INTERPRETABLE PATTERNS IN RANDOM INITIALIZA TION UNVEIL FINAL REPRESENTATION

Anonymous authors

Paper under double-blind review

ABSTRACT

The field of mechanistic interpretability has made strides in unraveling models' hidden representations but is often puzzled by why specific representations form. This paper addresses a crucial question on this front: when a neural network can learn multiple distinct representations to solve a task, how does it "choose" among them during training? We suggest that, at initialization, instead of starting from an empty scratchpad, the model's embedding already contains partially formed representations of varying "completeness." Models tend to develop a representation that is more "complete" at initialization, disregarding less complete alternatives. We empirically examine this hypothesis on algorithmic toy models with clearly defined final representations from which we can elicit an interpretable signal to evaluate such "completeness" of possible representations in the initial embedding. We find that the representations with high initial signals are chosen by the model with high probability, a pattern consistent across models with a single learned representation (remainder equivalence, multi-digit XOR) and with multiple, redundant representations (modular addition). Finally, we investigate the role of embedding dimensionality on model's representation and their "completeness." Our results with toy models show that the seemingly chaotic initialization contains many interpretable patterns to understand the training dynamics of representations.

027 028 029

031

004

010 011

012

013

014

015

016

017

018

019

021

024

025

026

1 INTRODUCTION

032 The field of *mechanistic interpretability* attempts to reverse-engineer the algorithms that neural 033 networks learn. This involves understanding the representations (features) networks learn (Bricken 034 et al., 2023; Cunningham et al., 2023; Gurnee & Tegmark, 2024; Zou et al., 2023) and how these play a role in larger circuits (Elhage et al., 2021; Nanda et al., 2023; Marks et al., 2024). While most such work studies networks as static objects, some have recently begun to study how network 037 representations and circuits form over training (Liu et al., 2022; Olsson et al., 2022; Hoogland et al., 038 2024; Chen et al., 2023; Singh et al., 2024). By studying training dynamics, we hope to understand not just *what* neural networks learn, but *how* and ultimately *why* they learn the algorithms they do. This understanding may eventually be useful for training models with the properties we desire, such 040 as improved efficiency and safety, through careful design of the training process. 041

One broad question in mechanistic interpretability regards *universality* (Olah et al., 2020): can models consistently learn the same algorithms across different seeds and scales? While some works have found evidence of universality (Olsson et al., 2022; Gould et al., 2024; Gurnee et al., 2024), in other cases, there seems to be some variability in algorithms and representations that networks learn to solve particular tasks (Zhong et al., 2023; McCoy et al., 2019; Lampinen et al., 2024). In this work, we ask: when networks have a choice between different representations, how do they choose which to learn?

Investigating toy models trained on algorithmic tasks, we can visualize the structure of the final
 representation forming very early in training using simple tools like PCA, especially under large
 weight decay. This structure also varies due to different training runs. To understand the reason behind
 this diversity of representations, we wonder if such structure of the final representation already exists
 in the seemingly chaotic initialization, albeit not obvious to observe through simple visualization. To
 formalize this intuition, we propose the following hypothesis:

Representation "Completeness" Hypothesis The random embedding initialization already contains many partially formed representations at different levels of "completeness," and the final representation(s) the model learns are those with high "completeness" at initialization. We define "completeness" as an *interpretable* similarity metric that compares such a partially formed representation to its projected, idealized representation, as if it were to be learned by the model.

We empirically evaluate this hypothesis on three algorithmic tasks: remainder equivalence, multi-digit 060 XOR, and modular addition. We analyze these tasks because they have well-defined representations 061 in mathematics. We analyze the first two tasks in §3 as a proof of concept for our hypothesis because 062 the models trained on these tasks are simple and learn a *single* final representation. In §4, we delve 063 deeper into the more interesting case of modular addition, as it is a harder task, and the model 064 learns *multiple*, *redundant* representations with complicated mechanisms operating on the Fourier space studied extensively by the interpretability community (Liu et al., 2022; Nanda et al., 2023; 065 Zhong et al., 2023; Morwani et al., 2024). We find, in all three cases, we can find an interpretable 066 and intuitive "completeness" metric that projects the structure of the initialization onto the final 067 representation, where high initial "completeness" is a good indicator of this representation being 068 learned by the model. 069

Lastly, we investigate how embedding dimensionality affects representations in §5. We show that,
as the embedding dimension increases, there are fewer representations with low "completeness" in
the initialization. In this case, the model can achieve lower test loss when we freeze the embedding
at initialization and train only the MLP to fit all the partially complete representations. This helps
explain why representation learning could benefit from large embedding dimensions.

075 Random initialization has been a subject of continuous studies, such as their general downstream 076 capabilities (Amid et al., 2022; Jarrett et al., 2009; Zhong & Andreas, 2024) and the "Lottery Ticket Hypothesis (Frankle & Carbin, 2019)," where sparse subnetworks pruned at initialization achieve 077 similar capabilities. However, our study takes a first step towards understanding how interpretable patterns for representations are structured in initialization and how they can evolve to be significant 079 in the final embedding. This understanding is not only driven by scientific curiosity but can also lead 080 to practical benefits, such as speeding up training in our toy algorithmic tasks. We acknowledge that 081 the extension of this approach to non-algorithmic tasks is non-trivial and hence left for future work, but it is encouraging to see that an intuitive understanding of representation dynamics is feasible and 083 such understanding may potentially lead to algorithmic advancement. 084

085 086

087

089

2 PROBLEM SETUP

088 2.1 TASK SELECTION

Understanding how a model chooses a certain representation is difficult since representations, in
 general, are high-dimensional and difficult to disentangle, let alone understanding the dynamics
 between multiple representations. Therefore, we resort to studying toy models, which might provide
 us with insights into more general models. We specifically need to study models that meet the
 following criteria: (1) the model has clearly interpretable representation(s) in its embedding, and (2)
 the model can form non-trivially distinct representations when trained with different initializations.
 We find three algorithmic tasks that meet such criteria:

Remainder equivalence $\mathbb{1}[a = b \mod m]$, where $a, b = 0, 1, \dots, p-1$, a number much larger than m. The final representation clusters numbers with the same remainder together and forms a line in the embedding, but how the clusters are ordered on the line is up to p! permutations.

100 Multi-digit XOR $a \oplus b = c$. the representation forms a hypercube that each pair of opposite faces 101 have the numbers differ by exactly one bit. However, the exact arrangement of tokens in the hypercube 102 may vary.

103 **Modular addition** $a + b = c \pmod{p}$, where $a, b, c = 0, 1, \dots, p - 1$. Prior works have shown 104 circular representations in the embedding, akin to how numbers are arranged around a clock (Power 105 et al., 2022; Liu et al., 2022; 2023; Nanda et al., 2023; Zhong et al., 2023), and that the model learns 106 a few such circles that nicely correspond to Fourier frequencies up to p (Nanda et al., 2023). Over 107 different training runs, different sets of 3-5 frequencies form the final representation, despite all 108 frequencies having a chance to become the final representation.

108 2.2 EXPERIMENT SETUP

110 We use a fixed model architecture to study all three tasks. Specifically, our model consists of an 111 embedding matrix W_E and a two-layer MLP. The embedding matrix has size (p, d), where p is the 112 vocabulary size and d is the embedding dimension. Every integer $t \in \{0, 1, \ldots, p-1\}$ is treated as 113 a token and has an associated embedding vector $E_t \in \mathbb{R}^d$. For each task, the model tokenizes the 114 two inputs a and b, concatenates their embeddings, and feeds $[E_a, E_b] \in \mathbb{R}^{2d}$ to the MLP, which 115 produces a categorical output c. Note that we set weight decay to be high in these models to ensure 116 the model quickly forms the final representation.

As our study focuses on the embedding initialization, there are many other factors that influence the
representation features, such as initialization of the MLP and dataset training split (Lampinen et al.,
2024). Therefore, for our analysis in this paper, we aggregate training results over different random
initializations of embeddings, MLPs, and datasets and report the mean and standard deviation.

- 121
- 122 123

125

132 133 134

136 137 138

3 "COMPLETENESS" FOR MODELS WITH SINGLE REPRESENTATION

124 3.1 REMAINDER EQUIVALENCE

We train models to learn the task $\mathbb{1}[a = b \mod m]$, given vocabulary size p = 100 and fixed divisor m = 10. Post-training, as shown in Figure 1(a), token embeddings with the same remainder clustered together, forming a linear arrangement of clusters representing a permutation q of $[0, 1, \dots, m-1]$.

Observing that the final representation (i.e., the permutation of different remainders) varies across
 models with different random seeds, we propose a "completeness" metric to capture how well-formed
 a permutation is at initialization:

$$f(\boldsymbol{q}) = \sum_{0 \le i \le j \le m} \left\| \bar{\boldsymbol{E}}_{\boldsymbol{q}_i} - \bar{\boldsymbol{E}}_{\boldsymbol{q}_j} \right\|^2 \cdot (j-i)$$

135 where

$$\bar{\boldsymbol{E}}_i = \frac{1}{p/m} \sum_{j=0}^{p-1} \boldsymbol{1}[j \equiv i \pmod{m}] \cdot \boldsymbol{E}_j$$

is the center for each cluster. This metric sums the squared distances between cluster centers, weightedby their relative distances in the permutation.

The metric characterizes permutation "completeness" by considering initial center positions: centers that are close at initialization are likely to remain near each other in the learned representation, and vice versa. The weighted sum is maximized when smaller distances have lower weights and larger distances have higher weights, and we hypothesize that if the initial signal f(q) is higher, the model is more likely to learn q as the final representation.

Experimental results support our hypothesis. Figure 1(b) shows that for a given model, the learned representation's initial signal significantly exceeds the average. Across 100 training runs with various random seeds, the learned representation's "completeness" signal consistently ranks within the top 15% on average, with a standard deviation of 22%.

150 151 152

161

3.2 Multi-digit XOR

For this experiment, the models are trained on the task $c = a \oplus b$, where a and b are 3-bit binary numbers. After training, the embeddings form a cube structure α , with each pair of opposite faces differing by exactly one bit. Moreover, different initializations lead to varied token arrangements on the cube. For example, in Figure 2(a), the token 000 shares an edge with token 110 and 001 on the cube in both final embeddings; however, while it also shares an edge with token 011 in Final Embedding 1, the edge is instead shared with token 101 in Final Embedding 2.

As such, we propose another signal metric that measures how close the embedding structure is to a cube of structure α :

$$g(oldsymbol{lpha}) = \sum_{0 \leq i < j < 2^3} \left\|oldsymbol{E}_i - oldsymbol{E}_j
ight\|^2 \cdot oldsymbol{lpha}_{i,j}$$

178

179

180

181 182

187

191

193

194

195

197

199

200

201

202

203 204

Figure 1: (a) Different colors represent different remainders modulo m. The randomly initialized embedding evolves into clusters in a straight line in both models. Notice the order of colors differs across models with different initializations. (b) A histogram of initial "completeness" signals for all the 10! possible permutations, with the signal for the final representation highlighted.

Figure 2: (a) The randomly initialized embedding evolves into cubes in both models. Notice the arrangement of numbers on the cube differs across models with different initializations. (b) Histogram of initial "completeness" signals for all possible 168 arrangements of the cube, with the signal for the final representation highlighted.

205 Here, $\alpha_{i,j} \in 1, 2, 3$ represents the squared distance between tokens i and j on the unit cube. The 206 function $g(\alpha)$ sums the squared distances between token pairs, weighted by their relative cube 207 positions. Borrowing our analysis from §3.1, higher signals $g(\alpha)$ translate to a higher likelihood that 208 α is learned as the final representation. 209

The result in Figure 2(b) supports this analysis, with learned representations consistently show higher 210 initial signals compared to random arrangements. Across 100 models with different random seeds, 211 the learned representations rank in the top 10% on average, with a standard deviation of 12%. 212

213 Both experiments demonstrate that the final learned representations tend to align well with more "complete" structures that we elicit from the initial embedding with high initial signals, supporting 214 our completeness hypothesis. In the following section, we demonstrate the feasibility of our "com-215 pleteness" hypothesis beyond simple tasks with a single representation. Using modular addition as a

case study, we investigate much more closely whether our hypothesis holds on models with multiple,
 "redundant" representations as well.

4 "COMPLETENESS" FOR MODULAR ADDITION MODEL

4.1 **Representations and Their Formation**

219

220 221

222

224

225 226

227

228

229

230

231 232

233

235

236

241 242

253 254 255

256

Figure 3: (a) The magnitude of the Fourier coefficients of each embedding frequency over time shown
 on a logarithmic scale. The surviving frequencies clearly separate themselves from the rest of the
 frequencies that quickly approach 0. (b) Snapshots of the embedding projected onto a dead frequency
 (top) and a survived frequency (bottom) at different timesteps during training.

Circles and Fourier Space Prior work has shown that circular representations (circles) are important for neural networks to perform modular addition (Liu et al., 2022; Nanda et al., 2023; Zhong et al., 2023). However, as shown in Figure 4, neighboring numbers along the circle may have increments other than 1 because there are p equivalent group representations corresponding to circles with different Fourier frequencies $k = 1, 2, \dots, (p-1)/2$.¹ The circle of frequency k places a token t at $(\cos(2\pi kt/p), \sin(2\pi kt/p))$.

Similar to Nanda et al. (2023), we decompose representations into a linear combination of circles of different frequencies. Denoting $E_n \in \mathbb{R}^d$ to be the embedding vector for token n, we define the Fourier coefficients of frequency k as

$$F_{k} = \sum_{n=0}^{p-1} e^{-i2\pi \frac{k}{p}n} E_{n}.$$
 (1)

The circle of frequency k is located on the plane spanned by two vectors $\text{Real}(E_k), \text{Imag}(E_k) \in \mathbb{R}^d$.

257 **Circle Evolution** We define the Fourier norm of frequency k as $\|F_k\|^2 = \sum_{j=0}^{d-1} (F_k^j)^2$ and observe 258 how the norm of each frequency evolves over the training steps, as shown in Figure 3(a). We observe 259 that only a few circles have significant norm (learned by the model) in the end, while the norm of all 260 other circles decay to almost zero (thus discarded by the model). As shown in Figure 3(c), projections 261 of a surviving frequency stabilize into a clear circle (bottom), while a dead frequency collapses 262 towards its center (top). While prior works have found circles either with Fourier transformation 263 (Nanda et al., 2023) or with PCA (Liu et al., 2022), we use the Fourier transformation because it can 264 better reveal circular representations (see Figure 4). In Figure 3(a), we observe that the surviving 265 circles in the end tend to have higher initial signal. Can we use this information to predict survived 266 circles? We find two "completeness" signals that use information from initialization (and a few 267 training steps out) to predict final representations with high probability: the initial Fourier norm of 268 such frequency and the gradient. 269

¹Note that frequency k and p - k refer to the same circle, which accounts for the factor 2.

Figure 4: Top: The model embedding projected onto the first 10 principal components in pairs, the only components with significant singular values. Bottom: The model embedding projected onto the Fourier basis of frequencies in descending order of signal magnitude. The Δ between adjacent tokens shows a correspondence between PCA and FFT.²This indicates that PCA provides a loose approximation of circles associated with Fourier frequencies.

4.2 INITIAL FOURIER NORM—1st "Completeness" Signal

287

288

289

290 291

292

305

306

307

308 309

323

Figure 5: (a) Survival rates of frequencies given their initial Fourier signals over many randomized trials. (b) Survival rate of an arbitrary perturbed frequency versus deviation from the mean initial signal, with different lines showing the same frequency in different embeddings. (c) Survival rates of the largest frequency and the 2^{nd} largest as they differ by r.

We define a survival rate as the number of times a particular frequency becomes part of the final representation and hence "survives" over the total number of trials, where we fix the embedding and randomize over different MLPs and dataset initializations. In Figure 5(a), we show that, across 10 different embedding initializations and 50 trials each, there is a linear correlation: the higher the initial signal, the more likely it is for the model to choose that frequency as its final representation. To confirm, we find that the Pearson correlation between survival rate and initial norm is 0.85, with a p-value smaller than 10^{-3} .

Perturbation Experiment To corroborate, we conduct a perturbation experiment on the initial embeddings. Specifically, for a given embedding at initialization, we perform a Fourier transform to find the initial coefficients of an arbitrary frequency. We manually enlarge or shrink its magnitude and perform an inverse FFT to restore the embedding, from which we perform model training. We demonstrate in Figure 5(b) the survival rate of the perturbed frequency in different initializations as it deviates from the mean of the rest of the signals. We observe that if the frequency is much higher

² Δ can be calculated as the inverse of frequency k modulo p so that $k \cdot \Delta = 1 \pmod{p}$.

than the others, the survival rate is near 100%, while the frequency rarely survives if it is much lower
 than the mean. This experiment suggests that as we control the environment much more closely, the
 initial signal of the frequency plays a unique role in determining the final representation.

328 **Manual Construction** Moreover, we manually construct an embedding to evaluate the survival rate. We first randomly sample 2 out of p frequencies and set their signals to be of a varying ratio 330 $r \in [0, 1]$. Concretely, the largest frequency will have signal magnitude s, while the second highest will have a signal $r \cdot s$. We set all other frequencies to have a signal of small $\epsilon = 10^{-6}$. In this setup, 331 332 we demonstrate in Figure 5(c) that the frequency with the highest signal always survives, while the second-highest frequency increases in survival rate as its signal increases and differentiates itself 333 further from the other signals. Interestingly, despite all other frequencies having a signal near 0 at 334 initialization, the model sometimes chooses to revive them rather than always choosing the two clear 335 frontrunners, a phenomenon warranting further investigation in the future.

336 337 338

4.3 INITIAL GRADIENT—2ND "COMPLETENESS" SIGNAL

We hypothesize that not only the representations with high initial norms, but also those that can quickly adapts into circles, are more likely to survive. We calculate the gradient as the difference in the norms before and after a given timestep i, which takes into account both the embedding gradients and weight decay.

In Figure 6(a), we show the frequencies' initial gradient values alongside whether they "survive" 344 (i.e. become a final representation). Due to the weight decay mechanism, all gradients decrease over 345 time; however, those with higher initial gradients tend to shrink less and are more likely to survive. In 346 Figure 6(b), we show that as the initial gradient increases, the survival rate of these frequencies also 347 increases. To analyze the possibly compounding effect, we show in Figure 6 (c) that frequencies with 348 both high initial norms and gradients are more likely to survive, as the top right corner is more lit 349 with oranges, indicating a greater number of survived frequencies. To further verify this observation, 350 we train a linear support vector machine (SVM) that separates the dead and survived frequencies, 351 achieving an 83.8% accuracy.

352 353

354

4.4 RELATION TO LOTTERY TICKET HYPOTHESIS

355 Our analysis can be related to the Lottery Tickets Hypothesis (LTH) (Frankle & Carbin, 2019), where some subnetworks are "winning tickets" that achieve comparable test accuracy to the original 356 network when trained in isolation. Our results suggest that partially formed, decomposable circular 357 representations already exist even at initialization, similar to "winning tickets." Our analysis differs 358 from LTH in two key ways: (1) LTH requires training and pruning to identify "winning" tickets, 359 whereas circles are mathematically defined without training (but specific to modular addition); (2) 360 LTH states only the existence of "winning" tickets at initialization, while we manage to characterize 361 the properties of "winning" circles, that, when trained in isolation, achieve comparable accuracy (see 362 Appendix G). Our work provides representation-level insights into the studies of LTH. 363

Faster Training Convergence As suggested by Zhang et al. (2021), the pruned "winning ticket" has faster learning convergence, we conduct an ablation experiment in which we keep all frequencies with initial norms one standard deviation above the mean and remove the rest. We train them in separation; given that circles with high initial norms are more likely to be learned, this initialization method significantly accelerates training while still achieving perfect test accuracy. We train the models using 100 random seeds and demonstrate in Figure 6(d) a significant decrease in convergence time, measured by the first time step at which the test accuracy reaches 100%.

- 371
- 372 373

5 VARYING DIMENSIONALITY'S ROLE IN "COMPLETENESS"

After evaluating models with fixed embedding dimension in §3 and §4, we now consider the role of varying dimensionality in the expressive power of model initialization.

377 Intuitively, a larger model has stronger approximation power and can lead to better performance on the desired task (Sharma & Kaplan, 2020; Michaud et al., 2024; Song et al., 2024). We expect this to hold

Figure 6: (a) Distribution of the frequency gradient at step 4. (b) Survival rate in relation to frequency gradients for step 1 to 4. (c) Survived (orange) and dead (blue) frequencies characterized by their initial signals and gradients at step 4. (d) Number of steps to reach perfect test accuracy, before and after ablating to only frequencies wit high initial norms, with error bar of 95% confidence interval.

408 true for our algorithmic models as well. For example, in the context of modular addition, when d > p, 409 with probability one, perfect circles can be obtained by linearly projecting d-dimensional random 410 representations into suitable subspaces. Finding a subspace where a perfect circle of frequency k411 lives on is equivalent to finding two linear projections p_1 and p_2 such that $E_a \cdot p_1 = \sin(2\pi ak/p)$ 412 and $E_a \cdot p_2 = \cos(2\pi ak/p)$ for all $a = 0, 1, \dots, p-1$. Since these equations are linear and linearly 413 independent (due to random initializations), when the number of unknown variables 2d is greater 414 (less) than the number of equations 2p, the system is underdetermined (overdetermined), leading to the existence (nonexistence) of solutions. This conclusion holds for the other two tasks as well under 415 similar reasoning. 416

417

407

Freeze Embeddings To further verify that the initial random embeddings already encapsulate 418 partially complete representations that can solve the problem to some extent, we freeze the embeddings 419 at initialization and train only the MLP. We observe the evolution of test loss over training steps. 420 As dimentionality increases, the test loss decreases at a faster rate during training, as shown in 421 Figure 7 (modular addition) and in Appendix B (remainder equivalence and XOR), confirming that 422 higher-dimensional representations are more "complete" and have a higher approximation power to 423 drive the loss down. More interestingly, regarding the test loss on modular addition in Figure 7, we 424 notice a phase transition around d = p—the test loss is significantly lower when d > p compared to 425 when d < p. 426

427 Completeness Metrics and Dimensionality How does the result of frozen random embeddings
428 solving the algorithmic task relate to the representation "completeness" at initialization? First,
429 it shows that such partially complete representations do exist, and the MLP learns to extract out
430 such patterns, similar to Jarrett et al. (2009). Second, in a standard setting, the MLP would learn
431 an algorithm that computes the task based on the clear embedding representations (line, cube, or circles); however, in the case of the frozen embeddings, the MLP needs to fit an algorithm to all

Figure 7: Freezing the initial embedding and training only the MLP, test loss trained on modular addition (zoomed in on the *bottom* to < 1.0) in relation to embedding dimension d. One can notice a dip in loss at d = p. More freeze embedding results in Appendix B.

the partially formed representations there are. We suspect that some particularly poorly formed, "incomplete" representations would serve only as noise and hinder the MLP from fitting the task. We find preliminary evidence to support this by computing the minimum "completeness" score of embeddings with varying dimensions, based on the signal metrics we proposed in §3 and §4. We show in Figure 8 that the minimum "completeness" scores of models on all three tasks increase as the embedding dimension increases, which reduces the noise for fitting the MLP and, thus, increases the test loss shown in Figure 7.

Signal Minimum of Different Tasks Over Dimension

Figure 8: The minimum signal of our constructed "completeness" metrics increases with the dimension.

6 RELATED WORK

Mechanistic Interpretability on Algorithmic Tasks Many studies have been done to reverse engineer how neural networks implement algorithmic tasks (Gromov, 2023; Chughtai et al., 2023; Stander et al., 2023; He et al., 2024) because these tasks are mathematically well-defined and simple. However, even on these toy tasks, neural networks display some intriguing phenomena, including phase changes during training (Nanda et al., 2023), different algorithms (Zhong et al., 2023; Liao et al., 2023), or demonstrate the existence of multiple copies of algorithms (Nanda et al., 2023; Zhong et al., 2023). These works on toy models have also extended to similar findings in language models, such as how they compute addition (Zhou et al., 2024; Quirke & Barez, 2024).

486 **Representation Learning and Variability** Representation learning is crucial for networks to 487 generalize (Huh et al., 2024; Bengio et al., 2013; Le-Khac et al., 2020; Zou et al., 2023), as paradigms 488 for eliciting better representations get developed (Zhou, 2018; Jaiswal et al., 2020; Grill et al., 2020). 489 Meanwhile, studies have found variability to the learned representations due to random initialization 490 seeds, dataset orders, and representation complexity, leading to downstream consequences (McCoy et al., 2019; Lampinen et al., 2024). On the flipside, prior works have also shown that a single model 491 can contain redundant representations and algorithms (Doimo et al., 2023; Song et al., 2024). Most 492 recent studies have begun to form understandings of representations at a mechanistic level (Li et al., 493 2023; Engels et al., 2024; Marks & Tegmark, 2023). 494

495

Extracting Patterns from Random Initializations Prior work has investigated the capabilities of 496 randomly initialized, untrained networks, particularly convolutional networks, showing that convolu-497 tional networks can extract features (Amid et al., 2022; Burda et al., 2018) and achieve comparable 498 downstream performance when linearly combining these random features (Jarrett et al., 2009; Saxe 499 et al., 2011; Cox & Pinto, 2011). More recently, Zhong & Andreas (2024) evaluated the algorithmic 500 capabilities of random transformers, training only the embeddings and fixing everything else. The 501 study shows that random transformers operate in low-dimensional spaces, which corroborates our 502 findings that a "completeness" metric mapping random initialization to a low-dimensional score can 503 explain the model's choice of learned representation.

504

505 Lottery Ticket Hypothesis The Lottery Ticket Hypothesis (Frankle & Carbin, 2019) posits that 506 some subnetworks-"winning tickets"-identified at initialization and trained in isolation can match the test accuracy of the original, dense network. It has inspired extensions, such as a stronger conjecture 507 on finding such subnetworks without training (Zhou et al., 2019; Ramanujan et al., 2020; Malach et al., 508 2020; da Cunha et al., 2022; Orseau et al., 2020; Pensia et al., 2020; Diffenderfer & Kailkhura, 2021), 509 transferring winning tickets across setups (Morcos et al., 2019; Chen et al., 2021), and improving 510 methods of pruning to find the subnetworks (Frankle et al., 2020; Lee et al., 2019; Frankle et al., 2021; 511 Wang et al., 2020; Tanaka et al., 2020). Our work follows a similar style of analysis as the LTH, but 512 our methods of extracting the "winning tickets" are different. While the LTH community focuses on 513 pruning, we propose interpretable (but representation-specific) properties for these partially formed 514 "winning tickets" that allow them to eventually become the learned representations.

515 516

7 CONCLUSION

517 518

In this paper, we propose a Representation "Completeness" Hypothesis that final representations learned by the model often have certain intuitive, interpretable properties at initialization, which make them more "complete" and closer to the ideal representation than other structures not chosen by the model. We verify this hypothesis on three tasks, multi-digit XOR, remainder equivalence, and modular addition, and define such "completeness" metrics on each of the tasks. Finally, we attribute the reason for larger embedding's better ability to generalize to the decrease in ill-formed representations that take training for the model to unlearn, shown by an increase to the lower bound in the "completeness" metrics.

526 527

Limitations We have focused on studying algorithmic toy models, as our work is made possible
 due to their mathematically well-defined representations that can be clearly disentangled. Significant
 additional work is needed to scale these analyses to even more complex, general models, which
 remain a challenge.

Broader Impact Understanding training dynamics allows us to better control neural networks
in ways we desire, such as making them more accurate and safe. Any dual-use technology, like
machine learning models, has accompanying risks, so one should exercise caution when deploying
these techniques.

536

531

537 REFERENCES

539 Ehsan Amid, Rohan Anil, Wojciech Kotłowski, and Manfred K Warmuth. Learning from randomly initialized neural network features. *arXiv preprint arXiv:2202.06438*, 2022.

550

556

540	Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
541	perspectives. <i>IEEE transactions on pattern analysis and machine intelligence</i> , 35(8):1798–1828.
542	2013.
543	

- Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
 Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
 Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
 Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
 Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary
 learning. *Transformer Circuits Thread*, 2023. https://transformer-circuits.pub/2023/monosemantic-
- Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
 distillation. *arXiv preprint arXiv:1810.12894*, 2018.
- Angelica Chen, Ravid Schwartz-Ziv, Kyunghyun Cho, Matthew L Leavitt, and Naomi Saphra. Sudden drops in the loss: Syntax acquisition, phase transitions, and simplicity bias in mlms. *arXiv preprint arXiv:2309.07311*, 2023.
- Xiaohan Chen, Yu Cheng, Shuohang Wang, Zhe Gan, Jingjing Liu, and Zhangyang Wang. The elastic lottery ticket hypothesis. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 26609–26621.
 Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/dfccdb8blcc7e4dab6d33db0fef12b88-Paper.pdf.
- Bilal Chughtai, Lawrence Chan, and Neel Nanda. A toy model of universality: reverse engineering
 how networks learn group operations. In *Proceedings of the 40th International Conference on Machine Learning*, ICML'23. JMLR.org, 2023.
- David Cox and Nicolas Pinto. Beyond simple features: A large-scale feature search approach to unconstrained face recognition. In 2011 IEEE International Conference on Automatic Face & Gesture Recognition (FG), pp. 8–15. IEEE, 2011.
- Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen coders find highly interpretable features in language models. *arXiv preprint arXiv:2309.08600*, 2023.
- Arthur da Cunha, Emanuele Natale, and Laurent Viennot. Proving the lottery ticket hypothesis for
 convolutional neural networks. In *International Conference on Learning Representations*, 2022.
 URL https://openreview.net/forum?id=Vjki79-619-.
- James Diffenderfer and Bhavya Kailkhura. Multi-prize lottery ticket hypothesis: Finding accurate binary neural networks by pruning a randomly weighted network. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=U_mat0b9iv.
- Diego Doimo, Aldo Glielmo, Sebastian Goldt, and Alessandro Laio. Redundant representations help
 generalization in wide neural networks. *Journal of Statistical Mechanics: Theory and Experiment*, 2023(11):114011, 2023.
- Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli,
 Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris
 Olah. A mathematical framework for transformer circuits. *Transformer Circuits Thread*, 2021. https://transformer-circuits.pub/2021/framework/index.html.
- Joshua Engels, Isaac Liao, Eric J Michaud, Wes Gurnee, and Max Tegmark. Not all language model features are linear. *arXiv preprint arXiv:2405.14860*, 2024.
- Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks. In International Conference on Learning Representations, 2019. URL https: //openreview.net/forum?id=rJl-b3RcF7.

- Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin. Stabilizing the
 lottery ticket hypothesis, 2020.
- Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Pruning neural networks at initialization: Why are we missing the mark? In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=Ig-VyQc-MLK.
- Rhys Gould, Euan Ong, George Ogden, and Arthur Conmy. Successor heads: Recurring, interpretable
 attention heads in the wild. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=kvcbV8KQsi.
- Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
 Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
 et al. Bootstrap your own latent-a new approach to self-supervised learning. *Advances in neural information processing systems*, 33:21271–21284, 2020.
- ⁶⁰⁸ Andrey Gromov. Grokking modular arithmetic. *arXiv preprint arXiv:2301.02679*, 2023.
- Wes Gurnee and Max Tegmark. Language models represent space and time. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.
 net/forum?id=jE8xbmvFin.
- Wes Gurnee, Theo Horsley, Zifan Carl Guo, Tara Rezaei Kheirkhah, Qinyi Sun, Will Hathaway,
 Neel Nanda, and Dimitris Bertsimas. Universal neurons in gpt2 language models. *arXiv preprint arXiv:2401.12181*, 2024.
- Tianyu He, Darshil Doshi, Aritra Das, and Andrey Gromov. Learning to grok: Emergence of in-context learning and skill composition in modular arithmetic tasks. In *ICML 2024 Workshop on Mechanistic Interpretability*, 2024. URL https://openreview.net/forum?id= gz0r3w71zQ.
- Jesse Hoogland, George Wang, Matthew Farrugia-Roberts, Liam Carroll, Susan Wei, and Daniel
 Murfet. The developmental landscape of in-context learning. *arXiv preprint arXiv:2402.02364*, 2024.
- Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip Isola. The platonic representation hypothesis. *arXiv preprint arXiv:2405.07987*, 2024.
- Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Banerjee, and Fillia
 Makedon. A survey on contrastive self-supervised learning. *Technologies*, 9(1):2, 2020.
- Kevin Jarrett, Koray Kavukcuoglu, Marc'Aurelio Ranzato, and Yann LeCun. What is the best multi-stage architecture for object recognition? In *2009 IEEE 12th International Conference on Computer Vision*, pp. 2146–2153, 2009. doi: 10.1109/ICCV.2009.5459469.
- Andrew Kyle Lampinen, Stephanie CY Chan, and Katherine Hermann. Learned feature representations are biased by complexity, learning order, position, and more. *arXiv preprint arXiv:2405.05847*, 2024.
- Phuc H Le-Khac, Graham Healy, and Alan F Smeaton. Contrastive representation learning: A framework and review. *Ieee Access*, 8:193907–193934, 2020.
- Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. SNIP: SINGLE-SHOT NETWORK
 PRUNING BASED ON CONNECTION SENSITIVITY. In International Conference on Learning
 Representations, 2019. URL https://openreview.net/forum?id=B1VZqjAcYX.
- Kenneth Li, Aspen K Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Emergent world representations: Exploring a sequence model trained on a synthetic task. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=DeG07_TcZvT.
- 647 Isaac Liao, Ziming Liu, and Max Tegmark. Generating interpretable networks using hypernetworks, 2023.

648 649 650 651	Ziming Liu, Ouail Kitouni, Niklas Nolte, Eric J Michaud, Max Tegmark, and Mike Williams. Towards understanding grokking: An effective theory of representation learning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), <i>Advances in Neural Information</i> <i>Processing Systems</i> , 2022. URL https://openreview.net/forum?id=6at6rB3IZm.
652 653 654 655	Ziming Liu, Eric J Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic data. In <i>The Eleventh International Conference on Learning Representations</i> , 2023. URL https://openreview.net/forum?id=zDiHoIWa0q1.
656 657 658	Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer- ence on Learning Representations, 2019. URL https://openreview.net/forum?id= Bkg6RiCqY7.
659 660 661 662 663	Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, and Ohad Shamir. Proving the lottery ticket hypothesis: Pruning is all you need. In Hal Daumé III and Aarti Singh (eds.), <i>Proceedings of the 37th International Conference on Machine Learning</i> , volume 119 of <i>Proceedings of Machine Learning Research</i> , pp. 6682–6691. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/malach20a.html.
664 665 666	Samuel Marks and Max Tegmark. The geometry of truth: Emergent linear structure in large language model representations of true/false datasets. <i>arXiv preprint arXiv:2310.06824</i> , 2023.
667 668 669	Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller. Sparse feature circuits: Discovering and editing interpretable causal graphs in language models. <i>arXiv</i> preprint arXiv:2403.19647, 2024.
670 671 672	R Thomas McCoy, Junghyun Min, and Tal Linzen. Berts of a feather do not generalize together: Large variability in generalization across models with similar test set performance. <i>arXiv preprint</i> <i>arXiv:1911.02969</i> , 2019.
673 674 675	Eric Michaud, Ziming Liu, Uzay Girit, and Max Tegmark. The quantization model of neural scaling. Advances in Neural Information Processing Systems, 36, 2024.
676 677 678	Ari S. Morcos, Haonan Yu, Michela Paganini, and Yuandong Tian. One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers. Curran Associates Inc., Red Hook, NY, USA, 2019.
679 680 681 682	Depen Morwani, Benjamin L. Edelman, Costin-Andrei Oncescu, Rosie Zhao, and Sham M. Kakade. Feature emergence via margin maximization: case studies in algebraic tasks. In <i>The Twelfth</i> <i>International Conference on Learning Representations</i> , 2024. URL https://openreview. net/forum?id=i9wDX850jR.
683 684 685 686	Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures for grokking via mechanistic interpretability. In <i>The Eleventh International Conference on Learning Representations</i> , 2023. URL https://openreview.net/forum?id=9XFSbDPmdW.
687 688	Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter. Zoom in: An introduction to circuits. <i>Distill</i> , 5(3):e00024–001, 2020.
689 690 691 692 693 694	Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. In-context learning and induction heads. <i>Transformer Circuits Thread</i> , 2022. https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html.
695 696 697 698	Laurent Orseau, Marcus Hutter, and Omar Rivasplata. Logarithmic pruning is all you need. In <i>Proceedings of the 34th International Conference on Neural Information Processing Systems</i> , NIPS '20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.
699 700 701	Ankit Pensia, Shashank Rajput, Alliot Nagle, Harit Vishwakarma, and Dimitris Papailiopoulos. Opti- mal lottery tickets via subsetsum: logarithmic over-parameterization is sufficient. In <i>Proceedings</i> of the 34th International Conference on Neural Information Processing Systems, NIPS '20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

702 703 704	Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: General- ization beyond overfitting on small algorithmic datasets, 2022.
705 706	Philip Quirke and Fazl Barez. Understanding addition in transformers, 2024. URL https://arxiv.org/abs/2310.13121.
707 708 709 710 711	Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mohammad Rastegari. What's hidden in a randomly weighted neural network? In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11890–11899, 2020. doi: 10.1109/CVPR42600.2020.01191.
712 713	Andrew M Saxe, Pang Wei Koh, Zhenghao Chen, Maneesh Bhand, Bipin Suresh, and Andrew Y Ng. On random weights and unsupervised feature learning. In <i>Icml</i> , volume 2, pp. 6, 2011.
714 715 716	Utkarsh Sharma and Jared Kaplan. A neural scaling law from the dimension of the data manifold. <i>arXiv preprint arXiv:2004.10802</i> , 2020.
717 718 719 720	Aaditya K. Singh, Ted Moskovitz, Felix Hill, Stephanie C. Y. Chan, and Andrew M. Saxe. What needs to go right for an induction head? a mechanistic study of in-context learning circuits and their formation, 2024.
721 722	Jinyeop Song, Ziming Liu, Max Tegmark, and Jeff Gore. A resource model for neural scaling law. <i>arXiv preprint arXiv:2402.05164</i> , 2024.
723 724 725	Dashiell Stander, Qinan Yu, Honglu Fan, and Stella Biderman. Grokking group multiplication with cosets, 2023.
726 727 728 729 730 731	 Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks without any data by iteratively conserving synaptic flow. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 6377–6389. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/46a4378f835dc8040c8057beb6a2da52-Paper.pdf.
732 733 734 735	Vimal Thilak, Etai Littwin, Shuangfei Zhai, Omid Saremi, Roni Paiss, and Joshua Susskind. The slingshot mechanism: An empirical study of adaptive optimizers and the grokking phenomenon, 2022.
736 737 738	Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by preserving gradient flow. In <i>International Conference on Learning Representations</i> , 2020. URL https://openreview.net/forum?id=SkgsACVKPH.
739 740 741 742	Shuai Zhang, Meng Wang, Sijia Liu, Pin-Yu Chen, and Jinjun Xiong. Why lottery ticket wins? a theoretical perspective of sample complexity on sparse neural networks. <i>Advances in Neural Information Processing Systems</i> , 34:2707–2720, 2021.
743 744 745	Ziqian Zhong and Jacob Andreas. Algorithmic capabilities of random transformers. In <i>Thirty-eighth Conference on Neural Information Processing Systems</i> , 2024.
746 747 748	Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The clock and the pizza: Two stories in mechanistic explanation of neural networks. In <i>Thirty-seventh Conference on Neural Information Processing Systems</i> , 2023. URL https://openreview.net/forum?id=S5wmbQc1We.
749 750 751	Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing lottery tickets: Zeros, signs, and the supermask. In <i>Advances in Neural Information Processing Systems</i> , 2019.
752 753	Tianyi Zhou, Deqing Fu, Vatsal Sharan, and Robin Jia. Pre-trained large language models use fourier features to compute addition, 2024. URL https://arxiv.org/abs/2406.03445.
755 755	Zhi-Hua Zhou. A brief introduction to weakly supervised learning. <i>National science review</i> , 5(1): 44–53, 2018.

756 757 758 759	 Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan, Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, Shashwat Goel, Nathaniel Li, Michael J. Byun, Zifan Wang, Alex Mallen, Steven Basart, Sanmi Koyejo, Dawn Song, Matt Fredrikson, J. Zico Kolter, and Dan Hendrycks. Representation engineering: A top-down approach to ai
760	transparency, 2023.
761	
762	
763	
764	
765	
766	
767	
768	
769	
770	
771	
772	
773	
774	
775	
776	
777	
778	
779	
780	
781	
782	
783	
78/	
785	
796	
787	
788	
780	
790	
791	
792	
792	
794	
795	
796	
797	
798	
799	
800	
801	
802	
803	
804	
805	
806	
807	
808	
809	

A TRAINING DETAILS

The MLP in our model consists of two layers: an input layer with dimension 2d, two hidden layers, each with a width of 100, and an output layer with dimension p, which represents the logits for each token from 0 to p - 1.

We train the model using the AdamW optimizer (Loshchilov & Hutter, 2019), with a learning rate set to 0.01. The training loss is defined as the cross-entropy loss between the logits computed by the model and the ground truth. To encourage model generalization, we use a train-test split of 80-20 and apply weight decay. The default training details are listed as follows:

Task	p	d	weight decay	training steps
Remainder Equivalence	100	8	3	10^{4}
Multi-digit XOR	8	8	3	3×10^4
Modular Addition	59	128	0.5	3×10^4

In some experiments, we vary d, p and weight decay to study their effect on the model.

B ADDITIONAL FREEZE EMBEDDING RESULTS

In addition to the modular addition task, we also perform the freeze embedding experiments on the other two tasks and provide the results here. Similar to the phenomenon discussed in §5, the test loss exhibits a decreasing trend with dimensionality.

Figure 9: Test loss over time after freezing embedding and training only MLP for XOR (top) and Remainder task (bottom).

852 853 854

851

826 827 828

829 830

831

832

833

855

856

C

Building upon what we analyzed in §5, we compute the distribution of initial "completeness" signals over dimension, sampling from 100 random initializations.

DISTRIBUTION OF SIGNAL OVER DIMENSION

As shown in Figure 10, although the minimum of signals increases, the maximum signal decreases
 over dimensionality. This indicates that as dimensions increase, the *most complete* representation
 at initialization is less advantageous, and therefore more representations might have a chance to be
 learned. This analysis matches our observations in the modular addition task that the number of
 circular representations increases with dimension, which we elaborate on in Appendix D.

Signal Distribution of Different Tasks Over Dimension

Figure 10: The minimum, average, and maximum of all "completeness" signals over dimension, aggregating over 100 random initializations. The maximum decreases, minimum increases, while the average stays the same.

D MULTIPLE REPRESENTATIONS: NUMBER OF CIRCLES

In the main paper, we discuss that the modular addition task exhibits multiple representations, i.e., the model learns multiple circles in the final representation to solve the task. Since dimensionality has a significant impact on the structure of the initial embedding, we want to understand if this factor also impact the number of circles learned. In addition, we study other factors influencing the training dynamics of the toy model, including the modulus p and weight decay.

More specifically, to study the impact of dimensionality d and modulus p, we fix one and vary the other to study their effect on the total number of learned circles. Sampling over 100 trials, we identify a clear positive correlation between the size of the embedding (d, p) and number of circles the model learns, as shown in Figure 11³. To conclude, as the size of initial embedding $(p \times d)$ increases, the number of circles (algorithm redundancy) increases. This redundant mechanism potentially makes neural networks more robust, but less parameter-efficient and interpretable. Moreover, the result aligns with our result in Appendix C: as the dimensionality of the embedding increases, more representations would have a chance to be learned. As a result, more circles will be learned in the final representation.

Figure 11: (a): The number of circles as the embedding dimension for representing each token increases from 16 to 128. (b): The number of circles the model chooses for its final representation in relation to the number of tokens, p, over 100 random trials, with only prime modulus included. (c): The same figure as (b), but with all modulus p ranging from 16 to 102.

³Figure 11(b) focuses solely on prime modulus p since non-prime p behaves differently in the modular addition task due to their non-trivial factors. For example, when p = 12, a circle with delta $\Delta = 2$ does not cover all the numbers in [0, p - 1], and our previous analysis in Fourier basis no longer holds true.

Figure 12: Number of learned circles as a function of weight decay. The *left* panel displays the complete range of weight decays tested in our experiments; the *middle* focuses on smaller weight decays, while the *right* illustrates the transition in the number of learned circles at larger weight decays.

On the other hand, we investigate the impact of weight decay while fixing d and p. Considering the extreme case where weight decay is zero, it is not surprising that all the frequencies survive while the neural network fails to generalize, as it has trouble "grokking" (Liu et al., 2022; 2023). As weight decay slightly increases, the number of final circular representations gradually drops, as illustrated in Figure 12.

E ALTERNATIVE METRIC FOR MODULAR ADDITION: CIRCULARITY

In addition to the Fourier norm metric used in our discussion of the modular addition task, we compute another metric, circularity, to analyze the initial embedding. We modify the metric introduced in Zhong et al. (2023) by calculating through each frequency in the Fourier Basis instead of through the principal components. As established in the paper, if $X_0, ..., X_{p-1} \in \mathbb{R}^d$ are embeddings projected onto the Fourier basis, the circularity for a specific frequency f is defined as

$$c_{k} = \frac{2}{p \sum_{j=0}^{p-1} \mathbf{X}_{k,j}^{2}} \left| \sum_{j=0}^{p-1} \mathbf{X}_{k,j} e^{2\pi \mathbf{i} \cdot jk/p} \right|^{2}$$
(2)

Using this metric, we conduct two experiments: one to measure the circularity of the embedding as its dimensionality varies and another to see if initial circularity plays a role in informing eventual representations.

972 To investigate the impact d exerts on the system, we randomly sample 50 initial embeddings of 973 different dimensions and compute the mean and maximum circularity among all frequencies, as 974 shown in Figure 13(a). Indeed, circularity increases as dimensionality increases, confirming our 975 observation that higher-dimensional embedding encodes more complex information at initialization.

976 We also aim to verify the hypothesis that if the embedding is initialized closer to a circle on a given 977 frequency, that frequency is more likely to survive. However, the evidence shown in Figure 13(b) is 978 inconclusive as to whether larger initial circularity implies a better chance of the representation being 979 learned.

980 981

982 983

984

985

986

987 988

989

990 991

992

993 994

995

996 997

998

COMPLEX TRAINING DYNAMICS F

In our main paper, we propose a metric on the initial embedding to unveil the final model representation. However, we acknowledge that for a specific model, the training dynamics are complicated and dependent on factors other than initialization, including initialization of the MLP, specific train set split, learning rate, weight decay, the hardware the model is trained on, and many more.

1000 Figure 14: (a): In the modular addition task, the Fourier norm of each embedding frequency evolves over times, as shown in §4. (b): Reproduced (a) on a *different* model, with a high initial norm, dead 1001 frequency (dotted red) and a low initial norm frequency that eventually gets learned (dotted green). 1002

As illustrated in Figure 14 (b), a large initial signal does not guarantee that the representation will 1004 be learned. Therefore, to mitigate the randomness, we run all the experiments on multiple different 1005 random seeds and aggregate the results. 1006

1007 1008

1009

1017

1018

1020

1021

1003

TRAINING ONLY "WINING TICKETS" G

Inspired by the Lottery Ticket hypothesis, we are curious if the "Winning Circles" can also reach 1010 comparable accuracy when trained separately. Specifically, for a given embedding, we first train 1011 without any ablation, from which we identify the original circles the model chooses to learn. We then 1012 use k_1 to denote the frequency with the largest signal after training and k_2 to denote the second-largest 1013 frequency. 1014

Using this information, we conduct four experiments to compare the difference between training 1015 "Winning Circles" and training random control circles: 1016

- A) At initialization, project the embedding onto the Fourier basis, set all frequencies except for k_1 to 0, and use inverse FFT to reconstruct the embedding. Train the model using this initial embedding.
- B) At initialization, use the same ablation procedure as above, but suppress all other frequencies except for k_1 and k_2 to 0.
- C) At initialization, randomly select a frequency $k_{r,1}$ and suppress all other frequencies except 1023 for $k_{r,1}$. 1024
- D) At initialization, randomly select two frequencies $k_{r,1}$ and $k_{r,2}$ and suppress all other 1025 frequencies except for those two.

In Experiment A, although the embedding is initialized to have only the "Winning Circle", the model revives other circles with an originally 0 signal and eventually ends up with four learned circles.
Figure 15(Left) shows the test loss for Experiment A in *orange*. We can infer from the loss curve that despite trying to learn with only one circle, the model struggles to achieve lower loss with this simple representation and has to make its representation more complex over time, leading to the periodic spikes in test loss. In none of our experiments were we able to construct a model that naturally forms a single-circle representation.

However, in Experiment B, the model achieves good performance using only the two circles initialized with non-zero signals. Two "Winning circles" seem sufficient for the model to achieve a loss as low as $1e^{-7}$. Moreover, Experiment B reaches lower test loss more quickly than the original, mainly because ablating to have only the winning tickets already serves as a type of training and makes the model training process easier, similar to the findings of Zhou et al. (2019).

In comparison, Figure 15(b) shows that the model struggles to learn with only 1 or 2 random circles;
Summarizing these results, we conclude that the choice of the circles are not arbitrary: the model can learn the task well with the two "Winning Circles" but not two random circles.

Figure 15: (a) Test loss curve over training timesteps of the ablation experiment when keeping all frequencies (blue), the largest frequency (orange), and the largest two frequencies (green). (b) Test loss curve of the ablation experiment when keeping all frequencies (blue), one random frequency (pink), and two random frequencies (cyan).

Note that in experiments A, C, and D, the test loss curve exhibits several cycles of spiking and subsequent decay. This slingshot phenomenon is associated with the use of the Adam optimizer and often co-occurs with grokking (Thilak et al., 2022).

H CHOOSING EMBEDDING GRADIENTS

1064

In Section 4.3, we approximate the gradient for modular addition model as the difference of signals before and after a given timestep. We provide further justification here.

The actual gradient on the embeddings consists of two parts: the gradient $\frac{\partial \mathcal{L}}{\partial E_{\mu}}$ produced by MLP 1069 1070 on the embedding through backpropagation and weight decay of the initial data. To understand the effect of the former on frequency signals, we use the same Fourier transform procedure to 1071 transform the gradients to the Fourier basis and compute their norm, as the Fourier transform is a 1072 linear transformation. In Figure 16, we visualize the norm of the gradient in Fourier basis over time. 1073 The Fourier gradient spikes around 100 steps and quickly diminishes to near zero after 1000 steps. 1074 After this point, the gradient becomes negligibly small, and weight decay becomes the dominant 1075 factor affecting the evolution of signals. 1076

1077 These observations motivate experimental decisions in our paper. Specifically, because it is difficult
1078 to reconstruct the effect of both backpropagation and weight decay compounded on top of each other
1079 on the Fourier basis, especially when weight decay dominates the gradient, we think the difference in
signal is a simple and sufficient proxy to conduct experiments with in Section 4.3.

Figure 16: The embedding gradients through backpropagation projected onto the Fourier basis over time. The *right* zooms into timesteps 100 to 1000. The colored curves denote frequencies that eventually are learned, while the grey ones represent gradients of dead frequencies.

1100 I EXPERIMENTS COMPUTE RESOURCE

- All the model training is performed on NVIDIA V100 GPUs. We provide the GPU specs as follows:
 - Processor: Intel Xeon Gold 6248
 - Nodes: 224
 - Clock Rate: 2.5GHz
 - CPU cores: 40
 - Node RAM: 384GB
 - RAM per core: 9GB
 - Accelerator type: Nvidia Volta V100
 - Accelerators(per Node): 2
 - Accelerator RAM: 32GB

The GPU days needed for all the experiments add up to about 68 GPU days. The full research project does not require more compute than the experiments reported in the paper.