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Abstract001

The development of speech foundation models002
(SFMs) like Whisper and SeamlessM4T has003
significantly advanced the field of speech pro-004
cessing. However, their closed nature–with in-005
accessible training data and code–poses major006
reproducibility and fair evaluation challenges.007
While other domains have made substantial008
progress toward open science by developing009
fully transparent models trained on open-source010
(OS) code and data, similar efforts in speech011
remain limited. To fill this gap, we introduce012
FAMA, the first family of open science SFMs013
for English and Italian, trained on 150k+ hours014
of OS speech data. Moreover, we present a015
new dataset containing 16k hours of cleaned016
and pseudo-labeled speech for both languages.017
Results show that FAMA achieves competitive018
performance compared to existing SFMs while019
being up to 8 times faster. All artifacts, includ-020
ing code, datasets, and models, will be released021
under OS-compliant licenses, promoting open-022
ness in speech technology research.023

1 Introduction024

The development of speech foundation models025

(SFMs) has significantly advanced speech process-026

ing in the last few years, particularly in areas such027

as automatic speech recognition (ASR) and speech028

translation (ST). Popular SFMs such as OpenAI029

Whisper (Radford et al., 2023) and Meta Seam-030

lessM4T (Barrault et al., 2023) have been released031

to the public in various sizes and with extensive032

language coverage. However, these models com-033

pletely lack comprehensive accessibility to their034

training codebases and datasets, hindering their re-035

producibility and raising concerns about potential036

data contamination (Dong et al., 2024), thereby037

complicating fair evaluation.038

In other domains, multiple efforts towards build-039

ing models that are more accessible, reproducible,040

and free from proprietary constraints have been041

made (BigScience Workshop et al., 2022; Bider- 042

man et al., 2023; Liu et al., 2023; Sun et al., 2024; 043

Deitke et al., 2024; Dai et al., 2024; Martins et al., 044

2024). For instance, the OLMO project (Groen- 045

eveld et al., 2024) has demonstrated the feasibility 046

of training large language models (LLMs) using 047

only open-source (OS) data (Soldaini et al., 2024), 048

realizing an open-science1 system (White et al., 049

2024) for text processing. However, such compre- 050

hensive approaches are still lacking in the field of 051

speech processing. 052

Recent works towards this direction include 053

OWSM (Peng et al., 2023) and its subsequent ver- 054

sions (Peng et al., 2024). OWSM, whose model 055

weights and the codebase used for the training are 056

released open source, reproduces a Whisper-style 057

training using publicly available data. Despite rep- 058

resenting a valuable initiative toward building an 059

open-science system, there is still a step missing for 060

creating the first SFM of this kind: leveraging only 061

data that is not only publicly available but also re- 062

leased under an OS-compliant license (Gaido et al., 063

2024a). Such effort would allow users complete 064

access and control over the data used at every stage 065

of the scientific process, promoting reproducibil- 066

ity (Belz et al., 2023), fair evaluation (Balloccu 067

et al., 2024), and the ability to build upon prior 068

research without any barriers (Chesbrough, 2015). 069

Besides transparency and collaboration, these ef- 070

forts also foster users’ trust by ensuring that data is 071

not leveraged to build tools that can be used under 072

conditions/purposes (e.g., commercial) for which 073

the data was not intended (White et al., 2024). 074

To fill this gap, we create FAMA,2 the first fam- 075

ily of large-scale open-science SFMs for English 076

1Open science involves ensuring transparency and accessi-
bility at all stages of the scientific process (Vicente-Saez and
Martinez-Fuentes, 2018), including publishing OS research
papers, data, and code needed to replicate the research.

2Fama (from the Latin “fari” meaning “to speak”) is the
personification of the public voice in Roman mythology.
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and Italian trained on over 150k hours of exclu-077

sively OS-compliant speech data. We leverage both078

already available OS datasets and create a new col-079

lection of ASR and ST psuedolabels for Italian and080

English comprising more than 16k hours of OS-081

compliant speech, along with automatically gen-082

erated Italian and English translations for an addi-083

tional 130k+ hours of speech. We also detail train-084

ing and evaluation procedures and provide full ac-085

cess to training data to have complete control of the086

model creation and avoid data contamination issues.087

FAMA models achieve remarkable results, with088

up to 4.2 WER and 0.152 COMET improvement089

on average across languages compared to OWSM090

and remaining competitive in terms of ASR perfor-091

mance with the Whisper model family while being092

up to 8 times faster. All the artifacts used for real-093

izing FAMA models, including codebase, datasets,094

and models themself will be released, upon paper095

acceptance, under OS-compliant licenses, promot-096

ing a more responsible creation of models in our097

community. Our approach would not only facilitate098

fair evaluation and comparison of SFMs but also099

encourage broader participation in speech technol-100

ogy development, leading to more inclusive and101

diverse applications.102

2 The FAMA Framework103

Training and Evaluation Data. In compliance104

with the open-science ideology, we train and test105

our models only on OS-compliant data. The train-106

ing set comprises both public OS datasets (Gaido107

et al., 2024a), and new pseudolabels, detailed in108

Appendix A. The resulting ASR train set comprises109

152k hours, 128k for English (en) and 24k for Ital-110

ian (it), and 174k hours for ST, 150k for en-it, and111

24k for it-en. To validate and test, we use gold-112

labeled data. ASR evaluation is conducted on Com-113

monVoice, MLS, and VoxPopuli, with Common-114

Voice also serving as the validation set for both en115

and it. For translation, we use CoVoST2 for it-en116

and FLEURS dev and test sets for en-it.117

Model Architecture. FAMA models are two-118

sized encoder-decoder architectures, small and119

medium. Both models are composed of a Con-120

former encoder (Gulati et al., 2020) and a Trans-121

former decoder (Vaswani et al., 2017). FAMA122

small has 12 encoder layers and 6 decoder lay-123

ers while FAMA medium has 24 encoder layers and124

12 decoder layers. Our decision to use an encoder125

twice as deep as the decoder–unlike Whisper and126

OWSM, which have an equal number of encoder 127

and decoder layers–is driven by two key motiva- 128

tions: i) since autoregressive models perform mul- 129

tiple decoder passes during output generation, a 130

shallower decoder speeds up inference by making 131

each pass faster, and ii) since many approaches 132

integrate SFMs with LLMs by leveraging the en- 133

coder (Gaido et al., 2024b), a deeper encoder helps 134

preserve more of the SFMs processing capabilities 135

in such integrations. Each layer has 16 attention 136

heads, an embedding dimension of 1,024, and a 137

FFN dimension of 4,096. Full architectural specifi- 138

cations are provided in Appendix B. 139

Model Training and Evaluation. We adopt a 140

two-stage training pipeline: ASR pre-training fol- 141

lowed by multitask ASR+ST fine-tuning. For ASR 142

pre-training, we use the Noam learning rate sched- 143

uler (Vaswani et al., 2017). To address convergence 144

issues observed in larger speech models (Peng et al., 145

2024), we apply a modified warm-up strategy for 146

FAMA medium, as detailed in Appendix C. During 147

ASR+ST training, the model alternates between 148

ASR and ST targets, sampling ASR with probabil- 149

ity pASR=0.5. This value, along with the learning 150

rate lrS2, is selected based on validation perplex- 151

ity trends discussed in §3. To reduce instability in 152

larger models, we scale down the learning rate for 153

FAMA medium by an order of magnitude. ASR per- 154

formance is evaluated with word error rate (WER) 155

using the jiWER library3 with the text normalized 156

using Whisper normalizer4. ST performance is 157

evaluated using COMET (Rei et al., 2020) version 158

2.2.4, with the default Unbabel/wmt22-comet-da 159

model. Full hyperparameters, training, and evalua- 160

tion procedures are presented in Appendix C. 161

Terms of Comparison. As a first term of com- 162

parison, we use Whisper (Radford et al., 2023) 163

medium and large-v3 as the former is comparable 164

to FAMA medium in size, and the latter–trained 165

on over 4M hours–is the best model in the Whis- 166

per family. They are released under the Apache 167

2.0 license and thus have open weights. For both 168

ASR and ST, we also compare with SeamlessM4T 169

medium and v2-large covering ASR and both ST 170

language directions (Barrault et al., 2023). The 171

model is non-commercial, thus not open. We 172

also compare with OWSM v3.1 medium, the best 173

model in the OWSM family, covering both ASR 174

3https://pypi.org/project/jiwer/
4https://pypi.org/project/whisper-normalizer/
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and ST language directions and released open175

source (Peng et al., 2024).176

3 Results177

Pre-training and Catastrophic Forgetting.178

Catastrophic forgetting occurs when sequential179

training on multiple tasks or languages leads to per-180

formance degradation on earlier ones (McCloskey181

and Cohen, 1989; Kar et al., 2022). Since we182

follow a two-stage training setup, common in SFM183

development (Barrault et al., 2023), we analyze184

when forgetting arises during ASR+ST training.185

Figure 1 shows perplexity (ppl) curves over186

the first 100/500k steps of FAMA small under187

different learning rates (lrS2)5 and ASR sampling188

probabilities (pASR) (§2). Due to limited compute,189

we consider two sampling settings: pASR=0.5190

for equal ASR/ST training, and pASR=0.2 to191

emphasize the unseen ST task. From the curves,192

we observe that a learning rate (lrS2) of 1e-3 is too193

high to maintain good ASR performance while194

learning the new ST task. In both settings–boosting195

ST training (pASR=0.2) and balancing ASR and ST196

training (pASR=0.5)–we see a notable increase in197

ASR perplexity (up to +0.25), which translates to a198

3-4 WER drop across both languages. Crucially,199

this degradation is not recovered later in training.200

To avoid catastrophic forgetting in the early stages,201

we discard lrS2=1e-3 and adopt 1e-4 for the second202

stage. Looking at ASR sampling, we analyze203

the ppl curves after 500k steps (halfway through204

the second stage). With pASR=0.5, the ASR ppl205

slowly converges back toward the original value,206

while with pASR=0.2, it remains higher despite207

some improvement. Although pASR=0.2 yields208

slightly better ST perplexity (by ∼0.2), this does209

not translate into meaningful gains in downstream210

performance–only a marginal +0.005 COMET211

improvement on average. Meanwhile, the ASR212

degradation is more substantial, with ∼0.8 WER213

loss across both languages. We conclude that214

avoiding catastrophic forgetting during two-stage215

training requires evenly sampling ASR and ST216

targets in the second step.217

Comparison with Existing SFMs. In Table 1,218

we show the results for both ASR and ST of219

our FAMA models and SFMs presented in §2.220

For FAMA models, we provide the scores of the221

ASR-only model (FAMA-ASR), and of the final222

5Lower values of lrS2 (e.g., 1e-5) underperform and are
excluded.
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Figure 1: Average ASR and ST ppl up to 500k steps of
the training. Due to the evident worse results achieved
by using a lr of 1e-3, we stopped the training curves
after 100k steps. The black dashed line is the ppl of the
ASR model from which the training is started.

ASR+ST model, as well as the results obtained 223

through joint CTC rescoring. Looking at the re- 224

sults of FAMA-ASR, we observe that the medium 225

model outperforms the small one, with ∼0.8 WER 226

improvements on average, both with and without 227

the joint CTC rescoring. Compared to Whisper 228

medium, FAMA achieves better results with FAMA 229

medium outperforming Whisper by 4.4 WER on 230

en and 6.4 on it while having a similar number 231

of model parameters. Remarkable performance 232

is achieved by FAMA medium also compared to 233

OWSM v3.1 medium, with improvements of up to 234

1.1 WER on en and 7.3 on it, but also compared 235

to Whisper large-v3, where similar WER scores 236

are achieved. Instead, SeamlessM4T models, lever- 237

aging large pretrained models such as wav2vec- 238

BERT 2.0 (which is trained on 4.5 million hours) 239

and NLLB (which is trained on more than 43 bil- 240

lion sentences), still outperform FAMA, with the 241

v2-large scoring an incredibly low WER on Com- 242

monVoice also compared to a strong competitor as 243

Whisper large-v3. Looking at the ASR results 244

of the final FAMA models, we observe that the 245

WER remained almost unaltered compared to the 246

ASR-only model, as discussed before. Regarding 247

ST results, we notice that FAMA models outper- 248

form OWSM v3.1 medium, with an improvement 249

of up to 0.141 COMET by FAMA small and 0.152 250

by FAMA medium while still struggling to achieve 251
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Model #params
ASR (WER ↓) ST (COMET ↑)

CommonVoice MLS VoxPopuli AVG CoVoST2 FLEURS
en it en it en it en it it-en en-it

Whisper medium 769M 14.5 10.4 14.2 15.9 8.1 26.8 12.3 17.7 0.801 -
Whisper large-v3 1550M 11.2 6.5 5.0 8.8 7.1 18.8 7.8 11.4 0.825 -
OWSM v3.1 medium 1020M 11.9 12.5 6.6 19.3 8.4 24.0 9.0 18.6 0.636 0.337
SeamlessM4T medium 1200M 10.7 7.8 8.8 11.3 10.2 18.2 9.9 12.4 0.831 0.820
SeamlessM4T v2-large 2300M 7.7 5.0 6.4 8.5 6.9 16.6 7.0 10.0 0.852 0.855
FAMA-ASR small 475M 13.8 8.9 5.8 12.6 7.2 15.7 8.9 12.4 - -

+ joint CTC rescoring 13.9 8.9 5.8 12.4 7.0 14.6 8.9 12.0 - -
FAMA-ASR medium 878M 11.7 7.1 5.1 12.2 7.0 15.9 7.9 11.7 - -

+ joint CTC rescoring 11.7 7.0 5.1 12.2 7.0 14.6 7.9 11.3 - -
FAMA small 475M 13.7 8.6 5.8 12.8 7.3 15.6 8.9 12.3 0.774 0.807

+ joint CTC rescoring 13.6 8.5 5.8 12.8 7.2 14.8 8.9 12.0 0.777 0.804
FAMA medium 878M 11.5 7.0 5.2 13.9 7.2 15.9 8.0 12.3 0.787 0.821

+ joint CTC rescoring 11.5 7.7 5.2 13.5 7.1 14.9 7.9 12.0 0.791 0.818

Table 1: ASR and ST results of FAMA models and existing SFMs as terms of comparison. Best values are bold.

the performance of Whisper and SeamlessM4T.252

These mixed outcomes–competitive ASR perfor-253

mance even against larger non-open models but254

lower ST performance–demonstrate both the feasi-255

bility of building high-quality open-science SFMs256

and the need for initiatives dedicated to creating257

OS-compliant ST datasets with human references258

to bridge the gap with non-open models.259

Computational Time. As an additional compari-260

son, we evaluate the throughput of the SFMs, mea-261

sured in xRTF (the inverse of the real-time factor),6262

which is calculated as the number of seconds of263

processed audio divided by the compute time in264

seconds. For each model,7 we report the maximum265

batch size possible spanning in the range 2, 4, 8,266

and 16 as higher values resulted in out-of-memory267

issues with all models. The results are reported in268

Table 2. We notice that Whisper models are the269

slowest ones, with an average xRTF of 12.1 for270

medium and 7.2 for large-v3, making them ∼3-6271

times slower than FAMA medium and ∼5-8 than272

FAMA small. These results can be attributed to273

the architectural design of Whisper models that274

apply an ×2 audio subsampling compared to the275

commonly used ×4 (as in FAMA) and introduce276

a lot of padding in shorter sequences to achieve277

the fixed 30-second length. The Seamless models,278

despite having no extra padding (as FAMA) and279

a greater audio subsampling of ×8, are ∼2 times280

faster than Whisper ones but still 1.5-3 times slower281

for, respectively, medium and v2-large, compared282

to FAMA medium and 2-4 compared to FAMA283

6https://github.com/NVIDIA/DeepLearningExamples/
blob/master/Kaldi/SpeechRecognition/README.md

7The benchmarking is performed on HuggingFace, thus we
excluded OWSM from the comparison as it is not supported.

Model Batch xRTF (↑)
Size en it AVG

Whisper medium 8 13.3 10.9 12.1
Whisper large-v3 4 7.9 6.5 7.2
SeamlessM4T medium 2 28.5 26.2 27.4
SeamlessM4T v2-large 2 13.7 13.3 13.5
FAMA small 16 57.4 56.0 56.7
FAMA medium 8 39.5 41.2 40.4

Table 2: Computational time and maximum batch size
on CommonVoice en and it. Best values are bold.

small, making the FAMA model family the fastest 284

by a large margin. 285

4 Conclusions 286

In this paper, we addressed the challenges posed by 287

the closed nature of existing SFMs, such as limited 288

accessibility to training data and codebases, by in- 289

troducing FAMA, the first large-scale open-science 290

SFM for English and Italian. Trained on over 150k 291

hours of exclusively OS speech, FAMA ensures full 292

transparency, with all artifacts released under OS- 293

compliant licenses. Additionally, we contributed 294

a new collection of ASR and ST pseudolabels for 295

about 16k hours of speech data, and more than 296

130k hours of English and Italian automatic transla- 297

tions. Results show that FAMA models outperform 298

OWSM on both ASR and ST and also achieve 299

comparable ASR results to Whisper while being 300

up to 8 times faster. By providing the community 301

with fully accessible resources, FAMA bridges the 302

gap between advances in speech technology and 303

open science principles, enabling fair evaluation, 304

broader participation, and inclusivity. Future work 305

will focus on extending FAMA to additional lan- 306

guages with the ultimate goal of further expanding 307

the open science ecosystem to speech technologies. 308
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Limitations309

Our work focuses on two European languages (En-310

glish and Italian) and a limited set of translation311

directions, which may not generalize to typologi-312

cally distant or low-resource language pairs. Due313

to computational constraints, we evaluate only two314

model sizes (small and medium) and explore a nar-315

row range of hyperparameters. The training data316

are also limited compared to large-scale training317

on non-open data (Radford et al., 2023; Barrault318

et al., 2023), which might affect the broader gener-319

ality of our findings. Finally, we do not investigate320

integration with large language models, which is a321

promising direction for future work (Gaido et al.,322

2024b).323

Potential Risks. Although our models are trained324

on publicly available and ethically sourced data,325

potential risks include unintended memorization326

or amplification of biases present in the training327

corpora. Moreover, while our work improves ac-328

cessibility to speech foundation models (SFMs),329

downstream misuse–such as transcribing or trans-330

lating copyrighted content–remains a concern and331

warrants further safeguards deployment in future332

efforts.333
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A Training Data494

The list of publicly available datasets is presented495

in Table 3.496

Dataset #hours Label
en it

CommonVoice v18 (Ardila et al.,
2020)

1746 250 G

CoVoST2 (Wang et al., 2021b) 420 28 G
FLEURS (Conneau et al., 2023) 7 9 G
LibriSpeech (Panayotov et al.,
2015)

358 - G

MOSEL (Gaido et al., 2024a) 66,301 21,775 A
MLS (Pratap et al., 2020) 44,600 247 G
VoxPopuli-ASR (Wang et al.,
2021a)

519 74 G

Total 113,951 22,383 G+A

Table 3: List of the publicly available training speech
data for English (en) and Italian (it). “G” stands for gold
labels while “A” for automatically generated labels.

To create the new psuedolabels, we leveraged the497

speech content of YouTube-Commons,8 a dataset498

collecting YouTube videos released with the per-499

missive CC-BY 4.0 license. The videos are auto-500

matically converted into wav files with one chan-501

nel and a sampling rate of 16k Hz. Then, the au-502

dio is cleaned from music and non-speech phe-503

nomena and segmented using silero (Team, 2024),504

a lightweight VAD having low computational re-505

quirements. Lastly, the audio is split using SHAS506

(Tsiamas et al., 2022) to obtain segments suitable507

for training of around 16 seconds on average. The508

resulting dataset contains automatic transcripts,509

which we created with Whisper large-v3,9 for510

14,200k hours of speech for English (en) and511

1,828k for Italian (it). Including data in Table 3,512

the final ASR training set comprises 128,152 hours513

of en speech and 24,211 hours of it speech, with514

a total of 152,363 hours of speech data, including515

48,259 gold-labeled hours.516

Being composed of speech-transcript pairs, the517

data mentioned so far is suitable for ASR. For ST,518

instead, only CoVoST2 and FLEURS contain trans-519

lations from and into en and it. For this reason, we520

automatically translated the transcripts of all the521

speech data (including the original CoVoST2) with522

MADLAD-400 3B-MT (Kudugunta et al., 2023).10523

Following (Alam and Anastasopoulos, 2024), we524

additionally filter out samples based on the ratio r525

8https://hf.co/datasets/PleIAs/YouTube-Commons
9https://hf.co/openai/whisper-large-v3

10https://hf.co/google/madlad400-3b-mt

between the source and target text lengths (in char- 526

acters) for each language pair based on their dis- 527

tribution (rmin = 0.75, rmax = 1.45 for en-it, and 528

rmin = 0.65, rmax = 1.35 for it-en), resulting into 529

1.24% of data filtering for en-it and 3.08% for it-en. 530

The final training set comprises the automatically 531

translated speech data and the gold CoVoST2 and 532

FLEURS datasets, resulting in 149,564 hours for 533

en-it and 24,211 hours for it-en. 534

B FAMA Model Architecture 535

FAMA models come in two sizes: small and 536

medium. FAMA-small has 12 Conformer encoder 537

layers and 6 Transformer decoder layers. FAMA- 538

medium has 24 encoder layers and 12 decoder lay- 539

ers. Each layer has 16 attention heads, an embed- 540

ding dimension of 1,024, and a FFN dimension 541

of 4,096. The Conformer encoder is preceded by 542

two 1D convolutional layers with stride 2 and ker- 543

nel size 5. The kernel size of the Conformer con- 544

volutional module is 31 for both the point- and 545

depth-wise convolutions. The vocabulary is built 546

using a SentencePiece unigram model (Kudo and 547

Richardson, 2018) with size 16,000 trained on en 548

and it transcripts. Two extra tokens–<lang:en> 549

and <lang:it>–are added to indicate whether the 550

target text is in en or it. The input audio is rep- 551

resented by 80 Mel-filterbank features extracted 552

every 10 ms with a window of 25 ms. 553

Detailed architectural settings are summarized 554

in Table 4.

Encoder

Component Size
small medium

Layer type Conformer
Number of layers 12 24
Attention heads 16

Embedding dimension 1,024
FFN dimension 4,096

Convolutional Module kernel size 31
Decoder

Component Size
small medium

Layer type Transformer
Number of layers 6 12
Attention heads 16

Embedding dimension 1,024
FFN dimension 4,096

Table 4: Architectural parameters of FAMA models.

555

C Training and Evaluation Procedures 556

FAMA Training Process. We train both mod- 557

els using a combination of three losses. First, a 558
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label-smoothed cross-entropy loss (LCE) is applied559

to the decoder output, using the target text as the560

reference (transcripts for ASR and translations for561

ST). Second, a CTC loss (Graves et al., 2006) is562

computed using transcripts as reference (LCTCsrc)563

on the output of the 8th encoder layer for small564

and the 16th for medium. Third, a CTC loss on the565

final encoder output (LCTCtgt) is applied to predict566

the target text. The final loss is the weighted sum567

of the above-mentioned losses:568

L = λ1LCE + λ2LCTCsrc + λ3LCTCtgt569

where λ1, λ2, λ3 = 5.0, 1.0, 2.0, and the label570

smoothing factor of the CE is 0.1.571

FAMA models are trained using a two-stage ap-572

proach, where the model is pre-trained first on ASR573

data only (ASR pre-training) and then trained on574

both ASR and ST data (ASR+ST training). Both575

training stages lasted 1M steps, corresponding to576

∼6 epochs over the training data.577

For the ASR pre-training, the learning rate (lrS1)578

scheduler adopted to train the small model is the579

Noam scheduler (Vaswani et al., 2017) with a peak580

of 2e-3 and 25,000 warm-up steps. To cope with581

convergence issues similar to (Peng et al., 2024),582

for the medium model, we adopted a piece-wise583

warm-up on the Noam scheduler, with the learn-584

ing rate first increasing linearly to 2e-5 for 25k585

steps and then to 2e-4 for an additional 25k steps,586

followed by the standard inverse square root func-587

tion. For the ASR+ST training, we sample the ASR588

target with probability pASR=0.5 and use the ST tar-589

get otherwise. Training settings are the same as for590

ASR pre-training, except for the learning rate that591

is set to a constant value lrS2=1e-4. Experiments592

on how pASR and lrS2 are determined for the small593

model are discussed in §3. For the medium model,594

similarly to the first stage, the lrS2 is scaled down595

by one order of magnitude compared to the small596

model i.e., a constant value lrS2=1e-5 is used.597

The optimizer is AdamW with momentum598

β1, β2 = 0.9, 0.98, a weight decay of 0.001, a599

dropout of 0.1, and clip normalization of 10.0. We600

apply SpecAugment (Park et al., 2019) during both601

ASR pre-training and ASR+ST training. We use602

mini-batches of 10,000 tokens for FAMA small603

and 4,500 for FAMA medium with an update fre-604

quency of, respectively, 2 and 6 on 16 NVIDIA605

A100 GPUs (64GB RAM), save checkpoints every606

1,000 steps and average the last 25 checkpoints to607

obtain the final model. All trainings are done using608

fairseq-S2T (Wang et al., 2020).609

FAMA Evaluation. The inference is performed 610

using a single NVIDIA A100 GPU with a batch 611

size of 80,000 tokens. We use beam search with 612

beam 5, unknown penalty of 10,000, and no-repeat 613

n-gram size of 5. Additionally, we report the results 614

using the joint CTC rescoring (Yan et al., 2023) 615

leveraging the CTC on the encoder output with 616

weight 0.2. Inference is done using fairseq-S2T 617

(Wang et al., 2020). 618

Terms of Comparison Evaluation. To ensure 619

a fair comparison, we perform the inference with 620

HuggingFace transformers11 version 4.48.1 using 621

the standard settings and beam search with beam 622

5, except for OWSM, which is not supported on 623

HuggingFace, and for which the original ESPNet12 624

inference code is used with beam size 3.13 625

Computational Time Benchmarking. The test 626

set used for the computational time evaluation is 627

CommonVoice on both en and it with a total du- 628

ration of, respectively, 26.9 and 26.4 hours. The 629

benchmarking is done on a single NVIDIA A40 630

40GB. 631

11https://pypi.org/project/transformers/
12https://github.com/espnet/espnet/tree/master/egs2/

owsm_v3.1/s2t1
13We attempted to use beam size of 5 but the model had

out-of-memory issues even when reducing the batch size.
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