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Abstract001

There has been increasing interest in using002
Large Language Models (LLMs) for trans-003
lating natural language into graph query lan-004
guage (NL2GQL). While progress has been005
made, current approaches often fail to fully ex-006
ploit the potential of LLMs to autonomously007
plan and collaborate on complex NL2GQL008
tasks. To address this gap, we propose NAT-009
NL2GQL, an innovative multi-agent frame-010
work for NL2GQL translation. The framework011
consists of three complementary agents: the012
Preprocessor agent, the Generator agent, and013
the Refiner agent. The Preprocessor agent han-014
dles tasks such as entity recognition, query015
rewriting, and schema extraction. The Gen-016
erator agent, a fine-tuned LLM trained on017
NL-GQL data, generates corresponding GQL018
statements based on queries and their related019
schemas. The Refiner agent refines the GQL or020
context using error feedback from the GQL ex-021
ecution results. In the absence of high-quality022
open-source NL2GQL datasets based on nGQL023
syntax, we developed StockGQL, a Chinese024
dataset derived from a Chinese financial market025
graph database, which will be made publicly026
available to support future research. Experi-027
ments on the StockGQL and SpCQL datasets028
demonstrate that our approach significantly out-029
performs baseline methods, underscoring its030
potential to drive advancements in NL2GQL031
research.032

1 Introduction033

Graph data is gaining prominence in modern data034

science for its ability to reveal complex relation-035

ships, enhance information connectivity, and sup-036

port intelligent decision-making. It is particularly037

valuable in fields such as finance, healthcare, and038

social networks, where managing highly connected039

and structurally complex data is crucial (Zhao et al.,040

2022a; Sui et al., 2024). Graph data requires spe-041

cialized graph databases (DBs) for efficient storage042

NL2GQL System

What are the stock codes 
held by the fund managed 
by the fund manager Tom?

 User

MATCH (f:manager{name:'Tom'})-
[:manage]->(p:fund)-[:hold]->(s:stock)
RETURN s.stock.code

  
 Nodes:
         'entity_type': 'manager', 'properties': {'name', 'string', 'degree', 'string', ...}
         'entity_type': 'fund', 'properties': {'code', 'string', 'name', 'string', ...}
         'entity_ype': 'stock', 'properties': {'code', 'string', 'registered_capital', 'float', ...}
                  ...       
 Edges:
         'edge_type': manage, 'properties': {'name', 'string', 'degree', 'string', ...}
         'edge_type': hold, 'properties': {'name', 'string', 'degree', 'string', ...}
                  ...

Schema

Graph database

 question
 answer

 execute

 schema

 generate

stock.code:
=========
sh00001
sh00002

 answer

Figure 1: The demonstration of the NL2GQL task trans-
forming the user’s natural language into a graph query
language that can be executed on a NebulaGraph.

and processing (Pavliš, 2024). Popular graph DBs, 043

including Neo4j, NebulaGraph, and JanusGraph, 044

offer distinct features but share similar query graph 045

languages (GQLs) (e.g., Cypher, nGQL, and Grem- 046

lin), enabling users to analyze data efficiently. 047

Despite the growing importance of graph data, 048

ordinary users often struggle with graph DBs due 049

to their complex operations and lack of technical 050

expertise, limiting their adoption in real-world ap- 051

plications (Guo et al., 2022). Additionally, the com- 052

plex syntax of GQL creates further obstacles, espe- 053

cially for users attempting to translate natural lan- 054

guage (NL) into GQL, a task known as NL2GQL. 055

These challenges make NL2GQL a particularly de- 056

manding problem (Liang et al., 2024b; Zhou et al., 057

2024). Figure 1 shows an NL2GQL example for 058

NebulaGraph, highlighting key components like 059

natural language understanding, DB schema com- 060

prehension, and GQL generation. This emphasizes 061

the need for a system that automates NL2GQL, sim- 062

plifying graph data queries and analysis to promote 063

wider adoption. 064

NL2GQL is a specialized application of the 065

Seq2Seq task. Modern methods have moved from 066

template-based approaches to generative models, 067

offering more flexibility and accuracy in handling 068

complex queries. The study (Guo et al., 2022) first 069

applied a Seq2Seq framework to NL2GQL and 070
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introduced the SpCQL dataset. The work (Zhao071

et al., 2023) developed a SQL2Cypher algorithm072

for mapping SQL to Cypher, though the approach is073

limited by the differences between GQL and SQL.074

The paper (Tran et al., 2024) proposes the CoBGT075

model, combining BERT, GraphSAGE (Hamilton076

et al., 2017), and Transformer for key-value ex-077

traction, relation-property prediction, and Cypher078

query generation.079

LLMs have revolutionized performance in NLP080

tasks, with applications extending to DB re-081

search (Zhu et al., 2024; Ren et al., 2024; Peng082

et al., 2024; Zhou et al., 2023; Lao et al., 2023),083

where they bridge natural language and structured084

query languages for more intuitive DB interac-085

tions. Research on LLMs for graph DBs, especially086

NL2GQL, is growing. Tao et al. (2024) uses heuris-087

tic prediction and LLM revision, showing effec-088

tiveness in some domains. Zhou et al. (2024) com-089

bines smaller models for ranking and rewriting with090

larger models for the final NL-to-GQL transforma-091

tion. Liang et al. (2024b) proposes constructing an092

NL2GQL dataset using domain-specific graph DBs093

and tokenization to enhance accuracy.094

LLM-based methods exhibit some effective-095

ness in solving NL2GQL tasks, but their stream-096

lined approach carries a major challenge—error097

accumulation. Incorrect extraction of the related098

schema can lead to flawed GQL generation. For099

example, as shown in Figure 1, the correct re-100

lated schema for the query should include the101

nodes "manager," "fund," and "stock," and edges102

"manage" and "hold." If the extracted schema103

omits "stock" and "hold," the generated GQL, such104

as MATCH (f:manager{name:’Tom’})-[:manage]-105

>(p:fund) RETURN s.fund.code, will produce in-106

correct results.107

In this study, we propose NAT-NL2GQL, a108

multi-agent framework for translating NL2GQL,109

as shown in Figure 3. The framework consists110

of three agents: the Preprocessor, Generator, and111

Refiner. The Preprocessor agent handles data pre-112

processing tasks, such as extracting values from the113

graph DB, performing named entity recognition114

(NER), rewriting user queries, linking paths, and115

extracting related schemas. The Generator agent,116

a fine-tuned LLM trained on the NL-GQL dataset,117

generates the GQL based on the context and user118

queries. The Refiner agent refines the GQL or con-119

text using error information from GQL execution120

results. These agents interact iteratively for up to121

three rounds. Given that different graph DBs have122

varying GQL syntaxes, we propose a general frame- 123

work to handle these differences. To address the 124

lack of high-quality NL2GQL datasets, we devel- 125

oped StockGQL, derived from a financial market 126

NebulaGraph DB. We evaluated our framework 127

using the StockGQL and SpCQL datasets (Guo 128

et al., 2022), showing significant improvements 129

over baseline methods in NL2GQL accuracy. Ab- 130

lation experiments further confirm the importance 131

of each module in enhancing task performance. 132

Key Contributions. To summarize, this paper 133

makes the following contributions: 134

• First, to alleviate error accumulation inherent 135

in streamlined methods, we designed a collab- 136

orative and iterative multi-agent framework to 137

tackle the NL2GQL task. 138

• Second, based on a Chinese financial market 139

NebulaGraph DB, we constructed the Stock- 140

GQL dataset, which can serve as a testbed for 141

future NL2GQL research. 142

• Third, our proposed method surpassed the 143

baseline methods on both StockGQL and 144

SpCQL datasets, which denotes the new state- 145

of-the-art NL2GQL results in both general 146

and specific domains. 147

2 Related works 148

NL2GQL is a typical NLP task that has emerged 149

with the widespread adoption of graph data and can 150

be classified as a seq-to-seq task (Guo et al., 2022; 151

Zhao et al., 2023). Its primary function is to convert 152

users’ NL questions into GQL queries that can be 153

executed on a graph DB. This task involves user 154

queries understanding, graph schema linking, and 155

GQL generation (Liang et al., 2024b; Zhou et al., 156

2024). Early efforts focused on using hand-crafted 157

rules to translate NL into GQL (Zhao et al., 2022b). 158

Modern approaches primarily incorporate state-of- 159

the-art (SOTA) models to optimize performance. 160

We categorize LLM-based NL2GQL methods into 161

two types: PLMs-based methods and LLMs-based 162

Methods. 163

PLMs-based methods. Fine-tuning PLMs within 164

a sequence-to-sequence framework is one of the 165

most widely used approaches for generative tasks 166

in NLP. Initially, Guo et al. (2022) constructed 167

a text-to-Cypher dataset and designed three base- 168

lines: seq2seq, seq2seq + attention (Dong and Lap- 169

ata, 2016), and seq2seq + copying (Gu et al., 2016). 170
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However, the results on the two evaluation met-171

rics, EX and EX, were not satisfactory. Reference172

(Tran et al., 2024) employs the BERT (Kenton and173

Toutanova, 2019) model for key-value extraction174

and uses GraphSAGE (Hamilton et al., 2017) to175

analyze the relational properties of the DB. These176

features are then fed into a transformer to generate177

the Cypher query. Their proposed small Text-to-178

Cypher dataset outperforms seq2seq models like179

T5 (Raffel et al., 2020) and GPT-2 (Radford et al.,180

2019). Reference (Liang et al., 2024a) introduces181

the KEI-CQL framework, a heuristic-like approach182

that utilizes pre-trained language models to extract183

semantic features from natural language queries184

and populate predefined slots in Cypher query185

sketches, effectively addressing the NL2GQL chal-186

lenge.187

LLM-based methods. Leveraging the powerful188

understanding and generation capabilities of LLMs189

to tackle the NL2GQL task has become a recent190

research hotspot. Reference (Tao et al., 2024)191

attempts to combine heuristic methods with LLM-192

based approaches. They first extract GQL clauses193

using heuristic rules, then concatenate these clauses194

to form a complete GQL, and finally use an LLM195

for refinement. Reference (Zhou et al., 2024) de-196

constructs the NL2GQL task into individual sub-197

tasks, using a combination of smaller models and198

LLMs for each stage. Specifically, smaller models199

are employed during the initial ranking and rewrit-200

ing phases, while an LLM is used for the final201

generation step. In contrast, Liang et al. (2024b)202

aligns LLMs with domain-specific graph DBs to203

address NL2GQL tasks within those DBs. They204

construct an NL2GQL dataset based on a domain-205

specific graph DB, then fine-tune an LLM with206

this dataset, enabling the LLM to effectively tackle207

NL2GQL tasks in the specific domain. However,208

streaming-based task decomposition methods of-209

ten struggle with error accumulation. In response210

to the observed challenge, we introduce the NAT-211

NL2GQL framework. Detailed comparisons with212

similar tasks (e.g., Text2SQL, KBQA) are provided213

in Appendix 8.11.214

3 PRELIMINARIES215

NL2GQL Task Definition. The input consists216

of an NL query X and a graph DB G, which is217

represented as G = {(s, r, o) | s, o ∈ V, r ∈ E}.218

Here, V and E denote the sets of vertices and edges,219

respectively. The objective is to generate a correct220

GQL query based on the provided question and the 221

graph DB. 222

LLM-based NL2GQL Systems. The in-context
learning approach enables LLMs to generate accu-
rate answers by incorporating a few examples into
the prompt. This can be formalized as follows:

Q̂ = LLMICL(I,D,NL)

Here, I represents the task description, D consists 223

of demonstrations from annotated datasets, and NL 224

refers to the input question. 225

4 StockGQL Dataset Build 226

We use the self-instruct method (Wang et al., 2022) 227

to create StockGQL, based on a real-world finan- 228

cial stock NebulaGraph DB, with privacy process- 229

ing applied to named entities. Figure 2 illustrates 230

our approach. Next, we will provide a detailed 231

explanation of each step’s functionality. 232

Schema Extraction. As shown in Step 1 of Fig- 233

ure 2, we extract the schema from the graph DB, 234

identifying the nodes, edges, and their attributes. 235

This forms the foundation for creating a structured 236

representation of the graph,pe enabling subsequent 237

query generation and processing. 238

Subschema Extraction. A subschema is a subset 239

of the graph’s schema, containing only partial in- 240

formation. Step 2 of Figure 2 involves extracting a 241

subschema by applying specific rules to identify all 242

possible path combinations, from 0-hop to 6-hop 243

paths. 244

Data Generation. Step 3 in Figure 2 shows the 245

data generation module, detailed in Algorithm 1. 246

Using the ICL method, we sample K data points 247

from the pool, which initially contains 16 manually 248

crafted examples. These are used to create masked 249

NL-GQL pairs, where entity names are replaced 250

with placeholders in both the query and the GQL. 251

An example is shown below: 252

Masked query : What is the code of stock [s]? 253

Masked GQL : MATCH (s:stock{name:’[s]’}) 254

RETURN s.stock.code 255

We use the placeholder [s] to represent stock entity 256

names in both the natural language query and the 257

corresponding GQL. 258

We generate each subschema for m times to 259

cover as many attributes of all entities as possi- 260

ble. Using the self-instruct approach, the process 261
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Schema:{
Nodes:
 {‘tag’ : chairman,.. }
 {‘tag’ : stock,..  } ,
        ...       
Edges:
 {‘tag’ : hold,...}   
 {‘tag’ :  is_chairman,...}
      ...
} Graph 

DB

SubSchema:{
Nodes:
  {‘tag’ : chairman,.. },
  {‘tag’ : stock,.. },
Edges:
  {‘tag’ : is_chairman,...}
}

Subschema 
Extraction

Masked data pairs:

Masked Query:
Who is the chairman of  [s] ?

Masked GQL :
match (c:chairman)-[:is_chairman]-> 
(s:stock {name:'[s]'})
return c.chairman.name
    ...

Data 
Generation

Schema Extraction
1

2 3

Data pairs:
Query:
Who is the chairman of Tencent 
Technology?

GQL :
match (c:chairman)-[:is_chairman]                 
-> (s:stock {name:'Tencent 
Technology'})
return c.chairman.name
     ...

Data Validation
4

Named Entity  
 Filling

Data pairs:

Query:
Who is the chairman of Tencent ?

GQL :
match (c:chairman)-[:is_chairman]         
-> (s:stock {name:'Tencent 
Technology'})
  return c.chairman.name
     ...

   Named Entity 
Colloquialization

6

Data pairs:
Query:
Who's in charge at Tencent?

GQL :
match (c:chairman)-[:is_chairman]         
-> (s:stock {name:'Tencent 
Technology'})
  return c.chairman.name
...

        Style
Transformaton

7

5

Figure 2: This is the flowchart for constructing the dataset, where the parts of the data that have changed relative to
the previous step in Step 5, Step 6, and Step 7 are highlighted. The GQL is based on the nGQL syntax.

Algorithm 1: Masked NL-GQL Data Pairs
Generation

Input: A set of subschemas; Data pool D; Number of
demonstrations K; Iterations number m; Task
description I

1 foreach s in subschemas do
2 for i = 1 to m do
3 Sample K items from Data pool;
4 Build demonstrations E using the sampled

items;
5 Generate Masked NL-GQL Data Pairs;
6 d_list← LLMICL(I , E , s);
7 Add d_list to D;

8 return D

iterates until all subschemas have been covered, at262

which point it will terminate.263

Data Validation. This step filters out erroneous264

data where NL and GQL are inconsistent. We fol-265

low the approach outlined in (Liang et al., 2024b),266

using an entity-filled, CoT-based GQL2NL method267

to generate NL′ from GQL. The data is then fil-268

tered based on low embedding similarity between269

NL and NL′. As a result, we obtain a large num-270

ber of high-quality masked NL-GQL data pairs.271

Named Entity Filling. This step involves filling in272

the previously masked data by extracting relevant273

named entities from the graph DB based on the274

mask type. For example, [s] corresponds to stock275

entity names.276

Named Entity Colloquialization. In this step, we277

randomly select a dataset with named entities and 278

manually rewrite the entities in both the NL and 279

GQL as abbreviated forms. This simulates real- 280

world scenarios where users commonly use the 281

abbreviation of the entity names. For example, in 282

Step 6 of Figure 2, the colloquialization of Tencent 283

Technology has been changed to Tencent. 284

Style Transformation. In real-world scenarios, 285

user queries are often conversational, characterized 286

by ellipses and vague expressions. This unstruc- 287

tured style requires NL2GQL systems to combine 288

robust language understanding with multi-hop rea- 289

soning over the graph schema to accurately capture 290

user intent. To better reflect this behavior, we apply 291

style transformation to simulate informal queries. 292

Specifically, we prompt the LLM to adopt a nat- 293

ural, simple, and conversational tone that mir- 294

rors real-life user queries. We use ChatGPT-4 295

to perform style transformation, with the prompt 296

detailed in Appendix 8.8. 297

Our method is highly adaptable, applicable to 298

both general and domain-specific areas, and capa- 299

ble of generating NL2GQL datasets in multiple 300

languages, based on various Graph DBs, across a 301

wide range of domains. We have constructed the 302

Chinese StockGQL dataset. A statistical analysis 303

of the data, shown in Table 1, reveals that 63% of 304

the queries involve more than 2 hops, with 26% 305

involving more than 3 hops. The dataset includes 306

12 types of nodes, 13 types of edges, and 62 types 307
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of properties. StockGQL is an NL2GQL dataset308

based on the nGQL syntax, designed for complex309

multi-hop, multi-type queries. We hope its open-310

source release will advance NL2GQL research and311

model development. A more detailed analysis of312

the dataset is provided in Appendix 8.1.313

Dataset 0-hop 1-hop 2-hop 3-hop 4-hop Others

Train (4884) 308 547 1769 1348 830 82
Dev (676) 43 81 295 181 57 19
Test (1432) 87 148 535 396 207 59

Table 1: Statistics on hop counts in StockGQL.

5 Method314

In this section, we explain the NAT-NL2GQL work-315

flow. As shown in Figure 3, it consists of three316

agents: Preprocessor, Generator, and Refiner. The317

agents work together iteratively to complete the318

task. Next, we will provide a detailed description319

of the specific functions of each module.320

5.1 Preprocessor Agent321

As highlighted in (Liang et al., 2024b; Zhou et al.,322

2024), extracting the NL-relevant schema from the323

full graph DB schema offers three main benefits:324

reducing schema size to avoid context length issues,325

eliminating irrelevant noise to improve GQL accu-326

racy, and speeding up GQL generation. The Pre-327

processor agent extracts relevant schemas, aligns328

named entities in the query with those in the DB,329

and rewrites the query as needed, including tasks330

like NER, entity alignment, schema revision, link-331

ing completion, and query rewriting.332

LLM-based NER. Extracting named entities from333

NL is crucial for identifying the related schema.334

Previous studies have shown that LLMs can effec-335

tively recognize named entities (Xie et al., 2023;336

Xiao et al., 2024; Xu et al., 2023). Building on337

this, the Preprocessor agent uses LLM-based NER338

to extract entities from the query, helping pinpoint339

relevant schema parts. This reduces the schema340

search space and ensures accurate mappings be-341

tween query entities and graph DB counterparts for342

precise GQL generation. We use ChatGPT-4 for343

entity extraction, following the prompt structure in344

Appendix 8.3.345

Entity Alignment. After extracting named entities,
we align them with corresponding entity names
in the graph DB. This ensures accurate mapping
to relevant nodes or edges, enabling precise query
generation. We first build a dictionary D, where
each key is an entity type and its value is a list of

names. We then compare extracted entity names
with those in the dictionary. If an exact match is
found, the entity type name is assigned. For un-
matched entities, we use locality-sensitive hashing
(LSH) (Datar et al., 2004) to select the most similar
entity name. This process is formulated as:

D̂ = LSH(Z,D, γ)

d̂ = argmax
di∈D̂

Cosine(Emb(X ), Emb(di))

Here, Z denotes the extracted named entities from 346

the NL using LLM-based NER, D is the entity 347

dictionary from the graph DB, and D̂ consists of 348

entities retrieved using LSH similarity to X with 349

threshold γ. Emb(X ) represents the embedding of 350

X encoded via all-MiniLM-L12-v1, and d̂ denotes 351

the entity names extracted based on cosine simi- 352

larity to X . After alignment, we obtain the entity 353

names with their corresponding types. 354

Linking Completion. While multiple entity types 355

are extracted, they may not necessarily form a con- 356

nected subgraph. To handle queries that require 357

reasoning across different entity types, we link re- 358

lated entities. We begin by extracting entity and 359

attribute names from the graph database schema, 360

matching them with those in the query, and elim- 361

inating duplicates. To obtain a relevant subgraph, 362

we use the search algorithm from (Liang et al., 363

2024b) to identify the smallest subgraph that in- 364

cludes all the extracted entities. Finally, we apply 365

the algorithm in Appendix 8.5 to complete the in- 366

termediate entities and relationships, resulting in a 367

candidate related schema. 368

Related Schema Revision. Due to various fac- 369

tors, such as potential errors in NER, entities with 370

identical names, inconsistent attribute naming in 371

the graph database , the candidate related schema 372

may include redundant nodes and edges. We ap- 373

ply further filtering using ChatGPT-4 to retain only 374

the most relevant entities and relationships. The 375

specific prompt is provided in Appendix 8.4, and 376

experimental results show that this significantly 377

improves accuracy. 378

Question Rewriting. Queries often include collo- 379

quial terms or abbreviations that must be aligned 380

with graph DB entities for accurate GQL genera- 381

tion. After aligning named entities, mismatches 382

are replaced accordingly. While some entities may 383

not match exactly, the related schema revision step 384

filters out irrelevant ones. This process mainly re- 385

places named entities by mapping colloquial or 386
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Generator

Preprocessor

Graph 
DB

NL NER

Rewrite

Info:{
NL
Rewritten NL
Related Schema 
}

Graph DB

GQL

Right Yes

N
O

GQL & Answer

3 times

Info

GQL

Error Info

Error Info

 Packaged 
Information
       or
Refined GQL
        

Refine

Refiner

Refined GQL

                             Prompt         

Fine-tuned LLMRelated Schema

Packaged 
Information

Rewritten NL

Linking

Info

Figure 3: Our NAT-NL2GQL framework consists of three synergistic agents: the Preprocessor agent, the Generator
agent, and the Refiner agent. The entire process follows a cyclic and iterative flow, with the three agents collabora-
tively handling data preprocessing, GQL generation, and GQL refinement.

abbreviated terms in queries to their corresponding387

graph DB entities using keyword-based search and388

replace to ensure consistency. For example, the389

original query:390

梁dong董事长的股票关联的产业下游产业有哪些？391

(What are the downstream industries related to the indus-392

tries associated with the chairman Liang Dong’s stock?)393

can be revised to :394

梁东董事长的股票关联的产业下游产业有哪些？395

5.2 Generator Agent396

Once data pre-processing is complete, we gener-397

ate the GQL using the obtained information. To398

optimize memory usage while maintaining perfor-399

mance, we adopt LoRA (Hu et al., 2021), which400

fine-tunes only a small subset of parameters. Fol-401

lowing the format in (Liang et al., 2024b), we in-402

clude both the question and the Subschema in the403

input during fine-tuning. We fine-tune the selected404

base LLMs using LoRA. As shown in Figure 3,405

the fine-tuning prompt combines the original NL,406

rewritten NL, and related schema. During train-407

ing, the golden related schema from labeled GQL408

is used, while during inference, the Preprocessor409

agent predicts the related schema.410

5.3 Refiner Agent411

Many studies show that rewriting queries with syn-412

tax errors improves query accuracy (Pourreza et al.,413

2024a; Talaei et al., 2024; Zhou et al., 2024). How- 414

ever, these methods often rely on LLMs to correct 415

syntax errors, which usually involve only minor 416

modifications to the original query and may not 417

address more complex issues. Additionally, error 418

information typically highlights only the first error 419

encountered, making it unsuitable for queries with 420

multiple errors. Most importantly, if the related 421

schema or query from earlier steps is incorrect, fix- 422

ing the GQL syntax alone may not resolve the issue, 423

as it may still not align with the original query. In 424

such cases, the error information should prompt 425

a review of the auxiliary information from earlier 426

steps. 427

  
 Nodes:
         'entity_type': 'fund', 'properties': {'name':'string', 'code':'string', 'scale':'float',...}
         'entity_ype': 'stock', 'properties': {'code': 'string', 'registered_capital',:'float', ...}
         'entity_type': 'industry', 'properties': {'name: 'string', 'scale': 'string',...}
Edges:
         'edge_type': hold, 'start_tag':'fund','end_tag':'stock','properties': {'name':'string', ...}
         'edge_type': associate, 'start_tag':'stock','end_tag':'industry','properties': {'name':'string', ...}
                          

哪些公募基金持有与属于汽车零部件产业的股票？
（Which public funds hold stocks belonging to the automotive parts industry?）

Related 
SChema

GQL Error Ifo

AssertionError: SemanticError: Alias used but 
not defined: `public_offering_fund'

MATCH   (p:fund)-[:hold]->(:stock)-[:associate]->(:industry{name:'汽车零部件'}) 
RETURN  p.fund.name

Refined GQL

Refiner agent

MATCH   (:fund)-[:hold]->(:stock)-[:associate]-
>(:industry{name:'汽车零部件'}) 
RETURN  fund.name

NL

Figure 4: A refined example.

As shown in the refine prompt in Appendix 8.6, 428

our approach differs by using the question, prepro- 429

cessed data, GQL, and error information to deter- 430

mine whether the related schema is correct. If the 431
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Method Backbones StockGQL SpCQL
EM(%) EX(%) EM(%) EX(%)

ICL(K=4)

GLM-4-9B-Chat 12.01 11.03 7.03 8.22
Qwen2.5-14B-Instruct 12.99 12.50 7.87 8.92
LLaMA-3.1-8B-Instruct 9.92 9.50 7.42 8.21
LLaMA-3.2-3B-Instruct 7.20 6.91 6.03 7.27
ChatGPT-3.5-Turbo 13.06 12.57 7.37 7.62
ChatGPT-4o 15.99 13.20 9.22 10.26

Fine-Tuning GLM-4-9B-Chat 49.72 45.39 53.86 52.12
Qwen2.5-14B-Instruct 51.96 49.86 53.91 51.57
LLaMA-3.1-8B-Instruct 50.98 49.09 54.16 50.57
LLaMA-3.2-3B-Instruct 51.47 50.35 49.18 48.83

Others’ approach SpCQL 1.47 1.26 2.30 2.60
Align-NL2GQL 52.51 50.84 54.21 52.86
R3-NL2GQL 53.07 52.03 55.06 53.06

Ours Qwen2.5-14B-Instruct & ChatGPT-4o 60.13 ↑7.06 58.52 ↑6.49 59.99 ↑4.93 58.69 ↑5.63

Table 2: Comparison between our method and the baseline, where bold numbers indicate the best results, the red
upward arrow shows improvement, and the red number in parentheses denotes the exact gain over the best baseline.

schema is correct, we directly rewrite the GQL. If432

it’s wrong, this indicates an error in the previous433

data preprocessing step. In that case, we package434

the information and send it to the Preprocessor435

agent, treating both the GQL and error details as436

historical data for re-execution. We also set an it-437

eration limit, terminating the process if the GQL438

remains incorrect after several attempts. The Re-439

finer agent then decides whether to modify the GQL440

or save the historical data to restart the process, as441

shown in Figure 4.442

6 Experiment Results443

6.1 Experimental Setup444

Datasets. We conducted experiments on the Stock-445

GQL and SpCQL (Guo et al., 2022) datasets. The446

SpCQL dataset uses Cypher GQL, while Stock-447

GQL follows nGQL syntax.448

Baseline Methods. We selected three types of449

baseline methods: ICL approaches, fine-tuning ap-450

proaches, and a method from previous related work.451

For the ICL approaches, the prompt format we de-452

signed is illustrated in Appendix 8.7. In the fine-453

tuning approaches, the complete schema is incor-454

porated into the input.455

Evaluation Metrics. We follow the approach in456

(Guo et al., 2022; Liang et al., 2024b), using exact-457

set-match accuracy (EM) and execution accuracy458

(EX)to evaluate our method. EM measures the459

consistency of individual components, segmented460

by keywords, between the predicted query and its461

corresponding ground truth, while EX assesses the462

consistency of the execution results in the DB.463

Implementation Details. Experiments were con-464

ducted on an A800 GPU, using GLM-4-9B-Chat, 465

Qwen2.5-14B-Instruct, LLaMA-3.1-8B-Instruct, 466

LLaMA-3.2-3B-Instruct, ChatGPT-3.5-Turbo, and 467

ChatGPT-4o as the LLMs. The Preprocessor and 468

Refiner agents use ChatGPT-4o, while the Gen- 469

erator is fine-tuned with LoRA on Qwen2.5-14B- 470

Instruct. The number of demonstrations k was set 471

to 4, and the LSH threshold γ was set to 0.6. 472

6.2 Main Results 473

An analysis of the results in Table 2 leads to the 474

following conclusions: First, our approach outper- 475

forms all baselines. On the StockGQL dataset, it 476

surpasses the best baseline by 7.06% on the EM 477

metric and 6.49% on the EX metric. On the SpCQL 478

dataset, it improves by 4.93% on EM and 5.63% 479

on EX. Second, the ICL method performs poorly 480

for NL2GQL, likely due to the lack of high-quality 481

GQL corpora during model training. A possible 482

solution is to gather high-quality GQL data to re- 483

train base LLMs. Third, both the StockGQL and 484

SpCQL datasets are highly challenging, with cur- 485

rent methods achieving accuracy below 60% on 486

both. This highlights substantial room for improve- 487

ment and the need for more advanced techniques 488

to tackle these datasets’ complexity. Lastly, while 489

LLaMA-3.1-8B-Instruct outperforms LLaMA-3.2- 490

3B-Instruct with ICL, their performances are nearly 491

identical after fine-tuning. This suggests smaller 492

models are less suited for ICL but more effective 493

with fine-tuning when enough data is available. 494

6.3 Further Analysis 495

Breakdown Analysis. We analyzed the model’s 496

performance on the StockGQL dataset by hop 497
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count, as shown in Figure 5. Accuracy declines498

with increasing hop count, with the best results on499

0-hop and 1-hop queries and a gradual drop from 2-500

hop to 4-hop. This reflects the growing challenge of501

multi-hop reasoning, where the model must handle502

longer dependency chains. Notably, high accuracy503

on 0-hop queries indicates strong performance on504

factoid-style questions, while lower accuracy on505

higher-hop queries highlights the need for more506

advanced reasoning capabilities.507
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Figure 5: The EM and EX accuracy of our method on
StockGQL, statistically by hop count.
Impact of the Related Schema. To test the impact508

of the Related Schema, we selected three strategies:509

1) Golden Related Schema, using the SubSchema510

corresponding to the labeled GQL; 2) Error Related511

Schema, employing an incorrect SubSchema; and512

3) All Schema, utilizing the complete schema in-513

formation. Table 3 demonstrates the importance of514

related schema extraction. Additionally, we com-515

pared our method with R3-NL2GQL and Align-516

NL2GQL on StockGQL. The results in Table 4517

show that our method achieves the highest accu-518

racy.519

Method EM(%) EX(%)

Ours 60.13 58.52

Golden Related Schema 81.28 79.54
Error Related Schema 15.92 18.65
All Schema 53.56 50.70

Table 3: The table shows the impact of the related
schema on GQL accuracy for StockGQL.

Method Acc(%)

Ours 84.57
Ours(w/o filtering) 62.57
Align-NL2GQL 52.09
R3-NL2GQL 68.44

Table 4: Comparison of accuracy across different meth-
ods for extracting related schemas on StockGQL.

Error Analysis To further evaluate our method,520

we conducted an error analysis on the StockGQL521

dataset, categorized by hop count and error type. 522

As shown in Figure 6, most errors occur in the 2- 523

to 4-hop range, confirming that complex multi-hop 524

questions remain challenging. The "Error Statistics 525

by Type" show that 37.21% of errors stem from 526

schema extraction failures, emphasizing the need 527

to improve schema extraction accuracy. Addition- 528

ally, many errors result from misinterpreting input 529

queries, highlighting the difficulty of understanding 530

colloquial or ambiguous language. A case study is 531

provided in Appendix 8.10. 532

0-hop
4.38% 1-hop

7.24%

2-hop
32.32%

3-hop
30.47%

4-hop
23.91%

others
1.68%

Error Statistics by Hop Count

Realted Schema Error
37.21%

Misunderstanding
20.03%

Calculation Error
12.63%

Entity Name 
Error
18.69%

others
11.47%

Error Statistics by Type

Figure 6: Error analysis statistics chart.

6.4 Ablation Study 533

The ablation study in Table 5 shows that removing 534

any component reduces performance. Replacing 535

the fine-tuned generator with ChatGPT-4o’s ICL 536

method causes the largest drop. The "Without Re- 537

generation" setting highlights the Refiner’s role in 538

detecting schema errors and initiating re-extraction, 539

leading to some improvement. More experimental 540

analyses are provided in Appendix 8.2. 541

Method EM(%) EX(%)

Ours 60.13 58.52

Without Preprocessor 55.24 ↓(4.89) 52.51 ↓(6.01)
Generator -> ChatGPT-4o 30.17 ↓(29.96) 29.19 ↓(29.33)
Without Refiner 56.28 ↓(3.85) 54.05 ↓(4.47)
Without Regeneration 58.31 ↓(1.82) 56.49 ↓(2.03)

Table 5: Ablation study on StockGQL.

7 Conclusion 542

In this paper, we introduce the NAT-NL2GQL 543

framework to address the NL2GQL task. Our 544

framework comprises three synergistic agents: the 545

Preprocessor Agent, the Generator Agent, and the 546

Refiner Agent. Additionally, we have developed a 547

NL2GQL dataset, named StockGQL. Experimental 548

results show that our approach significantly outper- 549

forms baseline methods. 550

8



Limitations551

There are several limitations that we aim to address552

in future work.553

First, although our method achieves a significant554

improvement over existing approaches, the over-555

all accuracy remains below 60%, indicating sub-556

stantial room for enhancement. This underscores557

the need for more advanced techniques, particu-558

larly to handle complex, natural, and conversational559

queries that closely resemble real-world scenarios.560

Second, while our multi-agent framework helps561

mitigate error accumulation, introducing more562

agents inevitably increases inference time. This be-563

comes especially pronounced for complex queries564

that cannot be resolved in a single round of reason-565

ing. In the future, we plan to accelerate individual566

agent inference or replace some large models with567

smaller ones to improve overall efficiency.568

Third, our current approach relies on a fixed569

agent collaboration strategy, which may not be op-570

timal for all query types. We intend to explore adap-571

tive coordination mechanisms that dynamically ad-572

just based on the structure and complexity of the573

input question.574

Fourth, our current evaluation primarily focuses575

on execution accuracy, which may not fully capture576

semantic correctness or the quality of intermediate577

reasoning steps. We aim to incorporate more com-578

prehensive evaluation metrics to better assess the579

real-world effectiveness of NL2GQL systems.580

Additionally, while we have already constructed581

the StockGQL dataset for the NL2GQL task, the582

English version is still under preparation and will583

be released as open source once complete.584
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8 Appendix761

8.1 Dataset Analysis762

8.1.1 Query Type Analysis763

Following the question type categorization frame-764

work proposed in (Liang et al., 2024b), we con-765

ducted a comprehensive statistical analysis of766

StockGQL. As shown in Table 6, StockGQL cov-767

ers a diverse range of query types, with particularly768

high representation in complex categories such as769

Numerical Sorting, Relationship Filtering, and Re-770

lationship Inference. This distribution reveals sev-771

eral key insights:772

• The dataset demonstrates a diverse distribu-773

tion of question types, spanning from simple774

factual lookups (e.g., entity and edge proper-775

ties) to more advanced reasoning tasks such as776

multi-hop inference and attribute comparison.777

• The large proportion of challenging778

queries—particularly those involving sorting,779

filtering, and logical reasoning—significantly780

enhances StockGQL’s utility for benchmark-781

ing NL2GQL models in realistic and complex782

scenarios.783

• This comprehensive coverage is crucial for as-784

sessing a model’s generalization capability, as785

it necessitates understanding and generating a786

wide variety of query structures and semantic787

patterns.788

These findings collectively highlight Stock-789

GQL’s value as a robust and representative bench-790

mark for developing advanced NL2GQL systems791

in complex, real-world scenery.792

train dev test

Entity property 192 35 71
Numerical sorting 2083 302 611
Relationship inference 332 53 83
Yes/No question 94 13 33
Relationship filtering 1697 220 486
Attribute comparison 196 17 59
Edge property 194 24 61
String filtering 96 12 28

Table 6: Performance of our method on various types
of queries in the FinGQL dataset.

8.1.2 Keywords Analysis793

To assess the richness and diversity of query expres-794

sions in StockGQL, we analyzed the frequency of795

key nGQL-related keywords across the training, de-796

velopment, and test sets. In particular, we focused797

on query-relevant terms listed in Table 8, explic- 798

itly excluding structural keywords such as MATCH 799

and RETURN, which appear in nearly all queries 800

by default. As summarized in Table 7, each sub- 801

set contains a considerable number of meaningful 802

keywords, with the test set averaging over 2.1 key- 803

words per sample. This reflects the high syntactic 804

complexity and operational breadth of StockGQL, 805

highlighting its effectiveness as a benchmark for 806

evaluating the expressive capabilities of NL2GQL 807

models. 808

Total Keywords #Samples Avg

Train 8840 4884 1.81
Dev 1292 676 1.91
Test 3007 1432 2.10

Table 7: Statistics of nGQL keyword usage in the Stock-
GQL dataset.

8.1.3 Human Evaluation 809

To more comprehensively evaluate the quality of 810

the StockGQL dataset, we conducted a manual as- 811

sessment. Specifically, five domain experts were 812

tasked with rating 300 randomly selected samples 813

from each of the training, validation, and test sets. 814

The evaluation was based on four criteria— Accu- 815

racy (measuring the correctness of the question’s 816

meaning), Consistency (measuring the alignment 817

between the NL and the corresponding GQL), Nat- 818

uralness (assessing how conversational and fluent 819

the question is), and Complexity (reflecting the rea- 820

soning difficulty of the question, with higher scores 821

for more complex queries)—using a 5-point Likert 822

scale. 823

As shown in Table 9, the human evaluation re- 824

sults confirm the high quality of the StockGQL 825

dataset across all subsets. The test set achieved 826

the highest scores overall, particularly in semantic 827

accuracy (4.7) and complexity (4.5), indicating that 828

it presents more challenging and semantically pre- 829

cise queries. Meanwhile, consistently high scores 830

in naturalness (above 4.3) and alignment (consis- 831

tency) across all sets highlight the dataset’s relia- 832

bility and fluency, making it a strong benchmark 833

for real-world NL2GQL tasks. 834

8.1.4 Dataset Format 835

The dataset includes the following fields: 836

• Qid: A unique identifier for each query in the 837

dataset. 838
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Category Keywords and Description

Query Control GO, FETCH, LOOKUP, WHERE, YIELD, WITH, LIMIT, ORDER BY, GROUP BY

Commands for controlling data retrieval, filtering, intermediate
result passing, limiting and ordering output.

Logical Operators AND, OR, NOT, XOR

Boolean logic operators used in query conditions for combining
or negating predicates.

Graph Traversal VERTEX, EDGE, OVER, REVERSELY, BIDIRECT

Keywords referring to graph elements and specifying traversal
directions or edge types.

Aggregation Functions COUNT, SUM, AVG, MAX, MIN, COLLECT, DISTINCT

Functions performing aggregation and summarization over query
results.

Table 8: Categorization of nGQL query-related keywords and their descriptions.

train dev test

Accuracy 4.62 4.50 4.74

Consistency 4.46 4.58 4.62

Naturalness 4.34 4.50 4.46

Complexity 4.22 4.34 4.50

Table 9: Human evaluation results.

• Query_masked: The masked version of the839

original query, where entity names and other840

sensitive information are replaced with place-841

holders (e.g., [s] for stock names, [i] for in-842

dustry names).843

• GQL_masked: The masked version of the844

corresponding GQL (Graph Query Language)845

query. Similar to the query, the entity names846

in the GQL are replaced with placeholders.847

• Query: The original, unmasked natural lan-848

guage query, which is the input that a user849

would typically provide.850

• GQL: The corresponding Graph Query Lan-851

guage (GQL) query based on nGQL syntax.852

• SubSchema: A part of the overall graph853

schema that is relevant to the specific query.854

It includes the nodes, edges, and properties855

involved in the query, providing a structured856

representation of the relevant subgraph from857

the graph DB.858

• Masked_name: A list of entity names that 859

were masked in the query and GQL. 860

• Oral_name: Users often use shortened or in- 861

formal terms when querying DBs; this field 862

represents the formal version of the colloquial 863

name. 864

• Answer: The result or output generated by 865

executing the corresponding GQL query on 866

the graph DB. 867

Here is an example. Since our dataset is in Chi- 868

nese, we have provided the corresponding English 869

translation below the Chinese text for easier read- 870

ing. 871

• Qid: 10 872

• Query_masked: 873

[c]是董事长的股票关联的产业下游的产业有哪 874

些？ 875

(What are the downstream industries related to the in- 876

dustries associated with the chairman [c]’s stock?) 877

• GQL_masked: 878

MATCH (c:chairman{name:’[c]’}) 879

-[:is_chairman_of]->(s:stock)-[:associate]- 880

>(i1:industry)-[:affect]->(i2:industry) RETURN 881

i2.industry.name 882

• Query: 883

梁dong是董事长的股票关联的产业下游的产业有 884

哪些？ 885

12



(What are the downstream industries related to the in-886

dustries associated with the chairman Liang Dong’s887

stock?)888

• GQL:889

MATCH (c:chairman{name:’梁东’})890

-[:is_chairman_of]->(s:stock)-[:associate]-891

>(i1:industry)-[:affect]->(i2:industry) RETURN892

i2.industry.name893

• SubSchema:894

nodes : ["chairman", "stock"„ "industry"]895

edges : ["is_chairman_of", "associate", "affect"]896

• Masked_name:897

[c] : 梁东’898

• Oral_name:899

梁dong’: 梁东’}900

• Answer:901

i2.industry.name : ["电脑硬件(Computer Hardware)",902

"汽车(Car)", "金融服务(Financial services)"]903

904

8.2 Further Experimental Results905

8.2.1 Inference Time Analysis906

While our multi-agent framework demonstrates907

significant improvements in accuracy and robust-908

ness, it introduces additional inference overhead909

compared to traditional single-agent or end-to-end910

models. Specifically, each agent in our system per-911

forms distinct reasoning steps, and inter-agent com-912

munication introduces further latency. For simple913

queries that can be resolved in a single reasoning914

round, the added overhead is moderate. However,915

for complex, multi-hop, or ambiguous questions916

that require iterative coordination among agents,917

the inference time can increase substantially.918

We conducted a comparative analysis and ob-919

served that the average inference time per query is920

approximately 1.8× longer than that of a standard921

seq2seq baseline. This overhead mainly comes922

from the sequential execution of agent modules923

and the repeated invocation of large language mod-924

els for intermediate reasoning tasks.925

To address this, we plan to explore the following926

directions in future work:927

• Agent parallelization: For certain stages of928

reasoning, agents can operate in parallel rather929

than sequentially, reducing latency without930

sacrificing modularity.931

• Model distillation: Replacing some large lan- 932

guage models with smaller distilled models 933

for sub-tasks (e.g., parsing, validation) can 934

reduce computational cost. 935

• Adaptive early stopping: Introducing mech- 936

anisms that allow the reasoning process to 937

halt early when high-confidence answers are 938

reached, thereby avoiding unnecessary com- 939

putation. 940

• Query-aware scheduling: Dynamically ad- 941

justing the agent collaboration strategy based 942

on the complexity of the query, so that sim- 943

ple questions use fewer agents and shorter 944

pipelines. 945

Overall, although the multi-agent framework en- 946

tails a higher inference cost, it brings substantial 947

performance benefits. With careful system-level 948

optimizations, we believe the trade-off can be ef- 949

fectively managed to support both accuracy and 950

efficiency in practical deployments. 951

8.2.2 Effectiveness Analysis on Error 952

Accumulation Mitigation 953

The performance improvements of our multi-agent 954

framework largely stem from its explicit design to 955

mitigate error accumulation—a common challenge 956

in complex NL2GQL tasks. Traditional end-to- 957

end models often suffer from cascading mistakes 958

during multi-step reasoning, where an early misin- 959

terpretation propagates through subsequent stages, 960

severely degrading final results. 961

In contrast, our approach decomposes the overall 962

reasoning process into specialized agents, each re- 963

sponsible for a well-defined subtask (e.g., schema 964

understanding, query generation, validation). By 965

modularizing the workflow, errors can be detected 966

and corrected earlier through inter-agent communi- 967

cation, preventing them from compounding down- 968

stream. 969

Moreover, this modular design facilitates iter- 970

ative refinement, allowing agents to revisit and 971

adjust their outputs based on feedback from oth- 972

ers, which significantly improves the robustness 973

of query generation. As a result, our framework 974

demonstrates superior accuracy, especially on com- 975

plex, multi-hop queries that require nuanced rea- 976

soning and precise query formulation. 977

To quantitatively assess the impact on error accu- 978

mulation, we analyzed the test set of 1,432 queries 979

to identify those where previous single-agent or 980
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Number of Queries Percentage (%)

Total test datas 1,432 -
Queries with cascading errors (baseline) 418 29.19(of all test cases)
Queries successfully corrected by our method 197 47.13 (of error cases)
Queries still incorrect after multi-agent reasoning 221 52.87 (of error cases)

Table 10: Effectiveness of the multi-agent framework in mitigating error accumulation on the test set.

end-to-end models failed due to cascading errors981

but our multi-agent method successfully generated982

correct queries. As shown in Table 10, our frame-983

work resolved approximately 47.13% of previously984

error-accumulated cases, highlighting its effective-985

ness in tackling this fundamental issue.986

In summary, by effectively addressing error ac-987

cumulation through modular reasoning and agent988

collaboration, our method achieves a more reliable989

and interpretable NL2GQL mapping, paving the990

way for further advances in this challenging do-991

main.992

8.3 NER Prompt993

The prompt we use for the NER task is shown in 7.994

8.4 Related Schema Revision Prompt995

The prompt used for revising the related schema is996

illustrated in Figure 8.997

8.5 Linking Completion Algorithm998

The algorithm for link completion is described in999

Algorithm 2.1000

8.6 GQL Refinement Prompt1001

The prompt for refining the GQL is shown in Fig-1002

ure 9.1003

8.7 In-Context Learning Prompt1004

The prompt used for in-context learning is shown1005

in Figure 10.1006

8.8 Style Transformation Prompt1007

The prompt designed to perform style transforma-1008

tion is presented in Figure 11.1009

8.9 Performance with Various Base LLMs.1010

The Preprocessor and Refiner agents use ChatGPT-1011

4o, while the Generator is fine-tuned with LoRA1012

on Qwen2.5-14B-Instruct. We experimented with1013

various base LLMs for each agent and compared1014

the results, summarized in Table 11. The findings1015

indicate that the Generator agent is more robust1016

to base LLM choices after fine-tuning, while the1017

Preprocessor and Refiner agents, using unmodified 1018

base LLMs, are more sensitive to model choice, 1019

significantly affecting overall performance. 1020

8.10 Case Study 1021

To further demonstrate the strengths of our method, 1022

we present a detailed case study in Table 12. From 1023

the case, we observe that baseline methods either 1024

extract the wrong related schema, generate GQL 1025

with syntax errors, or fail to recognize colloquial 1026

variations of named entities. In contrast, our ap- 1027

proach accurately extracts the related schema, even 1028

for multi-hop queries, and effectively interprets col- 1029

loquial variations of named entities. This ensures 1030

that entity names are recognized and accurately 1031

reflected in the generated GQL, even when the in- 1032

put deviates from standard formal representations. 1033

This highlights the robustness and adaptability of 1034

our method in handling complex and varied queries, 1035

further reinforcing its effectiveness in real-world 1036

applications. 1037

8.11 Comparison with Similar Tasks 1038

Text2SQL 1039

Text2SQL is a task in NLP that is quite similar 1040

to NL2GQL, as both involve transforming user 1041

queries into statements that can be executed on 1042

a DB. Recently, there have been many efforts to 1043

apply LLMs to solve Text2SQL, and these methods 1044

have achieved good results (Pourreza et al., 2024b; 1045

Maamari et al., 2024; Li et al., 2024; Caferoğlu 1046

and Ulusoy, 2024). However, there are significant 1047

differences between the two. 1048

• The diversity inherent in GQL presents a se- 1049

ries of challenges. Unlike SQL, which has a 1050

well-established and standardized query lan- 1051

guage for relational DBs, GQL lacks a unified 1052

standard (Zhou et al., 2024). This deficiency 1053

creates obstacles in various areas, including 1054

dataset construction, the development of mod- 1055

els capable of generalizing across different 1056

DBs, and the establishment of consistent train- 1057

ing paradigms. There is a difference in query 1058
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Instruction:
You are an expert in the NLP field. I would appreciate your assistance with an NER task. Given entity
label set: label set. Refer to the given example. Based on the provided entity label set, please recognize
the named entities in the given Question. Please directly output the answer.

Output Format:
In JSON format, for example: {Entity Name: Entity Type, Entity Name: Entity Type}.

Here are some examples:
{EXAMPLES}
======== Predict ========
Question:
{QUESTION}
Answer:

Figure 7: Prompt for performing Name Entity Recognition on questions using ChatGPT-4o.

Instruction:
You are an expert in the NLP field. I am working on an information extraction task that involves
identifying the related schema potentially relevant to a given question from a graph DB schema. I have
already extracted the Candidate Related Schema. Please assist me in verifying whether the Candidate
Related Schema contains any redundancies and ensure that each one is necessary. Based on the provided
examples, kindly provide the correct Candidate Related Schema.

Candidate Related Schema:
-The complete Schema structure of Candidate Related Nodes and Candidate Related Edges.

Output Format:
Please follow the format in the Examples. Directly output the result you consider correct after "Related
Schema:" .

Here are some examples:
{EXAMPLES}
======== Predict ========
Question:
{QUESTION}
Candidate Related Schema:
{Candidate_related_schema}

Related Schema:

Figure 8: Prompt for revising the related schema.

objectives. NL2GQL aims to execute queries1059

on graph DBs, whereas Text2SQL targets rela-1060

tional DBs. Graph DBs feature more flexible1061

data structures and complex relationships, re-1062

quiring NL2GQL to manage a wider variety1063

of queries and data relationships (Liang et al.,1064

2024b).1065

• The flexibility of query languages differs. 1066

GQL is more flexible compared to SQL, allow- 1067

ing for complex queries on nodes and edges 1068

in a graph DB, while SQL is constrained by 1069

the fixed structure and syntax of relational 1070

DBs. There is a greater variety of keyword 1071

types in GQL compared to SQL. GQL en- 1072

compasses more keyword types, reflecting the 1073
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Algorithm 2: Linking Completion Algorithm
Input: Graph Schema G = (V,E); Identified Entities Eidentified; Identified Edges Ridentified
Output: Connected Subgraph SG = (Vsubgraph, Esubgraph)

1 Function LinkCompletion(G,Eidentified, Ridentified):
2 Vsubgraph ← ∅
3 Esubgraph ← ∅
4 foreach entity vi ∈ Eidentified do
5 Vsubgraph ← Vsubgraph ∪ {vi}
6 foreach edge rj ∈ Ridentified do
7 Esubgraph ← Esubgraph ∪ {rj}
8 foreach edge ek ∈ Esubgraph do
9 foreach neighbor vl ∈ neighbors(ek) do

10 Vsubgraph ← Vsubgraph ∪ {vl}
11 Esubgraph ← Esubgraph ∪ {ek}

12 while Vsubgraph is not connected do
13 Find the minimum edge to add that connects two disconnected components
14 Esubgraph ← Esubgraph ∪ {min edge}
15 return SG = (Vsubgraph, Esubgraph)

Agent LLM EM(%) EX(%)

Preprocessor

Qwen2.5-14B-Instruct 77.95 79.01
ChatGPT-3.5-Turbo 80.88 79.98
ChatGPT-4o 85.44 86.25

Generator
GLM-4-9B-Chat 85.03 85.84
LLaMA-3.1-8B-Instruct 85.35 86.09
LLaMA-3.2-3B-Instruct 85.19 85.92
Qwen2.5-14B-Instruct 85.44 86.25

Refiner
Qwen2.5-14B-Instruct 84.21 84.95
ChatGPT-3.5-Turbo 84.87 85.68
ChatGPT-4o 85.44 86.25

Table 11: Impact of base LLMs on NAT-NL2GQL
performance on StockGQL.

diverse data structures and query requirements1074

in graph DBs. NL2GQL must recognize and1075

process these different types of keywords, fur-1076

ther complicating the task.1077

• The complexity of query paths is notable.1078

Queries in graph DBs often involve intri-1079

cate paths between multiple nodes and edges.1080

NL2GQL must handle these complex paths1081

and translate natural language questions into1082

corresponding GQL queries, adding to the1083

overall complexity of the task.1084

The following examples highlight scenarios where1085

NL2GQL excels while Text2SQL faces limitations1086

due to relational model constraints.1087

1. Multi-hop Path Query Question: Find the1088

shortest collaboration path from User A to User1089

B, where all participants in the path belong to the 1090

same department. 1091

Cypher Implementation: 1092

MATCH (a:User {name: "UserA"}), 1093

(b:User {name: "UserB"}), 1094

path = shortestPath((a) 1095

-[:COLLABORATED_WITH*]-(b)) 1096

WHERE ALL(node IN nodes(path) 1097

WHERE node.department = a.department) 1098

RETURN path 1099

Text2SQL Challenges: In relational databases, 1100

such multi-hop path queries require recursive 1101

JOINs (e.g., using WITH RECURSIVE), which 1102

have poor performance and complex syntax. It is 1103

not possible to directly express the "shortest path" 1104

semantics, relying on stored procedures or external 1105

algorithms. 1106

2. Cyclic Relationship Detection Question: 1107

Detect if there exists a collaboration cycle: User A 1108

→ User B → User C → User A. 1109

Cypher Implementation: 1110

MATCH (a:User {name: "UserA"}) 1111

-[:COLLABORATED_WITH]->(b:User), 1112

(b)-[:COLLABORATED_WITH]->(c:User), 1113

(c)-[:COLLABORATED_WITH]->(a) 1114

RETURN a, b, c 1115

Text2SQL Challenges: Requires self-joins on 1116

the same table multiple times (e.g., Users AS u1 1117

JOIN Users AS u2 ...), leading to exponential query 1118
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Instruction:
You are an expert in NebulaGraph DBs, with specialized expertise in nGQL. A prior attempt to execute a
query did not produce the expected results, either due to execution errors or because the returned output
was empty or incorrect. Your task is to analyze the issue using the provided related schema of query and
the details of the failed execution. Based on this analysis, you should offer a corrected version of the
nGQL. Ensure adherence to the nGQL conventions for naming variables, entities, and attributes (e.g.,
‘s.stock.name‘) and verify that all conditional filters use ‘==‘ syntax, such as ‘s.stock.name == ’[s]’‘.

Procedure:
1. Analyze Query Requirements:
- Question: Consider what information the query is supposed to retrieve.
- Info: The preprocessed data information. - nGQL: Review the nGQL query that was previously executed
and led to an error or incorrect result.
- Error: Analyze the outcome of the executed query to identify why it failed (e.g., AssertionError).
2. Determine whether the Related Schema is correct.
- Based on the above information, first determine whether the extracted related schema is correct.
- If related schema is not correct, directly output "Info Error". Otherwise, modify the nGQL query to
address the identified issues, ensuring it correctly fetches the requested data according to the graph DB
schema and query requirements.

Output Format:
Based on whether the determined Related Schema is correct, output either "Info Error" or your corrected
query. The corrected query as a single line of nGQl code. Ensure there are no line breaks within the query.

Here are some examples:
{EXAMPLES}
======== Predict ========
Question:
{QUESTION}
Related Schema:
{RELATED_SCHEMA}
nGQL:
{nGQL}
Error:
{ERROR}
Output:

Figure 9: The prompt used for GQL refine.

complexity. It is not possible to directly express1119

cyclical structures and requires manually hardcod-1120

ing the path length (e.g., 3 hops in this example).1121

3. Dynamic Aggregation and Graph Pattern1122

Matching Question: Count the managers in each1123

department who have more than 10 subordinates1124

and whose subordinates have participated in cross-1125

department projects.1126

Cypher Implementation:1127

MATCH (m:Manager)-[:MANAGES]1128

->(e:Employee)1129

WITH m, COUNT(e) AS subordinates1130

WHERE subordinates > 101131

MATCH (e)-[:PARTICIPATED_IN]-> 1132

(p:Project{is_cross_department:true}) 1133

RETURN m.name, subordinates, 1134

COLLECT(p.name) AS projects 1135

Text2SQL Challenges: Requires combining ag- 1136

gregation (COUNT) with existence checks (EX- 1137

ISTS subqueries), leading to high complexity in 1138

nested queries. It is difficult to efficiently han- 1139

dle graph pattern matching for "cross-department 1140

projects" (requires multi-table JOINs and complex 1141

filtering conditions). 1142

4. Recursive Relationship Query Question: 1143

Find all indirect subordinates of User A, including 1144
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Instruction:
You are an expert in NebulaGraph DBs, please write the nGQL query corresponding to the given Question
directly based on the provided knowledge graph Schema and Examples. Ensure adherence to the
nGQL conventions for naming variables, entities, and attributes (e.g., ‘s.stock.name‘) and verify that all
conditional filters use ‘==‘ syntax, such as ‘s.stock.name == ’[s]’‘. Please provide the answer directly
without any additional explanation. Please provide the answer directly without any additional explanation.
Please provide the answer directly without any additional explanation.

Output Format:
Please output nGQL directly.

Schema:
{SCHEMA}

Here are some examples:
{EXAMPLES}
======== Predict ========
Question:
{QUESTION}
nGQL:

Figure 10: Prompt for In-Context Learning.

NL 持有华强股票且持仓比例超过7%的基金经理？
(The fund manager who manages the fund that holds Huaqiang stock with a holding ratio exceeding 7%?)

Formal expression
持有华强科技股票且持仓比例超过7%的基金由哪位基金经理管理？

(Which fund manager manages the fund that holds
Huaqiang Technology stock with a holding ratio exceeding 7%?)

Method Related Nodes and Edges Output

ICL(ChatGPT-4o ) full schema MATCH (s:stock{name: ’华强’})<-[h:manage]-(fm:fund_manager)
WHERE h.position_ratio > 7% RETURN fm.name

Fine-Tuning(full schema)
Qwen2.5-14B-Instruct full schema

MATCH (s:stock{name: ’华强’})<-[h:hold]-
(pof:fund)<-[:manage]-(fm:fund_manager)
WHERE h.hold.position_ratio > 7%
RETURN fm.fund_manager.name

Align-NL2GQL Nodes:[fund_manager,fund,stock]
Edges: [manage,hold]

MATCH (s:stock{name: ’华强’})<-[h:hold]-
(pof:fund)<-[:manage]-(fm:fund_manager)
WHERE h.position_ratio > 7% RETURN fm.fund_manager.name

R3-NL2GQL Nodes:[fund_manager,stock]
Edges: [hold]

MATCH (s:stock{name: ’华强科技’})<-[h:hold]-(fm:fund_manager)
WHERE h.position_ratio > 7% RETURN fm.fund_manager.name

Ours Nodes:[fund_manager,fund,stock]
Edges: [manage,hold]

MATCH (s:stock{name: ’华强科技’})<-[h:hold]-
(pof:fund)<-[:manage]-(fm:fund_manager)
WHERE h.position_ratio > 7% RETURN fm.fund_manager.name

Table 12: A case study in the StockGQL dataset is presented, displaying the results of both our method and the
baseline methods. Due to space limitations, the table uses "Related Nodes and Edges" rather than listing the full
details of the related schema. The segments with predicted errors are highlighted in red, while the correct ones are
marked in blue.

the subordinates’ subordinates.1145

Cypher Implementation:1146

MATCH (a:User {name: "UserA"})1147

-[:MANAGES*1..]->(sub:Employee)1148

RETURN sub.name1149

Text2SQL Challenges: In relational databases,1150

recursive CTEs (WITH RECURSIVE) must be 1151

used, but the syntax is obscure and the performance 1152

is poor. It is difficult to control the recursion depth 1153

flexibly (e.g., the *1.. notation in this example 1154

represents an arbitrary depth). 1155

5. Graph Embedding-Based Semantic Simi- 1156
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Instruction:
You are a language expert skilled in adapting text to match the natural tone of real-life user queries. I
am working on an NL2GQL dataset and need to transform formal or rigid questions into a more natural,
simple, and conversational style, as typically seen in real-world applications. Please rephrase the given
question based on the provided GQL query and its corresponding Subschema. Follow these rules:
1. Use a conversational style that includes ellipses, omissions, and vague expressions whenever possible.
2. Replace entity names from the Subschema in the original question with more generic or anonymized
terms.
3. Keep the original intent and meaning intact while making the question sound natural and easy to
understand.
4. Avoid overly technical or formal language; prefer everyday expressions and phrasing.
5. If applicable, incorporate pronouns or implicit references common in spoken language to simulate real
user queries.

Input Question:
A question written in formal or rigid style that needs to be transformed, along with its corresponding GQL
query and the related Subschema.

Output Format:
Please output the rephrased question directly after "Conversational Question:".

Here are some examples:
{EXAMPLES}
======== Predict ========
Question:
{QUESTION}
GQL:
{GQL}
Subschema:
{SUBSCHEMA}

Conversational Question:

Figure 11: Prompt for style transformation to conversational user queries.

larity Query Question: Find users whose interests1157

are similar to User A’s, with at least three common1158

interests.1159

Cypher Implementation:1160

MATCH (a:User {name: "UserA"})1161

-[:INTERESTED_IN]->(i:Interest)1162

WITH a, COLLECT(i) AS interests1163

MATCH (u:User)-[:INTERESTED_IN]1164

->(i:Interest)1165

WHERE u <> a AND SIZE([x IN interests1166

WHERE x IN u.interests]) >= 31167

RETURN u.name1168

Text2SQL Challenges: Requires handling set1169

intersection (common interests), which in SQL1170

must be implemented with INTERSECT and sub-1171

queries, making the syntax cumbersome. It is not1172

possible to directly express graph embedding-based 1173

similarity calculations (which require external ex- 1174

tension libraries). 1175

6. Temporal Graph Analysis Question: List 1176

all stocks that experienced a drop of more than 5% 1177

in a single day after five consecutive days of price 1178

increase. 1179

Cypher Implementation: 1180

MATCH (s:Stock)-[r:HAS_DAILY_DATA] 1181

->(d:DailyData) 1182

WITH s, d ORDER BY d.date ASC 1183

WITH s, COLLECT(d) AS data 1184

WHERE size(data) >= 6 1185

AND ANY(i IN RANGE(0, size(data)-6) 1186

WHERE REDUCE(rising = true, 1187

j IN [0..4] | rising AND 1188
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data[i+j+1].close > data[i+j].close)1189

AND1190

(data[i+5].close - data[i+6].close)1191

/data[i+5].close >= 0.051192

RETURN s.name1193

Text2SQL Challenges: Requires window func-1194

tions (e.g., LAG/LEAD) and complex condition1195

combinations, reducing readability. It is difficult1196

to efficiently handle dynamic time-series patterns1197

(e.g., "consecutive N days of increase").1198

The scenario types that can be achieved by1199

NL2GQL but are difficult to implement with1200

Text2SQL is shown in Table 13. In summary,1201

NL2GQL is more complex than Text2SQL due1202

to its handling of graph DB queries, the flexibility1203

of GQL, the complexity of data paths and the va-1204

riety of keyword types. Given these differences, it1205

is challenging to directly transplant methods from1206

the Text2SQL task to the NL2GQL task.1207

KBQA1208

Knowledge-Based Question Answering (KBQA)1209

systems leverage structured knowledge bases (KBs)1210

to answer user queries. SP-based methods, com-1211

monly known as NL2SPARQL, first translate nat-1212

ural language questions into SPARQL queries,1213

which are then executed on the KB to retrieve an-1214

swers (Lan et al., 2021). This approach is similar1215

to NL2GQL; however, a significant difference be-1216

tween NL2GQL and NL2SPARQL in the KGQA1217

domain lies in the complexity of data storage and1218

query languages. Graph databases (Graph DBs),1219

which manage data with intricate relationships, in-1220

troduce additional complexity (Liang et al., 2024b).1221

Moreover, NL2GQL requires a deeper focus on1222

schema information, as entities in graph DBs may1223

have a diverse range of attribute types (Zhou et al.,1224

2024). NL2GQL is also characterized by complex1225

graph modalities, a wide variety of query types,1226

and the unique nature of GQLs (Zhou et al., 2024).1227

As a result, directly applying KBQA methods to1228

the NL2GQL task is impractical.1229

The following are additional examples that show-1230

case the unique capabilities of NL2GQL and its1231

corresponding Cypher implementations, which tra-1232

ditional KBQA methods struggle to handle:1233

1. Multi-hop Relationship and Co-1234

participation Count Question: Find friends of1235

the user ’Alice’ who have at least three common1236

projects with her.1237

Cypher Implementation:1238

MATCH (alice:User {name: "Alice"})1239

-[:FRIEND_OF]->(f1:User)-[:FRIEND_OF] 1240

->(f2:User) 1241

MATCH (f2)-[:PARTICIPATED_IN]-> 1242

(p:Project)<-[:PARTICIPATED_IN]-(alice) 1243

WITH f2, COUNT(DISTINCT p) 1244

AS common_projects 1245

WHERE common_projects >= 3 1246

RETURN f2.name AS mutual_friend, 1247

common_projects 1248

KBQA Challenges: Dynamic traversal of multi- 1249

hop social relationships (2-hop friends) and associa- 1250

tion with common projects. KBQA methods gener- 1251

ally cannot flexibly combine multi-hop paths with 1252

aggregation and filtering conditions (e.g., COUNT 1253

>= 3). 1254

2. Temporal Event Combination Filtering 1255

Question: Identify all users who purchased Prod- 1256

uct A in 2023 and rated it five stars within the last 1257

six months. Cypher Implementation: 1258

MATCH (u:User)-[:PURCHASED] 1259

->(p:Product {name: "ProductA"}) 1260

WHERE p.purchase_date >= '2023-01-01' 1261

AND p.purchase_date <= '2023-12-31' 1262

WITH u 1263

MATCH (u)-[r:RATED] 1264

->(p:Product {name: "ProductA"}) 1265

WHERE r.rating = 5 AND 1266

r.date >= date().duration("-6 months") 1267

RETURN u.name, r.date AS rating_date 1268

KBQA Challenges: Combining temporal win- 1269

dows (2023 purchase + recent 6-month rating) 1270

and cross-event associations (purchase and rating). 1271

KBQA struggles with dynamic time-based calcula- 1272

tions. 1273

3. Aggregation and Nested Subqueries Ques- 1274

tion: Count the managers in each department 1275

whose salary is above the department’s average and 1276

who manage at least two subordinates. Cypher 1277

Implementation: 1278

MATCH (d:Department) 1279

WITH d, AVG(e.salary) AS avg_salary 1280

MATCH (m:Manager)-[:MANAGES] 1281

->(e:Employee {department: d.name}) 1282

WHERE m.salary > avg_salary 1283

WITH m, COUNT(e) AS subordinates 1284

WHERE subordinates >= 2 1285

RETURN d.name AS department, 1286

m.name AS manager, m.salary 1287

, subordinates 1288

KBQA Challenges: First, calculating the depart- 1289

ment’s average salary, which then serves as a filter- 1290
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Capability NL2GQL Text2SQL
Multi-hop Path Traversal ✓ × (Requires recursive CTE)

Cyclic Structure Detection ✓ × (Complex self-joins)

Recursive Relationship Query ✓ × (Syntax limitations)

Dynamic Graph Pattern Matching ✓ × (Exploding JOINs)

Temporal Graph Analysis ✓ × (Relies on window functions)

Set and Graph Embedding Operations ✓ × (Limited functionality)

Table 13: Summary of scenario types that can be achieved by NL2GQL but are difficult to implement with
Text2SQL.

Scenario NL2GQL KBQA
Multi-hop Dynamic Path ✓ × (Relies on predefined paths)

Temporal Event Combinations ✓ × (Time logic is rigid)

Nested Aggregation ✓ × (Only single-layer aggregation)

Cyclic Pattern Detection ✓ ×
Continuous Event Sequence Analysis ✓ ×

Table 14: Summary of scenario types that can be achieved by NL2GQL but are difficult to implement with KBQA.

ing condition. KBQA cannot dynamically execute1291

nested aggregation (department-level aggregation1292

+ individual-level filtering).1293

4. Cyclic Subgraph Pattern Detection Ques-1294

tion: Find all collaborative networks that form1295

cycles with at least four nodes. Cypher Imple-1296

mentation:1297

MATCH path = (a:User)1298

-[:COLLABORATES_WITH*3..]->(a)1299

WHERE length(path) >= 31300

AND ALL(n IN nodes(path)1301

WHERE size(apoc.coll.duplicates1302

(nodes(path))) = 0)1303

RETURN path1304

KBQA Challenges: Detecting cyclic structures in1305

graph theory (path starts and ends at the same node1306

without repeated nodes). KBQA lacks subgraph1307

pattern matching capability.1308

5. Consecutive Temporal Event Detection1309

Question: Identify all customers who placed two1310

consecutive orders with decreasing amounts in the1311

last three months. Cypher Implementation:1312

MATCH (c:Customer)-[o:ORDERED]1313

->(order:Order)1314

WHERE o.date >= date()1315

.duration("-3 months")1316

WITH c, order ORDER BY o.date ASC1317

WITH c, COLLECT(order) AS orders 1318

WHERE size(orders) >= 2 1319

AND ANY(i IN RANGE(0, size(orders)-2) 1320

WHERE orders[i].amount 1321

> orders[i+1].amount 1322

AND orders[i+1].amount 1323

> orders[i+2].amount 1324

) 1325

RETURN c.name, [order IN orders 1326

| {date: order.date, amount: 1327

order.amount}] 1328

AS order_history 1329

KBQA Challenges: Detecting consecutive event 1330

patterns (decreasing order amounts). KBQA can- 1331

not handle dynamic temporal sequence aggregation 1332

analysis. 1333

The scenario types that can be achieved by 1334

NL2GQL but are difficult to implement with 1335

KBQA is shown in Table 14. 1336
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