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ABSTRACT

Few-shot learning aims to learn classifiers for new objects from a small number
of labeled examples. But it does not do this in a vacuum. Usually, a strong induc-
tive bias is borrowed from the supervised learning of base classes. This inductive
bias enables more statistically efficient learning of the new classes. In this work,
we show that no labels are needed to develop such an inductive bias, and that
self-supervised learning can provide a powerful inductive bias for few-shot learn-
ing. This is particularly effective when the unlabeled data for learning such a bias
contains not only examples of the base classes, but also examples of the novel
classes. The setting in which unlabeled examples of the novel classes are avail-
able is known as the transductive setting. Our method outperforms state-of-the-
art few-shot learning methods, including other transductive learning methods, by
3.9% for 5-shot accuracy on miniImageNet without using any base class labels.
By benchmarking unlabeled-base-class (UBC) few-shot learning and UBC trans-
ductive few-shot learning, we demonstrate the great potential of self-supervised
feature learning: self-supervision alone is sufficient to create a remarkably good
inductive bias for few-shot learning. This motivates a rethinking of whether base-
class labels are necessary at all for few-shot learning. We also explore the rela-
tionship between self-supervised features and supervised features, comparing both
their transferability and their complementarity in the non-transductive setting. By
combining supervised and self-supervised features learned from base classes, we
also achieve a new state-of-the-art in the non-transductive setting, outperforming
all previous methods.

1 INTRODUCTION

Deep architectures have achieved significant success in various vision tasks including image clas-
sification and object detection. Such success has relied heavily on massive numbers of annotated
examples. However, in real-world scenarios, we are frequently unable to collect enough labeled
examples. This has motivated the study of few-shot learning (FSL), which focuses on building
classifiers for novel categories from one or very few labeled examples.

Previous approaches to FSL include meta-learning and metric learning. Meta-learning aims to learn
task-agnostic knowledge that improves optimization. Metric learning focuses on learning repre-
sentations on base categories that can generalize to novel categories. Most previous FSL methods
attempt to borrow a strong inductive bias from the supervised learning of base classes. However,
the challenge of FSL is that a helpful inductive bias, i.e., one that improves performance on novel
classes, is hard to develop when there is a large difference between the base and novel classes.

In this paper, we demonstrate an extremely simple method to address this challenge. By conducting
self-supervised learning on unlabeled examples from both base and novel classes, our method can
develop an inductive bias that directly incorporates information about the novel classes, reducing the
sensitivity to the distance between base and novel classes. This method significantly outperforms all
previous FSL methods including transductive few-shot learning (TFSL) methods. Moreover, it does
this without using any base class labels, which motivates a rethinking of whether base-class labels
are necessary at all for few-shot learning.

We summarize our contributions as follows.
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• We benchmark classical few-shot learning, unlabeled-base-class few-shot learning (UBC-
FSL), and unlabeled-base-class transductive few-shot learning (UBC-TFSL). The UBC
learning shows competitive performance against labeled-base-class learning in the few-shot
setting. In the transductive setting, our simple method easily beats all previous FSL meth-
ods, including TFSL. We demonstrate that self-supervision alone is sufficient for strong
few-shot learning.

• While most FSL methods focus on optimizing their inductive biases on a validation set
of classes, often requiring the addition of complex architectural modifications, we show
that similar improvements can be realized simply by using a deeper network. Our FSL,
UBC-FSL, and UBC-TFSL methods all benefit from deeper networks, suggesting future
FSL methods can achieve high performance on standard architectures.

• In the non-transductive setting, we explore the complementarity between supervised fea-
tures and unsupervised features. By combining them, we also reach a new state-of-the-art
in the non-transductive setting.

• We compare the effectiveness of supervised features and self-supervised features for trans-
fer learning to a new set of classes. We consider this problem for conditions under which
the novel classes have both abundant labeled data, and also in the few-shot paradigm,
where the novel classes have only a few labeled examples. While some work shows that
self-supervised features are better at transferring to novel classes, our results support the
conclusion that for few-shot learning, supervised features do better than self-supervised
features when transferring to a new set of classes.

• We compare FSL and UBC-FSL across training set sizes. Let N be the number of training
examples per novel class. Even though FSL significantly outperforms UBC-FSL for small
N , this advantage diminishes as N grows, and UBC-FSL eventually overtakes FSL as N
gets large, suggesting that supervised features contain higher-level semantic concepts that is
easier to incorporate with a few training instances while self-supervised features are better
at transferring with abundant labeled examples from novel classes.

2 RELATED WORK

Few-shot Learning. Few-shot learning is a classic problem (Miller et al., 2000), which refers to
learning from one or a few labeled examples for each novel class. Existing FSL methods can be
broadly grouped into three categories: data augmentation, meta-learning, and metric learning. Data
augmentation methods synthesize (Wang et al., 2018; Chen et al., 2019d; Schwartz et al., 2018), hal-
lucinate (Hariharan & Girshick, 2017) or deform (Miller et al., 2000; Chen et al., 2019c) images to
generate additional examples to address the training data scarcity. Meta-learning (Finn et al., 2017;
Ravi & Larochelle, 2017; Munkhdalai & Yu, 2017; Wang & Hebert, 2016; Lee et al., 2019) attempts
to learn a parameterized mapping from limited training examples to hidden parameters that acceler-
ate or improve the optimization procedure. Metric learning (Bateni et al., 2020; Li et al., 2020; Sung
et al., 2018) aims at learning a transferable metric space (or embedding). MatchingNet (Vinyals
et al., 2016) and ProtoNet (Snell et al., 2017) adopt cosine distance and Euclidean distance to sep-
arate instances belonging to different classes. Recently, Chen et al. (2019d); Liu et al. (2020); Tian
et al. (2020b) showed that learning a classifier on top of supervised features can achieve surprisingly
competitive performance. Most FSL methods use relatively small networks, e.g., a modified version
of ResNet-12 (He et al., 2015), and adapt the inductive bias learned from base classes. No previous
work presents their best results on very deep networks (e.g. ResNet-101), and Chen et al. (2019a)
(in their Table A3) show that deeper networks perform worse for some FSL methods. However, all
our methods achieve additional gain and the top results by using a very deep network, which will be
further discussed in § 4.2.

Transductive Few-shot Learning. TFSL methods use the distribution support of unlabeled novel
instances to help few-shot learning. Liu et al. (2018), Wang et al. (2020b), and Li et al. (2019)
exploit unlabeled instances with high confidence to train the model. Chen et al. (2019b) propose a
data augmentation method to directly mix base examples and selected novel examples in the image
domain to learn generalized features. Dhillon et al. (2019), Pau et al. (2020), and Lichtenstein et al.
(2020) take unlabeled testing instances to acquire an auxiliary loss serving as a regularizer to adapt
the inductive bias. However, in this procedure, a strong inductive bias is first required for clustering
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Figure 1: An illustration of different few-shot learning settings. The difference between these
settings is whether they have labels for examples from base classes and unlabeled examples from
novel classes.

or predicting the unlabeled instances. As a result, these previous works still heavily rely on base-
class labels and supervised learning, whereas our work can directly develop a strong inductive bias
from unlabeled instances.

Self-supervised Learning. Self-supervised learning aims to explore the internal data distribution
and learns discriminative features without annotations. Some work takes predicting rotation (Gi-
daris et al., 2018), counting (Noroozi et al., 2017), predicting the relative position of patches (Doer-
sch et al., 2015), colorization (Zhang et al., 2016; Larsson et al., 2017), and solving jigsaw puzzles
(Noroozi & Favaro, 2016) as self-supervised tasks to learn representations. Recently, instance dis-
crimination (Wu et al., 2018) has attracted much attention. Tian et al. (2020a) and Bachman et al.
(2019) maximize the mutual information between different views. MoCo (He et al., 2020) proposes
a momentum contrast to update models and shows superior performance to supervised learning when
transferring to downstream tasks, including detection and segmentation. Su et al. (2020) and Gidaris
et al. (2019) use self-supervision to help few-shot learning. However, while Su et al. (2020) claim
that self-supervision alone is not enough for few-shot learning, we demonstrate that self-supervision
alone is particularly effective when unlabeled examples from not only base classes, but also novel
classes are provided.

3 METHODS

In Fig. 1, we illustrate our few-shot learning settings. We denote the base category set as Cbase

and the novel category set as Cnovel, in which Cbase ∩ Cnovel = ∅. Correspondingly, we denote
the labeled base dataset as Dbase = {(Ii, yi)}, yi ∈ Cbase, the labeled novel dataset as Dnovel =
{(Ii, yi)}, yi ∈ Cnovel, the unlabeled base dataset as Ubase = {(Ii)}, yi ∈ Cbase, and the unlabeled
novel dataset as Unovel = {(Ii)}, yi ∈ Cnovel.

In a standard few-shot learning task, we are only given labeled examples from base classes so the
training set is DFSL = Dbase. For TFSL, we are given DTFSL = Dbase ∪ Unovel. For UBC-FSL,
we have DUBC−FSL = Ubase. For UBC-TFSL, we denote the training set as DUBC−TFSL =
Ubase ∪ Unovel.

These four few-shot learning settings use the same evaluation protocol as in previous works (Vinyals
et al., 2016). At inference time, we are given a collection of N-way-m-shot classification tasks
sampled from Dnovel to evaluate our method.

3.1 SELF-SUPERVISED LEARNING

Here we use a contrastive loss to do instance discrimination as our self-supervision task. We follow
momentum contrast (He et al., 2020), where each training example xi is augmented twice into xqi
and xki . xqi and xki are then fed into two encoders forming two embeddings qi = fq(x

q
i ), and

ki = fk(x
k
i ). A standard log-softmax function is used to discriminate a positive pair (2 instances
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augmented from one image) from several negative pairs (2 instances augmented from 2 images):

L(qi, ki) = − log

(
exp(qTi ki/τ)

exp(qTi ki/τ) +
∑

j 6=i exp(q
T
i kj/τ)

)
(1)

where τ is a temperature hyper-parameter. Since our implementations are based on MoCo-v2 (Chen
et al., 2020), please refer to it for further details.

3.2 EVALUATION PROTOCOLS

Here we introduce our protocols for the four different few-shot learning settings. All protocols con-
sist of a training phase and an evaluation phase. In the training phase, we learn a feature embedding
on the training sets DFSL, DTFSL, DUBC−FSL, and DUBC−TFSL. In the evaluation phase, we
evaluate the few-shot classification performance. We learn a logistic regression classifier on top of
the learned feature embedding of N ∗m training examples and report its accuracy on the testing ex-
amples. Training and testing examples come from the given N-way-m-shot classification task. Such
procedures are repeated 1000 times and we report the average few-shot classification accuracies with
95% confidence intervals. Now, we would like to introduce our methods.

Few-shot learning baseline. We learn our embedding network on DFSL using cross-entropy loss
under a standard classification process. We use the logit layer as the feature embedding as it is
slightly better than the pre-classification layer.

Unlabeled-base-class few-shot learning. For UBC-FSL, we learn from self-supervised supervision
on DUBC−FSL. We follow MoCo-v2 to do instance discrimination. The output of the final layer of
the model is used as the feature embedding.

Unlabeled-base-class transductive few-shot learning. For UBC-TFSL, our method is similar to
our UBC-FSL method. The difference is that we train onDUBC−TFSL, which has additional access
to unlabeled test instances.

Combination of FSL baseline and UBC-FSL. This method works under standard, non-
transductive, few-shot learning setting. We explore the complementarity between supervised fea-
tures (from the FSL baseline) and self-supervised features (from UBC-FSL). We directly concate-
nate normalized supervised features and normalized self-supervised features and then do normaliza-
tion again. This feature is used as the feature embedding and we refer this method as “Combined”.

4 EXPERIMENTS

We define two types of experiments based upon whether the base and novel classes come from the
same dataset or not. We refer to the standard FSL paradigm in which the base and novel classes
come from the same dataset (e.g., ImageNet) as single-domain FSL. We also perform experiments
in which the novel classes are chosen from a separate dataset, which we call cross-domain FSL.

Datasets. For single-domain FSL, we conduct experiments on three commonly used datasets:
miniImageNet (Vinyals et al., 2016), tieredImageNet (Ren et al., 2018), and Caltech-256 (Griffin
et al., 2007). The miniImageNet contains 100 classes randomly selected from ImageNet (Deng
et al., 2009) with 600 images per class. We follow Ravi & Larochelle (2017) to split the categories
into 64 base, 16 validation, and 20 novel classes. The tieredImageNet is another subset of ImageNet
but has far more classes (608 classes). These classes are first divided into 34 groups and then further
divided into 20 training groups (351 classes), 6 validation groups (97 classes), and 8 testing groups
(160 classes), which ensure the distinction between training and testing sets. Caltech-256 (Caltech)
has 30607 images from 256 classes. Following Chen et al. (2019d), we split it into 150, 56, and 50
classes for training, validation, and testing respectively.

For the cross-domain experiments, we construct a dataset that has high dissimilarity between base
and novel classes by drawing the base classes from one dataset and the novel classes from another.
We denote this dataset as ’miniImageNet&CUB’, which is a combination of miniImageNet and
CUB-200-2011 (CUB) dataset (Wah et al., 2011). CUB is a fine-grained image classification dataset
including 200 bird classes and 11788 bird images. We follow Hilliard et al. (2018) to split the
categories into 100 base, 50 validation, and 50 novel classes. In miniImageNet&CUB, the training
set (base classes) contains 64 classes from miniImageNet and the testing set (novel classes) contains
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Figure 2: A comparison between UBC-FSL, FSL baseline, UBC-TFSL, and Combined for 5-
shot accuracy on four datasets. UBC-TFSL significantly outperforms other methods.

100 classes from CUB. Specifically, the 64 classes in the training set are the 64 base classes in
miniImageNet and the 100 classes in the test set are the 100 base classes in CUB.

Competitors. We compare our methods with the top few-shot learning methods: MetaOptNet (Lee
et al., 2019), Distill (Tian et al., 2020b), Closer (Chen et al., 2019a), and Neg-Cosine (Liu et al.,
2020). We also compare with three transductive few-shot learning methods: ICI (Wang et al.,
2020a), TAFSSL (Lichtenstein et al., 2020), and EPNet (Pau et al., 2020). TFSL methods have
100 unlabeled images per novel class by default. EPNet (full)1 and our UBC-TFSL uses all of the
images of novel classes as unlabeled training samples.

Implementation setup. For training details of our methods, please refer to appendix A2.

4.1 SELF-SUPERVISION ALONE IS ENOUGH

Su et al. (2020) shed light on improving few-shot learning with self-supervision and claim that
“Self-supervision alone is not enough” for FSL. However, we come to the opposite conclusion:
self-supervised learning alone is enough to develop a strong inductive bias.

An intuitive comparison of our FSL baseline, UBC-FSL, UBC-TFSL, and Combined methods is
shown in Fig. 2. The results on miniImageNet and tieredImageNet are shown in Table 1. (Please
refer to Table A1 for results on Caltech-256 and miniImageNet&CUB.) We notice that (1) UBC-
FSL shows some potential. Even without any base-class labels, it only underperforms the FSL
baseline by 4− 7% in 1-shot and 5-shot accuracy on miniImageNet and tieredImageNet. (2) There
is great complementarity among supervised features and self-supervised features. Combining
supervised and self-supervised features (“Combined”) beats the FSL baseline on all four datasets
for all backbone networks. Specifically, it gives 4% and 2.9% improvements in 5-shot accuracy
on miniImageNet and tieredImageNet when using ResNet-101. Also, it beats all other FSL com-
petitors on tieredImageNet. (3) Even without any base-class labels, UBC-TFSL significantly
surpasses all other methods, supporting our claim that “self-supervised features alone are
enough”. When using the deepest network ResNet-101, it outperforms the FSL baseline by about
10% for both 1-shot and 5-shot accuracy on miniImageNet and tieredImageNet. In Table 1, it
outperforms all other TFSL methods by 3.5% and 3.9% for 5-shot accuracy on miniImageNet and
tieredImageNet respectively. (4) The FSL baseline struggles to learn a strong inductive bias with
high dissimilarity between base and novel classes (cross-domain) whereas such dissimilarity
has a relatively minor effect on UBC-TFSL. In miniImageNet&CUB, UBC-TFSL outperforms
the FSL baseline by 15% and 13% for 1-shot and 5-shot accuracy respectively.

4.2 A DEEPER NETWORK IS BETTER

Most top FSL methods (Lee et al., 2019; Liu et al., 2020; Tian et al., 2020b) use shallow networks
with low input resolution as they achieves the best performance. They manually modify the plain
ResNet-12 with several tricks, including making it 1.25× wider, changing the input size from 224×
224 to 84× 84, using Leaky ReLU’s instead of ReLU’s, adding additional Dropblock layers (Ghiasi
et al., 2018), and removing the global pooling layer after the last residual block. This modified
architecture is referred to as ‘ResNet-12∗’. What’s more, Chen et al. (2019a) show that ResNet-10

1We implement EPNet (full) using code available at https://github.com/ElementAI/embedding-propagation.
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miniImageNet tieredImageNet
setting method backbone 1-shot 5-shot 1-shot 5-shot

Non-transductive

MetaOptNet ResNet-12∗ 62.6±0.6 78.6±0.4 65.9±0.7 81.5±0.5
Distill ResNet-12∗ 64.8±0.6 82.1±0.4 71.5±0.6 86.0±0.4
Closer ResNet-10 53.9±0.7 75.9±0.6 - -
Closer ResNet-18 51.8±0.7 75.6±0.6 - -
Closer ResNet-34 52.6±0.8 76.1±0.6 - -

Neg-Cosine ResNet-12∗ 63.8±0.8 81.5±0.5 - -
Neg-Cosine ResNet-18 62.3±0.8 80.9±0.5 - -

UBC-FSL (Ours) ResNet-12∗ 47.8±0.6 68.5±0.5 52.8±0.6 69.8±0.6
UBC-FSL (Ours) ResNet-12 56.9±0.6 76.5±0.4 58.0±0.7 76.3±0.5
UBC-FSL (Ours) ResNet-50 56.2±0.6 75.4±0.4 66.6±0.7 83.1±0.5
UBC-FSL (Ours) ResNet-101 57.5±0.6 77.2±0.4 68.0±0.7 84.3±0.5

FSL baseline ResNet-12∗ 61.7±0.7 79.4±0.5 69.6±0.7 84.2±0.6
FSL baseline ResNet-12 61.1±0.6 76.1±0.6 66.4±0.7 81.3±0.5
FSL baseline ResNet-50 61.3±0.6 76.0±0.4 69.4±0.7 83.3±0.5
FSL baseline ResNet-101 62.7±0.7 77.6±0.5 70.5±0.7 83.8±0.5

Combined (Ours) ResNet-12∗ 59.8±0.8 73.3±0.7 69.2±0.7 82.0±0.6
Combined (Ours) ResNet-12 63.8±0.7 79.9±0.6 67.8±0.7 83.0±0.5
Combined (Ours) ResNet-50 63.9±0.9 79.9±0.5 72.3±0.7 86.1±0.5
Combined (Ours) ResNet-101 65.6±0.6 81.6±0.4 73.5±0.7 86.7±0.5

Transductive

ICI ResNet-12∗ 66.8±1.1 79.1±0.7 80.7 ±1.1 87.9±0.6
ICI ResNet50 60.2±1.1 75.2±0.7 78.6±1.1 86.8±0.6
ICI ResNet101 64.3±1.2 78.1±0.7 82.4±1.0 89.4±0.6

TAFSSL DenseNet 80.1±0.2 85.7±0.1 86.0±0.2 89.3±0.1
EPNet WRN-28-10 79.2±0.9 88.0±0.5 83.6±0.9 89.3±0.5

EPNet (full) WRN-28-10 80.2±0.8 88.9±0.5 84.8±0.8 89.9±0.6
UBC-TFSL (Ours) ResNet-12∗ 51.1±0.9 74.6±0.6 57.2±0.6 74.7±0.6
UBC-TFSL (Ours) ResNet-12 70.3±0.6 86.9±0.3 65.7±0.7 81.4±0.5
UBC-TFSL (Ours) ResNet-50 79.1±0.6 92.1±0.3 81.0±0.6 90.7±0.4
UBC-TFSL (Ours) ResNet-101 80.4±0.6 92.8±0.2 87.0±0.6 93.6±0.3

Table 1: Top-1 accuracies(%) on miniImageNet and tieredImageNet. We report the mean of 1000
randomly generated test episodes as well as the 95% confidence intervals. Please refer to Table A1
for results on Caltech-256 and miniImageNet&CUB. The top results are highlighted in blue and the
second-best results in green.
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Figure 3: Few-shot classification accuracy with various depths of backbone architectures.

outperforms ResNet-34 for their methods and other methods (Finn et al., 2017; Vinyals et al., 2016;
Sung et al., 2018) (in their Table A3). Also, Closer and ICI are worse for deeper networks (Table 1).

However, unlike previous methods based on smaller networks with bags of tricks, we show that
a plain deep network (ResNet-101) achieves top performance without bells and whistles. Our
UBC-FSL, FSL baseline, UBC-TFSL, and Combined all benefit from using deeper networks. As
shown in Fig. 3 and Table 1, for UBC-FSL, FSL baseline, UBC-TFSL, and Combined, ResNet-101
significantly outperforms ResNet-12 by 10.0%, 4.1%, 21.3%, 5.7% respectively for 1-shot accuracy
on tieredImageNet. The plain ResNet-101 also beats ResNet-12∗ by 1.0% and 0.9% for 1-shot
accuracy on miniImageNet and tieredImageNet. Since deeper networks provide better inductive
bias, we hope our result will encourage future work on standard deep networks. This can save
effort in modifying architectures and avoid developing methods that are limited to shallow
networks.
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Figure 4: Accuracy of 1-shot cross-domain FSL (first row) or single-domain FSL (second row).
First row: we visualize 1-shot test accuracy on the source dataset (x-axis) and the target dataset (y-
axis). Second row: we visualize 1-shot accuracy on base categories (x-axis) and novel categories (y-
axis). Squares, diamonds, and triangles denote ResNet-12, ResNet-50, and ResNet-101 respectively.
Please refer to Table A2, A3 for detailed statistics.

4.3 SUPERVISED VS. SELF-SUPERVISED FEATURES IN CROSS-DOMAIN FSL

Another interesting question is whether models learned in a single domain can perform well in a
new domain (with highly dissimilar classes). To study this, we conduct cross-domain FSL, in which
we learn models on miniImageNet or tieredImageNet and evaluate our models on Caltech-256 and
CUB. Specifically, the FSL baseline and UBC-FSL are trained on base classes of the source dataset,
and UBC-TFSL are trained on both base and novel classes of the source dataset. Then, we evaluate
our methods on the testing set of target datasets (Caltech-256 and CUB).

Notice that in this case, the way we are applying the UBC-TFSL model, it does not qualify as a
true transductive setting, since the model does not have access to unlabeled data from the testing
set. Instead, we are testing whether this model can improve its performance on cross-domain classes
with unlabeled data from additional classes in the source data set.

Previous work (He et al., 2020) compares supervised and self-supervised features when transferring
to a new domain for classification, object detection, and instance segmentation. It shows that self-
supervised features have better transferability for these tasks. However, in this section, we show that
supervised features do better than self-supervised features in cross-domain FSL.

In the first row of Fig. 4, we compare UBC-FSL, FSL baseline, UBC-TFSL, and Combined in
cross-domain FSL. The x-axis and y-axis denote the 1-shot testing accuracy on the source and tar-
get dataset respectively. Surprisingly, supervised features (FSL baseline, Combined) significantly
outperform self-supervised features (UBC-FSL, UBC-TFSL) on the target dataset even if they have
lower accuracy on the source dataset. In the second row of Fig. 4, we visualize the performance
of our methods on base and novel classes in single-domain FSL. The x-axis and y-axis denote the
1-shot accuracy on base and novel classes respectively. As you can see, UBC-TFSL (gray points)
outperforms FSL baseline (orange) on novel classes but underperforms on base classes. These exper-
iments show that UBC-TFSL has mediocre performance when it does not have access to unlabeled
data from the test classes, but performs extremely well when it does. In other words, it is not simply
access to additional unlabeled data that helps, but rather, data from the test classes themselves.

4.4 SUPERVISED VS. SELF-SUPERVISED FEATURES WITH LARGER SHOTS

In Fig. 5, we compare UBC-FSL, the FSL baseline, UBC-TFSL and Combined with larger shots
using ResNet-50 on tieredImageNet and tieredImageNet-Caltech (cross-domain FSL). For 1-shot
learning, there is a large gap around 5% between UBC-FSL and the FSL baseline. However, as the
shots become larger, this gap gradually diminishes. For 100-shot on tieredImageNet and 80-shot on
Caltech, UBC-FSL even outperforms the FSL baseline by 1.3% and 0.6% respectively.
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Figure 5: Few-shot classification accuracy with larger shots. We use ResNet-50 as our backbone
architecture and evaluate on tieredImageNet and Caltech (transferred from tieredImageNet).
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Figure 6: 1-shot testing accuracy under various scales of dataset size. ResNet-12 is our backbone
architecture. In (a), we compare UBC-FSL, FSL baseline, UBC-TFSL, and Combined on three
datasets of different sizes (30607, 60000, and 779165 images). In (b), we randomly select part of
the miniImageNet (e.g. 20% of the whole dataset) and compare our methods.

We suggest that supervised features may contain higher-level semantic concepts that are easier
to digest with a few training instances while self-supervised features have better transferability
with abundant training data. This statement is compatible with previous work (He et al., 2020),
which claims that self-supervised features have better transferability and motivates us to further
rethink what supervised and self-supervised features learn.

4.5 SUPERVISED VS. SELF-SUPERVISED FEATURES AND DATASET SIZE

In this section, we want to compare supervised and self-supervised features under various scales
of dataset size. We conduct experiments on Caltech, miniImageNet, and tieredImageNet, which
have 30607, 60000, and 779165 images respectively. We also randomly select only part of the
miniImageNet (20%, 40%, 60%, 80%, and 100%) and report the 1-shot accuracy. An equal portion
of examples from each class are randomly selected. As shown in Fig. 6, self-supervised features
(UBC-TFSL) significantly outperform other methods with a big dataset. However, when the dataset
is small (e.g. Caltech-256 and 20% of miniImageNet), it is overtaken by the FSL baseline. This
result suggests that supervised features may be more robust to dataset size.

5 CONCLUSION

Most previous FSL methods borrow a strong inductive bias from the supervised learning of base
classes. In this paper, we show that no base class labels are needed to develop such an inductive bias
and that self-supervised learning can provide a powerful inductive bias for few-shot learning. This
work lays out important directions for the next few years: using self-supervised learning to develop
strong inductive biases and improving few-shot learning based on this strong inductive bias.
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APPENDIX

A1 RESULTS ON CALTECH-256 AND MINIIMAGENET&CUB

We report our results on Caltech-256 and miniImageNet&CUB in Table A1.

Caltech miniImageNet&CUB
setting method backbone 1-shot 5-shot 1-shot 5-shot

Non-transductive

UBC-FSL (Ours) ResNet-12∗ 48.7±0.6 68.9±0.6 36.0±0.5 54.3±0.5
UBC-FSL (Ours) ResNet-12 54.0±0.6 74.6±0.5 39.1±0.6 57.6±0.5
UBC-FSL (Ours) ResNet-50 49.6±0.7 69.0±0.5 39.4±0.6 57.7±0.5
UBC-FSL (Ours) ResNet-101 50.1±0.6 69.9±0.5 40.7±0.6 59.4±0.6

FSL baseline ResNet-12∗ 65.7±0.6 81.5±0.5 42.8±0.5 60.9±0.6
FSL baseline ResNet-12 64.1±0.6 80.5±0.6 42.6±0.6 60.6±0.5
FSL baseline ResNet-50 65.7±0.7 81.9±0.3 43.6±0.6 62.1±0.5
FSL baseline ResNet-101 66.4±0.6 82.5±0.4 43.9±0.6 62.4±0.6

Combined (Ours) ResNet-12∗ 65.4±0.6 82.7±0.5 42.9±0.5 61.7±0.7
Combined (Ours) ResNet-12 64.7±0.6 82.4±0.4 43.4±0.6 63.2±0.5
Combined (Ours) ResNet-50 65.6±0.6 82.8±0.4 44.1±0.6 64.4±0.5
Combined (Ours) ResNet-101 66.5±0.5 83.2±0.4 45.1±0.6 65.6±0.5

Transductive

UBC-TFSL (Ours) ResNet-12∗ 56.4±0.6 74.8±0.6 39.7±0.4 58.9±0.5
UBC-TFSL (Ours) ResNet-12 60.7±0.7 80.0±0.5 44.9±0.6 65.0±0.6
UBC-TFSL (Ours) ResNet-50 61.8±0.6 81.4±0.5 59.1±0.8 76.2±0.6
UBC-TFSL (Ours) ResNet-101 61.4±0.6 80.3±0.5 59.0±0.8 75.5±0.6

Table A1: Top-1 accuracies(%) on Caltech-256 and miniImageNet&CUB. We report the mean
of 1000 randomly generated test episodes as well as the 95% confidence intervals. The top results
are highlighted in blue and the second-best results in green.

A2 IMPLEMENTATION DETAILS

Most of our settings are the same as Chen et al. (2020). We use a mini-batch size of 256 with 8
GPUs. We set the learning rate as 0.03 and use cosine annealing to decrese the learning rate. The
feature dimension for contrastive loss is 128. The momentum for memory update is 0.5 and the
temperature is set as 0.07. For miniImageNet, miniImageNet&CUB, and Caltech-256, we sample
2048 negative pairs in our contrastive loss. For tieredImageNet, we sample 20480 negative pairs. We
train 1000, 300, 1000, and 800 epoches for miniImageNet, tieredImageNet, miniImageNet&CUB,
and Caltech-256 respectively.

A3 RESULTS FOR CROSS-DOMAIN FSL

miniImageNet→Caltech miniImageNet→CUB
method backbone 1-shot 5-shot 1-shot 5-shot

UBC-FSL (Ours) ResNet-12 41.3±0.5 59.1±0.6 60.2±0.7 80.1±0.4
UBC-FSL (Ours) ResNet-50 41.4±0.6 58.5±0.6 58.8±0.6 79.0±0.5
UBC-FSL (Ours) ResNet-101 42.3±0.5 59.9±0.6 60.8±0.6 80.7±0.4

FSL baseline ResNet-12 46.0±0.6 63.7±0.5 62.4±0.6 79.1±0.4
FSL baseline ResNet-50 46.3±0.6 64.9±0.5 63.2±0.8 79.9±0.5
FSL baseline ResNet-101 47.3±0.6 65.6±0.5 64.6±0.7 81.1±0.5

Combined (Ours) ResNet-12 46.4±0.6 65.1±0.5 65.5±0.6 83.0±0.4
Combined (Ours) ResNet-50 47.0±0.4 66.3±0.5 65.7±0.8 83.2±0.4
Combined (Ours) ResNet-101 47.6±0.6 67.3±0.5 67.4±0.5 84.5±0.4

UBC-TFSL (Ours) ResNet-12 41.5±0.5 59.2±0.6 61.1±0.6 81.1±0.5
UBC-TFSL (Ours) ResNet-50 43.1±0.5 61.0±0.7 62.3±0.6 82.8±0.4
UBC-TFSL (Ours) ResNet-101 44.0±0.6 61.7±0.6 63.0±0.6 83.3±0.4

Table A2: Top-1 accuracies(%) for cross-domain FSL. We report the mean of 1000 randomly
generated test episodes as well as the 95% confidence intervals. The top results are highlighted in
blue and the second-best results in green.
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tieredImageNet→Caltech tieredImageNet→CUB
method backbone 1-shot 5-shot 1-shot 5-shot

UBC-FSL (Ours) ResNet-12 46.3±0.5 64.3±0.6 65.2±0.7 84.1±0.5
UBC-FSL (Ours) ResNet-50 58.1±0.7 76.3±0.6 76.9±0.5 91.3±0.4
UBC-FSL (Ours) ResNet-101 57.0±0.7 75.4±0.6 78.9±0.8 92.5±0.4

FSL baseline ResNet-12 63.6±0.7 82.4±0.5 75.2±0.7 90.0±0.4
FSL baseline ResNet-50 70.0±0.5 85.5±0.5 79.5±0.7 91.9±0.5
FSL baseline ResNet-101 72.9±0.7 87.2±0.5 80.7±0.7 92.6±0.3

Combined (Ours) ResNet-12 58.8 ±0.8 79.2±0.6 75.6±0.6 90.6±0.3
Combined (Ours) ResNet-50 69.0±0.7 86.2±0.4 82.3±0.6 93.8±0.4
Combined (Ours) ResNet-101 70.6±0.7 87.3±0.3 83.8±0.5 94.6±0.3

UBC-TFSL (Ours) ResNet-12 44.8±0.6 62.7±0.7 66.0±0.7 84.6±0.7
UBC-TFSL (Ours) ResNet-50 56.5±0.6 74.5±0.6 78.3±0.6 91.9±0.4
UBC-TFSL (Ours) ResNet-101 59.4±0.7 76.3±0.7 81.1±0.7 93.3±0.5

Table A3: Top-1 accuracies(%) for cross-domain FSL. We report the mean of 1000 randomly
generated test episodes as well as the 95% confidence intervals. The top results are highlighted in
blue and the second-best results in green.

We report our results for cross-domain FSL in Table A2 and Table A3. In Table A2, we show results
of learning models on miniImageNet and evaluating them on Caltech-256 and CUB. In Table A3, we
show results of learning models on tieredImageNet and evaluating them on Caltech-256 and CUB.
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