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ABSTRACT

Graph Transformers (GTs) have demonstrated superior performance compared
to traditional message-passing graph neural networks in many studies, especially
in processing graph data with long-range dependencies. However, GTs tend to
suffer from weak inductive bias, overfitting and over-globalizing problems due to
the dense attention. In this paper, we introduce SFi-attention, a novel attention
mechanism designed to learn sparse pattern by minimizing an energy function
based on network flows with ℓ1-norm regularization, to relieve those issues caused
by dense attention. Furthermore, SFi-Former is accordingly devised which can
leverage the sparse attention pattern of SFi-attention to generate sparse network
flows beyond adjacency matrix of graph data. Specifically, SFi-Former aggregates
features selectively from other nodes through flexible adaptation of the sparse
attention, leading to a more robust model. We validate our SFi-Former on various
graph datasets, especially those graph data exhibiting long-range dependencies.
Experimental results show that our SFi-Former obtains competitive performance on
GNN Benchmark datasets and SOTA performance on Long-Range Graph Bench-
mark (LRGB) datasets. Additionally, our model gives rise to smaller generalization
gaps, which indicates that it is less prone to over-fitting.

1 INTRODUCTION

Traditional graph representation learning methods, such as GCN (Defferrard et al., 2016; Kipf
& Welling, 2016; Zhang et al., 2019), GAT (Veličković et al., 2017), GIN (Xu et al., 2018) and
GatedGCN (Bresson & Laurent, 2017), typically rely on a local message-passing mechanism that
integrates the features of a node’s neighbors with those of directly or closely connected nodes. This
design effectively captures the topological structure of the graph, but it faces issues such as over-
smoothing (Oono & Suzuki, 2019), over-squashing (Alon & Yahav, 2020), and an inability to handle
graph data with long-range dependencies. As the transformer architectures have achieved widespread
successes in other domains, it also receives a growing interests to graph learning. To this end, Graph
Transformers (GTs) have been proposed, enabling each node to interact with all other nodes in
the graph through self-attention mechanism (Dwivedi & Bresson, 2021; Ying et al., 2021; Müller
et al., 2024). Such short-cut connections between nodes are in sharp contrast with message-passing
based GNNs, making GTs beneficial for many realistic applications such as generating molecular
graphs (Mitton et al., 2021), generating texts from knowledge graphs (Koncel-Kedziorski et al., 2019),
improving recommendation systems (Li et al., 2023) and so on. However, GTs effectively operates
on an auxiliary fully-connected graph, disregarding the original graph structure of the problem,
which results in a weak inductive bias with respect to the graph’s topology (Wang et al., 2024).
To address this weakness, positional and structural encodings (PE/SE), such as graph Laplacian
eigenvectors (Makarov et al., 2021; Kreuzer et al., 2021a), are commonly used in GTs to incorporate
structural information from the original graph. To combine the strengths of message-passing GNNs
and GTs, GraphGPS framework is proposed, providing a flexible platform for experimenting with
new model designs and learning methods (Rampášek et al., 2022).

Recent works (Shirzad et al., 2023; Fournier et al., 2023) have shown the effectiveness of using
sparsity for simplifying the computational complexity of GTs. In this study, we aim to explore
another potential advantage of sparsity in improving the performance and stability of GTs, through
the design of novel sparse attention mechanisms. In vanilla transformers, each node aggregates
features from all other nodes, making it susceptible to attending to irrelevant or spurious information,
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Figure 1: Overview of the SFi-Former architecture. Our design enables node features to be aggregated
from the features of their adjacent nodes and selectively from distant nodes based on our Sparse-
Flow-induced attention mechanism, achieving robust performance on downstream tasks.

which is particularly harmful for problems of small and medium sizes. This has been shown in
prior studies, such as the large gaps between the training and testing evaluation metrics in dense
GTs (Dwivedi et al., 2022b), as well as in our own experiments presented below. According to the
conventional wisdom in statistics, sparse variable selection and other shrinkage methods are helpful in
reducing variance of estimates and improving generalization (Hastie et al., 2009). Therefore, we aim
to develop adaptive sparse transformers that are better suited for graph-related tasks where each node
selectively aggregates information from other nodes, in order to enhance performance and improve
generalization. We do not aim to address the computational bottleneck of GTs at this point.

To achieve this, we draw inspiration from recent advancements in a study of flow-based semi-
supervised learning (Rustamov & Klosowski, 2018). In this approach, an unlabeled node of interest is
treated as a sink node that receives sparse network flows from a set of labeled nodes. The flow patterns
are determined by minimizing an energy function, and the unlabeled node gathers information from
each labeled node, with the weight of the information based on the total outflow from each labeled
node. For our purposes, we treat each query node as a sink node that receives sparse flows from
key nodes, with the magnitudes of these flows determining the attention scores. Further motivated
by recent findings that GTs tend to overly focus on distant nodes (Xing et al., 2024), we enhance
the sparse-flow-based attention with hard-wired local connections with adjacent nodes. This allows
the sparse-flow attention to focus on the residual information in addition to those from adjacency
components, which further exploits the graph structure information. We refer to our GT architecture
based on the Sparse-Flow-induced attention mechanism as SFi-Former, where the architecture is
shown in Figure 1.

Our main contributions are as follows. (1) We propose SFi-Former, an adaptive sparse attention
mechanism induced by sparse network flows from key nodes to query nodes. It demonstrates robust
performance on capturing dependencies among nodes. (2) We propose an energy-based framework for
attention, which incorporates the standard self-attention mechanism as a special case, and provides
a flexible framework to accommodate additional modeling elements. (3) Built upon the recent
GraphGPS framework (Rampasek et al., 2022), our SFi-Former outperform alternatives in processing
graph data with long-range dependencies, which achieves SOTA performance on the LRGB datasets.
It can alleviate overfitting compared to GTs with dense attention mechanism and demonstrates
competitive performance across various graph datasets.

2 RELATED WORK

Graph Transformers (GTs). Recently, transformer architectures and attention mechanisms
(Vaswani et al., 2017) have achieved tremendous successes in natural language processing
(NLP) (Kalyan et al., 2021) and computer vision (CV) (d’Ascoli et al., 2021; Guo et al., 2021;
Han et al., 2022), with growing efforts to apply them to graph structures as well. However, because
graph transformers (GTs) rely on global attention mechanisms, they suffer from a weak inductive
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bias, limiting their ability to fully exploit graph structure. Later research introduced various positional
encoding (PE) methods, such as SAN (Kreuzer et al., 2021b), Graphormer (Ying et al., 2021), and
SAT (Chen et al., 2022a), within the transformer framework. Concurrently, structural encoding (SE)
methods (Dwivedi et al., 2022a; Bodnar et al., 2021; Bouritsas et al., 2022) were also developed. Both
PEs and SEs aim to mitigate the weak inductive bias problem. GraphGPS (Rampasek et al., 2022)
offers a unified framework that integrates positional and structural encodings in GTs. Nevertheless,
both PE and SE may still be insufficient to fully capture the inductive bias of the graph structure.

Sparse transformers. The original transformer architecture (Vaswani et al., 2017) has the quadratic
complexity in the number of tokens, which becomes a bottleneck for processing long sequences
in NLP tasks. Various sparse transformers, including Performer (Choromanski et al., 2021), Big-
Bird (Zaheer et al., 2020), and Reformer (Kitaev et al., 2020), have been developed to address this
bottleneck (Catania et al., 2023). However, these methods have not demonstrated competitive perfor-
mance on graph data with long-range dependencies (Rampasek et al., 2022). Sparse attention has also
been considered in message-passing based Graph Attention Networks (Ye & Ji, 2021). Exphormer
leverages the idea of virtual global nodes and expander graphs to create sparse GTs (Shirzad et al.,
2023). While such sparse transformers effectively reduce computation, they are often sub-optimal for
enhancing performance.

Energy-based graph models. In addition to traditional GNNs and GTs, graph neural diffusion models
and energy-based graph models are significant research areas for learning from graph data (Chamber-
lain et al., 2021; Bronstein et al., 2021). The work by (Rustamov & Klosowski, 2018) introduces a
flow-based model for semi-supervised learning, improving label propagation. Elastic Graph Neural
Networks (EGNN) (Liu et al., 2021) employ ℓ1 and ℓ2-minimizaiton induced graph smoothing for
semi-supervised learning. Graph Implicit Nonlinear Diffusion (GIND) (Chen et al., 2022c) proposes
a method for feature aggregation using non-linear diffusion induced by the optimization of an energy
function. Additionally, DIGNN (Fu et al., 2023) introduced implicit GNN layers as fixed-point solu-
tions to Dirichlet energy minimization. The survey by (Han et al., 2023) provides a good overview
of this growing area. However, these studies do not address GTs, which are the main focus of the
current work.

3 FLOW INDUCED ATTENTION PATTERNS

In this section, we outline the derivations of attention patterns based on energy-based flow network,
aiming to extend the existing Transformer architecture and develop a flexible framework that can
learn the optimal sparsity dynamically.

3.1 ELECTRIC CIRCUIT VIEW OF SELF-ATTENTION

The standard self-attention mechanism with n tokens can be represented as interactions on a bi-
directional fully-connected graph G(V, E) with n = |V| nodes (Vaswani et al., 2017). Denoting the
feature vectors of these n tokens as X ∈ Rn×d, the attention for the h-th head can be expressed as

ATTh(X) = Softmax
( (XW h

K)(XW h
Q)T

√
dk

)
1 where W h

K and W h
Q ∈ Rd×dk . The forward step of the

standard attention mechanism at the k-th layer is defined as follows:

X
(k+1)
i = X

(k)
i +

H∑
h=1

n∑
j=1

ATTh(X(k))i,jX
(k)
j W h

V W
h
O, (1)

where W h
V ∈ Rd×dV ,W h

O ∈ RdV ×d and a residual connection has been introduced. The forward
step in Eq. (1) indicates that the larger ATTh(X(k))i,j is, the greater the contribution of the j-th
token’s feature X

(k)
j to the i-th token’s feature X

(k+1)
i at the next layer.

Here, we re-interpret self-attention through the lens of electric circuits on fully-connected graphs. Let
the node set be V = {v1,v2, · · · ,vn}. Consider a query node vs ∈ V , where each node vi (including
node vs) has a short-cut link to node vs. Let node vs act as a sink, which will draw one unit of

1The softmax operator on a matrix X ∈ Rn×n is defined as Softmax(X) = exp(X)

exp(X)1n1T
n

, where exp(·)

denotes an elementwise exponential. Componentwise, this can be expressed as [Softmax(X)]ij =
exp(Xij)∑
k exp(Xik)

.
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resources from all other nodes in the graph through the short-cut links. Each node vi has to transport
some amount of resources to the sink node vs to satisfy its demand. Let zi represent the network flow
from node vi to node vs, they satisfy the flow conservation constraint

∑n
i=1 zi = 1. The amount of

network flow zi is dictated by a distance measure ri between node vi and node v∗; we refer to ri
as the resistance on the i-th link. Following the Thomson’s Principle for resistor networks (Doyle
& Snell, 1984), the optimal network flows are obtained by solving a quadratic energy minimization
problem along with its corresponding Lagrangian function as

min
z
E(z) =

1

2
zTRz s.t. zT1n − 1 = 0, (2)

L(z, µ) = 1

2
zTRz − µ(zT1n − 1), (3)

where z = (z1, · · · , zn)T and R = diag(r1, · · · , rn). The lagrange multiplier µ can be interpreted
as the negative electric potential of node vs and the electric potentials at other nodes are zero since
their outflows z are unconstrained, which effectively have zero Lagrange multipliers (Rebeschini &
Tatikonda, 2019). By solving ∂L

∂z = 0, we can obtain the optimal flow as z∗i = µ/ri = [0− (−µ)]/ri,
which satisfies the Ohm’s Law I = U/R. Furthermore, by solving ∂L

∂µ = 0, we can obtain the negative
electric potential at node vs as µ∗ = 1/

∑n
i=1(ri)

−1. Note that 1/
∑n

i=1(ri)
−1 corresponds to the

total resistance of resistors {ri} connected in parallel, and the optimal network flow at the i-th link
is z∗i = (ri)

−1∑n
j=1(rj)

−1 . If we identify the resistance as ri ∝ exp(−qT
s ki/

√
dk)

2, we observe that the

optimal network flow is z∗i =
exp(qT

s ki/
√
dk)∑n

j=1 exp(qT
s kj/

√
dk)

, which is the attention score from the query node

vs to a key node vi in the standard self-attention mechanism. Intuitively, the greater the alignment
between the query vector qs and the key vector ki, the smaller the resistance ri, resulting in a higher
electrical flow z∗i from node vi to vs, which implies a greater attention from node vs to vi.

To enumerate different query nodes, it is convenient to express the above formalism in matrix notation.
Let Z ∈ Rn×n denote the flow pattern with Zi,j being the flow from node vj to the sink node vi, and
Rh ∈ Rn×n denotes the resistances on the corresponding links. The energy minimization problem
of Eq. (2) can then be written as

min
Z

Eh(Z) =
1

2
Tr

[
(Rh ◦Z)ZT

]
s.t. Z1n − 1n = 0n. (4)

where ◦ represents the Hadamard product. The corresponding optimal flows are given by

Z∗h
i,j =

(Rh
i,j)

−1∑n
k=1 (R

h
i,k)

−1
. (5)

If we choose the trainable resistances as Rh = Softmax
(
− (XW h

K)(XW h
Q)T

√
dk

)
, we obtain the optimal

flows as Z∗h = Softmax
( (XW h

K)(XW h
Q)T

√
dk

)
= ATTh(X). Therefore, optimizing the energy

function in Eq. (4) recovers the conventional self-attention pattern ATTh(X). This perspective
provides a framework for designing other attention mechanisms by adjusting the energy function.

3.2 SPARSE-FLOW-INDUCED ATTENTION (SFI-ATTENTION)

As outlined in Sec. 1, our objective is to devise sparse transformers by modifying the quadratic energy
function of network flows. To this end, we introduce an additional ℓ1-norm penalty to the network
flow in Eq. (2) to encourage sparsity in the flow patterns. Minimization based on the ℓ1-norm is widely
employed across various fields, with prominent examples including LASSO in statistics (Hastie
et al., 2009) and compressed sensing (Wright & Ma, 2022). In LASSO for regression problems, the
ℓ1-norm regularization performs shrinkage to the regression coefficients, which can significantly
reduce the estimation variance for high dimensional problems; it is also able to shrink coefficients to
zero, producing sparse solutions and effectively performing variable selection.

For our purpose, we consider a node vs as the sink node which draws one unit of resources from all
nodes as before. The energy minimization problem for sparse network flows and the corresponding

2Here, qs = XsWQ is the query vector of node vs, and ki = XiWK is the key vector of node vi.
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Figure 2: Illustration of the SFi-attention, where the energy-minimized flow z∗i =
Softλfi

(µ∗)

ri
serves

as the attention score from a given query node to the key node vi. Here, frictions serve as learnable
node-wise noise filters, allowing only strong signals to pass through. The resistance ri represents
a dissimilarity measure of the query vector and the key vector of node vi. The optimal flows {z∗i }
correspond to the attention pattern from the given query node to all key nodes.

Lagrangian function are given as follows:

min
z
E(z) =

1

2
zTRz + λ||f ◦ z||1 s.t. zT1n − 1 = 0, (6)

L(z, µ) = 1

2
zTRz + λ||f ◦ z||1 − µ(zT1n − 1), (7)

where λ is a trade-off parameter balancing the ℓ1 penalty and the quadratic energy, and the parameters
f = (f1, · · · , fn)T act as element-wise frictions. For convenience, we introduce the soft-thresholding
operator Softτ (ω) = sgn(ω)max(|ω| − τ, 0), where τ > 0. This operator filters out any input signal
ω with a magnitude below τ (i.e., |ω| < τ ) and shrinks ω toward zero when |ω| ≥ τ .

The optimality condition 0 ∈ ∂L
∂z gives rise to the optimal flow as z∗i =

Softλfi
(µ)

ri
, where the

Lagrangian multiplier µ satisfies
∑n

i=1 z
∗
i =

∑n
i=1

Softλfi
(µ)

ri
= 1. Physically, the i-th link admits a

non-zero network flow only if the potential difference µ between node vs and node vi exceeds the
friction fi, resulting in sparse flow patterns. The parameter ri acts as a resistance, relating the shrunk
potential difference Softλfi(µ) to the flow z∗i , similar to the behavior in electric circuits discussed
in Sec. 3.1. The key difference is that the sparse flow network exhibits non-linear current-voltage
characteristics. Such non-linear circuits were employed in (Rustamov & Klosowski, 2018) to tackle
semi-supervised learning problems, which used hand-crafted resistance parameters.

For our purpose, we leverage the framework of sparse network flow optimization to develop sparse
attention mechanisms, where the resistances depend on trainable parameters, having the form of
ri ∝ exp(−qT

s ki/
√
dk). Additionally, we notice that the sparsity of flow patterns is influenced by (i)

the global balancing parameter λ, and (ii) the node-specific friction parameters {fi}. In light of this,
we also make the frictions f depend on trainable parameters, serving as node-wise noise filters to
eliminate small flows (attention scores). This design provides a more flexible attention mechanism
compared to standard self-attention. Figure 2 clearly illustrates the roles of resistance and friction in
the our sparse attention mechanism.

Finally, we note that optimization-induced sparse attention mechanisms have been explored in NLP
tasks, such as in the work by (Correia et al., 2019), which achieves this by optimizing an objective
function based on Tsallis entropies. Our approach, inspired by network flow problems, differs from
these studies and offers a more flexible modeling framework including learnable friction terms as
noise filters. Moreover, the network flow problem does not have to be defined on the complete
graph as assumed here and other energy functions can also be explored. Extending the flow-based
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framework to more general graph topologies and other objective function are interesting directions
for future research.

3.3 SPECIFYING AND COMPUTING SFI-ATTENTION

We express the sparse flow problem in matrix notation to consider different query nodes,

min
Z

Eh
S(Z) =

1

2
Tr

[
(Rh ◦Z)ZT

]
+ λ||F h ◦Z||1,1 s.t. Z1n − 1n = 0n, (8)

where Z ∈ Rn×n is the flow pattern with Zi,j being the flow from node vj to the sink node vi, and
Rh and F h are the corresponding resistance and friction parameters, respectively. In Eq. (8), ||A||1,1
represents the entry-wise L1,1-norm of the matrix A, defined as ||A||1,1 =

∑
i,j |Ai,j |.

Building on the rationale in Sec. 3.1, we parameterize the resistances as Rh = Softmax
(
−

(XW h
K)(XW h

Q)T
√
dk

)
, with trainable parameters W h

K and W h
Q, which essentially corresponds to conven-

tional multi-head attention. For the friction parameters F h, there are various possible choices. In
this work, we primarily define F h as another multi-head attention with a different set of trainable
parameters, W̃ h

K and W̃ h
Q, though other parameterizations for F h are also possible.

Due to the non-differentiable nature of the energy function in Eq. (8), the closed-form solution for
the optimal flows is not available. Therefore, we use an iterative method to solve the non-smooth
optimization problem, which is friendly to back-propagation for training. We use the penalty method
by introducing a quadratic penalty term for the constraint Z1n − 1n = 0n in Eq. (8), leading to

min
Z

1

2
Tr

[
(Rh ◦Z)ZT

]
+
α

2
||Z1n − 1n||22︸ ︷︷ ︸

H(Z)

+λ||F h ◦Z||1,1︸ ︷︷ ︸
G(Z)

, (9)

where α is the penalty strength parameter, and G(Z) and H(Z) denote the non-smooth part and
the differentiable part, respectively. We then apply the proximal method Parikh & Boyd (2014) to
iteratively solve the penalized problem, as outlined in appendix (A.2). To accelerate the convergence
of the proximal iterations, we utilize the Barzilai-Borwein (BB) method for updating the step
size (Barzilai & Borwein, 1988). Define A(k−1) = Z(k)−Z(k−1) and B(k−1) = ∇(k)

Z H−∇(k−1)
Z H .

The proximal iteration can be expressed as:
Y (k) = Z(k) − t(k)

(
Rh ◦Z(k) + α(Z(k)1n − 1n)1

T
n

)
,

Z(k+1) = sign(Y (k)) ◦max
(
|Y (k) − t(k)λF h|, 0n×n

)
,

t(k) = ⟨A(k−1),B(k−1)⟩
||B(k−1)||F

,

(10)

where || · ||F denotes the Frobenius norm of a matrix and ⟨·, ·⟩ denotes the Frobenius inner product
of matrices. Since the elements of Rh and F h are within the interval (0, 1), the convergence of
the proximal iteration method outlined in Eq. (10) can be ensured when t(k) is not greater than
(||Rh||2 + α

√
n)−1. See A.1 for the detailed derivation. The resulting optimal flows give rise to the

SFi-attention pattern SFi-ATTh(X) = Z∗(Rh(X),F h(X)).

4 THE SFI-FORMER ARCHITECTURE

In this section, we integrate the attention mechanisms from Sec. 3 into GTs and combine them with
message-passing features of GNNs to enhance the ability to capture global information in graph data.

4.1 MOTIVATION FOR THE ARCHITECTURE

A graph representation learning task usually comes with a graph G̃ = {Ṽ, Ẽ}, with the node set
Ṽ = {v1,v2, · · · ,vn} and the edges set Ẽ = {e1, e2, · · · , em}. Note that G̃ differs from the
complete graph G for attention patterns introduced in Sec. 3.1. We denote the adjacency matrix of the
graph G̃ as A ∈ Rn×n, and let D be the diagonal degree matrix where Di,i represents the degree of
node vi. Denote the d-dimensional feature vectors for all nodes as X ∈ Rn×d.

6
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Defining Ã = D̂− 1
2 (A+ I)D̂− 1

2 , the message-passing step in Graph Convolutional Networks(
GCN, Kipf & Welling (2016)

)
can be expressed as X(k+1) = σ(ÃX(k)W ). In GCNs and

many other message-passing-based GNNs, nodes are restricted to focus on 1-hop neighbors when
constructing representations at each layer. As a result, multiple layers are needed to capture long-
range interactions, but this approach is hindered by over-smoothing and over-squashing effects. In
contrast, GTs can easily capture long-range dependencies of one node by its direct attentions to
all others. However, not all information is relevant for downstream tasks; irrelevant or spurious
patterns can propagate, even when having low attention scores. We believe that a more selective
sparse attention can enable more effective and robust feature aggregation. Accordingly, we propose
an architecture that combines SFi-attention with message-passing to achieve the best of both worlds.

4.2 MULTI-HEAD SFI-ATTENTION ENHANCED BY ADJACENCY COMPONENTS

Frameworks like GraphGPS already attempt to combine GTs with message-passing GNNs, but it
remains unclear whether the GT module significantly contributes to model fitting. If it does, the
resulting model may also inherit GTs’ drawbacks, such as overemphasizing distant nodes (Xing
et al., 2024). To alleviate the limitation within the GT module, we propose to enhance the GT with
hard-wired adjacent connections as follows.

Adjacency enhanced Attention: Inspired by Resnet (He et al., 2016), we propose a residual-like
learning approach, where the model learns the attention pattern beyond the features contributed from
the adjacent nodes. The corresponding forward step is given by

X(k+1) = X(k) + (1 + γ)−1
H∑

h=1

[Ã+ γ SFi-ATTh(X(k))]X(k)W h
V W

h
O, (11)

where γ is a learnable parameter that balances the contributions from the adjacency components and
the SFi-attention. We will consider the following cases, each varying in hyper-parameter choices and
methods for computing attention patterns.

• Sparse Pattern: SFi-attention is obtained by computing the optimal flows, i.e., SFi-ATTh(X) =
Z∗(Rh(X),F h(X)), by following the procedures outlined in Sec. 3.3. Here, Rh(X) and F h(X)
are parameterized by two separate multi-head attention mechanisms as described in Sec. 3.3 as well.
This process typically produces sparse attention patterns. We refer to the corresponding model in
Eq. (11) as SFi-Former, which is illustrated in Figure 1.

• Dense Pattern: Similar to the above case, but with the ℓ1 penalty parameter λ set to zero. In this
case, SFi-ATT(·) effectively reduces to standard self-attention, resulting in dense attention patterns.
For convenience, we refer to this special case as DFi-Former, which is also adjacency-enhanced.
Recall that DFi-Former admits a closed-form solution, so iterative algorithms are not needed when
computing the attention patterns.

DFi-Former is considered here for comparison with SFi-Former. It also serves as a pretrained model
for initializing the parameters when computing Rh to accelerate training, where the resulting model
is referred to as SFi-Former+.

5 EXPERIMENTS

In this section, we evaluate our models across a wide range of graph datasets, including graph
prediction, node prediction, and edge-level tasks. The results demonstrate that our models achieve
state-of-the-art performance on many datasets, particularly those with long-range dependencies.
We also conduct ablation studies to analyze how sparsity contributes to model performance and
generalization.

Our Models: In this section, we propose three models for comparative experiment, all combin-
ing adjacency-enhanced SF-attention in Eq. (11) with message-passing GNNs in the GraphGPS
framework (Rampasek et al., 2022). These models are: (i) SFi-Former, (ii) DFi-Former, and (iii)
SFi-Former+, which initializes parameters using DFi-Former’s checkpoint and computes attention
patterns via iterative proximal methods as outlined in Sec. 3.3.
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Table 1: Test performance on the LRGB dataset Dwivedi et al. (2022b). All models, except for
ours, are categorized into three categories. The top group consists of GNN models based on local
message passing, the middle group contains GTs, and the bottom group comprises sparse GT models
and others. Results are presented as mean ± s.d. of 4 runs. The first, second, and third best are
highlighted. *: Since the dataset COCO-SP is quite large, we only conduct a single run due to the
limitation of computing resources.

Model COCO-SP PascalVOC-SP Peptides-Func Peptides-Struct PCQM-Contact
F1 score ↑ F1 score ↑ AP ↑ MAE ↓ MRR ↑

GCN 0.0841 ± 0.0010 0.1268 ± 0.0060 0.5930 ± 0.0023 0.3496 ± 0.0013 0.3234 ± 0.0006
GIN 0.1339 ± 0.0044 0.1265 ± 0.0076 0.5498 ± 0.0079 0.3547 ± 0.0045 0.3180 ± 0.0027
GatedGCN 0.2641 ± 0.0045 0.2873 ± 0.0219 0.5864 ± 0.0077 0.3420 ± 0.0013 0.3242 ± 0.0011
GAT 0.1296 ± 0.0028 0.1753 ± 0.0329 0.5308 ± 0.0019 0.2731 ± 0.0402 -
SPN - 0.2056 ± 0.0338 0.6926 ± 0.0247 0.2554 ± 0.0035 -

SAN 0.2592 ± 0.0158 0.3230 ± 0.0234 0.6439 ± 0.0064 0.2683 ± 0.0057 0.3350 ± 0.0003
NAGphormer 0.3458 ± 0.0070 0.4006 ± 0.0061 - - -
GPS+Transformer 0.3774 ± 0.0150 0.3689 ± 0.0131 0.6575 ± 0.0049 0.2510 ± 0.0015 0.3337 ± 0.0006
NodeFormer 0.3275 ± 0.0241 0.4015 ± 0.0082 - - -
DIFFormer 0.3620 ± 0.0012 0.3988 ± 0.0045 - - -

GPS+BigBird 0.2622 ± 0.0008 0.2762 ± 0.0069 0.5854 ± 0.0079 0.2842 ± 0.0139 -
Exphormer 0.3430 ± 0.0108 0.3975 ± 0.0043 0.6527 ± 0.0043 0.2481 ± 0.0007 0.3637 ± 0.0020
Graph-mamba 0.3909 ± 0.0128 0.4192 ± 0.0120 0.6972 ± 0.0100 0.2477 ± 0.0019 -

DFi-Former 0.3974 ± 0.0105 0.4400 ± 0.0113 0.6951 ± 0.0072 0.2470 ± 0.0034 0.3765 ± 0.0036
SFi-Former 0.3801* 0.4737 ± 0.0096 0.6962 ± 0.0054 0.2478 ± 0.0029 0.3516 ± 0.0023
SFi-Former+ 0.3991* 0.4670 ± 0.0071 0.7024 ± 0.0039 0.2467 ± 0.0026 0.3686 ± 0.0031

Datasets: We evaluated our models on the Long Range Graph Benchmark (Dwivedi et al., 2022b), in-
cluding two image-based datasets (PascalVOC-SP, COCO-SP) and three molecular datasets (Peptides-
Func, Peptides-Struct, and PCQM-Contact). We also performed evaluation on the Graph Neural
Network Benchmark (Dwivedi et al., 2023), which includes two image-based datasets (CIFAR10,
MNIST) and two synthetic SBM datasets (PATTERN, CLUSTER).

Baselines: We evaluate the performance of SFi-Former by comparing it with basic message-passing
GNNs (MPNNs), GTs, and other competitive graph neural networks. For basic MPNNs, we consider
models such as GCN (Kipf & Welling, 2016), GIN (Xu et al., 2018), GAT Veličković et al. (2017),
SPN (Abboud et al., 2022), GraphSAGE (Hamilton et al., 2017), along with their enhanced versions
(e.g. Gated-GCN (Bresson & Laurent, 2017)). For GTs, we include recent competitive models such as
SAN (Kreuzer et al., 2021a), NAGphormer (Chen et al., 2022b), GPS-Transformer (Rampasek et al.,
2022), as well as sparse GTs like Performer, BigBird (Zaheer et al., 2020) and Exphormer (Shirzad
et al., 2023). Furthermore, we compare against other competitive graph neural networks, including
Graph-mamba (Behrouz & Hashemi, 2024) and DIFFormer (Wu et al., 2023).

Setup: We conducted our experiments within the GraphGPS framework proposed by (Rampasek
et al., 2022). All experiments were run on Nvidia A100 GPUs with 40GB memory and Nvidia A6000
GPUs with 48GB memory. Model parameters are provided in Appendix A.4.2.

5.1 LONG RANGE GRAPH BENCHMARK

Table 1 presents the results of our models on the Long-Range Graph Benchmark (LRGB) Dwivedi
et al. (2022b), which consists of five challenging datasets designed to assess a model’s ability to
capture long-range interactions (LRI) in graphs. Our models demonstrate superior performance,
surpassing all existing models on these long-range datasets. Notably, they significantly outperform
previous best results on the PascalVOC-SP and COCO-SP datasets.

Remind that in DFi-Former, the adjacency-enhanced method is applied to the standard-attention
mechanism. It already demonstrates competitive performance, which indicates the effectiveness of our
design of the adjacency-enhanced method. Further improvements in test performance are observed
with SFi-Former and SFi-Former+ across most datasets (except PCQM-Contact), highlighting the
effectiveness of the proposed SFi-attention mechanism and its associated iterative computation
methods.
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Table 2: Test performance on the GNNbenchmark dataset Dwivedi et al. (2023). Results are presented
as mean ± s.d. of 4 runs. The first, second, and third best are highlighted.

Model MNIST CIFAR-10 PATTERN CLUSTER
Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑

GCN 0.9071 ± 0.0021 0.5571 ± 0.0038 0.7189 ± 0.0033 0.6850 ± 0.0098
GIN 0.9649 ± 0.0025 0.5526 ± 0.0153 0.8539 ± 0.0013 0.6472 ± 0.0155
GatedGCN 0.9734 ± 0.0014 0.6731 ± 0.0031 0.8557 ± 0.0008 0.7384 ± 0.0033
GAT 0.9554 ± 0.0021 0.6422 ± 0.0046 0.7827 ± 0.0019 0.7059 ± 0.0045
GraphSAGE 0.9731 ± 0.0009 0.6577 ± 0.0030 0.5049 ± 0.0001 -

SAN - - 0.8658 ± 0.0004 0.7669 ± 0.0065
GPS+Transformer 0.9811 ± 0.0011 0.7226 ± 0.0031 0.8664 ± 0.0011 0.7802 ± 0.0018

GPS+BigBird 0.9817 ± 0.0001 0.7048 ± 0.0011 0.8600 ± 0.0014 -
Exphormer 0.9855 ± 0.0003 0.7469 ± 0.0013 0.8670 ± 0.0003 0.7807 ± 0.0002
Graph-mamba 0.9839 ± 0.0018 0.7456 ± 0.0038 0.8709 ± 0.0126 -

DFi-Former 0.9848 ± 0.0005 0.7391 ± 0.0045 0.8641 ± 0.0011 0.7820 ± 0.0012
SFi-Former 0.9846 ± 0.0009 0.7366 ± 0.0058 0.8674 ± 0.0017 0.7828 ± 0.0015
SFi-Former+ 0.9831 ± 0.0012 0.7459 ± 0.0053 0.8678 ± 0.0021 0.7810 ± 0.0011

In particular, our models show significant performance improvements on the COCO-SP and
PascalVOC-SP (C&P) datasets, while the gains on the other three datasets are comparatively modest.
A possible explanation for this disparity is that the nodes in the C&P datasets represent superpixels
from images, where many background nodes don’t require interactions and not all of them contribute
to the semantically relevant nodes. In these cases, a sparse attention pattern effectively captures
relevant interactions, boosting performance. In contrast, the Peptides and PCQM datasets consist of
atom-based nodes, where all nodes may hold similar importance, diminishing the benefit of sparsity.
This is further supported by our investigation: in the C&P datasets, around 20% of node interactions
receive zero attention, compared to only 5% in the other datasets.

5.2 GNN BENCHMARK DATASETS

Table 2 showcases the performance of our models in GNN benchmark datasets (Dwivedi et al., 2023).
The results demonstrate that our models not only excel at handling long-range dependency challenges
but also perform effectively in general graph learning tasks.

5.3 ABLATION STUDIES

In this section, we conduct a series of ablation studies. First, to assess the contribution of each
component in SFi-Former, we separately tested the impact of the adjacency-enhanced method and
the sparse attentions on the results. Neither component alone yielded the most competitive results,
highlighting the importance of both in enhancing prediction performance. Second, we explored
the optimal parameters for the flow network’s energy framework. The results show that no single
parameter set consistently outperformed others across all datasets, but our model exhibited strong
potential under well-tuned conditions. Based on this ablation studies, we select λ∗ = 1.0 and α = 0.1
as the parameters for our models, as they provided consistently optimal performance across datasets.

5.4 ROLE OF SPARSITY IN ENHANCING GENERALIZATION

Beyond the prediction performance on test datasets, it is also crucial to evaluate the gap between
training and testing metrics, as this provides insights into the model’s generalization ability. A larger
train-test gap typically suggests a higher risk of over-fitting. As outlined in previous sections, our
adaptive sparse attention mechanism is expected to be more selective in feature aggregation, leading
to models that are more stable and generalizable. To demonstrate this, we plot the train-test gap of
SFi-Former across three datasets and compare it with the GraphGPS model using dense attention.
The results are shown in Figure 3. Specifically, in the PascalVOC-SP and Peptides-Func datasets,
F1-score and accuracy have been used as evaluation metrics (the larger the better). Consequently,
a smaller gap between the training and testing metrics implies less over-fitting to the training data.
Figures 3a and 3b indicate that SFi-Former has a train-test smaller gap compared to GraphGPS. On
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Table 3: Ablation Studies. We analyze the impact of each component in our models as follows: (i)
The penalty coefficient α for the flow conservation constraint, as introduced in Eq. (9). (ii) The
adjacency-enhanced attention mechanism as described in Eq. (11). In this table, Ã refers to the
application of the adjacency-enhanced method, while SP denotes the use of SFi-attention. (iii) The
hyperparameter λ∗ which balances friction and resistance terms in Eq. (8). In the table, λ∗/N∗

corresponds to λ in Eq. (8), where N∗ is the maximum number of nodes in a batch.

Model λ∗ α Attention PascalVOC-SP Peptides-Func Peptides-Struct
F1 score ↑ AP ↑ MAE ↓

GPS - - - 0.3748 ± 0.0109 0.6535 ± 0.0023 0.2510 ± 0.0023
SFi-Former-λ1 0.5 0.1 SP + Ã 0.4853 ± 0.0057 0.6983 ± 0.0034 0.2527 ± 0.0013
SFi-Former-λ2 2.0 0.1 SP + Ã 0.4583 ± 0.0066 0.6844 ± 0.0065 0.2517 ± 0.0016
SFi-Former-λ3 5.0 0.1 SP + Ã 0.4839 ± 0.0073 0.7025 ± 0.0019 0.2528 ± 0.0011
SFi-Former-α1 1.0 0.01 SP + Ã 0.4600 ± 0.0083 0.6851 ± 0.0015 0.2529 ± 0.0018
SFi-Former-α2 1.0 0.5 SP + Ã 0.4581 ± 0.0052 0.7006 ± 0.0027 0.2504 ± 0.0034
SFi-Former-α3 1.0 1.0 SP + Ã 0.4713 ± 0.0076 0.6873 ± 0.0042 0.2552 ± 0.0026

SFi-Former 1.0 0.1 SP + Ã 0.4737 ± 0.0096 0.6962 ± 0.0054 0.2478 ± 0.0029
SFi-Former-SP 1.0 0.1 SP 0.4522 ± 0.0079 0.6766 ± 0.0054 0.2520 ± 0.0017
SFi-Former-Ã 1.0 0.1 Ã 0.3800 ± 0.0091 0.6552 ± 0.0065 0.2511 ± 0.0035

the other hand, the Peptides-Struct dataset utilizes MAE as an evaluation metric (the smaller the
better), so we plot the negative train-test gap, and the result in Figure 3c demonstrates that SFi-Former
is also better than GraphGPS. In summary, SFi-Former consistently exhibits a smaller train-test gap
than the GraphGPS using dense attention, which indicates that SFi-Former is less prone to over-fitting
and highlights its superior generalization ability.

(a) PascalVOC-SP (b) Peptides-Func (c) Peptides-Struct

Figure 3: Differences between the training and testing metrics for the GraphGPS and SFi-Former
models throughout the entire training process across three datasets. Models with smaller differences
between these metrics indicate better generalization.

6 CONCLUSION

In this paper, we introduce SFi-Former, a novel graph transformer architecture featuring a sparse
attention mechanism that selectively aggregates features from other nodes through adaptable sparse
attention. The sparse attention patterns in SFi-Former correspond to optimal network flows derived
from an energy-minimization problem, offering an interesting electric-circuit interpretation of the
standard self-attention mechanism (as a special case of our framework). This framework also provides
flexibility for extending to other innovative attention mechanisms by adjusting the energy function
and related components. Further augmented by an adjacency-enhanced method, SFi-Former is
able to balance local message-passing and global attetion within the graph transformer module,
effectively capturing long-range interactions across various graph datasets and achieving state-of-
the-art performance. Additionally, SFi-Former shows smaller train-test gaps, demonstrating reduced
susceptibility to overfitting. We envisage that SFi-Former and the proposed flow-based energy
minimization framework hold promise for future research in other areas of machine learning.
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Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 29. Curran Asso-
ciates, Inc., 2016. URL https://proceedings.neurips.cc/paper_files/paper/
2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf.

P.G. Doyle and J.L. Snell. Random walks and electric networks. Carus mathematical monographs.
Mathematical Association of America, 1984. ISBN 9780883850244.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
AAAI Workshop on Deep Learning on Graphs: Methods and Applications, 2021.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In International
Conference on Learning Representations (ICLR), 2022a.
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A APPENDIX

A.1 PROOFS

A.1.1 PRELIMINARIES

This section introduces the convergence of approximate point gradient descent methods. When
proposing an approximate gradient descent algorithm, we require f(X) to be a convex function
during the convergence analysis.

Definition 1(Proximal Operator).

To provide clarity, we first define the proximity operator for a convex function. Let the function
h : Rn×n → Rn×n be defined as follows:

proxh(X) = argmin
U

(
h(U) +

1

2
∥U −X∥2

)
U ∈ Rn×n

Using the Weierstrass theorem, we can guarantee that h(U) has a minimizer within a bounded
domain. Since the minimizer exists, the proximity operator is well-defined. If h is a proper closed
convex function, then for any X , the value of prox(X) exists and is unique.

Theorem 1(Relationship between Proximal Operators and Subgradients). If U is the optimal point,

U = proxh(X) ⇐⇒ X −U ∈ ∂h(U)

where ∂h(U) is the subgradient of function h. Proof: If U = proxh(X), the optimality condition is
given by:

0 ∈ ∂h(U) + (U −X), so X −U ∈ ∂h(U)

Conversely, if X −U ∈ ∂h(U), by the definition of the subgradient,

h(V ) ≥ h(U) + ⟨X −U ,V −U⟩, ∀V ∈ Rn×n

Adding 1
2∥V −X∥2 to both sides,

h(V ) +
1

2
∥V −X∥2 ≥ h(U) +

1

2
∥U −X∥2, ∀V ∈ Rn×n

Thus, we have U = proxh(X).

Using th as a substitution for h, the conclusion can be rewritten as:

U = proxth(X) ⇐⇒ U = X − t · ∂h(U)

Assumption 1 (Lipschitz condition).

1. f : Rn×n → R1 is differentiable.
2. Let proxh denote the proximal operator of convex function h : Rn×n → R1. The definition

of proxh is reasonable.
3. ψ(X) = f(X) + h(X) has a bounded minimum ψ∗, and at point X∗, it attains its

minimum.

Moreover, the gradient ∇Xf(X) satisfies the Lipschitz condition. i.e., for some constant L , we have

∥∇Xf(X)−∇Y f(Y )∥ ≤ L∥X − Y ∥, ∀X,Y ∈ Rn×n.

According to Assumption 1, ψ(X) consists of two components: for the convex part f , we solve
the problem using gradient descent, and for the part h, we utilize the proximal operator. Thus, the
iteration formula can be derived as follows:

Xk+1 = proxtk,h(X
k − tk∇Xf(X

k)) (Iteration)

The above conditions ensure the convergence results of the approximate gradient method: In the case
of a fixed step size tk = t ∈

(
0, 1

L

]
, the function value at point xk, ψ(xk), converges to ψ∗ at a rate

of O
(
1
k

)
. Before formally presenting the convergence result, we first introduce a new function.
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Definition 2(Gradient Mapping). Let f(X) and h(X) satisfy Assumption 1, and let t > 0 be a
constant. We define the gradient mapping Gt : Rn×n → Rn×n as follows:

Gt(X) =
1

t
(X − proxth(X − t∇Xf(X))) .

It can be shown that Gt(X) functions as the ‘search direction’ for each iteration in the approximate
gradient method, i.e.

Xk+1 = proxth(X
k − t∇Xf(X

k)) = Xk − tGt(X
k).

Notably, Gt(X) is not the gradient or subgradient of ψ = f + h. The relationship between the
gradient and the subgradient can be derived as follows:

Gt(X)−∇Xf(X) ∈ ∂h(X − tGt(X)).

Additionally, as Gt(X) serves as the ”search direction,” its relationship with the convergence of the
algorithm is critical. In fact, Gt(X) = 0 at the minimum of ψ(X) = f(X) + h(X).

Based on the above definition, we now introduce the convergence of the approximate gradient method.

Theorem 2: Under Assumption 1, with a fixed step size tk = t ∈
(
0, 1

L

]
, the sequence generated by

equation (Iteration) satisfies:

ψ(Xk)− ψ∗ ≤ 1

2kt
∥X0 −X∗∥2.

Proof: By applying the Lipschitz continuity property from Assumption 1 along with the quadratic
upper bound, we have:

f(Y ) ≤ f(X) +∇Xf(X)T (Y −X) +
L

2
∥Y −X∥2, ∀X,Y ∈ Rn×n.

Let Y = X − tGt(X),

f(X − tGt(X)) ≤ f(X)− t∇Xf(X)TGt(X) +
t2L

2
∥Gt(X)∥2.

For 0 < t ≤ 1
L ,

f(X − tGt(X)) ≤ f(X)− t∇Xf(X)TGt(X) +
t

2
∥Gt(X)∥2.

Moreover, since f(X), h(X) are convex functions, for any Z ∈ Rn×n,

h(Z) ≥ h(X − tGi(X)) + (Gi(X)−∇f(X))T (Z −X + tGi(X)),

f(Z) ≤ f(X) +∇f(X)T (Z −X).

The inequality regarding h(Z) uses the relationship (8.1.10). By simplifying, we obtain:

h(X − tGi(X)) ≤ h(Z)− (Gi(X)−∇Xf(X))T (Z −X) +
1

2
∥Gi(X)∥2.

We get for any Z ∈ Rn×n in the global inequality that:

ψ(X − tGi(X)) ≤ ψ(Z) +Gi(Z)T (X −Z)− t

2
∥Gi(X)∥2.

Therefore, for each step of the iteration,

X = X − tGi(X),

In the global inequality, taking z = x∗,

ψ(Xt)− ψ(X∗) ≤ Gi(X)T (Xt −X∗)− t

2
∥Gi(X)∥2.

This simplifies to:

=
1

2t

(
∥X −X∗∥2 − ∥Xt −X∗∥2 − ∥X − tGi(X)−X∗∥2

)
16
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which leads to:
=

1

2t

(
∥X0 −X∗∥2 − ∥Xt −X∗∥2

)
.

Summing for i = 1, 2, . . . , k,

k∑
i=1

(
ψ(Xi)− ψ(X∗)

)
≤ 1

2t

k∑
i=1

(
∥Xi−1 −X∗∥2 − ∥Xi −X∗∥2

)
=

1

2t

(
∥X0 −X∗∥2 − ∥Xk −X∗∥2

)
Thus,

ψ(Xk)− ψ(X∗) ≤ 1

2kt
∥X0 −X∗∥2.

According to Theorem 2, the requirement for convergence is that the step size must be no more than
to the inverse of the Lipschitz constant L corresponding to ∇Xf .

A.1.2 CONVERGENCE ANALYSIS

Definition 3 Optimization energy function. The formal optimization energy function of hth head
Eh(Z;Rh,F h) : Rn×n → R is defined as follows:

Eh(Z;Rh,F h) =
1

2
Tr

[
(Rh ◦Z)ZT

]
+ λ∥F h ◦Z∥1,1 +

α

2
∥Z1n − 1n∥2,

ψ(Z) = f(Z) + h(Z), h(Z) = λ∥F h ◦Z∥1,1.
Proposition (Constraint of step size th in proximal optimization Barzilai & Borwein (1988)). The
function value of the algorithm at the iteration point Xk, denoted as ϕ(Xk), converges to ϕ(X∗) at a
rate of o(1/k), when the following condition is satisfied in hth head:

0 < th ≤ 1

∥Rh∥+ α
√
n
.

Moreover,

0 < th ≤ 1

α
√
n+ 1

.

Each row component of matrix Rh satisfies:
n∑

j=1

Rh
ij = 1,∀i = 1, 2, · · · , n.

This is because the matrix Rh represents the attention between query and key nodes. According to
Perron-Frobenius theorem, the non-expansive feature of the attention matrix introduces λmax,Rh = 1,
which denotes ∥Rh∥ ≤ 1. So we can guarantee the convergence of the optimal algorithm by taking
0 < th ≤ 1

α
√
n+1

, which provides an efficient method to setup the iteration step th for given λ and α
before the training starts.

Proof. According to Theorem 2, the algorithm is convergent if 0 < t < 1
Lf

, where Lf is the convex
part f(X) of the optimal function ψ(X). Notice that the function f(X) satisfies ∥∇Xf(X) −
∇Y f(Y )∥ ≤ Lf∥X − Y ∥,∀X,Y ∈ Rn×n. We can derive :

Lf = sup
X,Y

∥∇Xf(X)−∇Y f(Y )∥
∥X − Y ∥

.

For each row component of Eh(Z;Rh,F h) in Definition 3, we have

Eh
i (Zi,:;R

h
i,:,F

h
i,:) =

1

2
Tr

[
(Rh

i,: ◦Zi,:)Z
T
i,:

]
+ λ∥F h

i,: ◦Zi,:∥1 +
α

2
∥Zi,:1n − 1∥2,

Eh =

n∑
i=1

Eh
i ,∀i = 1, 2, · · · , n.
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The convex part of Eh
i is defined as follow:

fhi (Zi,:;R
h
i,:,F

h
i,:) =

1

2
Tr

[
(Rh

i,: ◦Zi,:)Z
T
i,:

]
+
α

2
∥Zi,:1n − 1∥2.

Let zi = Zi,: denotes the i− th row component,

∇zi
fi(zi) = Rh

i,:zi + α(zi1n − 1).

Then

∥∇xif
h
i (xi)−∇yif

h
i (yi)∥ = ∥Rh

i,:(xi − yi) + α(xi − yi)1n∥
≤ ∥Rh

i,:(xi − yi)∥+ α∥(xi − yi)1n∥
≤ (∥Rh

i,:∥+ α∥1n∥)∥xi − yi∥
= (∥Rh

i,:∥+ α
√
n)∥xi − yi∥∀i = 1, 2, · · ·n

∥∇Xf
h(X)−∇Y f

h(Y )∥ =

∥∥∥∥∥∥∥∥∥
∇x1

fh1 (x1)−∇y1
fh1 (y1)

∇x2
fh2 (x2)−∇y2

fh2 (y2)
...

∇xn
fhn (xn)−∇yn

fhn (yn)

∥∥∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥∥∥
(∥Rh

1,:∥+ α
√
n)(x1 − y1)

(∥Rh
2,:∥+ α

√
n)(x2 − y2)

...
(∥Rh

n,:∥+ α
√
n)(xn − yn)

∥∥∥∥∥∥∥∥∥
≤ ({∥Rh

i,:∥}max + α
√
n)

∥∥∥∥∥∥∥∥
x1 − y1

x2 − y2

...
xn − yn

∥∥∥∥∥∥∥∥
≤ (∥Rh∥+ α

√
n)∥X − Y ∥

Thus Lf = ∥Rh∥+ α
√
n. According to Theorem 2, the algorithm is convergent when 0 < t ≤ 1

Lf
.

A.2 PROXIMAL METHOD FOR NON-SMOOTH OPTIMIZATION

Consider the following optimization problem

min
Z

E(Z) = H(Z) +G(Z), (12)

where H(·) is a smooth function, and G(·) is a non-smooth function. The proximal method for
solving this problem involves iterating the following steps

Y (k) = Z(k) − t(k)∇(k)
Z H

Z(k+1) = proxt(k),G(Y
(k))

t(k+1) = u(t(k))

(13)

where u(·) is a function used to update the step size t.

18
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Figure 4: Demonstration of SFi-attention and its iterative process. We utilize a logarithmic trans-
formation on the original attention values, represented with a viridis colorbar, where yellow areas
indicate values near 1 and blue areas signify values close to 0 but above the threshold of 1e-8. Values
exceptionally close to (below the threshold) appear white in this representation.

A.3 DEMONSTRATION OF SPARSITY IN SFI-ATTENTION

To verify the true sparse ability of energy flow mechanism, we employ a series of transforms to
visually present the intuitive distribution of attention in Figure 4. Concurrently, we also visualize how
the attention adjusted during the energy function minimization process, the adjacency enhancement,
and compare the final attention results of DFi-Former and SFi-Former. From the figure, we observe
that the attention matrix obtained by the SFi-Former is indeed very sparse, with only a small portion
of the features being captured. The final SFi-attention we obtain has values close to 0 compared
to vanilla Attention. The influence of the matrix Ã also becomes a crucial part after the adjacency
enhancement.

A.4 EXPERIMENTAL DETAILS

A.4.1 DATASET DESCRIPTION

Table 4: Overview of the graph learning dataset (Dwivedi et al., 2023; 2022b) used in this study.

Dataset Graphs Avg. Avg. Directed Prediction Prediction Metricnodes edges level task

MNIST 70,000 70.6 564.5 Yes graph 10-class classif. Accuracy
CIFAR10 60,000 117.6 941.1 Yes graph 10-class classif. Accuracy
PATTERN 14,000 118.9 3,039.3 No inductive node binary classif. Accuracy
CLUSTER 12,000 117.2 2,150.9 No inductive node 6-class classif. Accuracy

PascalVOC-SP 11,355 479.4 2,710.5 No inductive node 21-class classif. F1 score
COCO-SP 123,286 476.9 2,693.7 No inductive node 81-class classif. F1 score
PCQM-Contact 529,434 30.1 61.0 No inductive link link ranking MRR
Peptides-func 15,535 150.9 307.3 No graph 10-task classif. Avg. Precision
Peptides-struct 15,535 150.9 307.3 No graph 11-task regression Mean Abs. Error

MNIST and CIFAR10 Dwivedi et al. (2023) (CC BY-SA 3.0 and MIT License) are derived from
like-named image classification datasets by constructing an 8 nearest-neighbor graph of SLIC
superpixels for each image. The 10-class classification tasks and standard dataset splits follow the
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original image classification datasets, i.e., for MNIST 55K/5K/10K and for CIFAR10 45K/5K/10K
train/validation/test graphs.

PATTERN and CLUSTER Dwivedi et al. (2023) (MIT License) are synthetic datasets sampled from
Stochastic Block Model. Unlike other datasets, the prediction task here is an inductive node-level
classification. In PATTERN the task is to recognize which nodes in a graph belong to one of 100
possible sub-graph patterns that were randomly generated with different SBM parameters than the
rest of the graph. In CLUSTER, every graph is composed of 6 SBM-generated clusters, each drawn
from the same distribution, with only a single node per cluster containing a unique cluster ID. The
task is to infer which cluster ID each node belongs to.

PascalVOC-SP and COCO-SP Dwivedi et al. (2022b) (Custom license for Pascal VOC 2011
respecting Flickr terms of use, and CC BY 4.0 license) are derived by SLIC superpixelization of
Pascal VOC and MS COCO image datasets. Both are node classification datasets, where each
superpixel node belongs to a particular object class.

PCQM-Contact Dwivedi et al. (2022b) (CC BY 4.0) is derived from PCQM4Mv2 and respective
3D molecular structures. The task is a binary link prediction, identifying pairs of nodes that are
considered to be in 3D contact (¡3.5Å) yet distant in the 2D graph (¿5 hops). The default evaluation
ranking metric used is the Mean Reciprocal Rank (MRR).

Peptides-func and Peptides-struct Dwivedi et al. (2022b) (CC BY-NC 4.0) are both composed
of atomic graphs of peptides retrieved from SATPdb. In Peptides-func the prediction is multi-label
graph classification into 10 nonexclusive peptide functional classes. While for Peptides-struct the
task is graph regression of 11 3D structural properties of the peptides.

A.4.2 HYPERPARAMETERS

Table 5: Hyperparameters for five datasets from Long Range Graph Benchmark(LRGB)(Dwivedi
et al., 2022b).

Hyperparameter PascalVOC-SP COCO-SP Peptides-func Peptides-struct PCQM-Contact
GPS Layers 8 8 2 2 7
Hidden dim 68 68 235 235 64
GPS-MPNN GatedGCN GatedGCN GatedGCN GatedGCN GatedGCN
Heads 4 4 4 4 4
Dropout 0.1 0.1 0.1 0.1 0.0
Attention dropout 0.5 0.5 0.5 0.5 0.5
Graph pooling – – mean mean –

Positional Encoding LapPE-10 – LapPE-10 LapPE-10 LapPE-10
PE dim 16 – 16 16 16
PE encoder DeepSet – DeepSet DeepSet DeepSet

Batch size 14 14 32 16 512
Learning Rate 0.001 0.001 0.001 0.001 0.0003
Epochs 200 150 250 250 200
Warmup epochs 10 10 5 5 10
Weight decay 0 0 0 0 0

λ∗ 1 1 1 1 1
α 0.1 0.1 0.1 0.1 0.1

Parameters 1,250,805 1,249,869 2,929,009 3,819,425 978,526
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Table 6: Hyperparameters for four datasets from Dwivedi et al. (2023).

Hyperparameter MNIST CIFAR10 PATTERN CLUSTER
Layers 5 5 4 20
Hidden dim 40 40 40 32
MPNN GatedGCN GatedGCN GatedGCN GatedGCN
Heads 4 4 4 8
Dropout 0.1 0.1 0 0.1
Attention dropout 0.1 0.1 0.5 0.5
Graph pooling mean mean – –

Positional Encoding 0 ESLapPE-8 ESLapPE-8 ESLapPE-10 ESLapPE-10

Batch size 256 200 32 16
Learning Rate 0.001 0.001 0.0002 0.0002
Epochs 150 150 200 150
Warmup epochs 5 5 5 5
Weight decay 1e-5 1e-5 2e-5 1e-5

λ∗ 1 1 1 1
α 0.1 0.1 0.1 0.1

Parameters 275,465 275,545 222,213 1,211,330
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