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Abstract

Learning from preference labels plays a crucial
role in fine-tuning large language models — this
is done via supervised learning, on-policy rein-
forcement learning (RL), or contrastive learning.
Different methods come with different implemen-
tation tradeoffs, and existing empirical findings
present different conclusions, for instance, some
results show that online RL is quite important
to attain good fine-tuning results, while others
find offline methods sufficient. This raises a ques-
tion: what kind of approaches are important
for fine-tuning with preference data and why?
In this paper, we answer this question by per-
forming a rigorous analysis of a number of fine-
tuning techniques on didactic and full-scale LLM
problems. Our main finding is that approaches
that use on-policy sampling and attempt to push
down the likelihood on certain responses (i.e.,
employ a “negative gradient”) outperform offline
and maximum likelihood objectives. We concep-
tualize our insights and unify methods that use
on-policy sampling or negative gradient under a
notion of mode-seeking objectives for categorical
distributions. Mode-seeking objectives are able
to alter probability mass on specific bins of a cat-
egorical distribution at a fast rate compared to
maximum likelihood, allowing them to relocate
masses across bins more effectively. Our analysis
prescribes actionable insights for preference fine-
tuning of LLMs and informs how data should be
collected for maximal improvement.

1. Introduction
Pre-training endows a large language model (LLM) with
knowledge about the world. Yet, it does not provide a lever
to control responses from these models, especially when we
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want these solutions to optimize some task-dependent suc-
cess criteria (e.g., align with human preferences, optimize
correctness or compactness). To align pre-trained LLMs
with downstream success criteria, they are then fine-tuned
with various objectives. In this paper, we focus on fine-
tuning problems that aim to optimize for binary preferences
(from humans or other AI models). A plethora of methods
have been proposed for this sort of fine-tuning, including
supervised learning on filtered responses (Gulcehre et al.,
2023), contrastive training (Rafailov et al., 2023), and on-
policy reinforcement learning (RL) (Ouyang et al., 2022)
on a reward function extracted from human preferences.

In theory, while all of these methods aim to discover identi-
cal optimal policies, achieving this in practice would require
full data coverage and infinite computation. These require-
ments are not met in practice, and hence, the choice of the
loss function and the optimization procedure affects perfor-
mance. However, a lack of a clear understanding of different
approaches, coupled with different tradeoffs in implemen-
tation, has resulted in substantial confusion: practitioners
are unsure as to: (1) whether RL (Ouyang et al., 2022) is re-
quired at all, or contrastive approaches (Rafailov et al., 2023;
Gheshlaghi Azar et al., 2023) or supervised fine-tuning are
good enough; and (2) whether preference data should be
collected with models in the loop (i.e., “on-policy”) or not.

Our goal is to provide clarity on these questions by per-
forming a rigorous study to understand the behavior of
existing methods. Concretely, we operate under typical
assumptions in preference fine-tuning literature such as ex-
istence of a ground-truth reward function that explains the
preference dataset and study surrogate objectives that op-
timize KL-penalized (with respect to a reference policy)
expected reward. We develop an analysis framework con-
sisting of didactic bandit problems, synthetic LLM prob-
lems, and full-scale LLM problems, constructed out of Al-
pacaFarm (Dubois et al., 2024) and UltraFeedback (Cui
et al., 2023). We then study behaviors of different methods
given coverage conditions and geometric relationships in
the problem. Our main observation is that algorithms that
use on-policy RL against a reward model or attempt to push-
down likelihood on certain responses, i.e., utilize a negative
gradient term as in contrastive objectives tend to outper-
form other offline supervised objectives with no on-policy
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Figure 1. Left: an illustration of various fine-tuning techniques. On-policy sampling gradually shifts policy mass from πref to πi,
moving it towards the peak in the reward function indicated by r∗. Offline methods that employ a negative gradient push down the
likelihood of bad responses under the learned policy, resulting in a larger deviation of πneg compared to policies that only maximize some
sort of likelihood, πsup. Right: our key takeaways for practitioners: When the peak of the reward function lies in the less likely regions
of πref , on-policy sampling is generally beneficial. In conjunction, an explicit negative gradient approach (e.g., via RL or contrastive
objectives) is beneficial when the preference data is skewed away from πref (case 2). When r∗ already lies in the high likelihood regions
of πref , offline supervised methods can work well. No on-policy sampling or negative gradients may be needed.

sampling or negative gradient. This is surprising because
both on-policy and offline methods still utilize the same data
for learning. We also find that using on-policy sampling
and negative gradients are especially important when
high-reward responses appear in less-likely regions of the
reference policy distribution, and provide benefits comple-
mentary to each other. In particular, we find that supervised
objectives such as Pref-FT and Binary Feed-ME (Dubois
et al., 2024) are not able to effectively move probability
mass from low reward responses to high-reward responses.
Sampling on-policy during training or employing both on-
policy sampling and contrastive training can enable this.

We theoretically show that approaches that use on-policy
RL or certain variants of contrastive training exhibit “mode-
seeking” behavior, resulting in faster accumulation of prob-
ability mass on a subset of high-reward responses during
learning. This behavior is in contrast to “mode-covering”
supervised objectives that attempt to increase likelihood on
all high-reward responses, and as a result, are unable to
efficiently increase probability mass enough on one subset
of high-reward responses. We then compare the behavior
of a representative mode-seeking objective, the reverse KL-
divergence, with the mode-covering forward KL-divergence
to formalize this behavior for categorical distributions. Con-
ceptually, this ability to commit to a certain subset of high-
reward responses enables on-policy sampling (and option-
ally, negative gradients) to outperform weighted MLE.

Our work presents several actionable takeaways for
downstream practitioners. First, we tie the performance
of various methods to geometric conditions on the problem,
which can inform which approach to use in practice. Sec-

ond, we observe a tradeoff between drawing more on-policy
samples and performing more gradient steps with a different
policy training objective. Understanding this tradeoff is use-
ful for practitioners since on-policy sampling and training
present different computational tradeoffs. Finally, since the
performance of fine-tuning is tied to the data composition,
we study the effect of conditions on the coverage of the
preference data, which could inform data collection.

2. Unifying Preference Fine-Tuning Methods
Preference fine-tuning use a variety of objectives. Due to
their huge number, in this section we characterize several
existing methods into different families and subsequently
study a representative member from each family.

2.1. Preliminaries and Notation
Typically, before training on preference data, a pre-trained
model is fine-tuned on high-quality data from the task
of interest via supervised fine-tuning (SFT), to obtain a
“reference” model πref . Then, to fine-tune πref with hu-
man preferences, usually a preference dataset Dpref =

{x(i),y
(i)
w ,y

(i)
l } is collected, where x(i) denotes a prompt

and y
(i)
w ,y

(i)
l denote preferred and dispreferred responses.

Given a preference dataset, most fine-tuning pipelines as-
sume the existence of an underlying reward function r∗(x, ·).
One popular framework for this is the Bradley-Terry (BT)
model (Bradley & Terry, 1952), assuming that human pref-
erences can be written as:

p∗(y1 ≻ y2|x) = er
∗(x,y1)

er
∗(x,y1)+er

∗(x,y2) (1)

Given this reward function r∗, preference fine-tuning aims
to find the optimum of r∗. While the goal is to find the
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unconstrained optimum of r∗, in practice, we often replace
r∗ with a reward model. Since the reward model is erro-
neous, we apply a KL-constraint to prevent exploitation. To
align our work with existing methods, we consider such a
KL-constrained reward optimization as our fine-tuning goal:

max
πθ

Ex∼Dpref,y∼πθ(·|x)[r
∗(x,y)]− βDKL[πθ||πref] (2)

The regularizer, weighted by β, controls the deviation of πθ

from πref under the reverse KL divergence.

Reward model training. In order to fine-tune an LLM
policy πθ(y|x), Equation (1) provides a convenient way to
learn a reward model either explicitly (i.e., by fitting a para-
metric reward model rϕ(x,y)) or implicitly (i.e., via direct
preference optimization (DPO) (Rafailov et al., 2023)), that
re-purposes the log-likelihood log πθ(y|x) of the policy to
represent the reward rθ(x,y)). Explicit reward models are
trained using the following classification objective:

max
ϕ

E(x,yw,yl)∼Dpref [log σ (rϕ(x,yw)− rϕ(x,yl))] , (3)

where σ is the logistic function. Contrastive learning objec-
tives (Rafailov et al., 2023) on the other hand repurposes
log πθ(y|x) as the implicit reward rθ(x,y):

rθ(x,y) = β [log πθ(y|x)− log πref(y|x)] . (4)

2.2. Characterizing Fine-Tuning Methods
With a reward model rϕ(x,y), most approaches attempt to
discover the policy πθ(y|x) which optimizes Equation (2)
by using rϕ as a surrogate for r∗. Since we cannot empiri-
cally investigate all of these methods, we group them into
different categories (summary shown in Table 1). In particu-
lar, we are interested in whether these methods employ:

1. on-policy sampling: an explicit sampling of new re-
sponses from the current policy (e.g., PPO) or purely
learning from offline data (e.g., RWR, DPO, IPO)

2. on-policy sample reuse: for only those approaches
that perform on-policy sampling, whether the approach
makes more than one gradient update on a given
prompt-response (x,y) pair (e.g., exactly 1 update
for REINFORCE, ≥ 1 for PPO, online RWR)

3. negative gradient: whether the loss attempts to “push-
down” likelihood on certain responses by multiplying
the gradient of their likelihood with a negative coeffi-
cient (e.g., DPO; REINFORCE, PPO)

On-policy RL approaches such as REINFORCE (Williams,
1992) explicitly sample new responses from the current
snapshot of the learned policy, yi ∼ πθ(·|xi), score them
under the reward model, and perform a policy gradient
update on parameters θ:

θ′ ← θ − ηEx∼Dpref,y∼πθ(·|x) [∇θ log πθ(y|x) · r̄ϕ(x,y)]

Here r̄ϕ(x,y) denotes a normalized estimate of the reward
model’s predictions over a sample batch (see Appendix F.1
for details). Due to the use of normalized reward estimates,
policy gradient approaches behave distinctly from maximum
likelihood supervised learning: a policy gradient update
also updates the parameters θ in a direction that attempts
to push down likelihood log πθ(y

′|x) for samples y′ on
which normalized reward r̄ϕ(x,y

′) < 0. This means that
on-policy RL also has a form of the “negative gradient”.
PPO (Schulman et al., 2017) differs from REINFORCE
because it employs sample reuse in addition to on-policy
sampling: unlike REINFORCE, PPO can utilize a response
for several policy updates using an importance ratio mech-
anism to control off-policy updates. We also remark that
new generations from on-policy methods are scored by a
reward model and not the ground truth reward function, i.e.,
humans. Since reward labels come from a reward model,
on-policy preference fine-tuning approaches are instances
of offline model-based RL (Yu et al., 2021; 2020; Kidambi
et al., 2020) methods that run on-policy rollouts against a
learned model.

Fine-Tuning Approach On-Policy Sample Reuse Neg. Gradient

PPO ✓ ✓ ✓
REINFORCE ✓ × ✓

DPO, IPO, and variants × N/A ✓

Pref-FT, Binary FeedMe × N/A ×
offline RWR, offline Best-of-N × N/A ×
ReST, RWR, online Best-of-N ✓ ✓ ×

Table 1. Grouping various fine-tuning methods along the axes
on-policy sampling, sample reuse, and negative gradient. Since
offline methods do not collect on-policy data, the question of
discarding or reusing on-policy samples is not applicable.

On-policy supervised approaches such as RAFT (Dong
et al., 2023), ReST (Gulcehre et al., 2023), and Su-
perHF (Mukobi et al., 2023) iteratively minimize a weighted
maximum likelihood loss inspired by Peters & Schaal
(2007); Korbak et al. (2022). For a given prompt xi,
these methods sample N responses from the model:
y1
i , · · · ,yN

i ∼ πθ(· · · |xi), then weight these responses
by the exponentiated reward, exp(rϕ(xi,y

j
i )/β) as in the

case of reward-weighted regression (RWR) or obtain the
subset of K highest rewarding responses as in the case of
ReST or Best-of-N. Finally, these methods train via super-
vised next-token prediction on these filtered or weighted
responses. Given a weighting function, F (xi,y

j
i |y0···N

i )

that maps a response yj
i for a given prompt xi to a scalar

value conditioned on other responses yk
i sampled from the

model for the same prompt x, these methods maximize:

max
θ

Ex∼Dpref,y0···N∼πθold

[
log πθ(y

i|x) · F (x,yi|y0···N )
]
.

These algorithms employ sample reuse because they oper-
ate in a “batched” online fashion: instead of performing
exactly one gradient step on a given model sample; RWR,
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ReST, and SuperHF run more updates, after which new sam-
ples are drawn. However, since these methods only contain
positive multipliers, there is no negative gradient effect.

Fully offline methods like DPO and IPO (Gheshlaghi
Azar et al., 2023) run contrastive training on the prefer-
ence dataset Dpref without any on-policy sampling. These
methods train using variants of Equation (3) combined with
Equation (4) on responses yw and yl from the preference
dataset Dpref. Despite no on-policy sampling, contrastive
loss between winning and losing responses explicitly at-
tempts to reduce log-likelihood ratio log

(
πθ(y|x)
πref (y|x)

)
for yl.

Another offline method is Pref-FT (Dubois et al., 2024)
which runs supervised fine-tuning on preferred responses.
These methods are akin to offline model-free methods, in
that no reward model is utilized by these methods.

3. Research Questions and Analysis Setup
Our goal is to understand the behavior of various fine-tuning
procedures. We build a setup to understand their differences
empirically by answering the following questions:

Question 1: When does on-policy sampling improve over
offline fine-tuning, even though on-policy samples are anno-
tated by a reward model, which itself is learned from offline
data? Is sample reuse useful or harmful?

Question 2: When does an explicit negative gradient help
compared to maximum likelihood approaches?

Question 3: Does on-policy sampling offer complementary
benefits to negative gradient?

To gain actionable insights, we answer these questions in
the context of coverage and geometric relations between
the training data, reference policy, and the reward function.
These relations affect the shape of the optimally fine-tuned
policy and dictate the dynamics of various objectives under
consideration. We discuss specific conditions next.

3.1. Coverage Conditions and Geometric Relationships
The dynamics of the KL-constrained surrogate optimization
problem (Equation (2)) depends on the geometric alignment
between the ground-truth reward function r∗ and the ref-
erence policy initialization πref (see Figure 1). When the
surrogate reward model rϕ is learned from preference data
Dpref, the coverage of Dpref also dictates the correctness of
reward estimates and hence controls the efficacy of the surro-
gate objective. Likewise, the performance of purely offline
methods that do not use a reward model also depends on the
relative geometric alignment between r∗ and πref (a smaller
alignment would necessitate more deviation from πref ) and
the relative coverage of Dpref (the lower the coverage in
high-reward regions, the harder it is to discover high-reward
responses). To understand the efficacy of various methods,
we consider scenarios that differ along these two factors:

• [C1]: geometric alignment between the ground-truth
reward function r∗ and the reference πref , that can
be measured in terms of any probabilistic divergence
D(πref , exp(r

∗)). This concept is analogous to a “con-
centrability coefficient” (Munos & Szepesvári, 2008).

• [C2]: the coverage of the preference data used to train
the surrogate reward model rϕ relative to the reference
policy πref , that can be measured in terms of the aver-
age density of the responses in the preference dataset
under the reference policy initialization, πref .

3.2. Tasks and Datasets
We construct a variety of didactic and LLM tasks that allow
us to gain intuition for different methods under various
scenarios grouped along relationships [C1] and [C2].

Figure 2. The didactic bandit problem which we use for our
analysis in this paper. Left:Reference policy initialization, Right:
reward slice for each token (the total reward is a mean of token-
level rewards). The optima of reward functions R1 and R2 occur
in low-density and high-density regions under πref respectively.

Didactic N -d bandit problems. Equation (2) poses pref-
erence fine-tuning as a KL-regularized contextual bandit
problem over contexts x. Therefore, we develop a didactic
N -dimensional contextual bandit problem. We use a set of
tokens, V , of size 100. The context, x, is a single discrete to-
ken from V . A response a is a sequence of N = 10 discrete
tokens from V . We primarily study the effect of geometric
relationship [C1] and assume that the reward function is
known exactly, therefore not accounting for the data cov-
erage and training of the reward model. We consider two
reward functions that differ in their geometric alignment
relative to the reference policy, as shown in Figure 2. The
optimum of the reward function R1 is located in low likeli-
hood regions of the reference policy, whereas the optimum
of R2 is roughly aligned with the mode of the reference
policy. We hypothesize that on-policy sampling will be
crucial to optimize reward function R1, whereas offline or
maximum likelihood methods could be sufficient for R2.

Synthetic LLM fine-tuning problems. Next, we will gen-
eralize our intuitions from bandit problems to the LLM
setting. Instead of directly experimenting with human pref-
erences, we first study two synthetic problems that utilize
hand-crafted reward functions, which can be approximated
via reward models. Access to functional forms of these
hand-crafted reward functions will enable us to track the
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Completions truncated to 
skew length distribution 

away from πref
Low Density in High 

Reward Regions 

Figure 3. Word length distribution. Above, we show the word
length distribution for the preferred and dispreferred completions
of the Left: min and Right: skew synthetic LLM datasets.

ground-truth objective throughout training to see if our in-
sights about various approaches under condition [C1] will
hold even when learning against a reward model. Subse-
quently, we run this experiment with an altered skewed
preference data distribution (see Figure 3) to understand
the effect of coverage conditions [C2]. We consider two re-
ward functions: (1) one that minimizes the response length
(“Min Length”), analogous to R1 in the bandit problem,
and (2) one that attempts to anchor the response length to a
pre-specified target value (“Avg Length”), which lies in the
mode of the target distribution. This second condition ex-
hibits similar characteristics to R2. Skew Length scenario
skews the preference data from the Min Length setting.

Full-scale LLM fine-tuning. Finally, we scale up our
study to full-scale LLMs, with real preference data. Recent
work (Singhal et al., 2023) shows that preference labels are
usually biased towards much longer responses, indicating
that preference fine-tuning usually admits a geometric rela-
tionship where the mode of the reward function is distinct
from the mode of human data (and hence, any reference pol-
icy). For the majority of our experiments, we use preference
datasets from the AlpacaFarm benchmark (Dubois et al.,
2024). We also scale up our experiments to UltraChat (Ding
et al., 2023), a ≈ 10 times larger dataset with responses
from many strong LLMs such as GPT-4 and GPT-3.5.

3.3. A Generic Fine-Tuning Algorithm
To systematically analyze the behavior of fine-tuning meth-
ods that differ along the axes discussed in Section 2.2, in
this section, we introduce a generic algorithm with differ-
ent hyperparameters associated with each axes. With a
generic algorithm of this sort, we will be able to answer our
research questions by varying each hyperparameter. Our
unified practical algorithm is shown Algorithm 1. While
on-policy algorithms perform steps 1 and 2 of on-policy
data collection with a reward model, purely offline methods
(e.g., DPO and RWR) utilize preference data directly.

To study the impact of on-policy sampling, we vary the
extent to which updates are made on data from the current
policy. We can control this by two means in Algorithm 1: (1)
by varying the total number of samples |D| = B

C × C = B

used for a given training iteration assuming the algorithm

Algorithm 1 A Unified Fine-Tuning Algorithm
for training iterations do

(1) Sample B/C prompts [x1,x2, · · · ,xB/C ].
(2) Generate D with C responses for B

C prompts, from
the policy for on-policy (y1

i ,y
2
i , · · · ,yC

i ∼ πθ(·|xi))
or from offline data (y1

i ,y
2
i , · · · ,yC

i ∼ Dpref).
(3) Label responses y1

i , · · · ,yC
i with rewards r̂ϕ(·|x)

for T inner iteration steps do
(a) Divide D into mini-batches D1, . . . ,DN , each
with M prompts-response pairs
for i = 1, . . . , N do

(i) Apply the gradient of L(θ;Di; r̂ϕ) prescribed
by the fine-tuning method.

end for
end for

end for

performs exactly one pass over all this sampled data while
keeping the minibatch size M fixed, and (2) by varying
the number T of gradient steps performed on a given set
D of on-policy samples (i.e., a larger T leads to more off-
policy updates). In other words, approach (1) will perform
more updates using stale data for large values of |D|; and
for small values of |D|, approach (2) will make more off-
policy updates if T is larger. While both approaches enable
us to control how on-policy an algorithm is, approach (1)
does not reuse samples (since D is large), but approach (2)
reuses samples for different number of gradient updates,
controlled directly by T . By studying both approaches
for inducing off-policyness, we can isolate the effect of
sample reuse on on-policy methods. We also study offline
methods with no on-policy sampling, such as DPO, and
filtered supervised learning on the preferred response yw in
the dataset to understand the role of negative gradients.

4. Empirical Analysis Results
In this section, we will present the results of our empirical
study to answer our research questions. To answer each
question, we will begin by studying the didactic bandit
problem with the ground-truth reward function, followed by
synthetic and then full-scale LLM fine-tuning problems.

4.1. Question 1: The Role of On-Policy Sampling
To understand the role of on-policy sampling, we will in-
vestigate if on-policy sampling can improve performance
for several approaches followed by making conclusions re-
garding sample reuse. We first study on-policy sampling as
a function of the geometric relationship [C1] in our bandit
setting (see Figure 2), with no sampling error.

Didactic bandit problems. Figure 4 shows that given a
fixed amount of total data budget, sampling data more fre-
quently from more recent policies, but in smaller batches,
results in better performance with both R1 and R2. Doing
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Figure 4. On-policy sampling on bandit problems. Performance of on-policy best-of-N as a function of the data sampled in each
iteration. Larger batch sizes result in more off-policy updates. Left: (i) reward vs update step for R1, (ii) divergence between the policy
parameters and data collection policy during training; Right: (i) reward vs update step for R2, (ii) KL divergence for R2.

Figure 5. Effect of on-policy sampling on synthetic LLM problems. Average gold reward over the course of training for RWR, and
REINFORCE with different B. For Min Length and Skew Length, generally being more on-policy (i.e., smaller batch size) leads to
a higher gold reward. For Mode Length, all batch sizes perform close to each other (note that the range of the y-axis is small), with
performance differences largely due to instability.

so, naturally makes the algorithm more on-policy since each
gradient update uses a mini-batch sampled from a more
recent policy. This is also reflected in larger values of diver-
gences between the sampling policy πgen and the policy πθ,
DKL(πθ||πgen), in Figure 4. Concretely, larger B results in
higher peak values of this divergence during training indi-
cating further deviation from the data at intermediate times
during training. Hence, being more on-policy corresponds
to better performance and faster convergence for best-of-N.

We also note in Figure 4 that the performance degradation
with more off-policy updates is substantially milder for R2,
indicating that when the peak in the reward function lies
in the high likely regions of the reference policy, a higher
degree of off-policy updates is tolerable.

[C1] ↓ || [C2]→ high Dpref and πref overlap low Dpref and πref overlap

peaks of r∗ and πref overlap ✓ Mode Length ×
peaks of r∗ and πref disjoint ✓ Min Length ✓ Skew Length

Table 2. Coverage conditions and geometric relations that we
study with synthetic LLM fine-tuning. The three settings we study
differ on overlap between πref, r∗, and Dpref.

Synthetic LLM problems. In this problem setting, we op-
timize the policy against a reward model, which is learned
from preference data. Per Section 3.2, we construct three
scenarios that differ along geometric ([C1]) and coverage
([C2]) conditions as depicted in Table 2. The peak of the

reward in the Min Length scenario appears in the less likely
regions of πref, whereas the peak of the reward function
in the Mode Length scenario appears in highly likely re-
gions under πref. Finally, to evaluate the robustness of these
findings under more challenging coverage conditions, we
deliberately skew the length distribution in the preference
dataset to make it distinct from the reference policy (called
Skew Length). Concretely, with a 95% probability, we
truncate the length of the response by sampling a length
from an exponential distribution, which naturally leads to
a shorter completion length. The remaining 5% of samples
are drawn from the standard SFT policy to simulate the
broader coverage for the preference data. Overall, the re-
sulting data admits a significantly skewed distribution over
response lengths, as visualized in Figure 3. Figure 5 shows
the effect of on-policy sampling: for Min Length and Skew
Length, where peak of the reward function is far away from
the mode of the reference policy, being more on-policy gen-
erally leads to higher gold reward. For Mode Length, where
reward function peak is aligned with mode of the reference
policy, all batch sizes perform similarly. For more detailed
results for individual settings, see Appendix J.1.

Full-scale LLM problems. Finally, we evaluate if our
insights transfer to the full-scale AlpacaFarm setup. We
use a Pythia-1.4B model as our reference policy and gen-
erate two responses per prompt. We label the preferred
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Figure 6. Negative gradients in synthetic LLM problems. Completion length for three offline algorithms. DPO outperforms Pref-FT
and offline RWR in Min Length and the Skew Length settings (lower completion lengths are preferred), where the peak in r∗ and πref

are misaligned. For the Mode Length setting (closer to mode length, 203, is preferred), all of the algorithms perform similarly.

Figure 7. Effect of on-policy sampling on AlpacaFarm with a
fixed mini-batch, but varying batch size B, for (Left) on-policy
RWR and (Right) REINFORCE. Increasing B makes updates
more off-policy and this results in lower performance.

and dispreferred responses with a gold reward model of hu-
man preferences from AlpacaFarm to construct a preference
dataset. Figure 7 shows that our intuitions from the simple
bandit and synthetic LLM experiments transfer to this task.

Is there any scenario under which we can still attain
good policy performance despite employing off-policy
updates resulting from sample reuse? To study sample
reuse, we compare methods when T > 1 gradient steps
can be made on a given sample. Figure 14 and Figure 15
show our results. While increasing T can slow down con-
vergence and cause the well-known problem of propensity
overfitting (Swaminathan & Joachims, 2015), using a larger
value of T may be better (e.g., T = 2 learns faster than
T = 1). Moreover, PPO seem to have little performance
degradation with sample reuse, whereas other algorithms
such as Best-of-N observe large drops in performance with
more sample reuse. This can potentially be due to PPO
employing a correction mechanism via importance ratios,
when off-policy. See Appendix J.2.

Takeaways for on-policy sampling

On-policy sampling generally improves performance
and efficiency, especially in cases when the peak of
reward appears farther from the reference policy. In
some cases, sample reuse can reduce the dependency
on on-policy sampling of data, but it presents a tradeoff
by reducing the exploration of the response space.

4.2. Question 2: The Role of Negative Gradient
To understand the role of negative gradient, we will compare
contrastive algorithms such as DPO and IPO with maxi-
mum likelihood methods such as RWR (or Pref-FT, which
attempts to increase the likelihood of the preferred response
only) and best-of-N in a fully offline setting, where no new
on-policy samples are used. We will also aim to understand
the mechanisms behind these methods.

NEGATIVE GRADIENT IMPLIES FASTER CONVERGENCE.
We begin by comparing offline supervised approaches, Best-
of-N and offline RWR, and a representative offline method
with a contrastive negative gradient term: offline IPO. We
also consider a variant of best-of-N where we additionally
minimize the likelihood of the dispreferred response akin
to unlikelihood (Welleck et al., 2020) (see Appendix I.2
for details). In Figure 16, we find that IPO and best-of-N +
negative gradient learn a better policy compared to best-of-N
and RWR.

Figure 8. Negative gradients in AlpacaFarm (left) and Ultra-
Feedback (right) for offline methods. We plot the increase in
average gold reward compared to the reference model for differ-
ent offline approaches. Algorithms with a negative gradient such
as DPO outperform approaches such as Pref-FT not utilizing any
negative gradient term.

Synthetic LLM problems. Our experiments in the syn-
thetic LLM setting corroborate this finding. Here we com-
pare Pref-FT (no negative gradient) with DPO (negative
gradients). In the Min Length setting, we find in Figure 6
that DPO significantly outperforms Pref-FT. On the other
hand, when the peak in the ground-truth reward appears
in high-likely regions of the reference policy and the pref-
erence data Dpref covers this region (Mode Length), both
approaches perform similarly. Finally, in the Skew Length
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Figure 9. DPO reward estimates for Pref-FT and DPO on AlpacaFarm and UltraFeedback. For a Pythia-1.4B model trained on
AlpacaFarm, DPO decreases the implicit reward, rθ(x,y) = β [log πθ(y|x)− log πref(y|x)], for both yw and yl, whereas Pref-FT
increases both. For a Mistral-7B model trained on UltraFeedback, DPO is able to increase the reward for yw and decrease the reward for
yl, whereas Pref-FT increases both. In both cases, DPO leads to a higher margin than Pref-FT.

Figure 10. On-policy sampling + negative gradients in LLM length experiments. Complimentary benefit of on-policy sampling and
negative gradients. On-policy DPO performs the best where optimal policy and reference policy lies far from each other (min length and
skew length), and all algorithms perform similarly when these two policies are close (mode length).

scenario when πref and Dpref do not overlap significantly,
but the peak in r∗ is covered by the preference dataset Dpref,
DPO again outperforms Pref-FT.

Full-scale LLM fine-tuning. Finally, we compare super-
vised Pref-FT and contrastive DPO when fine-tuning on ac-
tual preference data. In addition to AlpacaFarm, we also run
experiments using the Ultra-Feedback (Ding et al., 2023)
dataset (see Appendix J.4) As shown in Figure 8, DPO
shows a much larger improvement over the reference policy
πref compared to Pref-FT.

MECHANISMS EXPLAINING THE BEHAVIOR OF THE NEG-
ATIVE GRADIENT. We next attempt to understand the mech-
anism behind this better performance. To do so, we visu-
alize the evolution of the log-likelihoods of the preferred
response and the dispreferred response in a held-out dataset
as multiple gradient steps are taken on an offline preference
optimization loss. Our main findings are: (1) Contrastive
training increases the gap between the likelihoods of pre-
ferred and dispreferred responses compared to supervised
approaches (Figure 17); (2) Changes in log likelihoods de-
pend on model capacity, reference initialization, data size,
and composition. Specifically, Figure 9 shows that DPO
decreases the log-likelihood of both yw and yl for a Pythia-
1.4B model on AlpacaFarm. However, with enough capacity
(Mistral-7B) and sufficiently different distributions of yw

and yl (UltraFeedback), DPO is able to increase the log-
likelihood of yw and decrease that of yl. Pref-FT generally

increases the likelihood of both yw and yl, leading to a
smaller margin. Appendix J.4 presents detailed results.

Takeaways for negative gradients

A negative gradient is useful when the peak in the
reward appears in less likely regions of πref . It can
increase the likelihood of yw when yl is sufficiently
different from yw, model capacity is large, and πref

is appropriate. If not, the reward margin will still be
larger with a negative gradient, but it might increase
likelihoods of other responses, not yw.

4.3. Question 3: On-Policy Sampling and Negative
Gradients are Complementary

Based on our findings that both on-policy sampling and
negative gradients are independently effective, we now
study if combining them would provide any additional ben-
efits. To understand this, we empirically study a straight-
forward on-policy variant of DPO/IPO: instead of utilizing
the PPO or Best-of-N objective on on-policy samples, for
each prompt x, we sample N responses from the policy
y1, . . . ,yn ∼ πθ(.|x), rank them according to a reward
model rϕ, and construct preference pairs. This recipe is
similar to concurrent works such as Rosset et al. (2024).
Then we calculate the DPO/IPO loss on this preference
dataset and update our model accordingly. Figure 10 shows
that the on-policy version of DPO achieves both faster con-
vergence and better performance compared to the offline
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version. Please see Appendix J.6 for more details.

Takeaways for on-policy sampling + negative gradient

On-policy sampling and offline negative gradients
present complementary benefits, in that the best of-
fline loss function with negative gradients can be used
to train on on-policy data, improving over on-policy
RL or supervised learning.

5. Theoretical Analysis
With empirical results showing the benefits of on-policy
sampling and negative gradients, we attempt to build a
conceptual understanding of why they outperform offline
maximum likelihood objectives. Our first key insight is
that the seemingly distinct notions of on-policy RL and
offline negative gradient objectives can be unified under
thenotion of mode-seeking objectives, whereas offline super-
vised and maximum-likelihood approaches optimize mode-
covering objectives. Since RL and on-policy weighted like-
lihood approaches optimize a reverse KL-divergence with
respect to the optimal policy, these objectives are mode-
seeking. Offline supervised methods maximize a forward
KL-divergence with respect to a re-weighted reference pol-
icy, which is mode-covering. Despite not optimizing a
reverse KL-divergence, offline contrastive methods (e.g.,
DPO) exhibit mode-seeking behavior: we show that the
negative gradient puts mass on certain responses more ag-
gressively than methods without it. Furthermore, for an
appropriate set of preferred and dis-preferred responses,
negative gradient puts far more probability mass on the
“mode” of the policy πθ compared to other categories, which
is mode-seeking. Our results are summarized below (Ap-
pendix E.1 contains more formal version of this statement
with proof):
Lemma 5.1 (Informal). On-policy RL and offline con-
trastive objectives exhibit mode-seeking behavior, whereas
offline maximum likelihood objectives are mode-covering.

This simple unification of various preference fine-tuning
approaches does not illustrate the benefits of on-policy RL
or negative gradient since prior results only show that mode-
seeking objectives attain different solutions compared to
mode-covering ones under insufficient expressivity or model
capacity. That is, when the model p(x) cannot fully repre-
sent the target distribution q(x), mode-covering (e.g., for-
ward KL) and mode-seeking (e.g., reverse KL) objectives
lead to different models. However, LLMs typically operate
in a regime where expressivity or capacity is not an issue due
to the use of categorical distributions and massive overpa-
rameterization. To still understand the differences between
mode-seeking and mode-covering objectives, we analyze
the learning dynamics of two representative mode-covering
and mode-seeking objectives, the forward and reverse KL-
divergence, in our next theoretical result.

Theorem 5.2 (Informal). Let pft+1(x) be the distribution
obtained after one gradient step, starting from pt using
the forward KL divergence. Likewise, let prt+1(x) be the
distribution obtained using the reverse KL divergence, from
pt. Define ∆f

t and ∆r
t as the difference of log probability

ratios across two categories x1 and x2, obtained from the
forward and reverse divergences respectively:

∆f
t (x1,x2) := log

pft+1(x1)

pt(x1)
− log

pft+1(x2)

pt(x2)
, (5)

and ∆r
t is similarly defined. Then we have the following

(for appropriate positive constants β, δ1, δ2):
1. Reverse KL modifies mass more aggressively than

the forward KL. If x1 and x2 are such that, δ1 ≤
pt(x1) = pt(x2) ≤ 1 − δ2 (δ1 > 0, δ2 > 0), but
q(x1) ≥ q(x2)+β, then, ∆r

t (x1,x2) > ∆f
t (x1,x2).

2. Reverse KL increases probability mass only on a sub-
set of categories that equal target likelihoods. If x1

and x2 are such that, pt(x2) + β ≤ pt(x1) ≤ 1− δ2,
and q(x1) = q(x2) > c0 · pt(x1), where c0 is a con-
stant > 1, then, ∆r

t (x1,x2) > ∆f
t (x1,x2).

3. Reverse KL aggressively reduces mass on less-likely
categories in the target distribution. If x1 and x2

are such that, pt(x2) + β ≤ pt(x1) ≤ 1 − δ2, and
q(x1) = q(x2) < c1 · pt(x2), where c1 is a positive
constant < 1, then, ∆r

t (x1,x2) < ∆f
t (x1,x2).

A proof of Theorem 5.2 is shown in E.2. This theorem en-
lists several cases where the reverse KL modifies probability
mass disproportionately compared to the forward KL, result-
ing in an acceleration in learning of the target distribution.
Our second key insight is even when p(x) can fully rep-
resent the target distribution q(x), the acceleration induced
by the reverse KL allows it to quickly redistribute proba-
bility mass to only a subset of the likely tokens in target
distribution, within a few gradient steps. This is crucial for
performance in regimes when early stopping is employed to
prevent overfitting or memorization.

6. Discussion and Conclusion
In this work, we attempted to understand which compo-
nents are important for preference fine-tuning of LLMs.
We established that on-policy sampling is crucial for good
performance especially when the peak in the ground-truth
reward lies in less-likely regions of the reference policy
initialization. We also showed that negative gradients can
enable faster convergence and that objectives that induce
a negative gradient are complementary to using on-policy
sampling. Finally, we show that the notion of mode-seeking
divergences unifies the notion of on-policy sampling and
negative gradient. Our case study comparing forward and
reverse KL divergences demonstrates the superiority of the
reverse KL objective in re-distributing mass efficiently, sup-
porting our empirical findings.
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Appendices
A. Related Work
A dominant recipe for fine-tuning LLMs is to run supervised next token prediction (“supervised fine-tuning”) on a
dataset of high-quality responses to obtain a good policy initialization. This is followed by fine-tuning on a dataset of
human preferences (Casper et al., 2023; Ouyang et al., 2022). This fine-tuning can use on-policy RL methods such as
REINFORCE (Sutton et al., 1999) or PPO (Schulman et al., 2017) to maximize the predictions of a reward model obtained
from the preference data, regularized with a KL constraint. Another approach (Dubois et al., 2024) performs supervised
fine-tuning on the filtered set of preferred completions in the preference dataset. A different family of methods runs
supervised learning on preferred responses iteratively such as ReST (Gulcehre et al., 2023), RWR (Hu et al., 2023), and
SuperHF (Mukobi et al., 2023). Alternatively, methods such as DPO (Rafailov et al., 2023), IPO (Gheshlaghi Azar et al.,
2023), SLiC-HF (Zhao et al., 2023), and KTO (ContextualAI, 2024) learn directly from human preferences, with no explicit
reward model. Concurrent work also runs DPO iteratively (Yuan et al., 2024; Chen et al., 2024). These methods come with
different tradeoffs necessitating a study to understand their behaviors.

Prior analysis work. To understand the effect of preference fine-tuning, prior work attempts to uncover its effect on network
parameters for a certain set of tasks (Jain et al., 2023; Lee et al., 2024). Our analysis is complementary in that it studies
conditions when different algorithms perform well, and is applicable to any downstream task. Kirk et al. (2023) study the
contribution of RL fine-tuning on generalization to out-of-distribution prompts but this is complementary to our approach.
Gao et al. (2022); Coste et al. (2023); Eisenstein et al. (2023) study reward over-optimization to better build reward models,
which is complementary to the behavior of the policy optimization approach. Agarwal et al. (2023) develop a recipe that
uses the mode-seeking KL divergence for knowledge distillation: this prior work is largely centered in the problem setting
of distillation and does not study the optimization behavior of RL, contrastive, or supervised objectives. Perhaps closely
related to our work is Singhal et al. (2023), which investigates the interplay between PPO and the composition of preference
data, but this analysis is largely concentrated on studying the length bias of RL fine-tuning rather than developing insights
into the behavior of fine-tuning algorithms. We do design didactic examples that use rewards dependent on length, but this is
solely for analysis.

Concurrently, Ahmadian et al. (2024) show that REINFORCE may simply be enough for preference fine-tuning of LLMs
and complex policy optimization methods such as PPO may not be needed. Our conclusions are mostly complementary,
though we do observe that PPO is more robust to sample reuse than REINFORCE. Concurrently, Sharma et al. (2024)
compares contrastive and supervised fine-tuning on LLM-generated data, but this work does not study the role of coverage
or geometric conditions. Nevertheless their conclusions that various approaches perform similarly when the peak in the
reward function (i.e., oracle AI preferences) aligns with the likely regions in the data (i.e., responses generated from the
same AI model), thus providing evidence to support our findings.

B. Limitations
While we conceptualize our observations, a limitation is that we don’t derive rigorous statistical guarantees in this work. To
the best of our knowledge negative gradient is not fully studied in the literature. We conjecture that negative gradient can
perhaps be formalized statistically from the lens of providing a lower variance learning signal; it would be interesting for
future work to formalize this. It would also be interesting to study more recent approaches based on minimax formulations
(e.g., Munos et al. (2023); Yuan et al. (2024); Swamy et al. (2024); Chen et al. (2024)) in our empirical and conceptual
framework. Next, while we consider the coverage of preference data relative to that of the reference policy in our study, this
is a simplification that does not account for the coverage of the pre-training distribution which future work can incorporate.
Finally, we remark that our study does not explore the effect of reward model quality, which tends to also play a central
role in LLM fine-tuning. It would be interesting to extend our analysis to incorporate the role of reward model quality and
parameterization.

C. Connections to Existing Fine-Tuning Results
Our proposed framework also allows us to explain experiments and evaluations in several existing LLM fine-tuning results,
and as a result, implies several practical guidelines for LLM practitioners. On the AlpacaFarm benchmark (Dubois et al.,
2024), our results corroborate the gap between conditional supervised fine-tuning objectives such as binary FeedME and
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reward conditioning, and RL or contrastive training methods such as PPO and DPO: these results are perhaps even more
extreme in that these conditional and weighted supervised fine-tuning objectives are not even able to outperform regular SFT.
Methods that utilize on-policy sampling such as ReST (Gulcehre et al., 2023) and Quark (Lu et al., 2022) do outperform
SFT but still underperform on-policy RL or on-policy contrastive training. The top-performing methods on the benchmark
are offline DPO, which uses a negative gradient, and PPO, which leverages on-policy sampling.

Additionally, methods such as self-rewarding language models (Yuan et al., 2024), RSO (Liu et al., 2024), OAIF (Guo
et al., 2024), DR-PO (Chang et al., 2024), Hybrid-DPO (Xiong et al., 2023), and RS-DPO (Khaki et al., 2024) couple
on-policy sampling or rejection sampling with contrastive training objectives. These works corroborate our observation
regarding the efficacy of on-policy sampling and negative gradients and how they are complementary. Approaches such as
CRINGE (Adolphs et al., 2022) combine maximum likelihood with a token level contrastive loss term and show gains over
solely utilizing supervised likelihood, corroborating our insights about negative gradients.

Concurrently to us, Xu et al. (2024) show that on many practical LLM fine-tuning problems offline DPO underperforms
on-policy PPO. While we do not study the same LLM fine-tuning problems, the insights from this work corroborate
our findings, which in turn extend insights from this work. For instance, this work observes that DPO can learn to find
out-of-distribution responses, which is consistent with our analysis in Section 4.2 that offline DPO training might increase
probability mass on the highly likely regions of πθ, deviating significantly from the distribution of preferred responses
p(yw|x). To avoid this issue, this work prescribes an iterated DPO recipe where the reference policy (i.e., the SFT policy in
their setting) is used to iteratively collect new samples for DPO training. Section 4.3 arrives at a similar conclusion that
using on-policy samples for policy optimization, though we recommend collecting samples from the current policy and not
the reference policy, which might fail to cover important regions of the space when the peak in the reward function appears
farther away from the high-likely regions of the reference policy.

D. Computational vs Wall-Clock Time Tradeoff for Various Methods

Bandit (R1) Min Length Skew Length
Reward (↑) Time Completion Length (↓) Time Completion Length (↓) Time

Offline DPO / IPO 0.82 (0.04) 1.7 hours 1.0 (0.0) 1.3 hours 11.8 (14.0) 0.12 hours
On-policy PPO 0.92 (0.01) 0.93 hours 20.5 (25.4) 4.84 hours 15.8 (11.1) 7.26 hours
On-policy RWR 0.88 (0.01) 0.12 hours 65.5 (36.7) 15.5 hours 15.8 (9.3) 15.5 hours
On-policy DPO / IPO 0.92 (0.01) 0.12 hours 1.0 (0.0) 0.4 hours 0.0 (0.0) 0.4 hours

Table 3. Wall-clock time comparisons. Comparison between on-policy and offline variants of contrastive objectives (DPO/IPO) in terms
of reward and wall-clock time required till convergence of the run. Generally, on-policy contrastive approaches achieve both superior
reward and wall-clock time as opposed to offline contrastive approaches (offline DPO/IPO) and on-policy RL (PPO, RWR). Synthetic
LLM experiments use a single A40 GPU. Bandit experiments use a Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz CPU, with 4 threads.

A natural takeaway extending the empirical results from Section 4.3 is that on-policy variants of contrastive approaches
might provide for an better tradeoff between computation and wall-clock time. We perform a comparison of wall-clock time
needed to run our experiments in Table 3. in particular, we found that on-policy DPO only requires 0.4 hours to converge,
while offline DPO requires a wall-clock time of 1.3 hours to converge to the same solution in the Min Length scenario. In
the Skew Length scenario, where the learned policy must deviate from the initial reference policy substantially, we find
that while offline DPO can converge a bit quickly (0.12 hours), it flatlines at a sub-optimal solution (completion length
of 11.8) as compared to on-policy DPO which takes merely 0.4 hours to reach a more optimal solution. This is far more
time-efficient compared to other on-policy methods such as PPO and RWR that present a sampling bottleneck.

E. More on Conceptual Unification and Theoretical Analysis
With empirical results showing the benefits of on-policy sampling and negative gradient for preference fine-tuning of
LLMs, in this section, we attempt to conceptually understand the benefits by building a mental model. In this section,
we will first unify these seemingly distinct notions of on-policy sampling and negative gradient into a unified notion of
mode-seeking objectives, and contrast them against mode-covering maximum likelihood objectives. Then, we will contrast
the learning dynamics of the reverse KL-divergence, a representative mode-seeking objective against the mode-seeking
forward KL-divergence (i.e., the supervised learning loss) to intuitively explain some of our findings.
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E.1. Seeking Modes Unifies On-Policy Sampling and Negative Gradients
In this section, we will show that the notion of mode-seeking divergences unifies on-policy sampling and negative gradients
for the various objectives we investigated in the paper, i.e., we will prove we will prove Lemma 5.1 stated in the main paper.
Specifically, we show below that several on-policy RL methods that we studied optimize the reverse KL-divergence, and
are hence mode-seeking, offline contrastive methods that employ a negative gradient are also mode-seeking, and finally,
supervised weighted maximum likelihood approaches (e.g., offline Best-of-N, Pref-FT, Binary FeedMe) are mode-covering.
For the sake of clarity of the presentation, we will break Lemma 5.1 into three smaller results and prove them separately.

E.1.1. ON-POLICY METHODS ARE MODE-SEEKING

First, we show that on-policy sampling leads to mode-seeking behavior. To do this, we prove that RL and supervised
objectives combined on-policy sampling optimize the reverse KL divergence, which is known to be mode-seeking.

Lemma E.1. On-policy RL and on-policy weighted-likelihood methods optimize a regularized version of a reverse KL-
divergence with respect to the optimal policy and are hence mode seeking.

Proof. Both on-policy RL algorithms and on-policy versions of weighted supervised learning, optimize the following loss
function:

LRL(Dpref, πθ) = −Ex∼Dpref [Ey∼πθ(.|x)[r(x,y)]− βDKL[πθ(.|x)||πref(.|x)]] (6)

Following Appendix A.1 of Rafailov et al. (2023), there exists some policy π∗ such that we can express the reward function
r(x,y) as follows:

r(x,y) = β logZ(x) + β log

(
π∗(y|x)
πref(y|x)

)
where Z(x) =

∑
y πref(y|x) exp

(
r(x,y)

β

)
is the partition function. Combining these two, we get:

LRL(Dpref, πθ) = − βEx∼Dpref

[
Ey∼πθ(.|x)

[
logZ(x) + log

(
π∗(y|x)
πref(y|x)

)]
− DKL[πθ(.|x)||πref(.|x)]

]
= − βEx∼Dpref

[
Ey∼πθ(.|x)

[
logZ(x) + log

(
π∗(y|x)
πref(y|x)

)]
− Ey∼πθ(.|x)

[
log

(
πθ(y|x)
πref(y|x)

)]]
= − βEx∼Dpref

[
Ey∼πθ(.|x)

[
logZ(x)− log

(
πθ(y|x)
π∗(y|x)

)]]
= − βEx∼Dpref [logZ(x)] + βEx∼Dpref [DKL[πθ(.|x)||π∗(.|x)]]

Note that Z(x) does not depend on πθ. Therefore, minimizing LRL with respect to πθ is equivalent to optimizing the reverse
KL-divergence. Since optimizing the reverse KL-divergence is mode-seeking, we see that on-policy RL algorithms have
mode-seeking behavior.

E.1.2. CONTRASTIVE APPROACHES (E.G., DPO/IPO) ARE MODE-SEEKING

Next, we show that offline contrastive methods that employ a negative gradient are also mode-seeking. While these
approaches do not optimize the reverse KL-divergence, we can still show that the probability mass obtained by minimizing
density on negative responses yl gets disproportionately utilized, far more for increasing the probability mass on the “mode”
(i.e., highest probability categories under the current policy πθ) compared to other categories. When the offline dataset
consists of multiple high-reward categories, this preference to put more probability mass on the mode of the current policy
results in mode-seeking behavior, compared to increasing probability mass on all high-reward categories.

Lemma E.2. Let θt denote the parameters of the model at a given iteration t. Consider contrastive approaches that induce
a negative gradient under a functional form shown below:

θt+1 ← θt + η Ex,yw,yl∼D [∇θ log πθ(yw|x) · c1(x,yw,yl)−∇θ log πθ(yl|x) · c2(x,yw,yl)]
∣∣∣
θt
, (7)
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where c1 and c2 are non-negative functions that depend on the reward value and the associated samples, yw and yl. In
contrast, weighted maximum likelihood without the negative gradient sets c2 = 0. Define ωt := log πθ(yw|x)−log πθ(yl|x).
Then, for all models θ and for all t, there always exists an appropriate dataset of positive and negative samples D, such that:

Ex,yw,yl∼D [ωt+1]
∣∣∣
c2>0

≥ Ex,yw,yl∼D [ωt+1]
∣∣∣
c2=0

. (8)

In addition, if the model class πθ and yl can jointly realize the following gradient alignment condition (note that for any θt,
there always exists a yl that satisfies this condition):

∀θ ∈ [θt]t ,Ex,yw,yl∼D
[
∇θ log πθ(yw|x)⊤∇θ log πθ(yl|x)

]
≤ 0,

then, we find that the likelihood of positives is larger (and similarly likelihood of negatives is smaller) when c2 > 0, i.e.,
when a negative gradient term is used:

Ex,yw,yl∼D [log πθ(yw|x)]
∣∣∣
c2>0,θ=θt

≥ Ex,yw,yl∼D [log πθ(yw|x)]
∣∣∣
c2=0,θ=θt

(9)

Ex,yw,yl∼D [log πθ(yl|x)]
∣∣∣
c2>0,θ=θt

≤ Ex,yw,yl∼D [log πθ(yl|x)]
∣∣∣
c2=0,θ=θt

(10)

Proof. First consider an input x. Consider the gradient update (with a small enough learning rate):

θt+1 ← θt − η[∇θ log πθ(yw|x) · c1(x,yw,yl)−∇θ log πθ(yl|x) · c2(x,yw,yl)]

We shall prove that for all possible models θ and for all t, there always exists appropriate pairing of positive and negative
samples (yw,yl), such that after taking the gradient update, we have:

ωt+1

∣∣∣
c2>0

≥ ωt+1

∣∣∣
c2=0

The core idea behind this proof is the normalization of the probability simplex. We proceed with a combination of
mathematical inducation and contradiction: assume that ωt

∣∣∣
c2>0

≥ ωt

∣∣∣
c2=0

, but for all possible pairings (yw,yl), we have

ωt+1

∣∣∣
c2>0

< ωt+1

∣∣∣
c2=0

. We will show that this is not possible. To do this, we first derive the expressions for ωt+1 and then

study under what conditions is it possible that for any pairing of positives and negatives, ωt+1 is smaller when c2 > 0. The
expression for ωt+1 is given by:

ω′ = ω + η (θ′ − θ)
⊤
(∇θ log πθ(yw|x)−∇θ log πθ(yl|x))

= ω + η (∇θ log πθ(yw|x) · c1 −∇θ log πθ(yl|x) · c2)⊤ (∇θ log πθ(yw|x)−∇θ log πθ(yl|x))

= ω + η
[
c1 ||∇θ log πθ(yw|x)||2 + c2 ||∇θ log πθ(yl|x)||2 − (c1 + c2)∇θ log πθ(yl|x)⊤∇θ log πθ(yw|x)

]
.

Now, define: f(t+ 1;yw,yl,x) = ωt+1

∣∣∣
c2>0

− ωt+1

∣∣∣
c2=0

, then we have:

f(t+ 1;yw,yl,x) = f(t;yw,yl,x) + η
[
c1 ||∇θ log πθ(yl|x)||2 − c2∇θ log πθ(yl|x)⊤∇θ log πθ(yw|x)

]
︸ ︷︷ ︸

∆(yl,yw,x)

.

Suppose that for all negatives yl for a given positive response yw, f(t+ 1;yw,yl,x) < 0, then:

∀yl ∆(yw,yl,x) < 0

=⇒ ∀yl, c2∇θ log πθ(yl|x)⊤∇θ log πθ(yw|x) > c1 ||∇θ log πθ(yl|x)||2

=⇒ c2Eyl∼πθ(yl|x)
[
∇θ log πθ(yl|x)⊤∇θ log πθ(yw|x)

]
> c1Eyl∼πθ(yl|x)

[
||∇θ log πθ(yl|x)||2

]
=⇒ c2Eyl∼πθ(yl|x) [∇θ log πθ(yl|x)]⊤∇θ log πθ(yw|x) > c1Eyl∼πθ(yl|x)

[
||∇θ log πθ(yl|x)||2

]
=⇒ 0 > c1Eyl∼πθ(yl|x)

[
||∇θ log πθ(yl|x)||2

]
,
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which is a contradiction since c1 > 0. This means that there is at least one choice of yl for a given yw, for which
∆(yw,yl,x) ≥ 0. This means that if f(t;yw,yl,x) > 0 then f(t+ 1;yw,yl,x) > 0. Averaging over x for all iterations
then gives us the desired result, when starting from an initialization when starting from the same initialization for both the
cases when c2 > 0 and c2 = 0.

For the second part of this result, we note that when the gradient dot products are negative and c2 > 0,
then by writing down the Taylor expansion, we can note that the likelihood of the positive sample increases by
an additional −c2Ex,yw,yl∼D

[
∇θ log πθ(yl|x)⊤∇θ log πθ(yw|x)

]
and decreases by an additional amount given by

c2Ex,yw,yl∼D

[
||∇θ log πθ(yl|x)||2

]
for the negative response. This proves the second part of this statement.

This result indicates that for appropriate negative responses, a contrastive update accelerates the rate of increase of probability
mass on yw, for any model class πθ and reference initialization θ0, compared to setting c2 = 0, which offline weighted
maximum likelihood. This corresponds to mode-seeking behavior. The update induced by DPO admits a similar form
(see the discussion after Equation 7 in Rafailov et al. (2023)). This theoretical result also corroborates our findings in
the experiments in Section 4.2 regarding the negative gradient term. The gradient of IPO also admits a similar form
(Appendix E.1.4).

E.1.3. SUPERVISED OFFLINE ALGORITHMS ARE MODE-COVERING

Finally, we note that purely offline versions of supervised methods such as RWR, ReST, and BoN, that only maximize
weighted likelihood are mode-covering because these objectives can be shown to maximize the forward KL-divergence
against the optimal policy.

Lemma E.3. Consider offline supervised methods that maximize weighted log-likelihood:

Loff-sup(πθ;πref) = −Ex∼Dpref

[
Ey∼πref (.|x)[log πθ(y|x) · F (x,y)]

]
(11)

where F (x,y) ≥ 0 is the weight for (x,y). Furthermore,
∑

y F (x,y) > 0 (i.e., for every x, there exists a response y with
non-zero F (x,y)). Then these methods optimize a forward KL-divergence.

Proof. Offline supervised methods optimize the following loss function:

Loff-sup(πθ;πref) = − Ex∼Dpref

[∑
y

πref(y|x) log πθ(y|x) · F (x,y)

]

Define a new distribution

π̃(y|x) = πref(y|x) · F (x,y)

Z(x)

Here Z(x) =
∑

z πref(z|x)·F (x, z) is the normalization constant. It is easy to check that this a valid conditional distribution.
This gives us:

Loff-sup(πθ;πref) = − Ex∼Dpref

[
Z(x)

∑
y

π̃(y|x) log πθ(y|x)

]

= Ex∼Dpref

[
Z(x) · Ey∼π̃(y|x)

[
log

(
π̃(y|x)
πθ(y|x)

)]]
− Ex∼Dpref

[
Z(x) · Ey∼π̃(y|x) [log π̃(y|x)]

]
= Ex∼Dpref [Z(x) · DKL(π̃(.|x)||πθ(.|x))] + Ex∼Dpref [Z(x) ·H(π̃(.|x))]

Hence offline supervised methods minimize the re-weighted forward KL-divergence.

E.1.4. GRADIENTS FOR BOTH DPO AND IPO EXHIBIT THE FORM IN LEMMA E.2.

We now show that the gradient of both DPO and IPO takes the form shown in Equation (7). From Rafailov et al. (2023), the
gradient of the DPO loss is:

∇θLDPO(πθ;πref) = −βE(x,yw,yl)∼Dpref

[
cDPO(x,yw,yl) · [∇θ log πθ(yw|x)−∇θ log πθ(yl|x)]

]
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where cDPO(x,yw,yl) = σ
(
β log πθ(yl|x)

πrefyl|x) − β log πθ(yw|x)
πrefyw|x)

)
.

Now we derive the gradient of the IPO loss. Define

cIPO(x,yw,yl) = 2 ·
(
log

(
πθ(yw|x)
πref(yw|x)

)
− log

(
πθ(yl|x)
πref(yl|x)

)
− τ−1

2

)
The gradient of the IPO loss is:

∇θLIPO(πθ;πref) = ∇θE(x,yw,yl)∼Dpref

[(
log

(
πθ(yw|x)πref(yl|x)
πref(yw|x)πθ(yl|x)

)
− τ−1

2

)2
]

= E(x,yw,yl)∼Dpref

[
cIPO(x,yw,yl) · [∇θ log πθ(yw|x)−∇θ log πθ(yl|x)]

]
E.2. Case Study: Mode-Seeking Reverse KL vs. Mode-Covering Forward KL
Having seen that mode-seeking and mode-covering divergences can unify on-policy sampling and negative gradients, in
this section, we perform a theoretical analysis to quantify the behavior of the two representative mode-seeking and mode-
covering objectives: reverse KL (mode-seeking) and forward KL (mode-covering) objectives on categorical distributions,
parameterized via independent logits. Our goal is to formalize the intuition that a mode-seeking objective can sharpen the
probability mass on only certain high-reward regions, thereby leading to aggressive reorganization of probability mass. This
helps corroborate our experiments that on-policy sampling in a reward model and offline negative sampling is still useful to
quickly align the policy with the target distribution.

Notation and setup. For this result, we will study training a categorical distribution p(x) to match the theoretically optimal
fine-tuned policy, q(x). We assume that p(x) ∝ exp(f(x)), where each logit f(x) is an independent parameter. We train
p(x) by performing gradient descent, starting from an initial reference distribution p0 on a fine-tuning loss with gradient
descent and a learning rate η. We denote the distribution at step t of this gradient descent as pt. For this analysis it would be
helpful to explicitly write out the parameter updates at any iteration t, induced by forward and reverse KL.

Lemma E.4. For any given distribution pt, with pt(x) = exp(ft(x)), the updates induced by the forward and reverse
KL-divergences within one step of gradient descent with a learning rate η are given by:

Forward KL: log
pft+1(x)

pt(x)
= η (q(x)− pt(x)) + Z. (12)

Reverse KL: log
prt+1(x)

pt(x)
= η

(
pt(x)

[
log

q(x)

pt(x)
+ DKL(pt(·)||q(·))

])
+ Z′, (13)

where Z and Z′ denote constant normalization factors.

Proof. We start with the definition of KL-divergence:

DKL(q(x)||p(x)) =
∑
i

qi(x) log qi(x)−
∑
i

qi(x) log pi(x)

= −H(q)−
∑
i

qi(x) log

(
efi(x)∑
k e

fk(x)

)

= −H(q)−
∑
i

qi(x)fi(x) +
∑
i

qi(x) log

(∑
k

efk(x)

)
Therefore, we have:

∂

∂fj
DKL(q(x)||p(x)) = − qj(x) +

∑
i

qi(x)

(
efj(x)∑
k e

fk(x)

)
= − qj(x) +

∑
i

qi(x)pj(x)

= pj(x)− qj(x)
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This gives us the derivative of forward KL. Similarly, we can write:

DKL(p(x)||q(x)) =
∑
i

pi(x) log pi(x)−
∑
i

pi(x) log qi(x)

=
∑
i

(
efi(x)∑
k e

fk(x)

)[
fi(x)− log

(∑
k

efk(x)

)]
−
∑
i

log qi(x)

(
efi(x)∑
k e

fk(x)

)

=

∑
i fi(x)e

fi(x)∑
k e

fk(x)
−

(∑
i

efi(x)

)(
log
(∑

k e
fk(x)

)∑
k e

fk(x)

)
−
∑
i

log qi(x)

(
efi(x)∑
k e

fk(x)

)

=

∑
i fi(x)e

fi(x)∑
k e

fk(x)
− log

(∑
k

efk(x)

)
−
∑

i log qi(x)e
fi(x)∑

k e
fk(x)

Now we calculate the partial derivative with respect to fj for the first term:

∂

∂fj

∑
i fi(x)e

fi(x)∑
k e

fk(x)
=

(∑
k e

fk(x)
)

∂
∂fj

(∑
i fi(x)e

fi(x)
)
−
(∑

i fi(x)e
fi(x)

) (
∂

∂fj

∑
k e

fk(x)
)

(∑
k e

fk(x)
)2

=

∂
∂fj

(∑
i fi(x)e

fi(x)
)∑

k e
fk(x)

−
efj(x)

(∑
i fi(x)e

fi(x)
)(∑

k e
fk(x)

)2
=

efj(x) + fj(x)e
fj(x)∑

k e
fk(x)

− efj(x)∑
k e

fk(x)

(∑
i

fi(x)

(
efi(x)∑
k e

fk(x)

))

= pj(x) + fj(x)pj(x)− pj(x)

(∑
i

fi(x)pi(x)

)

For the second term,
∂

∂fj
log

(∑
k

efk(x)

)
=

efj(x)∑
k e

fk(x)
= pj(x)

And for the third term,

∂

∂fj

∑
i log qi(x)e

fi(x)∑
k e

fk(x)
=

(∑
k e

fk(x)
)

∂
∂fj

(∑
i log qi(x)e

fi(x)
)
−
(∑

i log qi(x)e
fi(x)

)
∂

∂fj

(∑
k e

fk(x)
)

(∑
k e

fk(x)
)2

=
efj(x) log qj(x)∑

k e
fk(x)

−
(

efj(x)∑
k e

fk(x)

)(∑
i

log qi(x)
efi(x)∑
k e

fk(x)

)
= pj(x) log qj(x)− pj(x)

∑
i

pi(x) log qi(x)

Putting it all together, we obtain:

∇fjDKL(p(x)||q(x)) = pj(x) · (fj(x)− log qj(x))− pj(x) ·

(∑
i

pi(x) · (fi(x)− log qi(x))

)

= pj(x) · log
pj(x)

qj(x)
− pj(x)

∑
i

pi(x) · log
pi(x)

qi(x)

= pj(x)

[
log

pj(x)

qj(x)
− DKL(p(x)||q(x))

]
giving us the derivative of the reverse KL.
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Now, if the logits ft are being updated with gradient descent on loss L, the distribution at the next step pt+1 is given by:

pt+1
j (x) = exp(f t+1

j (x))/
∑
i

exp(f t+1
i (x))

=
exp(f t

j (x))− η∇ft
j
L)∑

i exp(f
t
i (x))

·
∑

i exp(f
t
i (x))∑

i exp(f
t
i (x)− η∇ft

i
L)

= ptj(x) ·
exp

(
−η∇ft

j
L
)

∑
i p

t
i(x) exp

(
−η∇ft

i
L
)

Let’s consider what the characterization of pt+1 for the forward kl:

pt+1
j (x) = ptj(x) ·

exp
(
−η
(
ptj(x)− qj(x)

))∑
i p

t
i(x) exp (−η (pti(x)− qi(x)))

Noticing that the denominator is just a normalization constant, we can write this as:

pt+1
j (x)

ptj(x)
∝ exp

(
−η
(
ptj(x)− qj(x)

))
(14)

Similarly the characterization of pt+1 for the reverse KL looks like:

pt+1
j (x)

ptj(x)
∝ exp

(
−η
(
ptj(x)

[
log

ptj(x)

qt(x)
− DKL(p

t(x)||q(x))
]))

(15)

This completes the proof of Lemma E.4.

In principle, upon convergence, both the reverse and forward KL-divergences should find the optimally fine-tuned distribution,
q(x) in this simple setting. But to understand their behavior in relevant practical situations, we are particularly interested in
understanding their behavior at intermediate points during training, when either divergence is not minimized to exactly 0.
Insights about intermediate points in training can make useful predictions about practical problems when early stopping is
used to prevent overfitting and the loss is rarely 0. Thus, our result below attempts to characterize these objectives at any
given iteration t. We restate and provide the proof of Theorem 5.2 here:

Theorem E.5. Let pft+1(x) be the distribution obtained after one gradient step, starting from pt using the forward KL
divergence. Likewise, let prt+1(x) be the distribution obtained using the reverse KL divergence, from pt. Define ∆f

t and
∆r

t as the difference of log probability ratios across two categories x1 and x2, obtained from the forward and reverse
divergences respectively:

∆f
t (x1,x2) := log

pft+1(x1)

pt(x1)
− log

pft+1(x2)

pt(x2)
, (16)

and ∆r
t is similarly defined. Then we have the following (for appropriate positive constants β, δ1, δ2):

1. Reverse KL modifies probability mass more aggressively than the forward KL. If x1 and x2 are such that, δ1 ≤
pt(x1) = pt(x2) ≤ 1− δ2 (where δ1 > 0, δ2 > 0), but q(x1) ≥ q(x2) + β, then, ∆r

t (x1,x2) > ∆f
t (x1,x2).

2. Reverse KL increases probability mass only on a subset of categories that equal target likelihoods. If x1 and x2 are
such that, pt(x2) + β ≤ pt(x1) ≤ 1− δ2, and q(x1) = q(x2) > c0 · pt(x1), where c0 is a positive constant > 1, then,
∆r

t (x1,x2) > ∆f
t (x1,x2).
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3. Reverse KL aggressively reduces probability mass on less-likely categories in the target distribution. If x1 and x2 are
such that, pt(x2) + β ≤ pt(x1) ≤ 1− δ2, and q(x1) = q(x2) < c1 · pt(x2), where c1 is a positive constant < 1, then,
∆r

t (x1,x2) < ∆f
t (x1,x2).

Proof. We prove these statements case by case. First we prove the result for Case 1. In this scenario, we have the following:

∆f (x1,x2) = η (q(x1)− q(x2))

∆r(x1,x2) = ηp(x1) [log q(x1)− log q(x2)] .

The gap between ∆f and ∆r is now given by:

∆r(x1,x2)−∆f (x1,x2) = η

[
log q(x1)− log q(x2)−

q(x1)− q(x2)

p(x1)

]
.

Now, we note by mean-value theorem, that there exists a c0 ∈ [q(x2), q(x1)] such that,

log q(x1)− log q(x2) =
d log p

dp

∣∣∣
p=c0

· (q(x1)− q(x2)) .

Since d log p/dp = 1/p > 1 for c0 ∈ (0, 1), we have that:

∆r(x1,x2)−∆f (x1,x2) = η · (q(x1)− q(x2)) ·
[
1

c0
− 1

p(x1)

]
.

This quantity is positive when p(x1) > c0 = δ1. This shows the result for Case 1.

Next we prove Case 2. In this setting we are given q(x1) = q(x2) ≥ p(x1) ≥ p(x2) + β. In this case, the expressions for
∆f and ∆r are given by:

∆f (x1,x2) = −η (p(x1)− p(x2)) ≤ −ηβ.

On the other hand, the expression for ∆r(x1,x2) is given by:

∆r(x1,x2) = η [p(x1)− p(x2)] log q(x1)︸ ︷︷ ︸
(a)

−η [p(x1) log p(x1)− p(x2) log p(x2)]︸ ︷︷ ︸
(b)

+ ηDKL(p, q) (p(x1)− p(x2))︸ ︷︷ ︸
≥0

. (17)

Now we analyze each sub-term independently. First, we note the following expression for term (b):

(b) := p(x1) log p(x1)− p(x2) log p(x2)

= p(x1) log p(x1)− p(x2) log p(x1) + p(x2) log p(x1)− p(x2) log p(x2)

= (p(x1)− p(x2)) · log p(x1) + p(x2) · (log p(x1)− log p(x2)) .

Combining (a) and (b), we get:

(a) + (b) = η [p(x1)− p(x2)] · [log q(x1)− log p(x1)]− ηp(x2) [log p(x1)− log p(x2))]

= η

(
[p(x1)− p(x2)] ·

[
log q(x1)− log p(x1)− p(x2) ·

1

c′

])
, (18)

where c′ is obtained by applying the mean value theorem on the difference log p(x1) − log p(x2). Now, since q(x1) ≥
c0 · p(x1), log q(x1) − log p(x1) ≥ log c0. Hence, if p(x2) is upper bounded (i.e., when β is large enough), then this
difference (a) + (b) in Equation 18 is positive. Combining with Equation 17, we note that: ∆r(x1,x2) > 0, although
∆f (x1,x2) < 0. This concludes the proof.
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Next, we prove Case 3. Similar to the previous case, here ∆f (x1,x2) = −η(p(x1) − p(x2)) ≤ −ηβ < 0. In
this case, expanding upon the expression of ∆r(x1,x2) similarly as Case 2, in order to show the desired inequality
∆r(x1,x2) < ∆f (x1,x2), we need to prove that:

(p(x1)− p(x2)) · log q(x1) ≤ p(x1) log p(x1)− p(x2) log p(x2) + α0,

where α0 subsumes the terms −β and DKL(p, q) · (p(x1)− p(x2)). By applying mean value theorem, on the RHS of this
equation, we note that:

p(x1) log p(x1)− p(x2) log p(x2) = (1 + log c′′) · (p(x1)− p(x2)) , c′′ ∈ [p(x2), p(x1)].

Then, to attain the desired inequality, we need:

[p(x1)− p(x2)] · [log q(x1)− 1− log c′′] ≤ α0.

Note that since c′′ ≥ p(x2), as long as there exists a sufficiently small constant c1 < 1, such that:

q(x1) ≤ c1 · p(x2) ≤ c1 · c′′

=⇒ log q(x1) ≤ log c1 + log c′′,

the LHS of this equation will be smaller than the RHS α0. This proves the result for this case.

Essentially, this theorem enlists several cases where the forward KL modifies probability mass in different amounts across
various categories, but the reverse KL acts disproportionately. In particular, case 1 says that the reverse KL exhibits more
disproportionate probability mass changes on categories with equal likelihood pt(x), due to the logarithmic dependency
on the probability mass q(x) (compared to the linear dependency for the forward KL). Case 2 says that when the target value
q(x) for two categories is much larger than the probability mass currently assigned to those categories, then the reverse KL
can attempt to preferentially increase probability mass more in the category with a larger likelihood pt(x) under certain
conditions. Finally, case 3 shows that when the likelihood of a category is significantly larger than the target q(x), the
reverse KL is more effective at reducing this probability mass and re-distributing it to other categories within one update
step. Finally, consider another special case, where the difference q(x)− pt(x) is identical for two categories x1 and x2. In
this case, while the forward KL will increase log probability ratios for both x1 and x2 equally, i.e., ∆f (x1,x2) = 0, the
reverse KL will prioritize the category with a higher pt(x) value. These results highlight some scenarios under which the
reverse KL can more efficiently re-organize probability mass across categories.

Mode-seeking vs. mode-covering objectives for categorical distributions

Typically the benefits of mode-seeking behavior are more apparent when the model p(x) is unable to realize
the target distribution q(x) such that minimizing either KL would give rise to different solutions. Unlike this
argument, we show that even when the p(x) can fully represent the target distribution q(x), reverse KL can quickly
re-distribute probability mass to only a subset of the required categories likely in target distribution, within a few
gradient steps.

F. Additional Algorithmic Details
F.1. Score/Reward Standardization

Online methods such as PPO or RWR that uses a learned reward model can suffer from gradient variance issues due to the
differences in the reward score. In particular, adding or subtracting a baseline b from the reward rϕ(x,y) does not change
the relative order of preferred or dispreferred responses; however, it can change the variance of the gradients, leading to
instability of the optimization routine. High variance gradients slow down convergence and lead to sub-optimal solutions in
deep RL (Mei et al., 2022). To mitigate this, prior work (Ziegler et al., 2020) often normalizes the reward to have zero mean
and unit variance. This can be done during the training process by computing the mean and variance of the reward from an
online batch. Formally, let {x(i),y(i)}Bi=1 be a batch of data with batch size B sampled from policy πθ: one calculates the
standardized reward r̄ϕ(x

(i),y(i)) as:

r̄ϕ(x
(i),y(i)) =

rϕ(x
(i),y(i))− µ̂

σ̂
(19)

where µ̂ = 1
B
∑B

i=1 rϕ(x
(i),y(i)), σ̂ =

√
1

B−1

∑B
i=1(rϕ(x

(i),y(i))2 − µ̂)2.
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F.2. IPO

IPO (Gheshlaghi Azar et al., 2023) is a contrastive algorithm similar to DPO. The key difference between them is their loss
function: DPO optimizes the negative log-sigmoid loss whereas IPO optimizes an MSE-type objective. Formally, the IPO
objective is:

LIPO(πθ;πref) = E(x,yw,yl)∼Dpref

(
log

(
πθ(yw|x)πref(yl|x)
πref(yw|x)πθ(yl|x)

)
− τ−1

2

)2

(20)

where τ is a hyperparameter controlling how much the learned policy πθ deviates from the reference policy πref .

G. Method Hyperparameters
We did an extensive sweep over hyperparameters for individual offline and online algorithms for the language model
experiments. We built our algorithm implementations off of the Huggingface TRL implementation (von Werra et al., 2020).

Table 4. Algorithm Agnostic Hyperparamters

Hyperparameters Values Description

B 64 Batch Size
Bmini 8 Mini-Batch Size
G 8 Gradient Accumulation Steps
π̂θ Pythia1.4B,

Mistral-7b
Policy Architecture

R̂θ Pythia410M,
Mistral-7B

Reward Model Architecture

optimizer Adam Gradient Optimizer

Table 5. Sampling Hyperparamters

Hyperparameters Values Description

top k 0.0 Disables top-k sampling
top p 1.0 Disables nucleus sampling
do sample True Enables sampling
max new tokens 256 Maximum number of new tokens to generate
temperature 1.0 Sets sampling temperature (1.0 for default)
use cache True Uses past key/values attentions if supported by the model

G.1. DPO (Rafailov et al., 2023)

Table 6. DPO Hyperparameters

Hyperparameters Values Description

lr 1e-7, 5e-7, 1e-6, 5e-6, 1e-
5

learning rate

β 0.01, 0.05, 0.1, 0.5 KL weight
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G.2. Pref-FT (Dubois et al., 2024)

Table 7. Pref-FT/Binary FeedMe Hyperparameters

Hyperparameters Values Description

η 1e-7, 5e-7, 1e-6, 5e-6 learning rate

G.3. PPO (Schulman et al., 2017)

Table 8. PPO Hyperparameters

Hyperparameters Values Description

η 1e-7, 5e-7, 1e-6, 5e-6, 1e-
5

Learning rate.

vf coef 0.1 Coefficient for the value function loss.
adap kl ctrl True Enables adaptive KL penalty control.
init kl coef 0.2 Initial coefficient for KL penalty.
target kl 0.1 Target KL divergence for policy updates.
N 1 actions per prompt

G.4. RWR

Table 9. RWR Hyperparameters

Hyperparameters Values Description

η 1e-7, 5e-7, 1e-6, 5e-6, 1e-
5

learning rate

β 0.1, 1, 10, 20 temperature
N 1 actions per prompt

G.5. Iterated Best-of-N (Mukobi et al., 2023)

Table 10. Iterated BofN Hyperparameters

Hyperparameters Values Description

η 1e-7, 5e-7, 1e-6, 5e-6, 1e-
5

learning rate

N 4, 10 actions per prompt

H. Code For Running Experiments
We have made the code for this project public in this repository. The additional datasets used in our experiments are listed
below:

• Min Length

• Mode Length
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• Skew Length

• Relabelled AlpacaFarm

We gratefully acknowledge the following codebases: TRL (von Werra et al., 2020), HALOs (Ethayarajh et al., 2023),
minGPT (Karpathy), DrQ-v2 (Yarats et al., 2021a;b) and PAINT (Xie et al., 2022).

Please check this link for the project website, also this arXiv link for an extended version of this paper.

I. More on Didactic Bandit Problems
I.1. Problem Setup

Here we present details of our didactic bandit problem. The reference policy shown in Figure 2 is obtained by collecting
10000 samples from a Cauchy distribution with location x0 = −0.7, scale γ = 0.4. Next, we clip this samples between
the interval (−1, 1), and divide the interval into 100 equally spaced bins. Starting from −1, we label these bins 0, . . . , 99
sequentially, and calculate the frequency of samples that fell into each bin. Finally, we define,

πref(ai) =
Freq(bini)

10000

The reward functions R1 and R2 are defined as:

R1(a) = exp

(
−
(
a− 70

10

)2
)

and

R2(a) = exp

(
−
(
a− 20

10

)2
)

I.2. Algorithmic Details

In the bandit setting, we consider five algorithms: (1) Best-of-N, (2) IPO, (3) REINFORCE, (4) PPO and (5) RWR.

I.2.1. BEST-OF-N

Best-of-N is similar to SuperHF (Mukobi et al., 2023)/ReST (Gulcehre et al., 2023) and in some way their simplification for
the bandit setting. Best-of-N collects N actions/responses for a prompt/state x, namely y1,y2, . . . ,yN . Next, we collect
the rewards {R(x,yi)}Ni=1, and based on these rewards, choose the best action ybest = argmaxyi

R(x,yi). Finally, the
loss function is the negative log-likelihood of this best action.

Lbofn(πθ;x,y1, . . . ,yN ) = − log πθ(ybest|x)

In both the online and offline setting, we have a fixed set of prompts Dprompts, and we also always start with πθ initialized to
πref . Formally, given a policy π, we can form a training set as:

Dtrain(Dprompts, π) = {(x,y) : x ∈ Dprompts,y = argmax
yi

R(x,yi) where y1,y2, . . . ,yN ∼ πref(.|x)}

In the offline setting, we collect a fixed training dataset where actions are sampled from πref , namely Dtrain(Dprompts, πref).
In the online setting, we collect a new training dataset by sampling actions from the current policy πθ, namely
Dtrain(Dprompts, πθ), after every T gradient steps, and discard the previous dataset.

To show the efficacy of negative gradient, we can also directly add a term to this loss function minimizing log probability on
dispreferred actions. Explicitly, we consider the following loss function:

Lbofn + neg-grad(πθ;x,y1, . . . ,yN ) = − log πθ(ybest|x) + β
∑

yj ̸=ybest

log πθ(yj |x)
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where β is a hyperparameter that we usually set to 1.0. We note that in practice this loss can quickly become unstable and
proceed to −∞, in practice we only minimize the probability of dispreferred actions if it is above a certain threshold.

I.2.2. IPO

In contrast, IPO uses the loss function defined in Equation (20). While regular IPO is an offline algorithm that uses a fixed
preference dataset Dpref, since we have access to the true reward function in the bandit setup, we create an online version of
this algorithm as well. Here we also have a fixed set of prompts Dprompts, and given a policy π, we can generate a preference
dataset as follows: for each prompt x ∈ Dprompts, we can generate completions y1,y2, . . . ,yN ∼ π(.|x). For any i ̸= j,
without loss of generality, assume R(x,yi) > R(x,yj). Then yi and yj are the preferred and dispreferred completions
respectively, and we can form a preference dataset with all such (x,yw,yl) tuples.

In the offline setting, the preference dataset is collected by generating samples from the reference policy πref , and kept fixed
during training. In the online setting, we generate the preference dataset from the current policy πθ, after every T gradient
steps, and discard the previous dataset.

I.2.3. REINFORCE

For REINFORCE, we sample y ∼ πθ(.|x), calculate the normalized reward R(x,y), and use the following loss:

LREINFORCE(πθ;Dprompts) = −Ex∈Dprompts [Ey∼πθ
[log πθ(y|x)R(x,y)]]

I.2.4. PPO

For PPO, let πgen be the policy used to generate the responses, and define r(x,y) = πθ(y|x)
πgen(y|x) . Then we use the following

loss function:

LPPO(πθ;Dprompts) = −Ex∈Dprompts

[
Ey∼πθ

[
max

(
r(x,y)R(x,y),Clip (r(x,y), 1− ϵ, 1 + ϵ)R(x,y)

)]]
where ϵ > 0 is a hyperparameter that controls how much we clip off-policy updates.

I.2.5. RWR

For RWR, we use the following loss function:

LREINFORCE(πθ;Dprompts) = −Ex∈Dprompts

[
Ey∼πθ

[
log πθ(y|x) exp

(
R(x,y)

β

)]]

where β is a hyperparameter, usually β = 0.1 in our experiments unless otherwise noted.

I.3. Experiment Details

For all experiments, we use N = 10. For negative gradient experiments, we are in the fully offline setting and vary the size
of the prompt dataset Dprompts, with T = 100 number of gradient steps performed. For on policy sampling experiments,
we hold |Dprompts| = 10 randomly sampled prompts from tokens {0, . . . , 99}, and vary T . We also a new training dataset
from the current policy after each T gradient steps, and perform this data collection step 100 times for all experiments.
We set τ = 0.05 for IPO, and search for the optimal learning rate from 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001,
0.00003, and 0.00001 for each experiment and use an Adam (Kingma & Ba, 2017) optimizer for all experiments. We run
each experiment for 5 seeds, and the shaded region in the plots refers to the standard error of the mean obtained from these
runs. Finally, to initialize πθ to πref , we minimize the KL divergence between πθ and πref with an Adam optimizer with a
learning rate of 0.01.

For all experiments, we use a small GPT (Radford et al., 2018; Brown et al., 2020)-like transformer architecture (named
‘GPT-Nano’) with 0.9M parameters. We took the implementation from this public repository: minGPT (Karpathy).
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Figure 11. On-policy sampling for PPO in the Min Length scenario. This plot keeps the minibatch size M fixed to 64, but samples
more stale data when B is large. Increasing B results in more off-policy updates and consequently slower convergence to ground-truth
reward (i.e., a completion length of 0). Left: average completion length (lower the better), and Right: proxy reward vs gradient steps.
Being more on-policy results in better performance. The mini-batch size M used for gradient updates is kept fixed to avoid confounders
arising from the use of stochastic optimization procedures.

J. Detailed Empirical Results
J.1. On-policy Sampling in Synthetic LLM Problems

We present our results for one algorithm in detail (in this case, PPO) (Figures 11 to 13) Extending insights from the bandit
problem, in the Min Length scenario, we find that being more on-policy (i.e., a smaller B) leads to a lower completion
length and hence a higher gold reward, despite potential inaccuracies in the proxy reward model that PPO is actually
optimizing (Figure 11). Akin to our bandit experiments, we also observe that smaller batch sizes (B = 64 and B = 128)
optimize the proxy reward at a faster rate compared to B = 192 and B = 256. This indicates that with a significant overlap
between the preference data and the reference policy, on-policy sampling still leads to better performance with fewer updates.
We also find similar trends across on-policy variants of RWR and REINFORCE, where modulo training instabilities, being
more on-policy results in better performance (Figure 5; Min Length).

Figure 12. On-policy sampling for PPO in the Mode Length scenario. In this case, since the peak in the reward function and the highly
likely regions of the reference policy are close, we find that the degree of on-policyness does not significantly affect performance. Left:
distance to mode i.e., —completion length - average length in the dataset— (lower the better), Right: proxy reward vs gradient steps. As
optimal policy π∗ and reference policy πref are very close to each other in this scenario, we don’t see any significant performance gains
from being on-policy. The mini-batch size M used for the gradient update is kept fixed.
In the Mode Length scenario, where the preferred response for each preference pair are those that are closest to the average
length in the dataset (203), varying the degree of on-policy sampling by adjusting the sampling frequency largely does not
affect either the proxy or gold reward for PPO (Figure 12). We make similar observations for other algorithms: Figure 5;
Mode Length: different degrees of on-policyness perform similarly, except the more on-policy runs sometimes exhibit
instability. This is in agreement with the results from the bandit setting above: when the peak in the reward function
lies in highly likely regions under the reference policy, on-policy sampling has minor effect and more off-policy
configurations of the algorithm can perform similarly too.
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Figure 13. On-policy sampling for PPO on the Skew Length scenario. Being more on-policy results in faster convergence and better
performance. Left: average completion length (lower the better), and Right: proxy reward vs gradient steps. Being more on-policy results
in better performance.

Our detailed results of running PPO in this setting are shown in Figure 13. In this setting, we still find that more on-policy
updates lead to a higher gold reward with PPO. In addition, we also observe much larger gaps in proxy reward values attained
at any given gradient step compared to the Min Length scenario, in favor of on-policy sampling. For other algorithms, we
also observe strong and clear trends supporting that on-policy sampling with a smaller but frequently sampled batch results
in better performance as shown in the summary plot (see Figure 5; Skew Length).

J.2. More on On-Policy Sample Reuse
We study sample reuse for on-policy RWR in the bandit setting in Figure 14. While increasing T can slow down convergence
in general, we note that using a larger value of T may be better (e.g., T = 5 learns faster than T = 2; T = 10 learns faster
than T = 7).

Figure 14. Effect of on-policy sample reuse on bandit problems. Reward vs gradient steps for a different number of inner iteration
steps, T , on the same data batch for RWR. Increasing T controls the number of gradient steps taken before collecting the new batch of
on-policy samples. We observe non-monotonic performance trends while varying T .

Figure 15. Effect of on-policy sample reuse in the Min Length scenario. Average completion length (i.e., the lower the better) vs
gradient steps for a different number of inner iteration steps, T , on the same data batch. A larger value of T implies that the algorithm is
more off-policy. Observe that some sample reuse can improve sample efficiency (T = 2 outperforms T = 1), but excessive sample reuse
can hurt performance. Also note that algorithms with mechanisms to control off-policy updates such as PPO are suited to perform better
in the off-policy sample reuse setting.
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Synthetic LLM problems. We also evaluate the effect of sample reuse on synthetic LLM problems. In this case, we study
two algorithms PPO and on-policy best-of-N to be able to understand the effect of sample reuse on multiple algorithms. In
contrast to the performance degradation with off-policy updates induced due to stale samples in PPO, we find that off-policy
updates induced due to sample reuse do not hurt performance (Figure 15; PPO), with even T = 8 performing similarly to
T = 1. On the other hand increasing T from 1 to 2, i.e., performing two gradient updates on each sample improves the
golden reward for best-of-N (Figure 15; Best-of-N) within a given data sampling budget.

Why do PPO and best-of-N respond differently to sample reuse? We believe that this is because PPO employs an
off-policy correction, and hence, significantly off-policy samples do not contribute to the gradient, addressing the well-known
challenge of propensity overfitting (Swaminathan & Joachims, 2015). This is not the case with on-policy best-of-N, where
excessive sample reuse can hurt exploration, because training on old samples with a log-likelihood loss push the current
policy to be close to the stale data-generating policy. That said, more than one gradient step can still be useful when
presented with a fixed data budget, unless it bottlenecks exploration of high reward regions.

J.3. Effect of Negative Gradient in the Didactic Bandit Problem

Figure 16. Negative gradients on the didactic bandit problems. Average reward during training and the KL-reward trade-off for four
algorithms in the fully offline setting: best-of-N (no negative gradient), RWR (no negative gradient), best-of-N + an explicit negative
gradient on dispreferred actions, and IPO (with negative gradient). Negative gradient helps find a better policy by aggressively pushing
down the likelihood of bad actions, and this leads to larger KL values.

Figure 16 shows the performance of various algorithms in the bandit problem under the fully offline setting. IPO achieves a
better KL-reward trade-off in R1 (where high likelihood regions of πref and the peak in r∗ are far away from each other).
While best-of-N attains a higher reward when the reward function is given by R2 (where the peaks in πref and r∗ overlap)
compared to R1, it still underperforms IPO. We suspect that this is because maximizing likelihood on some responses
alone is not enough to steer the learned policy away meaningfully away from πref towards the peak in the reward function,
especially when this peak is far away from πref. Best-of-N + negative gradient significantly outperforms Best-of-N in both
scenarios and closes the performance gap to IPO, which shows that explicitly adding a loss term to minimize the probability
on dispreferred responses can provide a substantial performance improvement. That said, for reward function R2, we also
observe a smaller gap between the best algorithm without a negative gradient (i.e., RWR) and offline IPO, indicating that
when the peak in πref and r∗ exhibit more overlap, the performance benefits of contrastive training are smaller. We also
investigated a simpler 1-token bandit problem where we found best-of-N to be better than IPO for R2. This is possibly due
to the much smaller space of possible tokens and responses, where maximum likelihood methods perform well enough.

J.4. Setup for Negative Gradient Experiments in Full-scale LLM Fine-tuning

For the Ultra-Feedback dataset, we use different models (GPT-3.5, GPT-4) to generate responses to various prompts. The
resulting dataset has a broader preference dataset distribution than πref . We utilize a checkpoint of the Mistral7B model
obtained by running supervised next-token prediction on a subset of UltraChat (comprising of GPT-3.5 responses) as the
reference initialization. We use the UltraRM model with a LLaMA2-13B base architecture as our gold reward model.
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J.5. More Details on Mechanisms Explaining the Behavior of the Negative Gradient

Contrastive training increases the gap between the likelihoods of preferred and dispreferred responses. Perhaps as
expected, we find that DPO-style contrastive training is more effective at increasing the gap between the likelihoods of
preferred and dispreferred responses compared to offline Pref-FT in several LLM settings: the synthetic LLM settings with
Min Length and Skew Length, and full-scale AlpacaFarm and UltraFeedback settings (Figure 17). More concretely, note
that the margin for Pref-FT largely converges to 0, whereas offline DPO can enable a larger margin.

Figure 17. Difference in likelihoods of preferred and dispreferred responses. DPO increases the log probability margin log πθ(yw|x)−
log πθ(yl|x) more compared to non-contrastive methods such as Pref-FT.

Changes in log likelihoods depend on model capacity, reference initialization, data size, and composition. The natural
next question is if DPO-like objectives use the probability mass recovered by increasing the reward margin between yw and
yl to increase the probability mass on the preferred responses. We track the induced rewards log πθ(yw|x)− log πref(yw|x)
and log πθ(yl|x) − log πref(yl|x) in expectation over prompts x on the bandit problem while varying the size of the
preference dataset. Following standard protocols, both yl and yw are sampled from πref .

Figure 18. DPO implicit reward during training. We observe that with fewer
prompts, contrastive methods can increase the implicit reward, rθ(x,y) =
log (πθ(y|x))− log πref(y|x), of the preferred response while reducing this quan-
tity for the dispreferred response, however as the number of data points grows,
this may not be possible and the likelihood of both positives and negatives might
reduce.

Observe in Figure 18 that when the dataset
size is small relative to the model capac-
ity, contrastive training via IPO can increase
the likelihood of yw while reducing the
likelihood of yl. However, as the num-
ber of prompts increases, contrastive train-
ing counter-intuitively results in a decreas-
ing value of log πθ(yw|x)− log πref(yw|x),
although the loss attempts to push up this
likelihood term. The recovered probability
mass is instead used to increase the likelihood
of other out-of-distribution responses. Thus,
depending upon πref , dataset size, and com-
position, contrastive objectives such as DPO
extrapolate, and this extrapolation might pro-
duce good or bad responses. 1

We also observe a similar trend in full-scale
LLM experiments in Figure 9: we observe a decrease in the log-likelihoods of both the preferred and dispreferred responses
throughout training on AlpacaFarm with small 1.4B Pythia policies. However, using a Mistral7B model to train a policy on
the UltraFeedback dataset results in an increasing value of log-likelihood of πθ(yw|x) and a decreasing value of πθ(yl|x)
when starting from an SFT model on the Ultrachat-200K dataset (same setup as Zephyr (Tunstall et al., 2023)). We believe
that these opposite trends are a consequence of the responses in that the UltraFeedback dataset are more semantically distinct
from each other, as different responses come from models with different capabilities (e.g., a GPT-4 response is paired with a

1Concurrent work (Rafailov et al., 2024) also studies the induced rewards for DPO and shows that when πref(·|x) is exactly equal
to the empirical distribution of preferred responses p(yw|x) in the dataset, then induced rewards will always decrease. This does not
contradict our findings because this condition is not satisfied in typical fine-tuning pipelines where both yw and yl are sampled from
πref . Furthermore, even if πref is obtained by first running supervised Pref-FT only on yw, it is unclear whether the parametric model
representing πref(·|x) will induce an identical probability distribution to the empirical distribution of preferred responses. That said, it is
indeed the case that the likelihood of yw decreases often when training with DPO even though the reference policy does not satisfy the
condition highlighted in this concurrent work, implying that this phenomenon is a result of many factors (data size, similarity of yw and
yl, capacity). We also show in Appendix E that with appropriate negatives, likelihoods might not decrease for some contrastive methods.
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GPT-3.5 response) such that given enough model capacity, contrastive training can push up likelihoods of πθ(yw|x) while
pushing down πθ(yl|x). In contrast, running Pref-FT increases the likelihoods of both yw and yl (Figure 9) despite training
only on yw: this observation about Pref-FT was also noted by concurrent work such as Hong et al. (2024); Pang et al. (2024).

J.6. More Empirical Results on Complimentary Nature of On-Policy Sampling and Negative Gradients

Figure 19. On-policy sampling + negative gradients in bandit setup. Complimentary benefit of on-policy sampling and negative
gradients. Online IPO (using both on-policy sampling and negative gradients) performs better than offline IPO (negative gradients but no
on-policy sampling) and RWR (on-policy sampling but no negative gradients).

Performance on bandit and synthetic LLM problems. Figure 19 shows that the on-policy version of IPO achieves both
faster convergence and better performance compared to the offline version, for both R1 and R2 in the didactic bandit
problem. We also ran on-policy DPO in synthetic LLM problems we studied and found it to converge significantly faster
and to a better solution than offline DPO, on-policy RL, and on-policy variants of supervised learning approaches as shown
in Figure 10. We also find that on-policy versions of contrastive approaches exhibit favorable computational vs wall-clock
time tradeoffs compared to purely on-policy RL methods and even offline contrastive methods that may not find as good
solutions as their on-policy counterparts (see Appendix D).

Why can on-policy versions of contrastive methods perform better than on-policy RL? We saw in Section 4.2 that offline
contrastive training with a negative gradient was effective at quickly reorganizing probability mass to high-reward responses
covered by the preference data. When combined with on-policy sampling, this behavior results in faster convergence: for any
given batch of on-policy data, contrastive training with a negative gradient can quickly reconfigure the policy distribution
within the support of the on-policy data obtained thus far (i.e., it provides a stronger, low-variance learning signal). Similarly
to how best-of-N + negative gradient outperforms vanilla best-of-N but underperforms DPO in Figure 16, PPO also improves
over RWR without a negative gradient term (in the bandit setting this corresponds to a better reward-KL tradeoff in Figure 19
and in the synthetic LLM setting this appears in final performance), but it is still unable to match on-policy DPO in Figure 10.
Note that this does not mean that on-policy DPO would always outperform PPO, but that it might be a good choice for users
to experiment with on-policy versions of contrastive methods.

K. Additional Experiments on Synthetic LLM Setup
K.1. Performance of Various Algorithms on the Mode Length Setting

Figure 20 shows the performance of various algorithms in the mode length setup. We see that all algorithms perform
similarly here.

K.2. Effect of On-policy Samples vs Samples from an Older Policy in Synthetic Length Settings

Figures 21 and 22 shows the effect of using on-policy samples vs samples from an older policy for RWR in the synthetic
length experiments.

K.3. Sample Reuse in Synthetic LLM Settings

Figure 23 shows the effect of sample reuse in the Skew Length setting: similar to Min Length ( Figure 15), some sample
reuse can improve sample efficiency. but excessive sample reuse can also hurt performance. Also, we see PPO with
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Figure 20. Performance of various algorithms on mode length setup. Distance to mode of the completion lengths from πref, 203, for
different algorithms. All algorithms perform similarly, and varying degrees of on-policyness does not generally degrade performance.

Figure 21. On-policy sampling on Min Length (RWR). Effect of using on-policy samples vs samples from an older policy for RWR
and the min length setup. In all experiments, the mini-batch size to calculate the gradient is fixed at 64, and we sample batch size B
completions from the current policy, divide it into mini-batches, and take one pass over the entire set of completions before collecting
more samples. Increasing B thus makes the algorithm make updates on samples from an older policy. Left: average completion length
(lower the better), and Right: proxy reward vs gradient steps. Being more on-policy results in better performance.

importance clipping is much better at sample reuse than Best-of-N.
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Figure 22. On-policy sampling on Skew Length (RWR). Effect of using on-policy samples vs samples from an older policy for RWR
and the skew length setup. Left: average completion length (lower the better), and Right: proxy reward vs gradient steps. Being more
on-policy results in better performance.

Figure 23. Effect of on-policy sample reuse in the Skew Length scenario. Average completion length (i.e., the lower the better) vs
gradient steps for different numbers of inner iteration steps, T , on the same data batch. A larger value of T implies that the algorithm is
more off-policy. Observe that some sample reuse can improve sample efficiency (T = 2 and T = 4 outperform T = 1), but excessive sample
reuse can hurt performance (T = 8 becomes unstable for PPO). Also note that algorithms with mechanisms to control off-policy updates
such as PPO with importance-weight clipping are suited to perform better in the off-policy sample reuse setting.

34


