NAT-NL2GQL: A Novel Multi-Agent Framework for Translating Natural
Language to Graph Query Language

Anonymous ACL submission

Abstract

There has been increasing interest in using
Large Language Models (LLMs) for trans-
lating natural language into graph query lan-
guage (NL2GQL). While progress has been
made, current approaches often fail to fully ex-
ploit the potential of LLMs to autonomously
plan and collaborate on complex NL2GQL
tasks. To address this gap, we propose NAT-
NL2GQL, an innovative multi-agent frame-
work for NL2GQL translation. The framework
consists of three complementary agents: the
Preprocessor agent, the Generator agent, and
the Refiner agent. The Preprocessor agent han-
dles tasks such as entity recognition, query
rewriting, and schema extraction. The Gen-
erator agent, a fine-tuned LLM trained on
NL-GQL data, generates corresponding GQL
statements based on queries and their related
schemas. The Refiner agent refines the GQL or
context using error feedback from the GQL ex-
ecution results. In the absence of high-quality
open-source NL2GQL datasets based on nGQL
syntax, we developed StockGQL, a Chinese
dataset derived from a Chinese financial market
graph database, which will be made publicly
available to support future research. Experi-
ments on the StockGQL and SpCQL datasets
demonstrate that our approach significantly out-
performs baseline methods, underscoring its
potential to drive advancements in NL2GQL
research.

1 Introduction

Graph data is gaining prominence in modern data
science for its ability to reveal complex relation-
ships, enhance information connectivity, and sup-
port intelligent decision-making. It is particularly
valuable in fields such as finance, healthcare, and
social networks, where managing highly connected
and structurally complex data is crucial (Zhao et al.,
2022a; Sui et al., 2024). Graph data requires spe-
cialized graph databases (DBs) for efficient storage

What are the stock codes
held by the fund managed
by the fund manager Tom?

0 juestion
ala 2

User

answer

sh00001
sh00002

P °a execute
NL2GQL System

]
Nodes:

‘entity_type': 'manager', 'properties’: {'name’, 'string’, 'degree’, 'string’, ...}
‘entity_type': 'fund', 'properties': {'code’, 'string’, ‘name’, 'string’, ...}
‘entity_ype': 'stock’, 'properties': {'code', 'string’, 'registered_capital', ‘float’, ...}

{E Schema

Graph database

Edges:
‘edge_type': manage, 'properties': {'name', 'string’, 'degree’, string’, ...}
‘edge_type': hold, 'properties': {'name', 'string’, 'degree’, 'string’, ...}

Figure 1: The demonstration of the NL2GQL task trans-
forming the user’s natural language into a graph query
language that can be executed on a NebulaGraph.

and processing (Pavli§, 2024). Popular graph DBs,
including Neo4j, NebulaGraph, and JanusGraph,
offer distinct features but share similar query graph
languages (GQLs) (e.g., Cypher, nGQL, and Grem-
lin), enabling users to analyze data efficiently.

Despite the growing importance of graph data,
ordinary users often struggle with graph DBs due
to their complex operations and lack of technical
expertise, limiting their adoption in real-world ap-
plications (Guo et al., 2022). Additionally, the com-
plex syntax of GQL creates further obstacles, espe-
cially for users attempting to translate natural lan-
guage (NL) into GQL, a task known as NL2GQL.
These challenges make NL2GQL a particularly de-
manding problem (Liang et al., 2024b; Zhou et al.,
2024). Figure 1 shows an NL2GQL example for
NebulaGraph, highlighting key components like
natural language understanding, DB schema com-
prehension, and GQL generation. This emphasizes
the need for a system that automates NL2GQL, sim-
plifying graph data queries and analysis to promote
wider adoption.

NL2GQL is a specialized application of the
Seq2Seq task. Modern methods have moved from
template-based approaches to generative models,
offering more flexibility and accuracy in handling
complex queries. The study (Guo et al., 2022) first
applied a Seq2Seq framework to NL2GQL and

introduced the SpCQL dataset. The work (Zhao
et al., 2023) developed a SQL2Cypher algorithm
for mapping SQL to Cypher, though the approach is
limited by the differences between GQL and SQL.
The paper (Tran et al., 2024) proposes the CoBGT
model, combining BERT, GraphSAGE (Hamilton
et al., 2017), and Transformer for key-value ex-
traction, relation-property prediction, and Cypher
query generation.

LLMs have revolutionized performance in NLP
tasks, with applications extending to DB re-
search (Zhu et al., 2024; Ren et al., 2024; Peng
et al., 2024; Zhou et al., 2023; Lao et al., 2023),
where they bridge natural language and structured
query languages for more intuitive DB interac-
tions. Research on LLMs for graph DBs, especially
NL2GQL, is growing. Tao et al. (2024) uses heuris-
tic prediction and LLM revision, showing effec-
tiveness in some domains. Zhou et al. (2024) com-
bines smaller models for ranking and rewriting with
larger models for the final NL-to-GQL transforma-
tion. Liang et al. (2024b) proposes constructing an
NL2GQL dataset using domain-specific graph DBs
and tokenization to enhance accuracy.

LLM-based methods exhibit some effective-
ness in solving NL2GQL tasks, but their stream-
lined approach carries a major challenge—error
accumulation. Incorrect extraction of the related
schema can lead to flawed GQL generation. For
example, as shown in Figure 1, the correct re-
lated schema for the query should include the
nodes "manager," "fund," and "stock," and edges
"manage" and "hold." If the extracted schema
omits "stock" and "hold," the generated GQL, such
as MATCH (f:manager{name: Tom’})-[:manage]-
>(p:fund) RETURN s.fund.code, will produce in-
correct results.

In this study, we propose NAT-NL2GQL, a
multi-agent framework for translating NL2GQL,
as shown in Figure 3. The framework consists
of three agents: the Preprocessor, Generator, and
Refiner. The Preprocessor agent handles data pre-
processing tasks, such as extracting values from the
graph DB, performing named entity recognition
(NER), rewriting user queries, linking paths, and
extracting related schemas. The Generator agent,
a fine-tuned LLM trained on the NL-GQL dataset,
generates the GQL based on the context and user
queries. The Refiner agent refines the GQL or con-
text using error information from GQL execution
results. These agents interact iteratively for up to
three rounds. Given that different graph DBs have

varying GQL syntaxes, we propose a general frame-
work to handle these differences. To address the
lack of high-quality NL2GQL datasets, we devel-
oped StockGQL, derived from a financial market
NebulaGraph DB. We evaluated our framework
using the StockGQL and SpCQL datasets (Guo
et al., 2022), showing significant improvements
over baseline methods in NL2GQL accuracy. Ab-
lation experiments further confirm the importance
of each module in enhancing task performance.

Key Contributions. To summarize, this paper
makes the following contributions:

 First, to alleviate error accumulation inherent
in streamlined methods, we designed a collab-
orative and iterative multi-agent framework to
tackle the NL2GQL task.

* Second, based on a Chinese financial market
NebulaGraph DB, we constructed the Stock-
GQL dataset, which can serve as a testbed for
future NL2GQL research.

* Third, our proposed method surpassed the
baseline methods on both StockGQL and
SpCQL datasets, which denotes the new state-
of-the-art NL2GQL results in both general
and specific domains.

2 Related works

NL2GQL is a typical NLP task that has emerged
with the widespread adoption of graph data and can
be classified as a seq-to-seq task (Guo et al., 2022;
Zhao et al., 2023). Its primary function is to convert
users’ NL questions into GQL queries that can be
executed on a graph DB. This task involves user
queries understanding, graph schema linking, and
GQL generation (Liang et al., 2024b; Zhou et al.,
2024). Early efforts focused on using hand-crafted
rules to translate NL into GQL (Zhao et al., 2022b).
Modern approaches primarily incorporate state-of-
the-art (SOTA) models to optimize performance.
We categorize LLM-based NL2GQL methods into
two types: PLMs-based methods and LL.Ms-based
Methods.

PLMs-based methods. Fine-tuning PLMs within
a sequence-to-sequence framework is one of the
most widely used approaches for generative tasks
in NLP. Initially, Guo et al. (2022) constructed
a text-to-Cypher dataset and designed three base-
lines: seq2seq, seq2seq + attention (Dong and Lap-
ata, 2016), and seq2seq + copying (Gu et al., 2016).

However, the results on the two evaluation met-
rics, EX and EX, were not satisfactory. Reference
(Tran et al., 2024) employs the BERT (Kenton and
Toutanova, 2019) model for key-value extraction
and uses GraphSAGE (Hamilton et al., 2017) to
analyze the relational properties of the DB. These
features are then fed into a transformer to generate
the Cypher query. Their proposed small Text-to-
Cypher dataset outperforms seq2seq models like
TS5 (Raffel et al., 2020) and GPT-2 (Radford et al.,
2019). Reference (Liang et al., 2024a) introduces
the KEI-CQL framework, a heuristic-like approach
that utilizes pre-trained language models to extract
semantic features from natural language queries
and populate predefined slots in Cypher query
sketches, effectively addressing the NL2GQL chal-
lenge.

LLM-based methods. Leveraging the powerful
understanding and generation capabilities of LLMs
to tackle the NL2GQL task has become a recent
research hotspot. Reference (Tao et al., 2024)
attempts to combine heuristic methods with LLM-
based approaches. They first extract GQL clauses
using heuristic rules, then concatenate these clauses
to form a complete GQL, and finally use an LLM
for refinement. Reference (Zhou et al., 2024) de-
constructs the NL2GQL task into individual sub-
tasks, using a combination of smaller models and
LLMs for each stage. Specifically, smaller models
are employed during the initial ranking and rewrit-
ing phases, while an LLM is used for the final
generation step. In contrast, Liang et al. (2024b)
aligns LLMs with domain-specific graph DBs to
address NL2GQL tasks within those DBs. They
construct an NL2GQL dataset based on a domain-
specific graph DB, then fine-tune an LLM with
this dataset, enabling the LLM to effectively tackle
NL2GQL tasks in the specific domain. However,
streaming-based task decomposition methods of-
ten struggle with error accumulation. In response
to the observed challenge, we introduce the NAT-
NL2GQL framework. Detailed comparisons with
similar tasks (e.g., Text2SQL, KBQA) are provided
in Appendix 8.11.

3 PRELIMINARIES

NL2GQL Task Definition. The input consists
of an NL query X and a graph DB G, which is
represented as G = {(s,r,0) | s,0 € V,r € E}.
Here, V and £ denote the sets of vertices and edges,
respectively. The objective is to generate a correct

GQL query based on the provided question and the
graph DB.

LLM-based NL2GQL Systems. The in-context
learning approach enables LLMs to generate accu-
rate answers by incorporating a few examples into
the prompt. This can be formalized as follows:

Q = LLM;¢1,(Z,D,NL)

Here, 7 represents the task description, D consists
of demonstrations from annotated datasets, and NL
refers to the input question.

4 StockGQL Dataset Build

We use the self-instruct method (Wang et al., 2022)
to create StockGQL, based on a real-world finan-
cial stock NebulaGraph DB, with privacy process-
ing applied to named entities. Figure 2 illustrates
our approach. Next, we will provide a detailed
explanation of each step’s functionality.

Schema Extraction. As shown in Step 1 of Fig-
ure 2, we extract the schema from the graph DB,
identifying the nodes, edges, and their attributes.
This forms the foundation for creating a structured
representation of the graph,pe enabling subsequent
query generation and processing.

Subschema Extraction. A subschema is a subset
of the graph’s schema, containing only partial in-
formation. Step 2 of Figure 2 involves extracting a
subschema by applying specific rules to identify all
possible path combinations, from 0-hop to 6-hop
paths.

Data Generation. Step 3 in Figure 2 shows the
data generation module, detailed in Algorithm 1.
Using the ICL method, we sample K data points
from the pool, which initially contains 16 manually
crafted examples. These are used to create masked
NL-GQL pairs, where entity names are replaced
with placeholders in both the query and the GQL.
An example is shown below:

Masked query : What is the code of stock [s]?

Masked GOL : MATCH (s:stock{name:’[s]’})
RETURN s.stock.code

We use the placeholder [s] to represent stock entity
names in both the natural language query and the
corresponding GQL.

We generate each subschema for m times to
cover as many attributes of all entities as possi-
ble. Using the self-instruct approach, the process

[SubSchema:{ Masked data pairs:
Nodes:
Schema{ Subschema | {tag’: chairman,..}, Data Masked Query:
Nodes: Extraction {‘tag’ : stock,.. }, Generation _| Who is the chairman of [s] ?

{tag’ : chairman,.. }
{'tag’ : stock,.. },

Edges:

}

2 2 2

Edges:
{'tag’ : hold,...}
{tag’ : is_chairman,...}

{‘tag’ : is_chairman,...}

il s

2 3 4

Masked GQL :

match (c:chairman)-[:is_chairman]->
(s:stock {name:'[s]'})

return c.chairman.name

Data Validation Named Entity

}\/ Schema Extraction Graph
o o6

o

Filling

£

~

Data pairs: Data pairs:

Query:

Who's in charge at Tencent? Style Query:
Transformaton

GQL:
match (c:chairman)-[:is_chairman]
-> (s:stock {name:'Tencent
Technology'})

return c.chairman.name

GQL:

[/

Technology'})

Who is the chairman of Tencent ?

match (c:chairman)-[:is_chairman]
-> (s:stock {name:'Tencent

return c.chairman.name

\

Data pairs:

Query:

Who is the chairman of Tencent

Named Entity Technology?

Colloquialization

o

GQL :

match (c:chairman)-[:is_chairman]
-> (s:stock {name:'Tencent
Technology'})

return c.chairman.name

Figure 2: This is the flowchart for constructing the dataset, where the parts of the data that have changed relative to
the previous step in Step 5, Step 6, and Step 7 are highlighted. The GQL is based on the nGQL syntax.

Algorithm 1: Masked NL-GQL Data Pairs

Generation
Input: A set of subschemas; Data pool D; Number of
demonstrations K; Iterations number m; Task
description
1 foreach s in subschemas do

2 fori =1tomdo

3 Sample K items from Data pool;

4 Build demonstrations £ using the sampled
items;

5 Generate Masked NL-GQL Data Pairs;

6 d_list < LLMicr(I, &, s);

7 Add d_list to D;

8 return D

iterates until all subschemas have been covered, at
which point it will terminate.

Data Validation. This step filters out erroneous
data where N L and GQ L are inconsistent. We fol-
low the approach outlined in (Liang et al., 2024b),
using an entity-filled, CoT-based GQL2NL method
to generate N L' from GQL. The data is then fil-
tered based on low embedding similarity between
NLand NL'. As aresult, we obtain a large num-
ber of high-quality masked NL-GQL data pairs.
Named Entity Filling. This step involves filling in
the previously masked data by extracting relevant
named entities from the graph DB based on the
mask type. For example, [s] corresponds to stock
entity names.

Named Entity Colloquialization. In this step, we

randomly select a dataset with named entities and
manually rewrite the entities in both the NL and
GQL as abbreviated forms. This simulates real-
world scenarios where users commonly use the
abbreviation of the entity names. For example, in
Step 6 of Figure 2, the colloquialization of Tencent
Technology has been changed to Tencent.

Style Transformation. In real-world scenarios,
user queries are often conversational, characterized
by ellipses and vague expressions. This unstruc-
tured style requires NL2GQL systems to combine
robust language understanding with multi-hop rea-
soning over the graph schema to accurately capture
user intent. To better reflect this behavior, we apply
style transformation to simulate informal queries.
Specifically, we prompt the LLM to adopt a nat-
ural, simple, and conversational tone that mir-
rors real-life user queries. We use ChatGPT-4
to perform style transformation, with the prompt
detailed in Appendix 8.8.

Our method is highly adaptable, applicable to
both general and domain-specific areas, and capa-
ble of generating NL2GQL datasets in multiple
languages, based on various Graph DBs, across a
wide range of domains. We have constructed the
Chinese StockGQL dataset. A statistical analysis
of the data, shown in Table 1, reveals that 63% of
the queries involve more than 2 hops, with 26%
involving more than 3 hops. The dataset includes
12 types of nodes, 13 types of edges, and 62 types

of properties. StockGQL is an NL2GQL dataset
based on the nGQL syntax, designed for complex
multi-hop, multi-type queries. We hope its open-
source release will advance NL2GQL research and
model development. A more detailed analysis of
the dataset is provided in Appendix 8.1.

Dataset 0-hop 1-hop 2-hop 3-hop 4-hop Others
Train (4884) 308 547 1769 1348 830 82
Dev (676) 43 81 295 181 57 19
Test (1432) 87 148 535 396 207 59

Table 1: Statistics on hop counts in StockGQL.

5 Method

In this section, we explain the NAT-NL2GQL work-
flow. As shown in Figure 3, it consists of three
agents: Preprocessor, Generator, and Refiner. The
agents work together iteratively to complete the
task. Next, we will provide a detailed description
of the specific functions of each module.

5.1 Preprocessor Agent

As highlighted in (Liang et al., 2024b; Zhou et al.,
2024), extracting the NL-relevant schema from the
full graph DB schema offers three main benefits:
reducing schema size to avoid context length issues,
eliminating irrelevant noise to improve GQL accu-
racy, and speeding up GQL generation. The Pre-
processor agent extracts relevant schemas, aligns
named entities in the query with those in the DB,
and rewrites the query as needed, including tasks
like NER, entity alignment, schema revision, link-
ing completion, and query rewriting.

LLM-based NER. Extracting named entities from
NL is crucial for identifying the related schema.
Previous studies have shown that LLMs can effec-
tively recognize named entities (Xie et al., 2023;
Xiao et al., 2024; Xu et al., 2023). Building on
this, the Preprocessor agent uses LLM-based NER
to extract entities from the query, helping pinpoint
relevant schema parts. This reduces the schema
search space and ensures accurate mappings be-
tween query entities and graph DB counterparts for
precise GQL generation. We use ChatGPT-4 for
entity extraction, following the prompt structure in
Appendix 8.3.

Entity Alignment. After extracting named entities,
we align them with corresponding entity names
in the graph DB. This ensures accurate mapping
to relevant nodes or edges, enabling precise query
generation. We first build a dictionary D, where
each key is an entity type and its value is a list of

names. We then compare extracted entity names
with those in the dictionary. If an exact match is
found, the entity type name is assigned. For un-
matched entities, we use locality-sensitive hashing
(LSH) (Datar et al., 2004) to select the most similar
entity name. This process is formulated as:

D =LSH(Z,D,~)

d = arg max Cosine(Emb(X'), Emb(d;))
d;€D

Here, Z denotes the extracted named entities from
the NL using LLM-based NER, D is the entity
dictionary from the graph DB, and D consists of
entities retrieved using LSH similarity to X with
threshold . Emb(X) represents the embedding of
X encoded via all-MiniLM-L12-v1, and d denotes
the entity names extracted based on cosine simi-
larity to X. After alignment, we obtain the entity
names with their corresponding types.
Linking Completion. While multiple entity types
are extracted, they may not necessarily form a con-
nected subgraph. To handle queries that require
reasoning across different entity types, we link re-
lated entities. We begin by extracting entity and
attribute names from the graph database schema,
matching them with those in the query, and elim-
inating duplicates. To obtain a relevant subgraph,
we use the search algorithm from (Liang et al.,
2024b) to identify the smallest subgraph that in-
cludes all the extracted entities. Finally, we apply
the algorithm in Appendix 8.5 to complete the in-
termediate entities and relationships, resulting in a
candidate related schema.
Related Schema Revision. Due to various fac-
tors, such as potential errors in NER, entities with
identical names, inconsistent attribute naming in
the graph database , the candidate related schema
may include redundant nodes and edges. We ap-
ply further filtering using ChatGPT-4 to retain only
the most relevant entities and relationships. The
specific prompt is provided in Appendix 8.4, and
experimental results show that this significantly
improves accuracy.
Question Rewriting. Queries often include collo-
quial terms or abbreviations that must be aligned
with graph DB entities for accurate GQL genera-
tion. After aligning named entities, mismatches
are replaced accordingly. While some entities may
not match exactly, the related schema revision step
filters out irrelevant ones. This process mainly re-
places named entities by mapping colloquial or

Preprocessor

Info:{

Graph \./

Refiner

> infe > info
NL Packaged &:

Information

DB i——rd
NER Rewritten NL Packaged or Refine GQL
Related Schema Information Refined GQL
- . S Error Inf
3 Refined GQL Z Crrorinio
3 P
Generator

Rewritten NL

Prompt —>@

Related Schema Fine-tuned LLM

Graph DB

Figure 3: Our NAT-NL2GQL framework consists of three synergistic agents: the Preprocessor agent, the Generator
agent, and the Refiner agent. The entire process follows a cyclic and iterative flow, with the three agents collabora-
tively handling data preprocessing, GQL generation, and GQL refinement.

abbreviated terms in queries to their corresponding
graph DB entities using keyword-based search and
replace to ensure consistency. For example, the
original query:
Fdong BRI RBRAF AL T LA HRLL?
(What are the downstream industries related to the indus-

tries associated with the chairman Liang Dong’s stock?)

can be revised to :
PR E BRI SRR L T L R

5.2 Generator Agent

Once data pre-processing is complete, we gener-
ate the GQL using the obtained information. To
optimize memory usage while maintaining perfor-
mance, we adopt LoRA (Hu et al., 2021), which
fine-tunes only a small subset of parameters. Fol-
lowing the format in (Liang et al., 2024b), we in-
clude both the question and the Subschema in the
input during fine-tuning. We fine-tune the selected
base LLMs using LoRA. As shown in Figure 3,
the fine-tuning prompt combines the original NL,
rewritten NL, and related schema. During train-
ing, the golden related schema from labeled GQL
is used, while during inference, the Preprocessor
agent predicts the related schema.

5.3 Refiner Agent

Many studies show that rewriting queries with syn-
tax errors improves query accuracy (Pourreza et al.,

2024a; Talaei et al., 2024; Zhou et al., 2024). How-
ever, these methods often rely on LLMs to correct
syntax errors, which usually involve only minor
modifications to the original query and may not
address more complex issues. Additionally, error
information typically highlights only the first error
encountered, making it unsuitable for queries with
multiple errors. Most importantly, if the related
schema or query from earlier steps is incorrect, fix-
ing the GQL syntax alone may not resolve the issue,
as it may still not align with the original query. In
such cases, the error information should prompt
a review of the auxiliary information from earlier
steps.

g e o s g e

R et

‘edge_type': hold, 'start_tag':'fund','end_tag":'stock’,'pr
‘edge_type': associate, 'start_tag':'stock’,

ies': {'name':'string’, ...}
¥, properties': {'name''string’, ...}

NL WS ASER SHEAT S BT I SR L AR
(Which public funds hold stocks belonging to the automotive parts industry?)
GaL Error Ifo

MATCH (:fund)-[:hold]->(:stock)-[:associate]-
>(industry{name: /S F BEBH)
RETURN fund.name

AssertionError: SemanticError: Alias used but
not defined: "public_offering_fund'

Refined GQL MATCH (p:fund)-[:hold]->(:stock)-[:associate]->(industry{name: S5 £ B 4}
RETURN p.fund.name

Figure 4: A refined example.

As shown in the refine prompt in Appendix 8.6,
our approach differs by using the question, prepro-
cessed data, GQL, and error information to deter-
mine whether the related schema is correct. If the

Method Backbones StockGQL SpCQL
EM(%) EX(%) EM(%) EX(%)

GLM-4-9B-Chat 12.01 11.03 7.03 8.22

1CL(Ket) Qwen?2.5-14B-Instruct 12.99 12.50 7.87 8.92
= LLaMA-3.1-8B-Instruct 9.92 9.50 7.42 8.21
LLaMA-32-3B-Instruct 7.20 6.91 6.03 7.27
ChatGPT-3.5-Turbo 13.06 12.57 7.37 7.62
ChatGPT-40 15.99 13.20 9.22 10.26
Fine-Tunin GLM-4-9B-Chat 49.72 45.39 53.86 52.12
g Qwen?2.5-14B-Instruct 51.96 49.86 53.91 51.57
LLaMA-3.1-8B-Instruct 50.98 49.09 54.16 50.57
LLaMA-3.2-3B-Instruct 51.47 50.35 49.18 48.83

, SpCQL 1.47 1.26 2.30 2.60
Others” approach AIl)ign-NLzGQL 52.51 50.84 5421 52.86
R3-NL2GQL 53.07 52.03 55.06 53.06

Ours

Qwen2.5-14B-Instruct & ChatGPT-40 60.13 17.06 58.5216.49 59.99 1493 58.69 15.63

Table 2: Comparison between our method and the baseline, where bold numbers indicate the best results, the red
upward arrow shows improvement, and the red number in parentheses denotes the exact gain over the best baseline.

schema is correct, we directly rewrite the GQL. If
it’s wrong, this indicates an error in the previous
data preprocessing step. In that case, we package
the information and send it to the Preprocessor
agent, treating both the GQL and error details as
historical data for re-execution. We also set an it-
eration limit, terminating the process if the GQL
remains incorrect after several attempts. The Re-
finer agent then decides whether to modify the GQL
or save the historical data to restart the process, as
shown in Figure 4.

6 Experiment Results

6.1 Experimental Setup

Datasets. We conducted experiments on the Stock-
GQL and SpCQL (Guo et al., 2022) datasets. The
SpCQL dataset uses Cypher GQL, while Stock-
GQL follows nGQL syntax.

Baseline Methods. We selected three types of
baseline methods: ICL approaches, fine-tuning ap-
proaches, and a method from previous related work.
For the ICL approaches, the prompt format we de-
signed is illustrated in Appendix 8.7. In the fine-
tuning approaches, the complete schema is incor-
porated into the input.

Evaluation Metrics. We follow the approach in
(Guo et al., 2022; Liang et al., 2024b), using exact-
set-match accuracy (EM) and execution accuracy
(EX)to evaluate our method. EM measures the
consistency of individual components, segmented
by keywords, between the predicted query and its
corresponding ground truth, while EX assesses the
consistency of the execution results in the DB.
Implementation Details. Experiments were con-

ducted on an A800 GPU, using GLM-4-9B-Chat,
Qwen2.5-14B-Instruct, LLaMA-3.1-8B-Instruct,
LLaMA-3.2-3B-Instruct, ChatGPT-3.5-Turbo, and
ChatGPT-40 as the LLMs. The Preprocessor and
Refiner agents use ChatGPT-40, while the Gen-
erator is fine-tuned with LoRA on Qwen2.5-14B-
Instruct. The number of demonstrations k was set
to 4, and the LSH threshold ~ was set to 0.6.

6.2 Main Results

An analysis of the results in Table 2 leads to the
following conclusions: First, our approach outper-
forms all baselines. On the StockGQL dataset, it
surpasses the best baseline by 7.06% on the EM
metric and 6.49% on the EX metric. On the SpCQL
dataset, it improves by 4.93% on EM and 5.63%
on EX. Second, the ICL method performs poorly
for NL2GQL, likely due to the lack of high-quality
GQL corpora during model training. A possible
solution is to gather high-quality GQL data to re-
train base LLMs. Third, both the StockGQL and
SpCQL datasets are highly challenging, with cur-
rent methods achieving accuracy below 60% on
both. This highlights substantial room for improve-
ment and the need for more advanced techniques
to tackle these datasets’ complexity. Lastly, while
LLaMA-3.1-8B-Instruct outperforms LLaMA-3.2-
3B-Instruct with ICL, their performances are nearly
identical after fine-tuning. This suggests smaller
models are less suited for ICL but more effective
with fine-tuning when enough data is available.

6.3 Further Analysis

Breakdown Analysis. We analyzed the model’s
performance on the StockGQL dataset by hop

count, as shown in Figure 5. Accuracy declines
with increasing hop count, with the best results on
0-hop and 1-hop queries and a gradual drop from 2-
hop to 4-hop. This reflects the growing challenge of
multi-hop reasoning, where the model must handle
longer dependency chains. Notably, high accuracy
on 0-hop queries indicates strong performance on
factoid-style questions, while lower accuracy on
higher-hop queries highlights the need for more
advanced reasoning capabilities.

HEMEEX

" 8276 grer

7297 7027
62.62
585
« 54.55
5051 48.79 49.28
40.68
I 3051

0-hop 1-hop 2-hop 3-hop 4-hop others

Figure 5: The EM and EX accuracy of our method on
StockGQL, statistically by hop count.

Impact of the Related Schema. To test the impact
of the Related Schema, we selected three strategies:
1) Golden Related Schema, using the SubSchema
corresponding to the labeled GQL; 2) Error Related
Schema, employing an incorrect SubSchema; and
3) All Schema, utilizing the complete schema in-
formation. Table 3 demonstrates the importance of
related schema extraction. Additionally, we com-
pared our method with R3-NL2GQL and Align-
NL2GQL on StockGQL. The results in Table 4
show that our method achieves the highest accu-
racy.

Method EM(%) EX(%)
Ours 60.13 58.52
Golden Related Schema 81.28 79.54
Error Related Schema 15.92 18.65
All Schema 53.56 50.70

Table 3: The table shows the impact of the related
schema on GQL accuracy for StockGQL.

Method Acc(%)
Ours 84.57
Ours(w/o filtering) 62.57
Align-NL2GQL 52.09
R’-NL2GQL 68.44

Table 4: Comparison of accuracy across different meth-
ods for extracting related schemas on StockGQL.

Error Analysis To further evaluate our method,
we conducted an error analysis on the StockGQL

dataset, categorized by hop count and error type.
As shown in Figure 6, most errors occur in the 2-
to 4-hop range, confirming that complex multi-hop
questions remain challenging. The "Error Statistics
by Type" show that 37.21% of errors stem from
schema extraction failures, emphasizing the need
to improve schema extraction accuracy. Addition-
ally, many errors result from misinterpreting input
queries, highlighting the difficulty of understanding
colloquial or ambiguous language. A case study is
provided in Appendix 8.10.

Error Statistics by Hop Count Error Statistics by Type

others 0-hop
1.68% 4.38% 4 others Realted Schema Error

1-hop 11.47% %
7.24% 37.21%
Entity Name
Error
18.69%

2-hop
32.32%

30.47% Misunderstanding
20.03%

Calculation Error
12.63%

Figure 6: Error analysis statistics chart.

6.4 Ablation Study

The ablation study in Table 5 shows that removing
any component reduces performance. Replacing
the fine-tuned generator with ChatGPT-40’s ICL
method causes the largest drop. The "Without Re-
generation" setting highlights the Refiner’s role in
detecting schema errors and initiating re-extraction,
leading to some improvement. More experimental
analyses are provided in Appendix 8.2.

Method EM(%) EX(%)
Ours 60.13 58.52
Without Preprocessor 55.24 52.51
Generator -> ChatGPT-40 30.17 29.19
Without Refiner 56.28 54.05
Without Regeneration 58.31 56.49

Table 5: Ablation study on StockGQL.

7 Conclusion

In this paper, we introduce the NAT-NL2GQL
framework to address the NL2GQL task. Our
framework comprises three synergistic agents: the
Preprocessor Agent, the Generator Agent, and the
Refiner Agent. Additionally, we have developed a
NL2GQL dataset, named StockGQL. Experimental
results show that our approach significantly outper-
forms baseline methods.

Limitations

There are several limitations that we aim to address
in future work.

First, although our method achieves a significant
improvement over existing approaches, the over-
all accuracy remains below 60%, indicating sub-
stantial room for enhancement. This underscores
the need for more advanced techniques, particu-
larly to handle complex, natural, and conversational
queries that closely resemble real-world scenarios.

Second, while our multi-agent framework helps
mitigate error accumulation, introducing more
agents inevitably increases inference time. This be-
comes especially pronounced for complex queries
that cannot be resolved in a single round of reason-
ing. In the future, we plan to accelerate individual
agent inference or replace some large models with
smaller ones to improve overall efficiency.

Third, our current approach relies on a fixed
agent collaboration strategy, which may not be op-
timal for all query types. We intend to explore adap-
tive coordination mechanisms that dynamically ad-
just based on the structure and complexity of the
input question.

Fourth, our current evaluation primarily focuses
on execution accuracy, which may not fully capture
semantic correctness or the quality of intermediate
reasoning steps. We aim to incorporate more com-
prehensive evaluation metrics to better assess the
real-world effectiveness of NL2GQL systems.

Additionally, while we have already constructed
the StockGQL dataset for the NL2GQL task, the
English version is still under preparation and will
be released as open source once complete.

References

Hasan Alp Caferoglu and Ozgiir Ulusoy. 2024. E-sql:
Direct schema linking via question enrichment in
text-to-sql. arXiv preprint arXiv:2409.16751.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Va-
hab S Mirrokni. 2004. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceed-
ings of the twentieth annual symposium on Computa-
tional geometry, pages 253-262.

Li Dong and Mirella Lapata. 2016. Language to log-
ical form with neural attention. arXiv preprint
arXiv:1601.01280.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK
Li. 2016. Incorporating copying mechanism in

sequence-to-sequence learning. arXiv preprint
arXiv:1603.06393.

Aibo Guo, Xinyi Li, Guanchen Xiao, Zhen Tan, and Xi-
ang Zhao. 2022. Spcql: A semantic parsing dataset
for converting natural language into cypher. In Pro-
ceedings of the 31st ACM International Conference
on Information & Knowledge Management, CIKM
’22, page 3973-3977, New York, NY, USA. Associa-
tion for Computing Machinery.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017.
Inductive representation learning on large graphs. Ad-
vances in neural information processing systems, 30.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of naacL-HLT, volume 1, page 2. Min-
neapolis, Minnesota.

Yunshi Lan, Gaole He, Jinhao Jiang, Jing Jiang,
Wayne Xin Zhao, and Ji-Rong Wen. 2021. A sur-
vey on complex knowledge base question answering:
Methods, challenges and solutions. arXiv preprint
arXiv:2105.11644.

Jiale Lao, Yibo Wang, Yufei Li, Jianping Wang, Yun-
jia Zhang, Zhiyuan Cheng, Wanghu Chen, Mingjie
Tang, and Jianguo Wang. 2023. Gptuner: A
manual-reading database tuning system via gpt-
guided bayesian optimization. arXiv preprint
arXiv:2311.03157.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, et al. 2024. Can llm already serve
as a database interface? a big bench for large-scale
database grounded text-to-sqls. Advances in Neural
Information Processing Systems, 36.

Yuan-Lin Liang, Chih-Yung Chang, and Shih-Jung Wu.
2024a. Kei-cql: A keyword extraction and infilling
framework for text to cypher query language trans-
lation. International Journal of Design, Analysis &
Tools for Integrated Circuits & Systems, 13(1).

Yuanyuan Liang, Keren Tan, Tingyu Xie, Wenbiao Tao,
Siyuan Wang, Yunshi Lan, and Weining Qian. 2024b.
Aligning large language models to a domain-specific
graph database for nl2gql. In Proceedings of the 33rd
ACM International Conference on Information and
Knowledge Management, pages 1367—1377.

Karime Maamari, Fadhil Abubaker, Daniel Jaroslawicz,
and Amine Mhedhbi. 2024. The death of schema
linking? text-to-sql in the age of well-reasoned lan-
guage models. Preprint, arXiv:2408.07702.

Robert Pavlis. 2024. Graph databases: An alternative to
relational databases in an interconnected big data en-
vironment. In 2024 47th MIPRO ICT and Electronics
Convention (MIPRO), pages 247-252. IEEE.

https://doi.org/10.1145/3511808.3557703
https://doi.org/10.1145/3511808.3557703
https://doi.org/10.1145/3511808.3557703
https://arxiv.org/abs/2408.07702
https://arxiv.org/abs/2408.07702
https://arxiv.org/abs/2408.07702
https://arxiv.org/abs/2408.07702
https://arxiv.org/abs/2408.07702

Gan Peng, Peng Cai, Kaikai Ye, Kai Li, Jinlong Cai,
Yufeng Shen, Han Su, and Weiyuan Xu. 2024. On-
line index recommendation for slow queries. In 2024
IEEE 40th International Conference on Data Engi-
neering (ICDE), pages 5294-5306. IEEE.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun,
Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and
Sercan O Arik. 2024a. Chase-sql: Multi-path reason-
ing and preference optimized candidate selection in
text-to-sql. arXiv preprint arXiv:2410.01943.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun,
Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and
Sercan O. Arik. 2024b. Chase-sql: Multi-path rea-
soning and preference optimized candidate selection
in text-to-sql. Preprint, arXiv:2410.01943.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text

transformer. Journal of machine learning research,
21(140):1-67.

Tonghui Ren, Yuankai Fan, Zhenying He, Ren Huang,
Jiaqi Dai, Can Huang, Yinan Jing, Kai Zhang, Yifan
Yang, and X Sean Wang. 2024. Purple: Making
a large language model a better sql writer. arXiv
preprint arXiv:2403.20014.

Yongduo Sui, Qitian Wu, Jiancan Wu, Qing Cui,
Longfei Li, Jun Zhou, Xiang Wang, and Xiangnan
He. 2024. Unleashing the power of graph data aug-
mentation on covariate distribution shift. Advances
in Neural Information Processing Systems, 36.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen
Chang, Azalia Mirhoseini, and Amin Saberi. 2024.
Chess: Contextual harnessing for efficient sql synthe-
sis. arXiv preprint arXiv:2405.16755.

Wenbiao Tao, Hanlun Zhu, Keren Tan, Jiani Wang,
Yuanyuan Liang, Huihui Jiang, Pengcheng Yuan, and
Yunshi Lan. 2024. Finqa: A training-free dynamic
knowledge graph question answering system in fi-
nance with llm-based revision. In Joint European
Conference on Machine Learning and Knowledge
Discovery in Databases, pages 418—423. Springer.

Quoc-Bao-Huy Tran, Aagha Abdul Waheed, and Sun-
Tae Chung. 2024. Robust text-to-cypher using com-
bination of bert, graphsage, and transformer (cobgt)
model. Applied Sciences, 14(17):7881.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-
guage models with self-generated instructions. arXiv
preprint arXiv:2212.10560.

10

Yinlong Xiao, Zongcheng Ji, Jianqiang Li, and Mei
Han. 2024. Chinese ner using multi-view transformer.
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing.

Tingyu Xie, Qi Li, Jian Zhang, Yan Zhang, Zuozhu
Liu, and Hongwei Wang. 2023. Empirical study
of zero-shot ner with chatgpt. arXiv preprint
arXiv:2310.10035.

Derong Xu, Wei Chen, Wenjun Peng, Chao Zhang, Tong
Xu, Xiangyu Zhao, Xian Wu, Yefeng Zheng, Yang
Wang, and Enhong Chen. 2023. Large language mod-
els for generative information extraction: A survey.
arXiv preprint arXiv:2312.17617.

Tong Zhao, Wei Jin, Yozen Liu, Yingheng Wang,
Gang Liu, Stephan Giinnemann, Neil Shah, and
Meng Jiang. 2022a. Graph data augmentation for
graph machine learning: A survey. arXiv preprint
arXiv:2202.08871.

Ziyu Zhao, Wei Liu, Tim French, and Michael Stewart.
2023. Cyspider: A neural semantic parsing corpus
with baseline models for property graphs. In Aus-
tralasian Joint Conference on Artificial Intelligence,
pages 120-132. Springer.

Ziyu Zhao, Michael Stewart, Wei Liu, Tim French, and
Melinda Hodkiewicz. 2022b. Natural language query
for technical knowledge graph navigation. In Aus-
tralasian Conference on Data Mining, pages 176—
191. Springer.

Xuanhe Zhou, Guoliang Li, Zhaoyan Sun, Zhiyuan Liu,
Weize Chen, Jianming Wu, Jiesi Liu, Ruohang Feng,
and Guoyang Zeng. 2023. D-bot: Database diagnosis
system using large language models. arXiv preprint
arXiv:2312.01454.

Yuhang Zhou, Yu He, Siyu Tian, Yuchen Ni, Zhangyue
Yin, Xiang Liu, Chuanjun Ji, Sen Liu, Xipeng
Qiu, Guangnan Ye, and Hongfeng Chai. 2024. 73-
NL2GQL: A model coordination and knowledge
graph alignment approach for NL2GQL. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2024, pages 13679-13692, Miami, Florida,
USA. Association for Computational Linguistics.

Jun-Peng Zhu, Peng Cai, Kai Xu, Li Li, Yishen Sun,
Shuai Zhou, Haihuang Su, Liu Tang, and Qi Liu.
2024. Autotqa: Towards autonomous tabular ques-
tion answering through multi-agent large language
models. Proceedings of the VLDB Endowment,
17(12):3920-3933.

https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://aclanthology.org/2024.findings-emnlp.800
https://aclanthology.org/2024.findings-emnlp.800
https://aclanthology.org/2024.findings-emnlp.800
https://aclanthology.org/2024.findings-emnlp.800
https://aclanthology.org/2024.findings-emnlp.800

8 Appendix

8.1 Dataset Analysis
8.1.1 Query Type Analysis

Following the question type categorization frame-
work proposed in (Liang et al., 2024b), we con-
ducted a comprehensive statistical analysis of
StockGQL. As shown in Table 6, StockGQL cov-
ers a diverse range of query types, with particularly
high representation in complex categories such as
Numerical Sorting, Relationship Filtering, and Re-
lationship Inference. This distribution reveals sev-
eral key insights:

* The dataset demonstrates a diverse distribu-
tion of question types, spanning from simple
factual lookups (e.g., entity and edge proper-
ties) to more advanced reasoning tasks such as
multi-hop inference and attribute comparison.

e The Ilarge proportion of challenging
queries—particularly those involving sorting,
filtering, and logical reasoning—significantly
enhances StockGQL’s utility for benchmark-
ing NL2GQL models in realistic and complex
scenarios.

* This comprehensive coverage is crucial for as-
sessing a model’s generalization capability, as
it necessitates understanding and generating a
wide variety of query structures and semantic
patterns.

These findings collectively highlight Stock-
GQL’s value as a robust and representative bench-
mark for developing advanced NL2GQL systems
in complex, real-world scenery.

train dev test
Entity property 192 35 71
Numerical sorting 2083 302 611
Relationship inference 332 53 83
Yes/No question 94 13 33
Relationship filtering 1697 220 486
Attribute comparison 196 17 59
Edge property 194 24 61
String filtering 96 12 28

Table 6: Performance of our method on various types
of queries in the FinGQL dataset.

8.1.2 Keywords Analysis

To assess the richness and diversity of query expres-
sions in StockGQL, we analyzed the frequency of
key nGQL-related keywords across the training, de-
velopment, and test sets. In particular, we focused

11

on query-relevant terms listed in Table 8, explic-
itly excluding structural keywords such as MATCH
and RETURN, which appear in nearly all queries
by default. As summarized in Table 7, each sub-
set contains a considerable number of meaningful
keywords, with the test set averaging over 2.1 key-
words per sample. This reflects the high syntactic
complexity and operational breadth of StockGQL,
highlighting its effectiveness as a benchmark for
evaluating the expressive capabilities of NL2GQL
models.

Total Keywords #Samples Avg
Train 8840 4884 1.81
Dev 1292 676 1.91
Test 3007 1432 2.10

Table 7: Statistics of nGQL keyword usage in the Stock-
GQL dataset.

8.1.3 Human Evaluation

To more comprehensively evaluate the quality of
the StockGQL dataset, we conducted a manual as-
sessment. Specifically, five domain experts were
tasked with rating 300 randomly selected samples
from each of the training, validation, and test sets.
The evaluation was based on four criteria— Accu-
racy (measuring the correctness of the question’s
meaning), Consistency (measuring the alignment
between the NL and the corresponding GQL), Nat-
uralness (assessing how conversational and fluent
the question is), and Complexity (reflecting the rea-
soning difficulty of the question, with higher scores
for more complex queries)—using a 5-point Likert
scale.

As shown in Table 9, the human evaluation re-
sults confirm the high quality of the StockGQL
dataset across all subsets. The test set achieved
the highest scores overall, particularly in semantic
accuracy (4.7) and complexity (4.5), indicating that
it presents more challenging and semantically pre-
cise queries. Meanwhile, consistently high scores
in naturalness (above 4.3) and alignment (consis-
tency) across all sets highlight the dataset’s relia-
bility and fluency, making it a strong benchmark
for real-world NL2GQL tasks.

8.1.4 Dataset Format
The dataset includes the following fields:

* Qid: A unique identifier for each query in the
dataset.

Category Keywords and Description

Query Control GO, FETCH, LOOKUP, WHERE, YIELD, WITH, LIMIT, ORDER BY, GROUP BY

Commands for controlling data retrieval, filtering, intermediate
result passing, limiting and ordering output.

Logical Operators AND, OR, NOT, XOR

Boolean logic operators used in query conditions for combining
or negating predicates.

Graph Traversal VERTEX, EDGE, OVER, REVERSELY, BIDIRECT

Keywords referring to graph elements and specifying traversal
directions or edge types.

Aggregation Functions COUNT, SUM, AVG, MAX, MIN, COLLECT, DISTINCT

Functions performing aggregation and summarization over query
results.

Table 8: Categorization of nGQL query-related keywords and their descriptions.

train dev test * Masked_name: A list of entity names that
Accuracy 4.62 4.50 4.74 were masked in the query and GQL.
Consistency 4.46 4.58 4.62 * Oral_name: Users often use shortened or in-
Naturalness 4.34 4.50 4.46 formal terms when querying DBs; this field
Complexity 4.22 4.34 4.50 represents the formal version of the colloquial

name.

Table 9: Human evaluation results.
* Answer: The result or output generated by

executing the corresponding GQL query on
the graph DB.

* Query_masked: The masked version of the
original query, where entity names and other
sensitive information are replaced with place-
holders (e.g., [s] for stock names, [i] for in-
dustry names).

Here is an example. Since our dataset is in Chi-
nese, we have provided the corresponding English
translation below the Chinese text for easier read-
* GQL_masked: The masked version of the ing.
corresponding GQL (Graph Query Language)
query. Similar to the query, the entity names
in the GQL are replaced with placeholders.

* Qid: 10

* Query_masked:
[c] /2 B 55 4K /Y A 52 SR BB) 72 ol 98 1) 7 oLk B R

* Query: The original, unmasked natural lan- Lo

guage query, which is the input that a user
would typically provide.

(What are the downstream industries related to the in-

dustries associated with the chairman [c]’s stock?)

* GQL: The corresponding Graph Query Lan-
guage (GQL) query based on nGQL syntax.

GQL_masked:
MATCH (c:chairman{name:’[c]’})
-[:is_chairman_of]->(s:stock)-[:associate]-

* SubSchema: A part of the overall graph

schema that is relevant to the specific query.
It includes the nodes, edges, and properties
involved in the query, providing a structured
representation of the relevant subgraph from
the graph DB.

12

>(il:industry)-[:affect]->(i2:industry) RETURN

i2.industry.name

* Query:
Pdong 2 H KA B E REA L TR L H
WRLL?

(What are the downstream industries related to the in-
dustries associated with the chairman Liang Dong’s

stock?)

GQOL:

MATCH (c:chairman{name:’ 7%’ })
-[:is_chairman_ of]->(s:stock)-[:associate]-
>(il:industry)-[:affect]->(i2:industry) RETURN

i2.industry.name

SubSchema:
nodes : ["chairman", "stock",, "industry"]

edges : ["is_chairman_of", "associate", "affect"]

Masked_name:
[e] - AR

Oral_name:
Zrdong’: 7R

e Answer:
i2.industry.name : ["FLAX I {4 (Computer Hardware)",
"R 4 (Car)", "4 Rl ik 55 (Financial services)"]

8.2 Further Experimental Results

8.2.1 Inference Time Analysis

While our multi-agent framework demonstrates
significant improvements in accuracy and robust-
ness, it introduces additional inference overhead
compared to traditional single-agent or end-to-end
models. Specifically, each agent in our system per-
forms distinct reasoning steps, and inter-agent com-
munication introduces further latency. For simple
queries that can be resolved in a single reasoning
round, the added overhead is moderate. However,
for complex, multi-hop, or ambiguous questions
that require iterative coordination among agents,
the inference time can increase substantially.

We conducted a comparative analysis and ob-
served that the average inference time per query is
approximately 1.8 x longer than that of a standard
seq2seq baseline. This overhead mainly comes
from the sequential execution of agent modules
and the repeated invocation of large language mod-
els for intermediate reasoning tasks.

To address this, we plan to explore the following
directions in future work:

* Agent parallelization: For certain stages of
reasoning, agents can operate in parallel rather
than sequentially, reducing latency without
sacrificing modularity.

13

* Model distillation: Replacing some large lan-
guage models with smaller distilled models
for sub-tasks (e.g., parsing, validation) can
reduce computational cost.

Adaptive early stopping: Introducing mech-
anisms that allow the reasoning process to
halt early when high-confidence answers are
reached, thereby avoiding unnecessary com-
putation.

* Query-aware scheduling: Dynamically ad-
justing the agent collaboration strategy based
on the complexity of the query, so that sim-
ple questions use fewer agents and shorter
pipelines.

Overall, although the multi-agent framework en-
tails a higher inference cost, it brings substantial
performance benefits. With careful system-level
optimizations, we believe the trade-off can be ef-
fectively managed to support both accuracy and
efficiency in practical deployments.

8.2.2 Effectiveness Analysis on Error
Accumulation Mitigation

The performance improvements of our multi-agent
framework largely stem from its explicit design to
mitigate error accumulation—a common challenge
in complex NL2GQL tasks. Traditional end-to-
end models often suffer from cascading mistakes
during multi-step reasoning, where an early misin-
terpretation propagates through subsequent stages,
severely degrading final results.

In contrast, our approach decomposes the overall
reasoning process into specialized agents, each re-
sponsible for a well-defined subtask (e.g., schema
understanding, query generation, validation). By
modularizing the workflow, errors can be detected
and corrected earlier through inter-agent communi-
cation, preventing them from compounding down-
stream.

Moreover, this modular design facilitates iter-
ative refinement, allowing agents to revisit and
adjust their outputs based on feedback from oth-
ers, which significantly improves the robustness
of query generation. As a result, our framework
demonstrates superior accuracy, especially on com-
plex, multi-hop queries that require nuanced rea-
soning and precise query formulation.

To quantitatively assess the impact on error accu-
mulation, we analyzed the test set of 1,432 queries
to identify those where previous single-agent or

Number of Queries Percentage (%)

Total test datas
Queries with cascading errors (baseline)
Queries successfully corrected by our method

Queries still incorrect after multi-agent reasoning

1,432 -

418 29.19(of all test cases)
197 47.13 (of error cases)
221 52.87 (of error cases)

Table 10: Effectiveness of the multi-agent framework in mitigating error accumulation on the test set.

end-to-end models failed due to cascading errors
but our multi-agent method successfully generated
correct queries. As shown in Table 10, our frame-
work resolved approximately 47.13% of previously
error-accumulated cases, highlighting its effective-
ness in tackling this fundamental issue.

In summary, by effectively addressing error ac-
cumulation through modular reasoning and agent
collaboration, our method achieves a more reliable
and interpretable NL2GQL mapping, paving the
way for further advances in this challenging do-
main.

8.3 NER Prompt
The prompt we use for the NER task is shown in 7.

8.4 Related Schema Revision Prompt

The prompt used for revising the related schema is
illustrated in Figure 8.

8.5 Linking Completion Algorithm

The algorithm for link completion is described in
Algorithm 2.

8.6 GQL Refinement Prompt

The prompt for refining the GQL is shown in Fig-
ure 9.

8.7 In-Context Learning Prompt

The prompt used for in-context learning is shown
in Figure 10.

8.8 Style Transformation Prompt

The prompt designed to perform style transforma-
tion is presented in Figure 11.

8.9 Performance with Various Base LLMs.

The Preprocessor and Refiner agents use ChatGPT-
40, while the Generator is fine-tuned with LoRA
on Qwen2.5-14B-Instruct. We experimented with
various base LLMs for each agent and compared
the results, summarized in Table 11. The findings
indicate that the Generator agent is more robust
to base LLM choices after fine-tuning, while the

14

Preprocessor and Refiner agents, using unmodified
base LLMs, are more sensitive to model choice,
significantly affecting overall performance.

8.10 Case Study

To further demonstrate the strengths of our method,
we present a detailed case study in Table 12. From
the case, we observe that baseline methods either
extract the wrong related schema, generate GQL
with syntax errors, or fail to recognize colloquial
variations of named entities. In contrast, our ap-
proach accurately extracts the related schema, even
for multi-hop queries, and effectively interprets col-
loquial variations of named entities. This ensures
that entity names are recognized and accurately
reflected in the generated GQL, even when the in-
put deviates from standard formal representations.
This highlights the robustness and adaptability of
our method in handling complex and varied queries,
further reinforcing its effectiveness in real-world
applications.

8.11 Comparison with Similar Tasks

Text2SQL

Text2SQL is a task in NLP that is quite similar
to NL2GQL, as both involve transforming user
queries into statements that can be executed on
a DB. Recently, there have been many efforts to
apply LLMs to solve Text2SQL, and these methods
have achieved good results (Pourreza et al., 2024b;
Maamari et al., 2024; Li et al., 2024; Caferoglu
and Ulusoy, 2024). However, there are significant
differences between the two.

* The diversity inherent in GQL presents a se-
ries of challenges. Unlike SQL, which has a
well-established and standardized query lan-
guage for relational DBs, GQL lacks a unified
standard (Zhou et al., 2024). This deficiency
creates obstacles in various areas, including
dataset construction, the development of mod-
els capable of generalizing across different
DBs, and the establishment of consistent train-
ing paradigms. There is a difference in query

Instruction:

You are an expert in the NLP field. I would appreciate your assistance with an NER task. Given entity
label set: label set. Refer to the given example. Based on the provided entity label set, please recognize
the named entities in the given Question. Please directly output the answer.

Output Format:
In JSON format, for example: {Entity Name: Entity Type, Entity Name: Entity Type}.

Here are some examples:
{EXAMPLES}

======== Predict ========
Question:

{QUESTION}

Answer:

Figure 7: Prompt for performing Name Entity Recognition on questions using ChatGPT-40.

Instruction:

You are an expert in the NLP field. I am working on an information extraction task that involves
identifying the related schema potentially relevant to a given question from a graph DB schema. I have
already extracted the Candidate Related Schema. Please assist me in verifying whether the Candidate
Related Schema contains any redundancies and ensure that each one is necessary. Based on the provided

examples, kindly provide the correct Candidate Related Schema.

Candidate Related Schema:

-The complete Schema structure of Candidate Related Nodes and Candidate Related Edges.

Output Format:

Please follow the format in the Examples. Directly output the result you consider correct after "Related

Schema:" .

Here are some examples:
{EXAMPLES}

======== Predict ========
Question:

{QUESTION }

Candidate Related Schema:
{Candidate_related_schema}

Related Schema:

Figure 8: Prompt for revising the related schema.

objectives. NL2GQL aims to execute queries
on graph DBs, whereas Text2SQL targets rela-
tional DBs. Graph DBs feature more flexible
data structures and complex relationships, re-
quiring NL2GQL to manage a wider variety
of queries and data relationships (Liang et al.,
2024b).

15

* The flexibility of query languages differs.
GQL is more flexible compared to SQL, allow-
ing for complex queries on nodes and edges
in a graph DB, while SQL is constrained by
the fixed structure and syntax of relational
DBs. There is a greater variety of keyword
types in GQL compared to SQL. GQL en-
compasses more keyword types, reflecting the

Algorithm 2: Linking Completion Algorithm

Input: Graph Schema G = (V, F); Identified Entities Ejgentifiea; Identified Edges Rigentified
Output: Connected Subgraph SG = (Viubgraph, Esubgraph)
1 Function LinkCompletion(G, Eigenified, Ridentifiea) *

2 Vsubgraph «—0
3 Esubgraph 0
4 foreach entity v; € Ejjensifica do
5 L V;ubgraph <~ ‘/subgraph U {'Uz}
6 foreach edge r; € Rijensifiea d0
7 L Esubgraph < Esubgraph U {Tj}
8 foreach edge ¢), € Egpgrapn O
9 foreach neighbor v; € neighbors(ey,) do
10 Vsubgraph < ‘/subgraph U {'Ul}
1 Esubgraph < Esubgraph U {ek}
12 while V;,p0rapn is not connected do
13 Find the minimum edge to add that connects two disconnected components
14 | Esubgraph < Esubgraph U {min edge}
15 return SG = (unbgrapm Esubgraph)
Agent LLM EM(%) EX(%) B, where all participants in the path belong to the
Qwen2.5-14B-Instruct 77.95 79.01 same department.
ChatGPT-3.5-Turbo 80.88 79.98 Cvpher Implementation:
Preprocessor e atGPT-do 8544 8625 YP P
MATCH (a:User {name: "UserA"}),
Goneratoy GLM-4-9B-Chat 8503 85.84 beU . mUserB"
LLaMA-3.1-8B-Instruct ~ 8535 86.09 (b:User {name: "UserB"}),
LLaMA-3.2-3B-Instruct ~ 85.19 85.92 path = shortestPath((a)
Qwen2.5-14B-Instruct ~ 85.44 86.25 -[: COLLABORATED_WITH*]-(b))
Refiner Qwen2.5-14B-Instruct 84.21 84.95 WHERE ALL(node IN nodes(path)
ChatGPT-3.5-Turbo 8487 85.68 WHERE node.department = a.department)
ChatGPT-40 85.44 86.25
RETURN path
Table 11: Impact of base LLMs on NAT-NL2GQL Text2SQL Challenges: In relational databases,

performance on StockGQL.

diverse data structures and query requirements
in graph DBs. NL2GQL must recognize and
process these different types of keywords, fur-
ther complicating the task.

* The complexity of query paths is notable.
Queries in graph DBs often involve intri-
cate paths between multiple nodes and edges.
NL2GQL must handle these complex paths
and translate natural language questions into
corresponding GQL queries, adding to the
overall complexity of the task.

The following examples highlight scenarios where
NL2GQL excels while Text2SQL faces limitations
due to relational model constraints.

1. Multi-hop Path Query Question: Find the
shortest collaboration path from User A to User

16

such multi-hop path queries require recursive
JOINs (e.g., using WITH RECURSIVE), which
have poor performance and complex syntax. It is
not possible to directly express the "shortest path"
semantics, relying on stored procedures or external
algorithms.

2. Cyclic Relationship Detection Question:
Detect if there exists a collaboration cycle: User A
— User B — User C — User A.

Cypher Implementation:

MATCH (a:User {name: "UserA"})
[: COLLABORATED_WITH]->(b:User),
(b)-[: COLLABORATED_WITH]->(c:User),
(c)-[:COLLABORATED_WITH]->(a)
RETURN a, b, c
Text2SQL Challenges: Requires self-joins on

the same table multiple times (e.g., Users AS ul
JOIN Users AS u2 ...), leading to exponential query

Instruction:

You are an expert in NebulaGraph DBs, with specialized expertise in nGQL. A prior attempt to execute a
query did not produce the expected results, either due to execution errors or because the returned output
was empty or incorrect. Your task is to analyze the issue using the provided related schema of query and
the details of the failed execution. Based on this analysis, you should offer a corrected version of the
nGQL. Ensure adherence to the nGQL conventions for naming variables, entities, and attributes (e.g.,
‘s.stock.name ‘) and verify that all conditional filters use ‘==° syntax, such as ‘s.stock.name == "[s]’ ‘.

Procedure:

1. Analyze Query Requirements:

- Question: Consider what information the query is supposed to retrieve.

- Info: The preprocessed data information. - nGQL: Review the nGQL query that was previously executed
and led to an error or incorrect result.

- Error: Analyze the outcome of the executed query to identify why it failed (e.g., AssertionError).

2. Determine whether the Related Schema is correct.

- Based on the above information, first determine whether the extracted related schema is correct.

- If related schema is not correct, directly output "Info Error". Otherwise, modify the nGQL query to
address the identified issues, ensuring it correctly fetches the requested data according to the graph DB
schema and query requirements.

Output Format:
Based on whether the determined Related Schema is correct, output either "Info Error" or your corrected

query. The corrected query as a single line of nGQI code. Ensure there are no line breaks within the query.

Here are some examples:

{EXAMPLES}
======== Predict ========
Question:
{QUESTION}

Related Schema:
{RELATED_SCHEMA }
nGQL:

{nGQL}

Error:

{ERROR}

Output:

Figure 9: The prompt used for GQL refine.

complexity. It is not possible to directly express
cyclical structures and requires manually hardcod-
ing the path length (e.g., 3 hops in this example).

3. Dynamic Aggregation and Graph Pattern
Matching Question: Count the managers in each
department who have more than 10 subordinates
and whose subordinates have participated in cross-
department projects.

Cypher Implementation:

MATCH (m:Manager)-[:MANAGES]
->(e:Employee)

WITH m, COUNT(e) AS subordinates

WHERE subordinates > 10

17

MATCH (e)-[:PARTICIPATED_IN]->
(p:Project{is_cross_department:true})

RETURN m.name, subordinates,
COLLECT(p.name) AS projects

Text2SQL Challenges: Requires combining ag-
gregation (COUNT) with existence checks (EX-
ISTS subqueries), leading to high complexity in
nested queries. It is difficult to efficiently han-
dle graph pattern matching for "cross-department
projects" (requires multi-table JOINs and complex
filtering conditions).

4. Recursive Relationship Query Question:
Find all indirect subordinates of User A, including

Instruction:

You are an expert in NebulaGraph DBs, please write the nGQL query corresponding to the given Question
directly based on the provided knowledge graph Schema and Examples. Ensure adherence to the
nGQL conventions for naming variables, entities, and attributes (e.g., ‘s.stock.name*) and verify that all
conditional filters use ‘==° syntax, such as ‘s.stock.name == ’[s] ‘. Please provide the answer directly
without any additional explanation. Please provide the answer directly without any additional explanation.
Please provide the answer directly without any additional explanation.

Output Format:
Please output nGQL directly.

Schema:
{SCHEMA }

Here are some examples:

{EXAMPLES}
== Pl‘edict ==
Question:
{QUESTION}
nGQL:
Figure 10: Prompt for In-Context Learning.
NL R AR O T 7% &5

(The fund manager who manages the fund that holds Huaqiang stock with a holding ratio exceeding 7%?)

FH SRR B O I 7% 2 6 IR AL B 22 PR T
(Which fund manager manages the fund that holds
Huagiang Technology stock with a holding ratio exceeding 7%?)

Formal expression

Method Related Nodes and Edges Output

MATCH (s:stock{name: STy })<-[h:manage]-(fm:fund_manager)

ICL(ChatGPT-4o) WHERE h.position_ratio > 7% RETURN fm.name

full schema

MATCH (s:stock{name: **£5’})<-[h:hold]-
(pof:fund)<-[:manage]-(fm:fund_manager)
WHERE h.hold.position_ratio > 7%
RETURN fm.fund_manager.name

Fine-Tuning(full schema)

Qwen2.5-14B-Instruct (Ul schema

MATCH (s:stock{name: >*£3#’ })<-[h:hold]-
(pof:fund)<-[:manage]-(fm:fund_manager)

WHERE h.position_ratio > 7% RETURN fm.fund_manager.name

Nodes:[fund_manager,fund,stock]

Align-NL2GQL Edges: [manage,hold]

MATCH (s:stock{name: *f&55 8% D<-[h:hold]-(fm:fund_manager)

Nodes:[fund_manager,stock]

R3-NL2GQL

Edges: [hold] WHERE h.position_ratio > 7% RETURN fm.fund_manager.name
) MATCH (s:stock{name: *4£38R}H%" })<-[h:hold]-
Ours Nodes:[fund_manager,fund,stock] (pof:fund)<-[:manage]-(fm:fund_manager)

Edges: [manage,hold] WHERE h.position_ratio > 7% RETURN fm.fund_manager.name

Table 12: A case study in the StockGQL dataset is presented, displaying the results of both our method and the
baseline methods. Due to space limitations, the table uses "Related Nodes and Edges" rather than listing the full
details of the related schema. The segments with predicted errors are highlighted in red, while the correct ones are

marked in blue.

the subordinates’ subordinates.
Cypher Implementation:

MATCH (a:User {name: "UserA"})
-[:MANAGES*1..]->(sub:Employee)
RETURN sub.name

Text2SQL Challenges: In relational databases,

18

recursive CTEs (WITH RECURSIVE) must be
used, but the syntax is obscure and the performance
is poor. It is difficult to control the recursion depth
flexibly (e.g., the *1.. notation in this example
represents an arbitrary depth).

5. Graph Embedding-Based Semantic Simi-

Instruction:

You are a language expert skilled in adapting text to match the natural tone of real-life user queries. I
am working on an NL2GQL dataset and need to transform formal or rigid questions into a more natural,
simple, and conversational style, as typically seen in real-world applications. Please rephrase the given
question based on the provided GQL query and its corresponding Subschema. Follow these rules:

1. Use a conversational style that includes ellipses, omissions, and vague expressions whenever possible.
2. Replace entity names from the Subschema in the original question with more generic or anonymized
terms.

3. Keep the original intent and meaning intact while making the question sound natural and easy to

understand.

user queries.
Input Question:
query and the related Subschema.

Output Format:

Here are some examples:
{EXAMPLES}
Predict

Question:
{QUESTION}
GQL:

{GQL}
Subschema:
{SUBSCHEMA }

Conversational Question:

4. Avoid overly technical or formal language; prefer everyday expressions and phrasing.
5. If applicable, incorporate pronouns or implicit references common in spoken language to simulate real

A question written in formal or rigid style that needs to be transformed, along with its corresponding GQL

Please output the rephrased question directly after "Conversational Question:".

Figure 11: Prompt for style transformation to conversational user queries.

larity Query Question: Find users whose interests
are similar to User A’s, with at least three common
interests.

Cypher Implementation:

MATCH (a:User {name: "UserA"})
-[:INTERESTED_IN]->(i:Interest)

WITH a, COLLECT(i) AS interests

MATCH (u:User)-[:INTERESTED_IN]
->(i:Interest)

WHERE u <> a AND SIZE([x IN interests
WHERE x IN u.interests]) >= 3

RETURN u.name

Text2SQL Challenges: Requires handling set
intersection (common interests), which in SQL
must be implemented with INTERSECT and sub-
queries, making the syntax cumbersome. It is not

19

possible to directly express graph embedding-based
similarity calculations (which require external ex-
tension libraries).

6. Temporal Graph Analysis Question: List
all stocks that experienced a drop of more than 5%
in a single day after five consecutive days of price
increase.

Cypher Implementation:

MATCH (s:Stock)-[r:HAS_DAILY_DATA]
->(d:DailyData)
WITH s, d ORDER BY d.date ASC
WITH s, COLLECT(d) AS data
WHERE size(data) >= 6
AND ANY(i IN RANGE(@, size(data)-6)
WHERE REDUCE(rising = true,
j IN [0..4] | rising AND

data[i+j+1].close > datal[i+j].close)
AND
(datal[i+5].close - data[i+6].close)
/datali+5].close >= 0.05

RETURN s.name

Text2SQL Challenges: Requires window func-
tions (e.g., LAG/LEAD) and complex condition
combinations, reducing readability. It is difficult
to efficiently handle dynamic time-series patterns
(e.g., "consecutive N days of increase").

The scenario types that can be achieved by
NL2GQL but are difficult to implement with
Text2SQL is shown in Table 13. In summary,
NL2GQL is more complex than Text2SQL due
to its handling of graph DB queries, the flexibility
of GQL, the complexity of data paths and the va-
riety of keyword types. Given these differences, it
is challenging to directly transplant methods from
the Text2SQL task to the NL2GQL task.

KBQA

Knowledge-Based Question Answering (KBQA)
systems leverage structured knowledge bases (KBs)
to answer user queries. SP-based methods, com-
monly known as NL2SPARQL, first translate nat-
ural language questions into SPARQL queries,
which are then executed on the KB to retrieve an-
swers (Lan et al., 2021). This approach is similar
to NL2GQL; however, a significant difference be-
tween NL2GQL and NL2SPARQL in the KGQA
domain lies in the complexity of data storage and
query languages. Graph databases (Graph DBs),
which manage data with intricate relationships, in-
troduce additional complexity (Liang et al., 2024b).
Moreover, NL2GQL requires a deeper focus on
schema information, as entities in graph DBs may
have a diverse range of attribute types (Zhou et al.,
2024). NL2GQL is also characterized by complex
graph modalities, a wide variety of query types,
and the unique nature of GQLs (Zhou et al., 2024).
As a result, directly applying KBQA methods to
the NL2GQL task is impractical.

The following are additional examples that show-
case the unique capabilities of NL2GQL and its
corresponding Cypher implementations, which tra-
ditional KBQA methods struggle to handle:

1. Multi-hop Relationship and Co-
participation Count Question: Find friends of
the user *Alice’ who have at least three common
projects with her.

Cypher Implementation:

MATCH (alice:User {name: "Alice"})

20

-[:FRIEND_OF]->(f1:User)-[:FRIEND_OF]
->(f2:User)
MATCH (f2)-[:PARTICIPATED_IN]->
(p:Project)<-[:PARTICIPATED_IN]-(alice)
WITH f2, COUNT(DISTINCT p)
AS common_projects
WHERE common_projects >= 3
RETURN f2.name AS mutual_friend,
common_projects

KBQA Challenges: Dynamic traversal of multi-
hop social relationships (2-hop friends) and associa-
tion with common projects. KBQA methods gener-
ally cannot flexibly combine multi-hop paths with
aggregation and filtering conditions (e.g., COUNT
>=3).

2. Temporal Event Combination Filtering
Question: Identify all users who purchased Prod-
uct A in 2023 and rated it five stars within the last
six months. Cypher Implementation:

MATCH (u:User)-[:PURCHASED]
->(p:Product {name: "ProductA"})
WHERE p.purchase_date >= '2023-01-01'
AND p.purchase_date <= '2023-12-31"'
WITH u
MATCH (u)-[r:RATED]
->(p:Product {name: "ProductA"})
WHERE r.rating = 5 AND
r.date >= date().duration(”-6 months")
RETURN u.name, r.date AS rating_date

KBQA Challenges: Combining temporal win-
dows (2023 purchase + recent 6-month rating)
and cross-event associations (purchase and rating).
KBOQA struggles with dynamic time-based calcula-
tions.

3. Aggregation and Nested Subqueries Ques-
tion: Count the managers in each department
whose salary is above the department’s average and
who manage at least two subordinates. Cypher
Implementation:

MATCH (d:Department)
WITH d, AVG(e.salary) AS avg_salary
MATCH (m:Manager)-[:MANAGES]
->(e:Employee {department: d.name})
WHERE m.salary > avg_salary
WITH m, COUNT(e) AS subordinates
WHERE subordinates >= 2
RETURN d.name AS department,
m.name AS manager, m.salary
, subordinates

KBQA Challenges: First, calculating the depart-
ment’s average salary, which then serves as a filter-

Capability | NL2GQL | Text2SQL
Multi-hop Path Traversal | v | X (Requires recursive CTE)
Cyclic Structure Detection | v | x (Complex self-joins)
Recursive Relationship Query | v | X (Syntax limitations)
Dynamic Graph Pattern Matching | v | x (Exploding JOINs)
Temporal Graph Analysis | v | x (Relies on window functions)
Set and Graph Embedding Operations | v | x (Limited functionality)

Table 13: Summary of scenario types that can be achieved by NL2GQL but are difficult to implement with

Text2SQL.
Scenario | NL2GQL | KBQA
Multi-hop Dynamic Path | v | X (Relies on predefined paths)
Temporal Event Combinations | v | X (Time logic is rigid)
Nested Aggregation | v | X (Only single-layer aggregation)
Cyclic Pattern Detection | v | X
Continuous Event Sequence Analysis | v | X

Table 14: Summary of scenario types that can be achieved by NL2GQL but are difficult to implement with KBQA.

ing condition. KBQA cannot dynamically execute
nested aggregation (department-level aggregation
+ individual-level filtering).

4. Cyclic Subgraph Pattern Detection Ques-

tion: Find all collaborative networks that form

cycles with at least four nodes. Cypher Imple-

mentation:

MATCH path = (a:User)
-[:COLLABORATES_WITH*3..]->(a)
WHERE length(path) >= 3
AND ALL(n IN nodes(path)
WHERE size(apoc.coll.duplicates
(nodes(path))) = 0)
RETURN path

KBQA Challenges: Detecting cyclic structures in
graph theory (path starts and ends at the same node
without repeated nodes). KBQA lacks subgraph
pattern matching capability.

5. Consecutive Temporal Event Detection
Question: Identify all customers who placed two
consecutive orders with decreasing amounts in the
last three months. Cypher Implementation:

MATCH (c:Customer)-[o:0RDERED]
->(order:0rder)

WHERE o.date >= date()
.duration(”-3 months")

WITH c, order ORDER BY o.date ASC

WITH c, COLLECT(order) AS orders
WHERE size(orders) >= 2
AND ANY(i IN RANGE(Q, size(orders)-2)
WHERE orders[i].amount
> orders[i+1].amount
AND orders[i+1].amount
> orders[i+2].amount
)
RETURN c.name, [order IN orders
| {date: order.date, amount:
order.amount}]
AS order_history

KBQA Challenges: Detecting consecutive event
patterns (decreasing order amounts). KBQA can-
not handle dynamic temporal sequence aggregation
analysis.

The scenario types that can be achieved by
NL2GQL but are difficult to implement with
KBQA is shown in Table 14.

	Introduction
	Related works
	PRELIMINARIES
	StockGQL Dataset Build
	Method
	Preprocessor Agent
	Generator Agent
	Refiner Agent

	Experiment Results
	Experimental Setup
	Main Results
	Further Analysis
	Ablation Study

	Conclusion
	Appendix
	Dataset Analysis
	Query Type Analysis
	Keywords Analysis
	Human Evaluation
	Dataset Format

	Further Experimental Results
	Inference Time Analysis
	Effectiveness Analysis on Error Accumulation Mitigation

	NER Prompt
	Related Schema Revision Prompt
	Linking Completion Algorithm
	GQL Refinement Prompt
	In-Context Learning Prompt
	Style Transformation Prompt
	Performance with Various Base LLMs.
	Case Study
	Comparison with Similar Tasks

