is comparable in latency to AnimateDiff and superior in performance
metrics. MotionAura can generate videos of up to 10 seconds, whereas previous works generate up
to 6 seconds videos. MotionAura-L takes 83 seconds to generate a 10-second video.

Table 3: Results of the text-conditioned video generation (Text2Video) models. For all the techniques, evalu-
ation was done on MSR-VTT dataset. Recaptioning the dataset improves all the metrics. Inference Time was
calculated on a single A100.

Method Params Train: WebVID 10M WebVid 10M - recaptioned Inf Tims(s)
(FVD↓/CLIPSIM↑/MQ↑/TC↑) (FVD/CLIPSIM/MQ/TC)

SimDA 1.08B 456 / 0.1761 / 65.28 / 195 433 / 0.1992 / 67.82 / 196 8.6
AnimateDiff 1.96B 402 / 0.2011 / 68.97 / 197 379 / 0.2201 / 69.78 / 199 11.1
CogVideoX-5B 5.00B 380 / 0.2211 / 73.37 / 203 357 / 0.2429 / 75.51 / 205 41.0
MotionAura-L (w/o fft) 3.12B 379 / 0.2201 / 73.44 / 202 351 / 0.2441 / 75.87 / 203 33.4
MotionAura-S 0.89B 391 / 0.2104 / 70.29 / 199 364 / 0.2303 / 71.28 / 200 12.0
MotionAura-M 1.94B 383 / 0.2207 / 72.37 / 200 360 / 0.2333 / 73.47 / 202 20.0
MotionAura-L 3.12B 374 / 0.2522 / 74.59 / 204 344 / 0.2822 / 76.62 / 207 38.0

Figure 8 shows sample frames from videos generated by the full MotionAura-L and MotionAura-
L(without fft2d). The videos highlight superior motion quality achieved on using the FFT layers.
Figure 9 compares our model with CogVideoX-5B and AnimateDiff. Both quantitative and qualita-
tive results highlight the superior performance of our model, which can be attributed to several key
innovations. AnimateDiff relies on the image VAE from Stable Diffusion to encode video latents,
which limits their representational power compared to the latents produced by our 3D-MBQ-VAE.
AnimateDiff inflates a 2D diffusion model into 3D using a temporal sub-module for video, but this
approach fails to ensure true temporal coherence, as seen when comparing its results to those of
MotionAura. CogVideoX-5B employs a video VAE in continuous space. This approach struggles
with efficiently representing the high dimensionality of video frames, making it less effective than
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discrete space representations. Additionally, our use of spectral transformer blocks, with integrated
2D Fourier transforms, enhances both vision and language modeling by capturing complex spatial
and temporal patterns. Replacing traditional sinusoidal embeddings with RoPE embeddings further
improves the handling of longer video sequences. These architectural improvements collectively
improve our overall performance.

CogVideoX-5B

AnimateDiff

MotionAura-L

“Isometric view of late afternoon sun
peeking through the window of a New
York City loft.”

“A magical horse moving from burning
mountains inspired by Disney Pixar.”

" A person made from origamy running on
the road." 

“A young man walks through a sunny
park in jeans and a white t-shirt, a
breeze stirring his short brown hair.
Lush green trees surround him, and he
smiles softly.”

“Old, weathered vintage car with
faded blue paint doing a burnout on a
dusty road, seen from the front with
thick smoke and dust.”

Figure 9: Text-conditioned video generation results. Our model shows superior temporal consistency and
generation quality. Click on the link to view the videos.

5.3 RESULTS OF SKETCH GUIDED VIDEO INPAINTING

We now assess the models’ performance on the newly introduced task of sketch-guided video in-
painting. As outlined in Section 4, our approach adapts zero-shot Text2Video models using LoRA
modules. For a fair comparison with CogVideoX-5B, we adapted it in a similar manner as our pro-
posed approach. Both existing and our models were pre-trained on the WebVid 10M-recaptioned
dataset and evaluated on two newly curated datasets, based on existing video (YouTube-VOS and
DAVIS) and sketch (QuickDraw) datasets. These datasets have been specifically designed to ac-
commodate the sketch-based inpainting task, featuring four key components for each video sample:
textual prompts, sketches, segmentation masks, and raw video. For each experiment, we inpainted
portions of the videos using both the sketch and text inputs as guides.

As presented in Table 4, MotionAura-L outperforms all other methods. The superior performance
of MotionAura-L can be attributed to the combination of sketch and text inputs, which provide a
richer context for guiding the inpainting process. While text descriptions offer a general understand-
ing of the scene, the sketch provides explicit structural information, allowing the model to generate
more accurate and coherent inpainting results. This dual-input method leads to better spatial align-
ment and temporal consistency, as evidenced by the higher scores when compared to MotionAura-L
(w/o sketch), which relies solely on text input. The qualitative comparisons in Figure 10 show that
MotionAura leads to more spatially and temporally coherent results than previous techniques.

Table 4: Quantitative evaluation for sketch-based inpainting. All models were pre-trained using the WebVid
10M -recaptioned and evaluated over the newly curated datasets comprising DAVIS and YouTube-VOS.

Method DAVIS YouTube - VOS
(FVD↓ / CLIPSIM↑ / MQ↑ / TC↑) (FVD / CLIPSIM / MQ / TC)

T2V (Khachatryan et al., 2023) 782 / 0.2489 / 63.39 / 191 700 / 0.2601 / 64.28 / 193
SimDA (Xing et al., 2023) 752 / 0.2564 / 65.28 / 196 693 / 0.2699 / 67.82 / 195
AnimateDiff (Guo et al., 2024) 737 / 0.2401 / 68.97 / 199 685 / 0.2701 / 69.78 / 197
CogVideoX-5B (Yang et al., 2024b) 718 / 0.2512 / 73.37 / 205 677 / 0.2602 / 75.51 / 203
MotionAura-L (w/o fft) 689 / 0.2919 / 73.44 / 203 663 / 0.3164 / 75.87 / 202
MotionAura-L (w/o sketch) 687 / 0.3011 / 73.31 / 200 666 / 0.3061 / 75.14 / 199
MotionAura-S 704 / 0.2776 / 70.29 / 200 670 / 0.2892 / 71.28 / 199
MotionAura-M 692 / 0.2901 / 72.37 / 202 666 / 0.3119 / 73.47 / 200
MotionAura-L 685 / 0.3101 / 74.59 / 207 657 / 0.3511 / 76.62 / 204
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Input Video Frames

SimDA

AnimateDiff

CogVideoX-5B

MotionAura-L

Figure 10: Sketch-guided inpainting results of various techniques. The red circles highlight the
mistakes and misalignments, e.g., SimDA incorrectly inpaints the parts of the hat and the butterfly.
AnimateDiff inpaints 2 butterflies in some frames, and inpaints half-transparent butterfly in the last
frame. CogVideoX produces a hat with incorrect shape, and a black-color butterfly. By contrast,
MotionAura produces high-quality and temporally consistent results.

5.4 ABLATION STUDY

1. We pretrain MotionAura on the WebVid 10M - recaptioned dataset and evaluate it on the MSR-
VTT dataset for the text-conditioned video generation task. We evaluate the effect of the length
of text description on the quality of the generated images. Increasingly detailed text descriptions
provide better guidance and context. By virtue of this, the model captures finer nuances in scene
composition, motion, and object interactions. Thus, the generated videos show superior quality and
better match the user’s requirements. Hence, with increasingly detailed descriptions, FVD reduces
and CLIPSIM increases (Table 5).

Table 5: Impact of Text Length

Length of Text FVD CLIPSIM

30 364 0.2544
60 359 0.2598
90 355 0.2626
120 352 0.2654
150 349 0.2701
180 344 0.2823

Table 6: Impact of LoRA Rank

LoRA Rank FVD CLIPSIM

8 662 0.3291
16 660 0.3349
32 659 0.3421
64 657 0.3511

2. We evaluate the effect of rank of LoRA adaptors on the quality of sketch-based inpainting results
on the YouTube-VOS dataset. A higher rank of the LoRA Adaptor involves updating more trainable
parameters, which helps the model learn better representation and enhances model accuracy. Hence,
a higher rank improves model performance, as shown in Table 6.

3. We evaluate MotionAura using sinusoidal embedding for the text-conditioned video genera-
tion. The FVD/CLIPSIM values are 379/0.2392 after pretraining on the WebVID 10M dataset and
349/0.2752 after pretraining on the WebVID 10M-recaptioned dataset. Clearly, RoPE embeddings
(Table 3) provide superior results than the sinusoidal embeddings.

6 CONCLUSION

In this paper, we present MotionAura, a novel approach to generating high-quality videos given some
text and sketch conditions. The videos generated by our model show high temporal consistency and
video quality. MotionAura proposes several novelties, such as a new masked index loss during VAE
pretraining, using FFT layers to segregate high-frequency features from the low-frequency ones and
using RoPE embeddings to ensure better temporal consistency in denoised latents. Additionally,
we recaption the WebVid-10M dataset with much more contextually rich captions, improving the
denoising network’s quality. Finally, we curate our datasets to address the task of sketch-guided
video inpainting. Rigorous experiments show the effectiveness and robustness of MotionAura in
video generation and subsequent downstream tasks.
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A video vision transformer. arXiv preprint arXiv:2103.15691, 2021. URL https://doi.org/10.
48550/arXiv.2103.15691. Submitted on 29 Mar 2021 (v1), last revised 1 Nov 2021 (this version,
v2). 2

Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zisserman. Frozen in time: A joint video and image encoder
for end-to-end retrieval, 2022. URL https://arxiv.org/abs/2104.00650. 21

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and Karsten
Kreis. Align your latents: High-resolution video synthesis with latent diffusion models, 2023. URL https:
//arxiv.org/abs/2304.08818. 3

Benjamin Bross, Ye-Kui Wang, Yan Ye, Shan Liu, Jianle Chen, Gary J Sullivan, and Jens-Rainer Ohm.
Overview of the versatile video coding (vvc) standard and its applications. IEEE Transactions on Circuits
and Systems for Video Technology, 31(10):3736–3764, 2021. 20

Duygu Ceylan, Chun-Hao Paul Huang, and Niloy J. Mitra. Pix2video: Video editing using image diffusion,
2023. URL https://arxiv.org/abs/2303.12688. 6

Haoran Chen, Jianmin Li, Simone Frintrop, and Xiaolin Hu. The msr-video to text dataset with clean anno-
tations. Computer Vision and Image Understanding, 225:103581, December 2022. ISSN 1077-3142. doi:
10.1016/j.cviu.2022.103581. URL http://dx.doi.org/10.1016/j.cviu.2022.103581. 7

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James Kwok,
Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-α: Fast training of diffusion transformer for photorealistic
text-to-image synthesis, 2023. URL https://arxiv.org/abs/2310.00426. 3

Shoufa Chen, Mengmeng Xu, Jiawei Ren, Yuren Cong, Sen He, Yanping Xie, Animesh Sinha, Ping Luo, Tao
Xiang, and Juan-Manuel Perez-Rua. Gentron: Diffusion transformers for image and video generation, 2024.
URL https://arxiv.org/abs/2312.04557. 3

Loı̈c Dehan, Wiebe Van Ranst, Patrick Vandewalle, and Toon Goedemé. Complete and temporally consistent
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Supplementary Materials

Figure S.1: Qualitative results for our proposed MotionAura. The corresponding videos can be found by
clicking on the link.
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A 10 SECOND GENERATED SAMPLES

Figure S.2: Click here to see the video. Figure S.3: Click here to see the video.

Figure S.4: Click here to see the video. Figure S.5: Click here to see the video.

Figure S.6: Click here to see the video.
Figure S.7: Click here to see the video.
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Figure S.8: 3D-MBQ-VAE architecture.

B 3D-MBQ-VAE

B.1 3D-MBQ-VAE ARCHITECTURE

Figure S.8 shows the 3D-MBQ-VAE (Mobile Inverted Vector Quantization Variational Autoen-
coder) architecture designed to efficiently encode and decode video data while utilizing both mobile
inverted bottleneck blocks and vector quantization techniques. The MBQ-VAE framework is divided
into two main parts: the encoder and the decoder, with quantization and sampling in between.

Encoder The encoder takes an input video with dimensions B×C×N ×H×W , where B is the
batch size, C is the number of channels, and N ×H ×W represents the spatiotemporal dimensions
(i.e., frames, height, and width). The encoding begins with a Conv3D block that captures spatiotem-
poral features using a 3D convolution with a kernel size of 1×3×3, followed by a stride of 1×2×2
to reduce spatial resolution while expanding the channel depth (e.g., from 3 to 64 channels). The
encoder then applies multiple 3D-MB Conv blocks (Mobile Inverted Conv Blocks) to capture com-
plex features using depthwise separable convolutions, maintaining computational efficiency. These
blocks are interspersed with Inception-Fused-MB Conv blocks, which improve feature extraction
by combining multiple filter sizes and dimensions, enabling multi-scale processing.

At various stages, downsampling is performed via strided 3D convolutions to reduce the spatial and
temporal dimensions further while increasing channel depth, helping the network focus on abstract,
high-level features. This progression continues until the latent representation is compressed into a
small-dimensional vector using a final Conv3D block. This compressed representation is passed to
the quantization layer, where vector quantization is applied to discretize the latent variables for use
in the VQ-VAE.
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B.1.1 DECODER

The decoder mirrors the encoder but in reverse, beginning with vector sampling from the quantized
latent space. It starts with an initial Conv3D block to upsample the channels from the quantized la-
tent vector. The network then proceeds through several 3D-MB Conv blocks and Inception-Fused-
MB Conv blocks, gradually increasing the spatial resolution via Upsampling layers. Combined
with inverted convolution blocks, these layers allow the decoder to reconstruct fine-grained details
from the compressed latent vector.

The upsampling process continues in steps, restoring the spatial and temporal dimensions while
reducing the channel depth to match the input dimensions. The final layer of the decoder uses
a Conv3D Transpose operation to transform the latent representation back to the original input
resolution, ensuring the correct number of channels is maintained for video reconstruction.

B.1.2 KEY FEATURES

• Mobile Inverted Bottleneck Convolutions: The use of 3D-Mobile Inverted Bottleneck
(MB) Conv blocks enables the model to achieve high efficiency by expanding and con-
tracting the number of channels at different stages while preserving critical features through
depthwise separable convolutions.

• Inception-Fused Convolutions: By incorporating multiple kernel sizes in the Inception-
Fused blocks, the architecture can process multi-scale spatial and temporal features, im-
proving video compression and reconstruction quality.

• Vector Quantization: The quantization step allows for discretizing the latent space, which
is critical for VQ-VAE models to perform learned compression, making this architecture
suitable for generative tasks and compression with high efficiency.

MBQ-VAE is an efficient and scalable video processing architecture, leveraging mobile inverted
convolutional blocks and vector quantization to balance computational efficiency with high-quality
reconstruction of video data. This makes it well-suited for video compression, generation, and
reconstruction tasks.

B.1.3 MOBILE-INVERTED 3D CONV BLOCK

The 3D Mobile Inverted Convolution (3D-MB Conv) Block plays a crucial role in our VQ-VAE
network by enabling efficient spatiotemporal feature extraction with reduced computational com-
plexity. This block begins with a 3D convolutional layer that maps from a higher dimensional input
space C ′ to the desired channel dimension C, utilizing a 3× 3× 3 kernel with padding to maintain
spatial and temporal resolution. The feature maps are then expanded using a pointwise 3D convo-
lutional block from C to 4C, enhancing the feature representation without significantly increasing
computation. A 3D Squeeze-and-Excitation (SE) layer follows, which adaptively recalibrates the
channel importance, improving the model’s sensitivity to informative spatiotemporal features. Next,
a depthwise separable 3D convolution applies a 3× 3× 3 kernel to each feature map independently,
maintaining 4C channels and effectively reducing computation compared to standard convolutions.
Finally, a 3D convolutional block reduces the channel dimension back from 4C to C, ensuring that
the block output is consistent with the input dimensionality. With its inverted residual connections
and depthwise convolutions, this overall structure enhances efficiency in capturing hierarchical spa-
tiotemporal patterns, making it highly suitable for the reconstruction and compression tasks in our
VQ-VAE network.

B.1.4 INCEPTION-FUSED MB CONV BLOCK

The 3D Inception-Fused-MB Conv Block is a sophisticated convolutional module designed to effi-
ciently capture both spatial and temporal features in video data, commonly used in tasks like Video
VQ-VAE (Vector Quantized Variational Autoencoder) shown in Figure S.8. This block employs an
Inception-style structure with three parallel 3D convolution paths, each with different kernel config-
urations (e.g., 3 × 3 × 1, 3 × 1 × 3, and 1 × 3 × 3) to capture multi-scale spatiotemporal patterns
in various dimensions. Each branch is followed by a depthwise separable 3D-MobileBlock (MB-
Conv) that reduces computational complexity while maintaining efficiency. The outputs of these
paths are concatenated, allowing the network to fuse multi-scale features, which are then processed
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by a final 3D convolutional block. This design enables efficient handling of complex video repre-
sentations in VQ-VAEs, optimizing the model’s ability to compress and reconstruct video sequences
while preserving key spatial and temporal information. We perform temporal downsampling within
the 3D-MBQ-VAE encoder at specific stages. Temporal downsampling is applied by a factor of 2 at
the 6th block (Downsampling Block) and again by a factor of 2 at the 9th block, resulting in a total
downsampling factor of 4 along the temporal dimension.

B.2 ADDITIONAL ABBLATION STUDIES FOR 3D-MBQ VAE

B.2.1 IMPACT OF VARYING CODEBOOK SIZES ON VIDEO RECONSTRUCTION

We conducted a comprehensive ablation study analyzing the effects of different codebook sizes,
embedding dimensions, and quantization techniques on video reconstruction quality. In our default
configuration, we employ the Lookup-Free Quantization (LFQ) method from MAGVIT-v2, utilizing
an embedding size of d = 8 and a codebook vocabulary size of C = 12, 800.

Table 7: Impact of codebook size (C) on video reconstruction (d= Embedding Size)

COCO-Val WebVid-Val

Method Of Quantization C d Time (ms) PSNR/ SSIM/ LPIPS PSNR/ SSIM/ LPIPS

VQ 256 512 35 29.96/ 82.21/ 0.133 30.01/ 81.89/ 0.1441
Gumbal Quantization 256 512 23 29.83/ 81.98/ 0.140 29.78/ 80.56/ 0.1511

VQ 1024 256 47 30.26/ 82.54/ 0.130 30.72/ 81.09/ 0.1453
VQ 4096 256 56 30.72/ 83.11/ 0.127 31.03/ 82.22/ 0.1331
VQ 8000 128 69 30.45/ 82.19/ 0.144 30.98/ 83.36/ 0.1299
LFQ 8000 16 20 31.08/ 84.34/ 0.112 31.98/ 85.04/ 0.1103

LFQ(Default) 12800 8 22 31.22/ 84.78/ 0.092 32.09/ 85.78/ 0.1081

The primary reasons for adopting LFQ over traditional Vector Quantization (VQ) methods are:

1. Larger Vocabulary with Smaller Embedding Size: LFQ enables the use of a considerably
larger codebook vocabulary while maintaining a compact embedding size. This approach enhances
the model’s expressive power without significantly increasing computational costs. By leveraging
a larger vocabulary with smaller embeddings, the model benefits from higher codebook utilization,
a strategy that has been shown to improve performance Sun et al. (2024c) for the task of image
reconstruction.

2. Improved Efficiency: LFQ is faster and more optimized than standard VQ methods, which is
beneficial for processing high-resolution video data.

B.2.2 RESULTS WITH RANDOM MASKING AND FULL-FRAME MASKING

For random spatial masking, we employ a “cosine scheduling” strategy, progressively varying the
masking ratio from 20% to 60% during training. This scheduling helps the model gradually adapt
to different levels of partial observations, thereby enhancing robustness in spatial feature extrac-
tion. For frame masking, we similarly utilize cosine scheduling, adjusting the masking ratio from
10% to 50%. This approach ensures a balanced training dynamic where the model is exposed to
varying levels of temporal information occlusion, ultimately aiding in better temporal coherence
and reconstruction quality. These masking strategies are designed to incrementally challenge the
model, helping it learn to reconstruct meaningful content under different masking conditions and
thus improving overall generalization.
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Table 8: Ablation results with random masking and full-frame masking

COCO-Val WebVid-Val

Methods PSNR/ SSIM/ LPIPS PSNR/ SSIM/ LPIPS

W/o Random Masking 29.17/ 81.92/ 0.111 28.78/ 82.29/ 0.1334
W/o Full Frame Masking 30.09/ 82.22/ 0.102 30.11/ 83.01/ 0.1404

W/o Random Masing and Full frame Masking 28.82/ 80.77/ 0.124 26.77/ 79.92/ 0.1552
With Random Masing and Full frame Masking 31.22/ 84.78/ 0.092 32.09/ 85.78/ 0.1081

Table 8 shows the results with random masking and full-frame masking. These results underscore
the significance of both random masking and fully masked frames in enhancing the model’s ability
to predict frame indices effectively.

The random masking strategy compels the model to infer missing spatial information from partial
observations within each frame, effectively enhancing its ability to capture spatial dependencies
and structures. By being trained on randomly masked data, the model learns to reconstruct or pre-
dict spatial details based on contextual cues, leading to stronger spatial representations. Conversely,
supervision for fully masked frame index prediction requires the model to determine the correct tem-
poral order of completely obscured frames, which enhances temporal consistency. This task forces
the model to understand and model temporal dynamics across frames, as it must rely on learned
temporal patterns to accurately predict the positions of fully masked frames within the sequence.

B.2.3 VIDEO COMPRESSION RESULTS ON MCL-JCV DATASET

We conducted a zero-shot inference on 30 videos from the MCL-JCV dataset (Wang et al. (2016)),
resized to a resolution of 640 x 360, which aligns with the experimental setup used by MAGVIT Yu
et al. (2023a) and MAGVIT-v2Yu et al. (2023c) . We evaluate compression quality using standard
distortion metrics (LPIPS, PSNR, and SSIM) at a bit rate of 0.0384 bpp (bits per pixel). The results
are shown in Table 9. At equivalent bit rates, traditional codecs such as HEVC Sullivan et al.
(2012) and VCC Bross et al. (2021) may sometimes achieve finer local detail rendering compared to
3D-MBQ-VAE. However, they often introduce block artifacts that, while detrimental to perceptual
quality, are not adequately captured by PSNR and SSIM. This is reflected in the LPIPS metric.

Table 9: Video compression results on MCL-JCV dataset

Methods PSNR SSIM LPIPS

HEVC 30.1 0.943 0.199
VCC 32.65 0.966 0.153

MAGVIT 23.7 0.846 0.144
MAGVIT-v2 26.18 0.894 0.104

3D-MBQ-VAE (Ours) 29.09 0.922 0.089

C DATASETS

The following section discusses the datasets used for pretraining and training our proposed models.
The dataset selection was based on the complexity and nature of each task. We also discuss the
process of caption regeneration for the WebVid-10M dataset and the curation of a new dataset for
the task of Sketch-based Video Inpainting.

C.1 DATASETS USED FOR 3D MBQ-VAE PRE-TRAINING

For pre-training our 3D MBQ-VAE, we use the YouTube 100M Hershey et al. (2017) dataset. The
large number of videos and the comprehensive pretraining help our 3D-MBQ-VAE learn an efficient
latent representation of video frames in a reduced spatiotemporal domain.
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Figure S.9: For dataset curation for the downstream task of sketch-guided video inpainting, captions
have been generated using Video-LLaVA-7B, and the corresponding sketches were obtained using
CLIP-based label matching

C.2 T2V MODEL TRAINING

For training the diffusion model, we use the Webvid-10M Bain et al. (2022) with text as the con-
dition. We find that the original text captions in the Webvid-10M dataset do not provide adequate
guidance for diffusion pretraining purposes (Table 3). Hence, we re-caption the entire dataset with
much more detailed prompts for every video. The corresponding text pairs given as conditions for
diffusion pretraining are generated by LLaVA Next- 34B Li et al. (2024). In both cases, we had
an 80-20 split between the training and test set. The following prompt was given to the LLM for
regenerating the textual description of the video:

Prompt

Explain in detail about the given video with:

• Focus on the primary subject and any important actions
or interactions.

• Highlight key details, such as distinctive features,
expressions, or objects.

• Describe the setting and environment, noting any
relevant background elements.

• Convey the mood or atmosphere of the scene.

• Combine these elements into a clear, concise caption
that accurately represents the image’s content and
context.

C.3 PREPROCESSING TO DEAL WITH THE WATERMARKS IN THE WEBVID10M DATASET

To address the issue of watermarks in the WebVid-10M dataset and ensure that our generated videos
do not exhibit these artifacts, we implemented a preprocessing strategy involving algorithmic in-
painting methods. Specifically, we identified and masked the regions in each video frame that con-
tained watermarks. We then applied inpainting techniques to these masked areas to reconstruct the
underlying content, effectively removing the watermarks while preserving the overall visual quality
of the videos. Although this process may introduce minor visual artifacts, it prevents the model
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from learning and replicating watermark patterns during training. Consequently, our model is able
to generate clean, watermark-free videos.

Furthermore, to enhance the resolution and temporal consistency of the preprocessed videos, we
employed the StableVSR Rota et al. (2024) video super-resolution model. This step refines visual
details and mitigates any reduction in quality resulting from the inpainting process, ensuring that the
dataset used for training is of high quality and temporally consistent.

C.4 TRAINING FOR SKETCH GUIDED VIDEO INPAINTING TASK

For the downstream task of Sketch Guided Video Inpainting, we required a dataset containing the
videos, text prompts, binary masks, and corresponding object sketches. To our knowledge, no such
open-source dataset satisfies all our requirements. Hence, we curated our own dataset to fit our
requirements. Figure S.9 shows the entire process of how we curate the dataset for the downstream
task using two datasets primarily used in the video inpainting research community: Youtube-VOS
Xu et al. (2018) and DAVIS Perazzi et al. (2016).

D IMPLEMENTATION DETAILS

We now present the implementation details and parameters used in our study.

D.1 HYPERPARAMETERS OF VARIOUS TECHNIQUES

To ensure a fair comparison, we utilized the respective hyperparameters recommended in the orig-
inal papers for each method. Table 10 outlines the specific hyperparameters used for training and
inference across all baseline methods and our proposed approach.

Table 10: Hyperparameters of various techniques

Training H-Parameters SimDA AnimateDiff CogVideoX-5B MotionAura

Learning Rate 1.00E-05 1.00E-04 1.00E-04 1.00E-05

Gradient Accumalation Steps 4 4 8 8

Batch Size Per GPU 8 8 2 3

Optimizer AdamW AdamW AdamW AdamW

Lr-Schedular Linear Cosine Cosine Cosine

Epochs 35 30 40 30

Noise Schedular DDPM DDPM FlowMatching VQDiffusionScheduler

Diffusion Steps 500 500 100 30

Training Precision Float16 Float16 BFloat16 BFloat16

GPUs 4 x 8 A100 4 x 8 A100 8 x 8 A100 6 x 8 A100

Text Encoders T5-XL CLIP T5-XXL T5-XXL

Time Embedding Size 256 256 512 512

Gradient Clipping 1 1.5 2.5 2.5

Max Text Length 77 128 200 256

Embedding Size 1024 1024 4096 4096

CFG Scale 8.5 8 10.5 10

Positional Encodings Sinusoidal Sinusoidal RoPE RoPE
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D.2 IMPLEMENTATION DETAILS OF 3D-MBQ-VAE PRE-TRAINING

We train our 3D MB-VAE model on the YouTube100M video dataset using four different configu-
rations of frames and resolutions. These configurations are: (1) 32 frames at 256 × 256 resolution,
(2) 16 frames at 512× 512 resolution, (3) 32 frames at 1280× 720 resolution, and (4) 48 frames at
640× 480 resolution. The corresponding batch sizes for these configurations are 8, 4, 2, and 4, with
sampling ratios of 40%, 10%, 25%, and 25%, respectively. We apply gradient accumulation steps
of 8 across all configurations.

The AdamW optimizer is employed with a base learning rate of 1× 10−4 with cosine learning rate
decay. To reduce the risk of numerical overflow, we train the 3D MB-VAE model in float32
precision. The training is performed across 4 nodes, each equipped with 8 NVIDIA A100 GPUs (80
GB each), for a total of 800,000 training steps.

D.3 IMPLEMENTATION DETAILS OF DIFFUSION PRETRAINING

We train our denoiser on the Webvid-10M dataset for diffusion model pretraining. The AdamW
optimizer uses a learning rate of 1 × 10−5 with linear learning rate decay. During training, we
explore multiple frame settings: 16, 32, 48, and 64 frames. For 16-frame training, we use a batch
size of 512 and train for 120,000 iterations. For 32, 48, and 64 frames, the batch sizes are 256, 256,
and 128, respectively, with corresponding training durations of 120,000 iterations for 32 frames,
150,000 iterations for 48 frames, and 190,000 iterations for 64 frames. This training is conducted on
8 nodes, each equipped with 8 NVIDIA A100 GPUs (80 GB memory per GPU). We utilize dynamic
resolution and aspect ratio adjustments during training to enhance the model’s robustness to varying
input sizes.

D.4 IMPLEMENTATION DETAILS OF SKETCH-BASED INPAINTING TRAINING

For the downstream tasks, we fine-tune the model using LoRA (Low-Rank Adaptation) parameters
specifically for the K and Q projection weights. The training is carried out with a batch size of 8 per
GPU at a resolution of 256 × 512. This stage is performed on 2 nodes, each with 8 NVIDIA A100
GPUs (80 GB memory per GPU). The training includes 2,000 iterations for the VOS dataset and
2,600 iterations for the DAVIS dataset. We employ the Adam optimizer with an initial learning rate
of 2× 10−4, following a cosine decay schedule. Gradient accumulation steps are set to 8 to manage
memory and computational load, enabling efficient training through mixed-precision techniques.

D.5 SETTINGS FOR JOINT TRAINING WITH VIDEO AND IMAGES

For joint training with video and images, we used the JDB Sun et al. (2024a) dataset, which is a
large-scale image dataset featuring around 4 million high-resolution images from Midjourney. We
set N ≥ 16 for videos or N = 1 for images to have a setup akin to W.A.L.T Gupta et al. (2025).

D.6 USE OF ROPE VS SINUSOIDAL POSITIONAL EMBEDDINGS

The use of RoPE (Rotary Positional Embeddings) in the attention layers of the denoising network
shows a faster convergence, as seen in Figure S.10. RoPE (Rotary Positional Embeddings) is a type
of positional encoding designed for transformer models to encode relative position information flex-
ibly. RoPE embeddings support larger context lengths, enabling the model to generalize better over
varying input sizes. Since they capture positional relationships based on rotation, the transformer
can effectively handle and reason over sequences of greater lengths. This is handy when dealing
with high-dimensional video frames, thus helping the model learn effectively.

E COMPARATIVE RESULTS WITH DISCRETE AND CONTINUOUS SPACE

We now present our motivation for transitioning the diffusion model paradigm from continuous
space to discrete space.
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Figure S.10: RoPE embeddings show faster convergence demonstrating superior learning compared
to Sinosoidal embeddings

1. Better Representation through Discrete Quantization: By moving to a discrete latent space,
we are able to leverage powerful vector quantization approaches, which help in capturing the essen-
tial features of high-dimensional data more efficiently. The discrete representation obtained from
quantization often yields better compression and a more structured representation of complex data,
which helps the diffusion process to operate over a more compact and semantically meaningful
latent space. This can lead to improved training stability and generation quality, especially for high-
dimensional domains such as video.

2. Reduction in Computational Complexity: Traditional diffusion models applied in continuous
space can require substantial computation, particularly during inference, as they operate directly on
high-dimensional latent representations. By quantizing the data into discrete tokens, we can reduce
the dimensionality and the complexity of the diffusion process. This makes the inference more
efficient without compromising the model’s expressiveness. Recent works, such as MAGVIT Yu
et al. (2023a), have shown that combining discrete latent space with the diffusion framework can
yield efficient and high-quality results for complex generative tasks, such as video synthesis.

3. Alignment with Discrete Decoders: Utilizing a discrete latent space allows us to align more
effectively with certain discrete decoder architectures, such as transformers, which operate over
token sequences. This leads to improved synergy between the encoder-decoder framework, where
the encoder maps the input data into discrete tokens and the decoder operates over those tokens
to generate the output. The performance gains we observed were not solely due to the encoder
being more performant in this setting, but also due to the effective interaction between discrete
representation and token-based decoders.

4. Enhanced Control and Semantic Richness: Discrete tokens are more interpretable and often
exhibit greater semantic richness, which can be beneficial for downstream generative tasks where
controllability and interpretability are desirable. This is particularly advantageous for tasks like text-
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to-video generation or inpainting based methods., where mapping high-level semantics to the gener-
ative model plays a crucial role. Recent works, such as Palette Saharia et al. (2022), VQ-Diffusion
Gu et al. (2022), and Sketch-based Video Inpainting Sharma et al. (2024), have successfully em-
ployed discrete latent spaces, demonstrating the effectiveness of this approach across a variety of
generative tasks.

Note that Lmfi is used to compute the probability of the index corresponding to a completely masked
frame. It functions as a standard discriminative loss, specifically equivalent to − log(Pθ(Vi)), where
Vi represents the masked frame. This loss term is crucial for ensuring that the model can accurately
predict and reconstruct the masked frames by providing a probabilistic grounding.

Table 11 compares the results of discrete space with continuous space. Notice that the results of
discrete space are superior. Our findings further indicate a significant improvement when Lmfi loss
is applied in continuous latent space, demonstrating its effectiveness in enhancing the model’s per-
formance.

Table 11: Comparison between discrete and continuous spaces

COCO-Val WebVid-Val

Methods PSNR/ SSIM/ LPIPS PSNR/ SSIM/ LPIPS

Discrete space 31.22/ 84.78/ 0.092 32.09/ 85.78/ 0.108
Continous Space (w/o Lmfi) 28.27/ 82.29/ 0.155 29.01/ 80.45/ 0.166

Continous Space 31.09/ 83.96/ 0.109 31.62/ 85.05/ 0.112

F SKETCH-GUIDED VIDEO GENERATION

F.1 CONDITION INJECTION FRAMEWORK

Given a masked video, the primary objective of our approach is to reconstruct the unmasked frames
using the surrounding video context, guided by sketch conditions. The inpainting process begins
by encoding the masked video into a compact latent space. This encoding step ensures the efficient
capture of essential information about the video, facilitating robust modeling of temporal and spatial
relationships. Simultaneously, the sketch conditioning is encoded into a complementary latent space,
enabling the framework to effectively integrate external guidance.

During fine-tuning, the model is trained with a combination of the masked video, its unmasked
counterpart, and the corresponding sketch conditions. This multi-input paradigm allows the model
to learn the nuances of filling masked regions in alignment with both the video context and the
provided sketches. Our hypothesis is that incorporating external conditioning improves the model’s
ability to interpret masked regions, enabling precise and context-aware attention over these regions.
This approach aims to refine the synthesis of missing areas while adhering to the desired object
shapes and poses specified by the sketches.

To address the potential challenge of catastrophic forgetting during continual or lifelong learning,
we integrate a Low-Rank Adaptation (LoRA) module into the fine-tuning process. LoRA adapters
are introduced as lightweight parameter-efficient layers, allowing the model to adapt to new tasks
without full end-to-end fine-tuning. This decision is grounded in the need for scalability and the
prevention of knowledge erosion from previously learned tasks. By incorporating LoRA adapters,
we aim to achieve adaptability comparable to modern language models while maintaining robustness
in learned representations.

The placement of LoRA adapters is determined using Elastic Weight Consolidation (EWC), a tech-
nique that identifies model layers with higher activation gradients and step gradients. By targeting
these layers, the adapter network maximizes its effectiveness, ensuring that the critical components
of the model’s architecture are adapted with precision and efficiency.

During inference, the model utilizes the masked video and sketch conditioning as inputs. The en-
coded representations are processed by a generative network to predict and reconstruct missing
regions. The generative network ensures temporal consistency across frames while aligning the syn-
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thesized content with the sketches, resulting in video outputs that maintain fidelity to the original
content and the provided guidance.

In summary, while the condition injection framework may appear straightforward, our design in-
corporates several nuanced techniques, including efficient latent space encoding, fine-tuning with
LoRA adapters, and strategic application of EWC-based insights. These innovations collectively
enhance the model’s ability to perform sketch-guided video inpainting effectively and adaptively.

F.2 USE OF LORA ADAPTORS FOR PEFT

LoRA adaptors are beneficial in Parameter-Efficient Fine-Tuning (PEFT) because they significantly
reduce the number of parameters that must be trained while maintaining the model’s performance.
In large-scale models, fine-tuning all the parameters is computationally expensive. LoRA adaptors
introduce trainable, low-rank matrices into the model layers, which allows only a small subset of
parameters to be updated during training. This drastically reduces the memory and computational
overhead required for fine-tuning, making it more feasible to adapt large models to new tasks using
limited data and resources. By optimizing only a small fraction of the parameters, LoRA adaptors
also help prevent overfitting and make the fine-tuning process more efficient without compromising
model accuracy. As our model is very large, thoroughly training it from scratch for every down-
stream task does not make sense. Hence, we use the LoRA adaptors in our Spectral Transformer
to adapt to the downstream task. Fig S.11 shows the details of our Spectral Transformer with the
LoRA adaptors. Two types of LoRA have been used as shown in Fig S.11. One is the Attention

OUTPUT

2D
 F

F
T

2D
 F

F
T

2D
 F

F
T

2D
 F

F
T

2D
 F

F
T

2D
 F

F
T

+

Q
-P

ro
j

V-
Pr

oj
K-

Pr
oj

Q
-P

ro
j

V-
Pr

oj
K-

Pr
oj

Po
in

t 
W

is
e 

F
F

+

In
ve

rs
e 

F
F
T

In
ve

rs
e 

F
F
T

A
dL

N

Se
lf 

A
tte

nt
io

n

C
ro

ss
 A

tte
nt

io
n

Text
Embeddings

Low Rank Adaptors Low Rank Adaptors

Low Rank Adaptors Low Rank Adaptors

Low Rank Adaptors

A
dL

N

A
dL

N

A
dL

N

(t,FPS)

Rope Embeddings

Figure S.11: Use of LoRA in the above helps to efficiently fine-tune the above spectral transformer
for the downstream task while only using a fraction of the number of trainable parameters.

LoRA, which is applied in parallel to the Attention Blocks. This LoRA is applied only to the Key
and the Query vectors. The reason for applying LoRA here is to ensure the base model retains infor-
mation from previously trained tasks. LoRA is not applied to the Value vector due to Elastic Weight
Compression. Elastic Weight Compression identifies the most critical parameters the model must
remember to learn a task effectively. Using Elastic Weight Compression, we find that the parame-
ters of the Key and Query are the most crucial when adapting to a new task, which is why we apply
LoRA to them.

The second type of LoRA used is the Feed Forward LoRA, applied sequentially to the final Pointwise
Feed Forward Layer. The Feed Forward Layer is a highly dense network, and if LoRA were used
in parallel to this layer, followed by concatenation with its output, it would not result in meaningful
representations. The sequential application ensures that the model learns effective and compact
representations.

F.3 SAMPLE SKETCH-GUIDED VIDEO GENERATION RESULTS

Figures S.12 and S.13 show sample sketch-guided video generation results of various techniques.
Given the inpainting video results, it is not hard to see that our model achieves the best results in
terms of temporal consistency and preserving the inpainted object throughout the frames.

G TEXT-GUIDED VIDEO GENERATION
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Figure S.12: Sketch-guided video generation results for a dolphin sketch

Figure S.13: Sketch-guided video generation results for a frog sketch

G.1 ZERO-SHOT RESULTS ON UCF-101 DATASET

To highlight the generalization capabilities of our model across diverse datasets, we present its per-
formance on the UCF-101 dataset, as summarized in Table 12. The results clearly demonstrate the
superiority of MotionAura compared to prior works. Specifically, the table showcases the perfor-
mance of various methods using different schedulers during inference, paired with their respective
preferred CFG (Classifier-Free Guidance) scales. Notably, MotionAura-L achieves impressive re-
sults while requiring only 10 steps, making it significantly faster than other baseline methods. This
efficiency underscores the practical advantages of MotionAura-L in scenarios demanding high-speed
inference without compromising performance.
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Table 12: Zero-shot results on UCF-101 dataset

Methods Scheduler CFG Scale Steps FVD

SimDA EulerAncestralDiscreteScheduler 8.5 30 300
AnimateDiff DPMSolverMultistepScheduler 8.0 30 277

CogVideoX-5B EulerAncestralDiscreteScheduler 10.5 25 239
MotionAura-L VQDiffusionScheduler 8.5 10 219

G.2 SAMPLE TEXT-GUIDED VIDEO GENERATION RESULTS

Figures S.1 to S.7, and Figures S.14 to S.20 further demonstrate the robustness of our model on
different tasks.
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Figure S.14: Abstract sculptures (Click here to see the video.)
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Figure S.15: Cinematic styles (Click here to see the video.)
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Figure S.16: Graphic novel styles (Click here to see the video.)
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Figure S.17: Low Polly results (Click here to see the video.)
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Figure S.18: Sci-fi results (Click here to see the video.)
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Figure S.19: Thriller results (Click here to see the video.)
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Figure S.20: Macro style results (Click here to see the video.)
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