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Abstract Training artificial neural networks (ANNs) under the shifting distributions of dynamic 5

learning environments can be augmented by dynamic architectural adjustments in addition 6

to the standard parameter tuning. Towards effective yet efficient models, we study neural 7

grow-and-prune in the basic shifting distribution case of transfer learning: adapting a 8

generically pre-trained model to a target dataset. We propose the DYNO (Dynamic Neural 9

Optimization) grow-and-prune algorithm, which dynamically performs neural pruning 10

to remove neurons that are dormant or redundant and neural growth to add orthogonal 11

features during fine-tuning. Our experiments across a variety of transfer tasks show that 12

DYNO yields an efficient yet performant network with dynamically shaped layers. 13

1 Introduction 14

Artificial neural networks (ANNs) are typically hand-architected with parameters trained from 15

scratch. However, this paradigm is not scalable with the growing desire to apply ANNs in more 16

complex and even dynamic tasks, where the training data distribution may change over time. The 17

simplest form of a dynamic learning environment is transfer learning, where an ANN may be 18

generally pre-trained on a source dataset before fine-tuning a specific copy on the target dataset, 19

improving computational reuse and even performance on the target task. Fine-tuning usually 20

consists of the same generic training approach of gradient descent with a static architecture. 21

As intermediate activations are effective for out-of-distribution (OoD) detection [Hein et al., 22

2019], the inverse suggests they could also inform neural growth [Maile et al., 2022] and pruning. 23

During fine-tuning on the target task, some existing features may be more useful or adaptable to the 24

target task than others: neurons that are redundant with others or show OoD activation patterns 25

such as dormancy [Sokar et al., 2023] may be pruned and new neurons with incoming distribution- 26

aware initialization may be added. This strategically adapts the model to the new domain by 27

augmenting the most useful components of the inductive bias transferred from pre-training. 28

We propose and investigate the utility of growing and pruning neurons during transfer learning, 29

resulting in a fine-tuned model with a customized architecture for the target task. We study the 30

use of informed scheduling for the growth and pruning operations, removing the hand-designed 31

schedules and algorithmic details seen in other comparable approaches. We define the DYNO 32

(Dynamic Neural Optimization) grow-and-prune algorithm: the proposed strategies that comprise 33

DYNO only use activation information from just the forward pass, without any masking or gradient 34

calculations. We study DYNO in multiple transfer learning scenarios, analyzing how different layers 35

respond in across various transfer contexts. DYNO yields dynamically shaped efficient models with 36

tuned layer widths and tuned parameters, without predetermined architectural scheduling. 37

2 Problem Definition 38

An artificial neural network (ANN) 𝑓 may be optimized through empirical risk minimization of a 39

loss function 𝐿 for a dataset 𝐷 consisting of inputs 𝑥 and outputs 𝑦: 40

argmin

𝑓

E𝒙,𝒚∼𝐷 𝐿(𝑓 (𝒙),𝒚). (1)
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Algorithm 1 A general framework for neural grow-and-prune optimization.

procedure Grow-and-prune(TrigGrow, InitGrow, TrigPrune, SelectPrune, initial ANN 𝑓 )

while 𝑓 not converged do
for each hidden layer 𝑙 do

if TrigPrune(𝑓 , 𝑙) > 0 then
Remove TrigPrune(𝑓 , 𝑙) neurons by SelectPrune(𝑓 , 𝑙)

if TrigGrow(𝑓 , 𝑙) > 0 then
Add TrigGrow(𝑓 , 𝑙) neurons using InitGrow(𝑓 , 𝑙)

for 𝑛 steps do
Gradient descent step on current existing weights and dataset

return trained 𝑓

For a dense multi-layer perceptron (MLP) with 𝑑 hidden layers, 𝑓 may be expressed as 𝑓 (𝒙) = 41

𝜎𝑑+1(𝑾𝑑+1𝜎𝑑 (...𝑾 2𝜎1(𝑾 1𝒙)...)),where 𝜎𝑙 is a nonlinear activation function that also adds a row for 42

the bias, and𝑾 𝑙 ∈ R𝑀𝑙×(𝑀𝑙−1+1)
is the weight matrix for the 𝑙 th layer, including the bias parameters. 43

The𝑀𝑙 rows of𝑾 𝑙 each represents the fan-in weights of a neuron in layer 𝑙 receiving input from 44

each of the𝑀𝑙−1 preceding neurons, while each of first𝑀𝑙−1 columns represents the fan-out weights 45

of a layer 𝑙 − 1 neuron and the last column represents the biases. 46

We define 𝒉𝑙 = 𝜎𝑙 (𝑾 𝑙𝜎𝑙−1(...𝑾 2𝜎1(𝑾 1𝒙) ...)) as the post-activations of layer 𝑙 . For 𝑛 samples, 47

𝑯 𝑙 ∈ R𝑀𝑙×𝑛
is the post-activation matrix. 48

For convolutional layers, we consider that a channel is analogous to a neuron in a dense layer. 49

However, both the activation for a channel and a single sample as well as the parameterization of the 50

connection between two channels are matrices instead of single values. Thus, 𝑯 𝑙 ∈ R𝐻𝑙×𝑊𝑙×𝑀𝑙×𝑛 51

and𝑾 𝑙 ∈ R𝑘𝑙×𝑘𝑙×𝑀𝑙×(𝑀𝑙−1+1) . 52

Standard ANN training procedures pre-define the size and structure of the weight matrices 53

𝑊 , updating their parameters via stochastic gradient descent over mini-batches sampled from the 54

current dataset towards optimizing Equation (1). 55

To perform neurogenesis or neural pruning, the addition or removal of 𝑘 neurons to the 𝑙 th 56

layer is accomplished by appending or removing 𝑘 rows of fan-in weights in𝑾 𝑙 and 𝑘 columns of 57

fan-out weights in𝑾 𝑙+1. Utilizing these operations in the empirical risk minimization of Equation 58

(1) defines the neural grow-and-prune optimization. We restrict the search space of where to add 59

new neurons to within existing layers. 60

3 Grow and Prune for Transfer Learning 61

Our general proposed framework for neural grow-and-prune is presented in Algorithm 1. This 62

framework cycles through each optimization operation of pruning, growth, and parameter optimiza- 63

tion via gradient descent, allowing the grow-and-prune details such as the trigger strategies, growth 64

initialization strategy, and pruning selection strategies to be defined alongside other training details 65

such as the gradient descent optimizer. We propose the Dynamic Neural Optimization (DYNO) 66

grow-and-prune algorithm with the strategies defined as follows. 67

Following Maile et al. [2022], we define triggers and initialization/selection strategies for each 68

operation of growing neurons and pruning neurons. The trigger is evaluated regularly to determine, 69

for each layer, how many neurons to grow or prune. The initialization strategy for growing or 70

selection strategy is then applied to carry out the structural change. 71

The trigger for both operations is based on the orthogonality metric of effective dimensionality, 72

the 𝜖-numerical rank of the post-activation matrix [Kumar et al., 2021, Lyle et al., 2022]. For layer 73

𝑙 and 𝑛 samples generating the post-activation 𝑯 𝑙 , the effective dimension metric 𝜙𝐸𝐷 may be 74
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estimated by 75

𝜙𝐸𝐷 (𝑓 , 𝑙) = 1

𝑀𝑙

����{𝜎 ∈ SVD

(
1

√
𝑛
𝑯 𝑙

) ���𝜎 > 𝜖

}���� , (2)

where SVD

(
1√
𝑛
𝑯 𝑙

)
is the set of singular values of

1√
𝑛
𝑯 𝑙 and 𝜖 > 0 is a small threshold. For 76

convolutional layers, 𝑯 𝑙 is flattened to R𝑀𝑙×(𝐻𝑙𝑊𝑙𝑛) , so that the metric is relative to the number of 77

neurons or channels in layer 𝑙 . 78

A significant increase in the orthogonality metric is used to trigger neurogenesis, while a 79

significant decrease is used to trigger pruning: 80

TrigPrune (𝑓 , 𝑙) = min

(
0,
⌊
𝑀𝑙

(
(1 − 𝛿)𝜙∗

𝐸𝐷 − 𝜙𝐸𝐷 (𝑓 , 𝑙)
) ⌋ )

, (3)

TrigGrow (𝑓 , 𝑙) = min

(
0,
⌊
𝑀𝑙

(
𝜙𝐸𝐷 (𝑓 , 𝑙) − (1 + 𝛿)𝜙∗

𝐸𝐷

) ⌋ )
, (4)

where 𝛿 > 0 is a small threshold and 𝜙∗
𝐸𝐷

is the value of 𝜙𝐸𝐷 (𝑓 , 𝑙) at the last structural change of 𝑓 . 81

This combination of trigger strategies slims the layer when its activations are expressible in fewer 82

dimensions, and expands it when the feature space in near expressible capacity. The updating 83

baseline allows structural operations to occur dynamically in response to changes in the training 84

distribution, with minimal dependence on the frequency of trigger evaluation. 85

Neurons to prune are selected based on a greedy cosine similarity algorithm, SelectPrune(𝑓 , 𝑙). 86

In the case of ReLU-activated layers, all completely dormant neurons are first pruned. Then, until 87

the total number of neurons to prune is reached, the neuron with the highest norm of cosine 88

similarities of normalized post-activations with other remaining neurons is greedily pruned. 89

New neurons are grown with the initialization strategy, InitGrow(𝑓 , 𝑙), as in NORTH-Select 90

[Maile et al., 2022]: from candidates with scaled random fan-in vectors and zeroed fan-out vectors, 91

select neurons that independently maximize 𝜙𝐸𝐷 (𝑓 , 𝑙) with the existing neurons in that layer. 92

4 Experiments 93

We apply neural grow-and-prune transfer learning on three classification scenarios, each beginning 94

with VGG11 pretrained on Imagenet [Russakovsky et al., 2015]. The target datasets are: 95

Imagenette: 10 easily distinguishable classes of Imagenet [Howard], thus making high-level fea- 96

tures useful but not detailed features that may distinguish more similar classes. 97

Imagewoof: 10 dog breed classes of Imagenet [Howard], thus requiring minute details within a 98

subspace of the original distribution. 99

Galaxy10: satellite images of galaxies in 10 shape-based categories [Leung and Bovy, 2019], so the 100

underlying distribution is very different from natural images as in Imagenet. 101

Training details may be found in Appendix A. We additionally implemented Surgical Fine-Tuning 102

(SFT) [Lee et al., 2023], which dynamically adjusts layer-wise learning rates based on the layer’s 103

relative gradient norm, as an orthogonal approach to transfer learning. The analysis of the interplay 104

of DYNO and SFT can be found in Appendix B. 105

The results of applying DYNO compared to standard static fine-tuning are shown in Figure 106

1. When comparing test accuracy to inference FLOPs, the fine-tuned models have slightly lower 107

average accuracy but are consistently more efficient in compute cost. Network sizes are consistent 108

within tasks: models for Galaxy10 are about half as expensive as the original pre-trained model. 109

DYNO causes immediately large architectural changes, then progressively smaller later in training, 110

approaching architectural convergence but allowing small amounts of turnover well after the 111

distribution change. Considering layer-wise architectural changes of DYNO, models across all three 112

tasks had most change occur in the later layers of the network, particularly the final convolution 113

(layer 7) and final dense layer before the classification layer (layer 9). Models for Galaxy10 had 114

significantly more architectural change, both for pruning and growing, and in more layers. 115
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Figure 1: Experimental results for transfer to Imagenette (top), Imagewoof (middle), and Galaxy10

(bottom). Left: final test accuracy against final model inference FLOPs. Center: progression

of inference cost over the course of training. Right: total neurons grown and pruned per

layer over the course of DYNO, relative to the original layer width. All covariance ellipses,

error clouds, and error bars show standard deviation across the 5 trials.

To fine-tune on a similar task, such as transferring to Imagenette, DYNOmade very few changes, 116

similar to what would happen with standard pruning of a final layers. However, when distribution 117

shifts, such as transferring to Galaxy10, the architecture changes throughout: major modifications 118

are made in the final layer, and there are even structural modifications in the early layers. This 119

shows that DYNO responds to distribution shift based on the learned task to appropriately modify 120

the architecture. 121

DYNO was not able to surpass the test accuracy of larger static models. This may be due to the 122

simple linear schedule of architectural evaluation without a long final tuning phase or any learning 123

rate decay, nor extensive hyperparameter tuning. Such "tricks" are often employed for improving 124

performance but may confound results so thus were avoided in this preliminary study. 125

The strategies of DYNO are intended to minimize the number and impact of hyperparameters. 126

For example, the moving baseline used in the trigger functions reduces dependence on the trigger 127

evaluation frequency. Furtherwork on hyperparameter optimization and specialization is warranted, 128

such as learnable thresholds [Azarian et al., 2020] and layer-wise thresholds, which could improve 129

test accuracy compared to static fine-tuning. We study layer-wise dynamic learning rates in 130

Appendix B. 131

5 Discussion 132

The DYNO grow-and-prune algorithm shows dynamic layer-specific responsiveness for archi- 133

tectural changes during fine-tuning without the need for any hand-engineered bias, such has 134
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predetermined schedules of architectural change. This is a benefit of dynamically informed schedul- 135

ing and minimal hyper-parameterization. This direction is important for the motivation of AutoML 136

towards more automation and less human engineering. 137

Grow-and-prune algorithms have a very complex design space due to the interplay of growing, 138

pruning, and training a model. This preliminary study only considered one intuition-guided 139

instance within this space by defining each of TrigGrow, InitGrow, TrigPrune, and SelectPrune, but 140

the vastness prompts algorithmic optimization to find useful combinations of strategies. Previous 141

automated algorithmic discovery methods such as Lange et al. [2023], Real et al. [2020] could be 142

extended to include neural growth and pruning as potential operators during training. 143

Transfer learning is the first step from static supervised learning: further in the same direction 144

include continual learning and multi-task learning. These dynamic paradigms benefit from do- 145

main generalization and avoiding catastrophic forgetting, which can be supported architecturally. 146

Architectural optimization could help find efficient parameter sharing between distributions or 147

tasks. Grow-and-prune may naturally be effective for alleviating the decay in plasticity normally 148

observed in ANNs [Dohare et al., 2021]. To avoid catastrophic forgetting, the pruning mechanism 149

may be modified: activation information could be used to mark which existing neurons could either 150

be used with locked parameters or be copied and fine-tuned. These architectural techniques may 151

additionally detect new contexts, as demonstrated by Hein et al. [2019], to trigger appropriate 152

architectural adjustment, potentially incorporated with structurally aware representation disen- 153

tanglement. These in tandem could ameliorate problems such as representation collapse [Lyle 154

et al., 2022] and lack of generalization [Nikishin et al., 2022], in addition to finding dynamically 155

constructed architectures for improved efficiency. 156

6 Additional Related Works 157

Previous neural grow-and-prune works often focus on the "where" and "how" of pruning, using 158

generic schedules and neurogenesis initializations. The most comparable works that separately 159

consider informed neural creation and pruning are Firefly [Wu et al., 2020] and NeST [Dai et al., 160

2019], which use gradient-based information. Further works perform less informed neural creation 161

[Qiao et al., 2019, Du et al., 2019] or ephemeral pruning via masking [Wan et al., 2020]. Dai et al. 162

[2020] studies synaptic grow-and-prune for incremental learning and Tung et al. [2017] performs 163

unstructured pruning during fine-tuning, or fine-pruning. Structured fine-pruning has mostly been 164

studied in the case of large language models (LLMs) driven by their prohibitively large training and 165

inference costs when unpruned [Santacroce et al., 2023]. Zhao et al. [2023] performs structured 166

pruning driven by redundancy metrics. No other known neural grow-and-prune works consider 167

the transfer learning case, nor use only activation-based information. 168

7 Conclusion 169

Grow-and-prune during transfer learning and other dynamic learning environments is an intuitively 170

useful yet challenging addition that warrants further investigation. With DYNO, we propose a 171

framework for triggering pruning and growing strategies and demonstrate that this can result in 172

structural changes during the learning process which respond to a downstream task distribution. 173

8 Broader Impact Statement 174

After careful reflection, we have determined that this work presents no notable negative impacts 175

to society or the environment. We believe that this work supports the general practice of reusing 176

pre-trained models instead of training from scratch, reducing compute costs and thus emissions. 177
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scope. 182
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hyperparameter settings, and how they were chosen)? [Yes] Training details are included 211
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hyperparameters for that code? [Yes] All results included were run by us. 215

(g) Did you run ablation studies to assess the impact of different components of your approach? 216

[Yes] We compare DYNO to statically structured models. We leave ablation of the pruning 217

and growing components as future work due to lack of time, potentially to be included in 218

the camera-ready versin if accepted. 219

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] All results 220

included were run by us with identical protocols. 221
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A Training Details 316

All experiments begin with the same Imagenet-pretrained VGG11 backbone, with standard layer 317

widths. The results show the mean, standard deviation, and (when applicable) covariance across 5 318

trials each with different random seeds. For Galaxy10, the final classification layer is replaced with 319

a reinitialized 10-way classification layer. For Imagenette and Imagewoof, the final classification 320

layer is replaced with a 10-way classification layer consisting of the 10 respective classification 321

neurons corresponding to each class. All trials are run for 1000 iterations with 64 samples per 322

iteration, performing pruning and growth trigger evaluations every 50 iterations. The effective 323

dimensionality threshold 𝜖 is 1e-2 and the trigger threshold 𝛿 is 3e-2. The optimizer is Adam with a 324

learning rate of 3e-4 and weight decay of 1e-3. All metrics are evaluated on post-activations, which 325

are tracked for each layer in a FIFO buffer that is dynamically sized to contain more samples than 326

neurons, as necessary for the effective dimensionality calculation. Only forward pass information is 327

required. The number of candidates generated for neural growth is 100×TrigGrow (𝑓 , 𝑙). ImageNet, 328

Imagenette, and Imagewoof are available freely for research purposes. Galaxy10 is available under 329

the MIT license. 330

B DYNO with Surgical Fine-Tuning 331

Towards structurally heterogeneous learning rates, we additionally reimplemented Surgical Fine- 332

Tuning (SFT) [Lee et al., 2023] as an orthogonal transfer learning tool. We specifically use their Auto- 333

RGNmethod, which dynamically scales the learning rate of each layer based on the relative gradient 334

norm. The experimental results, including those from Figure 1 and also the same experimental 335

protocols but with SFT, are shown in Figure 2. All hyperparameters were kept the same, with SFT 336

hyperparameters used from Lee et al. [2023]. 337

With SFT, DYNO performs as well or better than static architectures across all tasks. However, 338

DYNO+SFT has significantly less architectural change: virtually none during transfer to Imagewoof, 339

only late changes for Imagenette, and immediate pruning but then subtle growth for Galaxy10. A 340

potential explanation is that SFT reduces some signaled need for grow-and-prune by heteroge- 341

neously and dynamically tweaking learning rates. Further hyperparameter tuning towards synergy 342

could yield improved results: implementing SFT on a neuronal level could be even more beneficial. 343
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Figure 2: Experimental results for transfer to Imagenette (top), Imagewoof (middle), and Galaxy10

(bottom), including combinations of DYNO and SFT [Lee et al., 2023]. First column: final test

accuracy against final model inference FLOPs. Second column: progression of inference cost

over the course of training. Third and fourth columns: total neurons grown and pruned per

layer over the course of DYNO (third column) and DYNO+SFT (fourth column), relative to

the original layer width. All covariance ellipses, error clouds, and error bars show standard

deviation across the 5 trials.

A notable potential confounder is that SFT only reduces the learning rate from the baseline 344

value used, so all trials using SFT had smaller learning rates overall. This explains why performance 345

was improved for Imagenette and Imagewoof, which are very close in distribution to Imagenet, but 346

was worse for Galaxy10. 347
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