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Abstract

The development of speech foundation models
(SFMs) like Whisper and SeamlessM4T has
significantly advanced the field of speech pro-
cessing. However, their closed nature-with in-
accessible training data and code—poses major
reproducibility and fair evaluation challenges.
While other domains have made substantial
progress toward open science by developing
fully transparent models trained on open-source
(OS) code and data, similar efforts in speech
remain limited. To fill this gap, we introduce
FAMA, the first family of open science SFMs
for English and Italian, trained on 150k+ hours
of OS speech data. Moreover, we present a
new dataset containing 16k hours of cleaned
and pseudo-labeled speech for both languages.
Results show that FAMA achieves competitive
performance compared to existing SFMs while
being up to 8 times faster. All artifacts, includ-
ing code, datasets, and models, will be released
under OS-compliant licenses, promoting open-
ness in speech technology research.

1 Introduction

The development of speech foundation models
(SFMs) has significantly advanced speech process-
ing in the last few years, particularly in areas such
as automatic speech recognition (ASR) and speech
translation (ST). Popular SFMs such as OpenAl
Whisper (Radford et al., 2023) and Meta Seam-
lessM4T (Barrault et al., 2023) have been released
to the public in various sizes and with extensive
language coverage. However, these models com-
pletely lack comprehensive accessibility to their
training codebases and datasets, hindering their re-
producibility and raising concerns about potential
data contamination (Dong et al., 2024), thereby
complicating fair evaluation.

In other domains, multiple efforts towards build-
ing models that are more accessible, reproducible,
and free from proprietary constraints have been

made (BigScience Workshop et al., 2022; Bider-
man et al., 2023; Liu et al., 2023; Sun et al., 2024,
Deitke et al., 2024; Dai et al., 2024; Martins et al.,
2024). For instance, the OLMO project (Groen-
eveld et al., 2024) has demonstrated the feasibility
of training large language models (LLMs) using
only open-source (OS) data (Soldaini et al., 2024),
realizing an open-science' system (White et al.,
2024) for text processing. However, such compre-
hensive approaches are still lacking in the field of
speech processing.

Recent works towards this direction include
OWSM (Peng et al., 2023) and its subsequent ver-
sions (Peng et al., 2024). OWSM, whose model
weights and the codebase used for the training are
released open source, reproduces a Whisper-style
training using publicly available data. Despite rep-
resenting a valuable initiative toward building an
open-science system, there is still a step missing for
creating the first SEM of this kind: leveraging only
data that is not only publicly available but also re-
leased under an OS-compliant license (Gaido et al.,
2024a). Such effort would allow users complete
access and control over the data used at every stage
of the scientific process, promoting reproducibil-
ity (Belz et al., 2023), fair evaluation (Balloccu
et al., 2024), and the ability to build upon prior
research without any barriers (Chesbrough, 2015).
Besides transparency and collaboration, these ef-
forts also foster users’ trust by ensuring that data is
not leveraged to build tools that can be used under
conditions/purposes (e.g., commercial) for which
the data was not intended (White et al., 2024).

To fill this gap, we create FAMA,? the first fam-
ily of large-scale open-science SFMs for English

'Open science involves ensuring transparency and accessi-
bility at all stages of the scientific process (Vicente-Saez and
Martinez-Fuentes, 2018), including publishing OS research
papers, data, and code needed to replicate the research.

*Fama (from the Latin “fari” meaning “to speak”) is the
personification of the public voice in Roman mythology.



and Italian trained on over 150k hours of exclu-
sively OS-compliant speech data. We leverage both
already available OS datasets and create a new col-
lection of ASR and ST psuedolabels for Italian and
English comprising more than 16k hours of OS-
compliant speech, along with automatically gen-
erated Italian and English translations for an addi-
tional 130k+ hours of speech. We also detail train-
ing and evaluation procedures and provide full ac-
cess to training data to have complete control of the
model creation and avoid data contamination issues.
FAMA models achieve remarkable results, with
up to 4.2 WER and 0.152 COMET improvement
on average across languages compared to OWSM
and remaining competitive in terms of ASR perfor-
mance with the Whisper model family while being
up to 8 times faster. All the artifacts used for real-
izing FAMA models, including codebase, datasets,
and models themself will be released, upon paper
acceptance, under OS-compliant licenses, promot-
ing a more responsible creation of models in our
community. Our approach would not only facilitate
fair evaluation and comparison of SFMs but also
encourage broader participation in speech technol-
ogy development, leading to more inclusive and
diverse applications.

2 The FAMA Framework

Training and Evaluation Data. In compliance
with the open-science ideology, we train and test
our models only on OS-compliant data. The train-
ing set comprises both public OS datasets (Gaido
et al., 2024a), and new pseudolabels, detailed in
Appendix A. The resulting ASR train set comprises
152k hours, 128k for English (en) and 24k for Ital-
ian (it), and 174k hours for ST, 150k for en-it, and
24k for it-en. To validate and test, we use gold-
labeled data. ASR evaluation is conducted on Com-
monVoice, MLS, and VoxPopuli, with Common-
Voice also serving as the validation set for both en
and it. For translation, we use CoVoST?2 for it-en
and FLEURS dev and test sets for en-it.

Model Architecture. FAMA models are two-
sized encoder-decoder architectures, small and
medium. Both models are composed of a Con-
former encoder (Gulati et al., 2020) and a Trans-
former decoder (Vaswani et al., 2017). FAMA
small has 12 encoder layers and 6 decoder lay-
ers while FAMA medium has 24 encoder layers and
12 decoder layers. Our decision to use an encoder
twice as deep as the decoder—unlike Whisper and

OWSM, which have an equal number of encoder
and decoder layers—is driven by two key motiva-
tions: i) since autoregressive models perform mul-
tiple decoder passes during output generation, a
shallower decoder speeds up inference by making
each pass faster, and ii) since many approaches
integrate SFMs with LLMs by leveraging the en-
coder (Gaido et al., 2024b), a deeper encoder helps
preserve more of the SEMs processing capabilities
in such integrations. Each layer has 16 attention
heads, an embedding dimension of 1,024, and a
FFN dimension of 4,096. Full architectural specifi-
cations are provided in Appendix B.

Model Training and Evaluation. We adopt a
two-stage training pipeline: ASR pre-training fol-
lowed by multitask ASR+ST fine-tuning. For ASR
pre-training, we use the Noam learning rate sched-
uler (Vaswani et al., 2017). To address convergence
issues observed in larger speech models (Peng et al.,
2024), we apply a modified warm-up strategy for
FAMA medium, as detailed in Appendix C. During
ASR+ST training, the model alternates between
ASR and ST targets, sampling ASR with probabil-
ity pasr=0.5. This value, along with the learning
rate [rg;, is selected based on validation perplex-
ity trends discussed in §3. To reduce instability in
larger models, we scale down the learning rate for
FAMA medium by an order of magnitude. ASR per-
formance is evaluated with word error rate (WER)
using the jiWER library® with the text normalized
using Whisper normalizer*. ST performance is
evaluated using COMET (Rei et al., 2020) version
2.2.4, with the default Unbabel /wmt22-comet-da
model. Full hyperparameters, training, and evalua-
tion procedures are presented in Appendix C.

Terms of Comparison. As a first term of com-
parison, we use Whisper (Radford et al., 2023)
medium and large-v3 as the former is comparable
to FAMA medium in size, and the latter—trained
on over 4M hours—is the best model in the Whis-
per family. They are released under the Apache
2.0 license and thus have open weights. For both
ASR and ST, we also compare with SeamlessM4T
medium and v2-large covering ASR and both ST
language directions (Barrault et al., 2023). The
model is non-commercial, thus not open. We
also compare with OWSM v3.1 medium, the best
model in the OWSM family, covering both ASR

3https://pypi.org/project/jiwer/
*https://pypi.org/project/whisper-normalizer/


https://pypi.org/project/jiwer/
https://pypi.org/project/whisper-normalizer/

and ST language directions and released open
source (Peng et al., 2024).

3 Results

Pre-training and Catastrophic Forgetting.
Catastrophic forgetting occurs when sequential
training on multiple tasks or languages leads to per-
formance degradation on earlier ones (McCloskey
and Cohen, 1989; Kar et al., 2022). Since we
follow a two-stage training setup, common in SFM
development (Barrault et al., 2023), we analyze
when forgetting arises during ASR+ST training.
Figure 1 shows perplexity (ppl) curves over
the first 100/500k steps of FAMA small under
different learning rates (Irs>)° and ASR sampling
probabilities (pasr) (§2). Due to limited compute,
we consider two sampling settings: pasgr=0.5
for equal ASR/ST training, and pasr=0.2 to
emphasize the unseen ST task. From the curves,
we observe that a learning rate (Irsy) of 1e-3 is too
high to maintain good ASR performance while
learning the new ST task. In both settings—boosting
ST training (pasr=0.2) and balancing ASR and ST
training (pasg=0.5)-we see a notable increase in
ASR perplexity (up to +0.25), which translates to a
3-4 WER drop across both languages. Crucially,
this degradation is not recovered later in training.
To avoid catastrophic forgetting in the early stages,
we discard Irgy=1e-3 and adopt 1e-4 for the second
stage. Looking at ASR sampling, we analyze
the ppl curves after 500k steps (halfway through
the second stage). With pasr=0.5, the ASR ppl
slowly converges back toward the original value,
while with pasr=0.2, it remains higher despite
some improvement. Although pasr=0.2 yields
slightly better ST perplexity (by ~0.2), this does
not translate into meaningful gains in downstream
performance—only a marginal +0.005 COMET
improvement on average. Meanwhile, the ASR
degradation is more substantial, with ~0.8 WER
loss across both languages. We conclude that
avoiding catastrophic forgetting during two-stage
training requires evenly sampling ASR and ST
targets in the second step.

Comparison with Existing SFMs. In Table 1,
we show the results for both ASR and ST of
our FAMA models and SFMs presented in §2.
For FAMA models, we provide the scores of the
ASR-only model (FAMA-ASR), and of the final

SLower values of Irs; (e.g., le-5) underperform and are
excluded.
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Figure 1: Average ASR and ST ppl up to 500k steps of
the training. Due to the evident worse results achieved
by using a [r of le-3, we stopped the training curves
after 100k steps. The black dashed line is the ppl of the
ASR model from which the training is started.

ASR+ST model, as well as the results obtained
through joint CTC rescoring. Looking at the re-
sults of FAMA-ASR, we observe that the medium
model outperforms the small one, with ~0.8 WER
improvements on average, both with and without
the joint CTC rescoring. Compared to Whisper
medium, FAMA achieves better results with FAMA
medium outperforming Whisper by 4.4 WER on
en and 6.4 on it while having a similar number
of model parameters. Remarkable performance
is achieved by FAMA medium also compared to
OWSM v3.1 medium, with improvements of up to
1.1 WER on en and 7.3 on it, but also compared
to Whisper large-v3, where similar WER scores
are achieved. Instead, SeamlessM4T models, lever-
aging large pretrained models such as wav2vec-
BERT 2.0 (which is trained on 4.5 million hours)
and NLLB (which is trained on more than 43 bil-
lion sentences), still outperform FAMA, with the
v2-large scoring an incredibly low WER on Com-
mon Voice also compared to a strong competitor as
Whisper large-v3. Looking at the ASR results
of the final FAMA models, we observe that the
WER remained almost unaltered compared to the
ASR-only model, as discussed before. Regarding
ST results, we notice that FAMA models outper-
form OWSM v3.1 medium, with an improvement
of up to 0.141 COMET by FAMA small and 0.152
by FAMA medium while still struggling to achieve



ASR (WER ) ST (COMET 1)
Model #params || Common Voice MLS VoxPopuli AVG CoVoST2 | FLEURS
en it en it en it en it it-en en-it
Whisper medium 769M 14.5 10.4 142 159 81 26.8|123 177 0.801 -
Whisper large-v3 1550M || 11.2 6.5 50 88 |71 188 | 7.8 114 0.825 -
OWSM v3.1 medium 1020M || 11.9 12.5 6.6 193 | 84 240| 9.0 186 0.636 0.337
SeamlessM4T medium 1200M || 10.7 7.8 88 113|102 182 | 99 124 0.831 0.820
SeamlessM4T v2-large | 2300M 7.7 5.0 64 85|69 166| 7.0 10.0 0.852 0.855
FAMA-ASR small 475M 13.8 8.9 58 126 72 157] 89 124 - -
+ joint CTC rescoring 13.9 8.9 58 124 | 70 14.6| 89 120 - -
" FAMA-ASR medium ~ |~ §7§1\/I M7 T 0 5T 12170 159779 17| - | T -7 T
+ joint CTC rescoring 11.7 7.0 51 122170 146 | 79 113 - -
FAMA small 475M 13.7 8.6 58 128 | 7.3 156 | 89 123 0.774 0.807
+ joint CTC rescoring 13.6 8.5 58 128 | 72 148 | 89 120 0.777 0.804
"FAMAmedium ~ |~ g7§NI 3T 770 [ 52 1397172 159 80 123 | 0787 | 0.821
+ joint CTC rescoring 11.5 7.7 52 135 7.1 149 79 120 0.791 0.818

Table 1: ASR and ST results of FAMA models and existing SFMs as terms of comparison. Best values are bold.

the performance of Whisper and SeamlessM4T.
These mixed outcomes—competitive ASR perfor-
mance even against larger non-open models but
lower ST performance—demonstrate both the feasi-
bility of building high-quality open-science SFMs
and the need for initiatives dedicated to creating
OS-compliant ST datasets with human references
to bridge the gap with non-open models.

Computational Time. As an additional compari-
son, we evaluate the throughput of the SFMs, mea-
sured in XRTF (the inverse of the real-time factor),
which is calculated as the number of seconds of
processed audio divided by the compute time in
seconds. For each model,” we report the maximum
batch size possible spanning in the range 2, 4, 8,
and 16 as higher values resulted in out-of-memory
issues with all models. The results are reported in
Table 2. We notice that Whisper models are the
slowest ones, with an average xRTF of 12.1 for
medium and 7.2 for large-v3, making them ~3-6
times slower than FAMA medium and ~5-8 than
FAMA small. These results can be attributed to
the architectural design of Whisper models that
apply an x2 audio subsampling compared to the
commonly used x4 (as in FAMA) and introduce
a lot of padding in shorter sequences to achieve
the fixed 30-second length. The Seamless models,
despite having no extra padding (as FAMA) and
a greater audio subsampling of x8, are ~2 times
faster than Whisper ones but still 1.5-3 times slower
for, respectively, medium and v2-large, compared
to FAMA medium and 2-4 compared to FAMA

®https://github.com/NVIDIA/DeepLearningExamples/
blob/master/Kaldi/SpeechRecognition/README.md

"The benchmarking is performed on HuggingFace, thus we
excluded OWSM from the comparison as it is not supported.

Batch xRTF (1)

Model Size | en it | AVG
Whisper medium 8 133 109 | 12.1
Whisper large-v3 4 7.9 6.5 7.2

SeamlessM4T medium 2 285 262 | 274
SeamlessM4T v2-large 2 13.7 133 | 135

" FAMA small ~ 16 [ 574 560 | 56.7

FAMA medium 8 39.5 412 | 404

Table 2: Computational time and maximum batch size
on CommonVoice en and it. Best values are bold.

small, making the FAMA model family the fastest
by a large margin.

4 Conclusions

In this paper, we addressed the challenges posed by
the closed nature of existing SFMs, such as limited
accessibility to training data and codebases, by in-
troducing FAMA, the first large-scale open-science
SFM for English and Italian. Trained on over 150k
hours of exclusively OS speech, FAMA ensures full
transparency, with all artifacts released under OS-
compliant licenses. Additionally, we contributed
a new collection of ASR and ST pseudolabels for
about 16k hours of speech data, and more than
130k hours of English and Italian automatic transla-
tions. Results show that FAMA models outperform
OWSM on both ASR and ST and also achieve
comparable ASR results to Whisper while being
up to 8 times faster. By providing the community
with fully accessible resources, FAMA bridges the
gap between advances in speech technology and
open science principles, enabling fair evaluation,
broader participation, and inclusivity. Future work
will focus on extending FAMA to additional lan-
guages with the ultimate goal of further expanding
the open science ecosystem to speech technologies.
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Limitations

Our work focuses on two European languages (En-
glish and Italian) and a limited set of translation
directions, which may not generalize to typologi-
cally distant or low-resource language pairs. Due
to computational constraints, we evaluate only two
model sizes (small and medium) and explore a nar-
row range of hyperparameters. The training data
are also limited compared to large-scale training
on non-open data (Radford et al., 2023; Barrault
et al., 2023), which might affect the broader gener-
ality of our findings. Finally, we do not investigate
integration with large language models, which is a
promising direction for future work (Gaido et al.,
2024b).

Potential Risks. Although our models are trained
on publicly available and ethically sourced data,
potential risks include unintended memorization
or amplification of biases present in the training
corpora. Moreover, while our work improves ac-
cessibility to speech foundation models (SFMs),
downstream misuse—such as transcribing or trans-
lating copyrighted content—remains a concern and
warrants further safeguards deployment in future
efforts.
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A Training Data

The list of publicly available datasets is presented
in Table 3.

Dataset #hours - Label
en \ it
CommonVoice v18 (Ardila et al.,| 1746 2501 G
2020)
CoVoST2 (Wang et al., 2021b) 420 28| G
FLEURS (Conneau et al., 2023) 7 9] G
LibriSpeech (Panayotov et al., 358 - G
2015)
MOSEL (Gaido et al., 2024a) 66,301| 21,775 A
MLS (Pratap et al., 2020) 44,600 2471 G
VoxPopuli-ASR  (Wang et al., 519 74| G
2021a)
Total 113,951| 22,383 | G+A

Table 3: List of the publicly available training speech
data for English (en) and Italian (it). “G” stands for gold
labels while “A” for automatically generated labels.

To create the new psuedolabels, we leveraged the
speech content of YouTube-Commons,? a dataset
collecting YouTube videos released with the per-
missive CC-BY 4.0 license. The videos are auto-
matically converted into wav files with one chan-
nel and a sampling rate of 16k Hz. Then, the au-
dio is cleaned from music and non-speech phe-
nomena and segmented using silero (Team, 2024),
a lightweight VAD having low computational re-
quirements. Lastly, the audio is split using SHAS
(Tsiamas et al., 2022) to obtain segments suitable
for training of around 16 seconds on average. The
resulting dataset contains automatic transcripts,
which we created with Whisper large-v3,” for
14,200k hours of speech for English (en) and
1,828k for Italian (i¢). Including data in Table 3,
the final ASR training set comprises 128,152 hours
of en speech and 24,211 hours of it speech, with
a total of 152,363 hours of speech data, including
48,259 gold-labeled hours.

Being composed of speech-transcript pairs, the
data mentioned so far is suitable for ASR. For ST,
instead, only CoVoST2 and FLEURS contain trans-
lations from and into en and it. For this reason, we
automatically translated the transcripts of all the
speech data (including the original CoVoST2) with
MADLAD-400 3B-MT (Kudugunta et al., 2023).'°
Following (Alam and Anastasopoulos, 2024), we
additionally filter out samples based on the ratio r

8https://hf.co/datasets/PleI As/YouTube-Commons
*https://hf.co/openai/whisper-large-v3
Yhttps://hf.co/google/madlad400-3b-mt

between the source and target text lengths (in char-
acters) for each language pair based on their dis-
tribution (7yin = 0.75, rmax = 1.45 for en-it, and
Tmin = 0.65, rmax = 1.35 for it-en), resulting into
1.24% of data filtering for en-it and 3.08% for it-en.
The final training set comprises the automatically
translated speech data and the gold CoVoST2 and
FLEURS datasets, resulting in 149,564 hours for
en-it and 24,211 hours for it-en.

B FAMA Model Architecture

FAMA models come in two sizes: small and
medium. FAMA-small has 12 Conformer encoder
layers and 6 Transformer decoder layers. FAMA-
medium has 24 encoder layers and 12 decoder lay-
ers. Each layer has 16 attention heads, an embed-
ding dimension of 1,024, and a FFN dimension
of 4,096. The Conformer encoder is preceded by
two 1D convolutional layers with stride 2 and ker-
nel size 5. The kernel size of the Conformer con-
volutional module is 31 for both the point- and
depth-wise convolutions. The vocabulary is built
using a SentencePiece unigram model (Kudo and
Richardson, 2018) with size 16,000 trained on en
and it transcripts. Two extra tokens—<lang:en>
and <lang: it>-are added to indicate whether the
target text is in en or it. The input audio is rep-
resented by 80 Mel-filterbank features extracted
every 10 ms with a window of 25 ms.

Detailed architectural settings are summarized
in Table 4.

Encoder
Size
Component small medium
Layer type Conformer
Number of layers 12 24
Attention heads 16
Embedding dimension 1,024
FFN dimension 4,096
Convolutional Module kernel size 31
Decoder
Size
Component small medium
Layer type Transformer
Number of layers 6 12
Attention heads 16
Embedding dimension 1,024
FFN dimension 4,096

Table 4: Architectural parameters of FAMA models.

C Training and Evaluation Procedures

FAMA Training Process. We train both mod-
els using a combination of three losses. First, a


https://hf.co/datasets/PleIAs/YouTube-Commons
https://hf.co/openai/whisper-large-v3
https://hf.co/google/madlad400-3b-mt

label-smoothed cross-entropy loss (Lcg) is applied
to the decoder output, using the target text as the
reference (transcripts for ASR and translations for
ST). Second, a CTC loss (Graves et al., 2006) is
computed using transcripts as reference (Lcrcsre)
on the output of the 8™ encoder layer for small
and the 16" for medium. Third, a CTC loss on the
final encoder output (Lctcigr) is applied to predict
the target text. The final loss is the weighted sum
of the above-mentioned losses:

L = MLcg + A2Letesie + A3LeTCre

where A, A2, A3 = 5.0,1.0,2.0, and the label
smoothing factor of the CE is 0.1.

FAMA models are trained using a two-stage ap-
proach, where the model is pre-trained first on ASR
data only (ASR pre-training) and then trained on
both ASR and ST data (ASR+ST training). Both
training stages lasted 1M steps, corresponding to
~6 epochs over the training data.

For the ASR pre-training, the learning rate (Irs;)
scheduler adopted to train the small model is the
Noam scheduler (Vaswani et al., 2017) with a peak
of 2e-3 and 25,000 warm-up steps. To cope with
convergence issues similar to (Peng et al., 2024),
for the medium model, we adopted a piece-wise
warm-up on the Noam scheduler, with the learn-
ing rate first increasing linearly to 2e-5 for 25k
steps and then to 2e-4 for an additional 25k steps,
followed by the standard inverse square root func-
tion. For the ASR+ST training, we sample the ASR
target with probability pasgr=0.5 and use the ST tar-
get otherwise. Training settings are the same as for
ASR pre-training, except for the learning rate that
is set to a constant value Irgp=1e-4. Experiments
on how pasr and [rg; are determined for the small
model are discussed in §3. For the medium model,
similarly to the first stage, the Irs; is scaled down
by one order of magnitude compared to the small
model i.e., a constant value [rgp=1e-5 is used.

The optimizer is AdamW with momentum
B1, 82 = 0.9,0.98, a weight decay of 0.001, a
dropout of 0.1, and clip normalization of 10.0. We
apply SpecAugment (Park et al., 2019) during both
ASR pre-training and ASR+ST training. We use
mini-batches of 10,000 tokens for FAMA small
and 4,500 for FAMA medium with an update fre-
quency of, respectively, 2 and 6 on 16 NVIDIA
A100 GPUs (64GB RAM), save checkpoints every
1,000 steps and average the last 25 checkpoints to
obtain the final model. All trainings are done using
fairseq-S2T (Wang et al., 2020).

FAMA Evaluation. The inference is performed
using a single NVIDIA A100 GPU with a batch
size of 80,000 tokens. We use beam search with
beam 5, unknown penalty of 10,000, and no-repeat
n-gram size of 5. Additionally, we report the results
using the joint CTC rescoring (Yan et al., 2023)
leveraging the CTC on the encoder output with
weight 0.2. Inference is done using fairseq-S2T
(Wang et al., 2020).

Terms of Comparison Evaluation. To ensure
a fair comparison, we perform the inference with
HuggingFace transformers'! version 4.48.1 using
the standard settings and beam search with beam
5, except for OWSM, which is not supported on
HuggingFace, and for which the original ESPNet'?
inference code is used with beam size 3.1

Computational Time Benchmarking. The test
set used for the computational time evaluation is
CommonVoice on both en and it with a total du-
ration of, respectively, 26.9 and 26.4 hours. The
benchmarking is done on a single NVIDIA A40
40GB.

https://pypi.org/project/transformers/

Phttps://github.com/espnet/espnet/tree/master/egs2/
owsm_v3.1/s2t1

We attempted to use beam size of 5 but the model had
out-of-memory issues even when reducing the batch size.
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