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ABSTRACT

In this paper, we introduce FITS, a lightweight yet powerful model for time series
analysis. Unlike existing models that directly process raw time-domain data, FITS
operates on the principle that time series can be manipulated through interpolation
in the complex frequency domain, achieving performance comparable to state-of-
the-art models for time series forecasting and anomaly detection tasks. Notably,
FITS accomplishes this with a svelte profile of just about 10k parameters, making it
ideally suited for edge devices and paving the way for a wide range of applications.
The code is available at: https://github.com/VEWOXIC/FITS.

1 INTRODUCTION

Time series analysis plays a pivotal role in a myriad of sectors, from healthcare appliances to smart
factories. Within these domains, the reliance is often on edge devices like smart sensors, driven by
MCUs with limited computational and memory resources. Time series data, marked by its inherent
complexity and dynamism, typically presents information that is both sparse and scattered within the
time domain. To effectively harness this data, recent research has given rise to sophisticated models
and methodologies (Zhou et al., 2021; Liu et al., 2022a; Zeng et al., 2023; Nie et al., 2023; Zhang
et al., 2022). Yet, the computational and memory costs of these models makes them unsuitable for
resource-constrained edge devices.

On the other hand, the frequency domain representation of time series data promises a more compact
and efficient portrayal of inherent patterns. While existing research has indeed tapped into the
frequency domain for time series analysis — FEDformer (Zhou et al., 2022a) enriches its features
using spectral data, and TimesNet (Wu et al., 2023) harnesses high-amplitude frequencies for feature
extraction via CNNs — a comprehensive utilization of the frequency domain’s compactness remains
largely unexplored. Specifically, the ability of the frequency domain to employ complex numbers in
capturing both amplitude and phase information is not utilized, resulting in the continued reliance on
compute-intensive models for temporal feature extraction.

In this study, we reinterpret time series analysis tasks, such as forecasting and reconstruction, as
interpolation exercises within the complex frequency domain. Essentially, we produce an extended
time series segment by interpolating the frequency representation of a provided segment. Specifically,
for forecasting, we can obtain the forecasting results by simply extending the given look-back window
with frequency interpolation; for reconstruction, we recover the original segment by interpolating the
frequency representation of its downsampled counterpart. Building on this insight, we introduce FITS
(Frequency Interpolation Time Series Analysis Baseline). The core of FITS is a complex-valued
linear layer, meticulously designed to learn amplitude scaling and phase shift, thereby facilitating
interpolation within the complex frequency domain.

Notably, while FITS operates interpolations in the frequency domain, it fundamentally remains a time
domain model, integrating the rFFT (Brigham & Morrow, 1967) operation. That is, we transform
the input segment into the complex frequency domain using rFFT for frequency interpolation. This
interpolated frequency data is then mapped back to the time domain, resulting in an elongated segment
ready for supervision. This innovative design allows FITS to be highly adaptable, fitting seamlessly
into a plethora of downstream time domain tasks such as forecasting and anomaly detection.
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Apart from its streamlined linear architecture, FITS incorporates a low-pass filter. This ensures a com-
pact representation while preserving essential information. Despite its simplicity, FITS consistently
achieves state-of-the-art (SOTA) performance. Remarkably, in most scenarios, FITS achieves this
feat with fewer than 10k parameters. This makes it 50 times more compact than the lightweight
temporal linear model DLinear (Zeng et al., 2023) and approximately 10,000 times smaller than
other mainstream models. Given its efficiency in memory and computation, FITS stands out as an
ideal candidate for deployment, or even for training directly on edge devices, be it for forecasting or
anomaly detection.

In summary, our contributions can be delineated as follows:

• We present FITS, an exceptionally lightweight model for time series analysis, boasting a
modest parameter count in the range of 5k∼10k.

• FITS offers a pioneering approach to time series analysis by employing a complex-valued
neural network. This simultaneously captures both amplitude and phase information, paving
the way for a more comprehensive and efficient representation of time series data.

• Despite being orders of magnitude smaller than most mainstream models, FITS consistently
delivers top-tier performance across a range of time series analysis tasks.

2 RELATED WORK AND MOTIVATION

2.1 FREQUENCY-AWARE TIME SERIES ANALYSIS MODELS

Recent advancements in time series analysis have witnessed the utilization of frequency domain
information to capture and interpret underlying patterns. FNet (Lee-Thorp et al., 2022) leverages a
pure attention-based architecture to efficiently capture temporal dependencies and patterns solely in
the frequency domain, eliminating the need for convolutional or recurrent layers. On the other hand,
FEDFormer (Zhou et al., 2022a) and FiLM (Zhou et al., 2022b) incorporate frequency information as
supplementary features to enhance the model’s capability in capturing long-term periodic patterns
and speed up computation.

The other line of work aims to capture the periodicity inherent in the data. For instance, DLinear (Zeng
et al., 2023) adopts a single linear layer to extract the dominant periodicity from the temporal domain
and surpasses a range of deep feature extraction-based methods. More recently, TimesNet (Wu et al.,
2023) achieves state-of-the-art results by identifying several dominant frequencies instead of relying
on a single dominant periodicity. Specifically, they use the Fast Fourier Transform (FFT) to find the
frequencies with the largest energy and reshape the original 1D time series into 2D images according
to their periods.

However, these approaches still rely on feature engineering to identify the dominant period set.
Selecting this set based on energy may only consider the dominant period and its harmonics, limiting
the information captured. Moreover, these methodologies are still considered inefficient and prone to
overfitting.

2.2 DIVIDE AND CONQUER THE FREQUENCY COMPONENTS

Treating a time series as a signal allows us to break it down into a linear combination of sinusoidal
components without any information loss. Each component possesses a unique frequency, initial
phase, and amplitude. Forecasting directly on the original time series can be challenging, but
forecasting each frequency component is comparatively straightforward, as we only need to apply a
phase bias to the sinusoidal wave based on the time shift. Subsequently, we linearly combine these
shifted sinusoidal waves to obtain the forecasting result.

This approach effectively preserves the frequency characteristics of the given look-back window
while maintaining semantic consistency between the look-back window and the forecasting horizon.
Specifically, the resulting forecasted values maintain the frequency features of the original time series
with a reasonable time shift, ensuring that semantic consistency is maintained.

However, forecasting each sinusoidal component in the time domain can be cumbersome, as the
sinusoidal components are treated as a sequence of data points. To address this, we propose conducting
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this manipulation in the complex frequency domain, which offers a more compact and information-
rich representation, as described below.

3 METHOD

3.1 PRELIMINARY: FFT AND COMPLEX FREQUENCY DOMAIN

The Fast Fourier Transform (FFT, (Brigham & Morrow, 1967)) efficiently computes the Discrete
Fourier Transform (DFT) of complex number sequences. The DFT transforms discrete-time signals
from the time domain to the complex frequency domain. In time series analysis, the Real FFT (rFFT)
is often employed when working with real input signals. It condenses an input of N real numbers into
a sequence of N/2+1 complex numbers, representing the signal in the complex frequency domain.

Complex Frequency Domain

In Fourier analysis, the complex frequency domain is a representation of a signal in which each
frequency component is characterized by a complex number. This complex number captures both
the amplitude and phase of the component, providing a comprehensive description. The amplitude
of a frequency component represents the magnitude or strength of that component in the original
time-domain signal. In contrast, the phase represents the temporal shift or delay introduced by that
component. Mathematically, the complex number associated with a frequency component can be
represented as a complex exponential element with a given amplitude and phase:

X(f) = |X(f)|ejθ(f),

where X(f) is the complex number associated with the frequency component at frequency f , |X(f)|
is the amplitude of the component, and θ(f) is the phase of the component. As shown in Fig. 1(a), in
the complex plane, the complex exponential element can be visualized as a vector with a length equal
to the amplitude and angle equal to the phase:

X(f) = |X(f)|(cos θ(f) + j sin θ(f))

Therefore, the complex number in the complex frequency domain provides a concise and elegant
means of representing the amplitude and phase of each frequency component in the Fourier transform.
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Figure 1: Illustration of Complex Number Visualization and Multiplication

Time Shift and Phase Shift. The time shift of a signal corresponds to the phase shift in the frequency
domain. Especially in the complex frequency domain, we can express such phase shift by multiplying
a unit complex exponential element with the corresponding phase. Mathematically, if we shift a
signal x(t) forward in time by a constant amount τ , resulting in the signal x(t − τ), the Fourier
transform is given by:

Xτ (f) = e−j2πfτX(f) = |X(f)|ej(θ(f)−2πfτ) = [cos(−2πfτ) + jsin(−2πfτ)]X(f)

The shifted signal still has an amplitude of |X(f)|, while the phase θτ (f) = θ(f)− 2πfτ shows a
shift which is linear to the time shift.

In summary, the amplitude scaling and phase shifting can be simultaneously expressed as the
multiplication of complex numbers, as shown in Fig. 1(b).
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3.2 FITS PIPELINE

Motivated by the fact that a longer time series provides a higher frequency resolution in its fre-
quency representation, we train FITS to extend time series segment by interpolating the frequency
representation of the input time series segment. We use a single layer of complex-valued linear
layer to learn such interpolation, so that it can learn amplitude scaling and phase shifting as the
multiplication of complex numbers during the interpolation process. As shown in Fig. 2, we use
rFFT to project time series segments to the complex frequency domain. After the interpolation, the
frequency representation is projected back with inverse rFFT (irFFT).
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Figure 2: Pipeline of FITS, with a focus on the forecasting task. Initially, the time series is normalized
to zero-mean, followed by rFFT for frequency domain projection. After LPF, a single complex-valued
linear layer interpolates the frequency. Zero padding and irFFT then revert this back to the time
domain, with iRIN finally reversing the normalization. The reconstruction task follows the same
pipeline, except for the reconstruction supervision loss. Please check appendix for detail.

However, the mean of such segments will result in a very large 0-frequency component in its complex
frequency representation. To address this, we pass it through reversible instance-wise normalization
(RIN) (Kim et al., 2022) to obtain a zero-mean instance. As a result, the normalized complex
frequency representation now has a length of N/2, where N represents the original length of the time
series.

Additionally, FITS integrates a low-pass filter (LPF) to further reduce its model size. The LPF
effectively eliminates high-frequency components above a specified cutoff frequency, compacting the
model representation while preserving essential time series information. Despite operating in the
frequency domain, FITS is supervised in the time domain using standard loss functions like Mean
Squared Error (MSE) after the inverse real-to-complex Fast Fourier Transform (irFFT). This allows
for versatile supervision tailored to various downstream time series tasks.

In the case of forecasting tasks, we generate the look-back window along with the horizon as shown
in Fig. 2. This allows us to provide supervision for forecasting and backcasting, where the model
is encouraged to accurately reconstruct the look-back window. Our ablation study reveals that
combining backcast and forecast supervision can yield improved performance in certain scenarios.

For reconstruction tasks, we downsample the original time series segment based on a specific
downsampling rate. Subsequently, FITS is employed to perform frequency interpolation, enabling
the reconstruction of the downsampled segment back to its original form. Thus, direct supervision
is applied using reconstruction loss to ensure faithful reconstruction. The reconstruction tasks also
follow the pipeline in Fig. 2 with the supervision replaced with reconstruction loss.

3.3 KEY MECHANISMS OF FITS

Complex Frequency Linear Interpolation. To control the output length of the model, we introduce
an interpolation rate denoted as η, which represents the ratio of the model’s output length Lo to
its corresponding input length Li. Frequency interpolation operates on the normalized complex
frequency representation, which has half the length of the original time series. Importantly, this
interpolation rate can also be applied to the frequency domain, as indicated by the equation:

ηfreq =
Lo/2

Li/2
=

Lo

Li
= η
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Based on this formula, with an arbitrary frequency f , the frequency band 1 ∼ f in the original
signal is linearly projected to the frequency band 1 ∼ ηf in the output signal. As a result, we define
the input length of our complex-valued linear layer as L and the interpolated output length as ηL.
Notably, when applying the Low Pass Filter (LPF), the value of L corresponds to the cutoff frequency
(COF) of the LPF. After performing frequency interpolation, the complex frequency representation is
zero-padded to a length of Lo/2, where Lo represents the desired output length. Prior to applying the
irFFT, an additional zero is introduced as the representation’s zero-frequency component.

Low Pass Filter (LPF). The primary objective of incorporating the LPF within FITS is to compress
the model’s volume while preserving essential information. The LPF achieves this by discarding
frequency components above a specified cutoff frequency (COF), resulting in a more concise fre-
quency domain representation. The LPF retains the relevant information in the time series while
discarding components beyond the model’s learning capability. This ensures that a significant portion
of the original time series’ meaningful content is preserved. As demonstrated in Fig. 3, the filtered
waveform exhibits minimal distortion even when only preserving a quarter of the original frequency
domain representation. Furthermore, the high-frequency components filtered out by the LPF typically
comprise noise, which are inherently irrelevant for effective time series modeling.
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Figure 3: Waveform (1st row) and amplitude spectrum (2nd row) of a time series segment selected
from the ’OT’ channel of the ETTh1 dataset, spanning from the 1500th to the 1980th data point. The
segment has a length of 480, and its dominant periodicity is 24, corresponding to a base frequency of
20. The blue lines represent the waveform/spectrum with no applied filter, while the orange lines
represent the waveform/spectrum with the filter applied. The filter cutoff frequency is chosen based
on a harmonic of the original time series.

Selecting an appropriate cutoff frequency (COF) remains a nontrivial challenge. To address this,
we propose a method based on the harmonic content of the dominant frequency. Harmonics, which
are integer multiples of the dominant frequency, play a significant role in shaping the waveform of
a time series. By aligning the cutoff frequency with these harmonics, we keep relevant frequency
components associated with the signal’s structure and periodicity. This approach leverages the
inherent relationship between frequencies to extract meaningful information while suppressing noise
and irrelevant high-frequency components. The impact of COF on different harmonics’ waveforms is
shown in Fig. 3. We further elaborate on the impact of COF in our experimental results.

Weight Sharing. FITS handles multivariate tasks by sharing weights as in (Zeng et al., 2023),
balancing performance and efficiency. In practice, channels often share a common base frequency
when originating from the same physical system, such as 50/60Hz for electrical appliances or daily
base frequencies for city traffic. Most of the datasets used in our experiments belong to this category.
For datasets that indeed contain channels with different base frequencies, we can cluster those
channels according to the base frequency and train an individual FITS model for each cluster.

4 EXPERIMENTS FOR FORECASTING

4.1 FORECASTING AS FREQUENCY INTERPOLATION

Typically, the forecasting horizon is shorter than the given look-back window, rendering direct
interpolation unsuitable. Instead, we formulate the forecasting task as the interpolation of a look-back
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window, with length L, to a combination of the look-back window and forecasting horizon, with
length L+H . This design enables us to provide more supervision during training. With this approach,
we can supervise not only the forecasting horizon but also the backcast task on the look-back window.
Our experimental results demonstrate that this unique training strategy contributes to the improved
performance of FITS. The interpolation rate of the forecasting task is calculated by:

ηFore = 1 +
H

L
,

where L represents the length of the look-back window and H represents the length of the forecasting
horizon.

4.2 EXPERIMENT SETTINGS

Datasets. All datasets used in our experiments are widely-used and publicly available real-world
datasets, including, Traffic, Electricity, Weather, ETT (Zhou et al., 2021). We summarize the
characteristics of these datasets in appendix. Apart from these datasets for long-term time series
forecasting, we also use the M4 dataset to test the short-term forecasting performance.

Baselines. To evaluate the performance of FITS in comparison to state-of-the-art time series forecast-
ing models, including PatchTST (Nie et al., 2023), TimesNet (Wu et al., 2023), FEDFormer (Zhou
et al., 2022a) and LTSF-Linear (Zeng et al., 2023), we rerun all the experiment with code and scripts
provided by their official implementation 1. We report the comparison with NBeats (Oreshkin et al.,
2019), NHits (Challu et al., 2023) and other transformer-based methods in the appendix.

Evaluation metrics. We follow the previous works (Zhou et al., 2022a; Zeng et al., 2023; Zhang
et al., 2022) to compare forecasting performance using Mean Squared Error (MSE) as the core
metrics. Moreover, to evaluate the short-term forecasting, we symmetric Mean Absolute Percentage
Error (SMAPE) following TimesNet (Wu et al., 2023).

Implementation details. We conduct grid search on the look-back window of 90, 180, 360, 720 and
cutoff frequency, the only hyper-parameter. Further experiments also show that a longer look-back
window can result in better performance in most cases. To avoid information leakage, We choose the
hyper-parameter based on the performance of the validation set. We report the result of FITS as the
mean and standard deviation of 5 runs with random chosen random seeds.

4.3 COMPARISONS WITH SOTAS

Competitive Performance with High Efficiency

We present the results of our experiments on long-term forecasting in Tab. 1 and Tab. 2. The results
for short-term forecasting on the M4 dataset are provided in the Appendix. Remarkably, our FITS
consistently achieves comparable or even superior performance across all experiments.

Tab. 3 presents the number of trainable parameters and MACs 2 for various TSF models using a
look-back window of 96 and a forecasting horizon of 720 on the Electricity dataset. The table clearly
demonstrates the exceptional efficiency of FITS compared to other models.

Among the listed models, the parameter counts range from millions down to thousands. Notably, large
models such as TimesNet and Pyraformer require a staggering number of parameters, with 300.6M
and 241.4M, respectively. Similarly, popular models like Informer, Autoformer, and FEDformer have
parameter counts in the range of 13.61M to 20.68M. Even the lightweight yet state-of-the-art model
PatchTST has a parameter count of over 1 million.

In contrast, FITS stands out as a highly efficient model with an impressively low parameter count.
With only 4.5K to 16K parameters, FITS achieves comparable or even superior performance compared
to these larger models. It is worth highlighting that FITS requires significantly fewer parameters
compared to the next smallest model, Dlinear, which has 139.7K parameters. For instance, when
considering a 720 look-back window and a 720 forecasting horizon, the Dlinear model requires over
1 million parameters, whereas FITS achieves similar performance with only 10k-50k parameters.

1With a long-standing bug in the coding architecture fixed, see README file in our codebase.
2MACs (Multiply-Accumulate Operations) is a commonly used metric that counts the total number of

multiplication and addition operations in a neural network.
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Table 1: Long-term forecasting results on ETT dataset in MSE. The best result is highlighted in bold,
and the second best is highlighted with underline. IMP is the improvement between FITS and the
second best/ best result, where a larger value indicates a better improvement. Most of the STD are
under 5e-4 and shown as 0.000 in this table.

Dataset ETTh1 ETTh2 ETTm1 ETTm2

Horizon 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

PatchTST 0.385 0.413 0.440 0.456 0.274 0.338 0.367 0.391 0.292 0.330 0.365 0.419 0.163 0.219 0.276 0.368
Dlinear 0.384 0.443 0.446 0.504 0.282 0.350 0.414 0.588 0.301 0.335 0.371 0.426 0.171 0.237 0.294 0.426

FedFormer 0.375 0.427 0.459 0.484 0.340 0.433 0.508 0.480 0.362 0.393 0.442 0.483 0.189 0.256 0.326 0.437
TimesNet 0.384 0.436 0.491 0.521 0.340 0.402 0.452 0.462 0.338 0.374 0.410 0.478 0.187 0.249 0.321 0.408

FITS 0.372 0.404 0.427 0.424 0.271 0.331 0.354 0.377 0.303 0.337 0.366 0.415 0.162 0.216 0.268 0.348
STD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
IMP 0.003 0.009 0.013 0.032 0.003 0.007 0.013 0.014 -0.011 -0.007 -0.001 0.004 0.001 0.003 0.008 0.020

Table 2: Long-term forecasting results on three popular datasets in MSE. The best result is highlighted
in bold and the second best is highlighted with underline. IMP is the improvement between FITS
and the second best/ best result, where a larger value indicates a better improvement. Most of the
STD are under 5e-4 and shown as 0.000 in this table.

Dataset Weather Electricity Traffic

Horizon 96 192 336 720 96 192 336 720 96 192 336 720

PatchTST 0.151 0.195 0.249 0.321 0.129 0.149 0.166 0.210 0.366 0.388 0.398 0.457
Dlinear 0.174 0.217 0.262 0.332 0.140 0.153 0.169 0.204 0.413 0.423 0.437 0.466

Fedformer 0.246 0.292 0.378 0.447 0.188 0.197 0.212 0.244 0.573 0.611 0.621 0.630
TimesNet 0.172 0.219 0.280 0.365 0.168 0.184 0.198 0.220 0.593 0.617 0.629 0.640

FITS 0.143 0.186 0.236 0.307 0.134 0.149 0.165 0.203 0.385 0.397 0.410 0.448
STD 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001
IMP 0.008 0.009 0.013 0.014 -0.005 0.000 0.001 0.001 -0.019 -0.009 -0.012 0.009

Table 3: Number of trainable parameters, MACs,
and inference time of TSF models under look-back
window=96 and forecasting horizon=720 on the
Electricity dataset.

Model Parameters MACs Infer. Time

TimesNet 301.7M 1226.49G N/A
Pyraformer 241.4M 0.80G 3.4ms

Informer 14.38M 3.93G 49.3ms
Autoformer 14.91M 4.41G 164.1ms

FiLM 14.91M 5.97G 123.0ms
FEDformer 20.68M 4.41G 40.5ms
PatchTST 1.5M 5.07G 3.3ms

DLinear 139.7K 40M 0.4ms
(3.05ms CPU)

FITS (Ours) 4.5K∼10K 1.6M∼8.9M 0.6ms
(2.55ms CPU)

This analysis showcases the remarkable effi-
ciency of FITS. Despite its small size, FITS
consistently achieves competitive results, mak-
ing it an attractive option for time series anal-
ysis tasks. FITS demonstrates that achieving
state-of-the-art or close to state-of-the-art perfor-
mance with a considerably reduced parameter
footprint is possible, making it an ideal choice
for resource-constrained environments.

Case Study on ETTh2 Dataset

We conduct a comprehensive case study on the
performance of FITS using the ETTh2 dataset,
which further highlights the impact of the look-
back window and cutoff frequency on model performance. We provide a case study on other datasets
in the Appendix. In our experiments, we observe that increasing the look-back window generally
leads to improved performance, while the effect of increasing the cutoff frequency is minor.

Tab. 4 showcases the performance results obtained with different look-back window sizes and cutoff
frequencies. Larger look-back windows tend to yield better performance across the board. On the
other hand, increasing the cutoff frequency only results in marginal performance improvements.
However, it is important to note that higher cutoff frequencies come at the expense of increased
computational resources, as illustrated in Tab. 5.

Considering these observations, we find utilizing a longer look-back window in combination with a
low cutoff frequency to achieve near state-of-the-art performance with minimal computational cost.
For instance, FITS surpasses other methods when employing a 720 look-back window and setting the
cutoff frequency to the second harmonic. Remarkably, FITS achieves state-of-the-art performance
with a parameter count of only around 10k. Moreover, by reducing the look-back window to 360,
FITS already achieves close-to-state-of-the-art performance by setting the cutoff frequency to the
second harmonic, resulting in a further reduction of the model’s parameter count to under 5k (as
shown in Tab. 5).
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Table 4: The results on the ETTh2 dataset. Values are visualized with a green background, where
darker background indicates worse performance. The top-5 best results are highlighted with a red
background, and the absolute best result is highlighted with red bold font. F represents supervision
on the forecasting task, while B+F represents supervision on backcasting and forecasting tasks.

Look-back Window 90 180 360 720

Horizon COF/nth Harmonic F B+F F B+F F B+F F B+F
2 0.293889 0.291371 0.290314 0.288107 0.279141 0.276635 0.275600 0.274817
3 0.293242 0.291333 0.289803 0.287171 0.278128 0.275723 0.273972 0.273567
4 0.292438 0.290559 0.288541 0.286174 0.277293 0.274494 0.272384 0.272031
5 0.292387 0.290369 0.288530 0.285527 0.276594 0.274042 0.272085 0.271719

96

6 0.292517 0.290466 0.287814 0.285384 0.275930 0.273883 0.271312 0.271028
2 0.379401 0.377047 0.361995 0.359322 0.337767 0.336419 0.334493 0.334621
3 0.379080 0.376874 0.360790 0.358059 0.337391 0.335736 0.333573 0.333758
4 0.378816 0.376472 0.360524 0.357973 0.336085 0.334531 0.332310 0.332475
5 0.378529 0.376429 0.360234 0.357533 0.336286 0.334475 0.332122 0.332281

192

6 0.378581 0.376481 0.360049 0.357478 0.335526 0.333846 0.331421 0.331667

2 0.419131 0.417096 0.391167 0.388905 0.360300 0.359665 0.356390 0.356319
3 0.419264 0.416645 0.389740 0.387614 0.359802 0.359291 0.355825 0.355972
4 0.419237 0.416085 0.389790 0.387815 0.358774 0.358096 0.354695 0.354880
5 0.418985 0.416009 0.388972 0.387115 0.358652 0.358093 0.354805 0.354794

336

6 0.418359 0.416369 0.388943 0.387183 0.358011 0.357432 0.354055 0.354205

2 0.420888 0.418226 0.405711 0.404412 0.387592 0.386235 0.379710 0.380367
3 0.420441 0.418290 0.404405 0.403520 0.386570 0.385907 0.379501 0.380132
4 0.420404 0.417756 0.404631 0.403425 0.386556 0.384828 0.378209 0.378890
5 0.419888 0.417725 0.403562 0.402755 0.385489 0.384758 0.378227 0.378810

720

6 0.419376 0.417854 0.403643 0.402616 0.384709 0.383960 0.377463 0.378101

Table 5: The number of parameters under
different settings on ETTh1 & ETTh2 dataset.

Look-back Window

Horizon COF/nth
Harmonic 90 180 360 720

96

2 703 1053 2279 5913
3 1035 1820 4307 12064
4 1431 2752 6975 20385
5 1922 3876 10374 31042
6 2450 5192 14338 43734

192

2 1064 1431 2752 6643
3 1564 2450 5192 13520
4 2187 3698 8475 22815
5 2914 5253 12558 34694
6 3710 7021 17334 48856

336

2 1615 1998 3483 7665
3 2392 3395 6608 15704
4 3321 5160 10725 26460
5 4402 7293 15834 40006
6 5600 9794 21828 56539

720

2 3078 3510 5418 10512
3 4554 5950 10266 21424
4 6318 9030 16650 36180
5 8370 12750 24570 54780
6 10710 17110 34026 77224

These results emphasize the lightweight nature of
FITS, making it highly suitable for deployment and
training on edge devices with limited computational
resources. By carefully selecting the look-back win-
dow and cutoff frequency, FITS can achieve excellent
performance while maintaining computational effi-
ciency, making it an appealing choice for real-world
applications.

5 EXPERIMENT
FOR ANOMALY DETECTION

5.1 RECONSTRUCTION
AS FREQUENCY INTERPOLATION

As discussed before, we tackle the anomaly detection
tasks in the self-supervised reconstructing approach.
Specifically, we make a N time equidistant sampling
on the input and train a FITS network with an interpolation rate of ηRec = N to up-sample it. Please
check appendix A for detail.

5.2 EXPERIMENT SETTINGS

Datasets. We use five commonly used benchmark datasets: SMD (Server Machine Dataset (Su et al.,
2019)), PSM (Polled Server Metrics (Abdulaal et al., 2021)), SWaT (Secure Water Treatment (Mathur
& Tippenhauer, 2016)), MSL (Mars Science Laboratory rover), and SMAP (Soil Moisture Active
Passive satellite) (Hundman et al., 2018). We report the performance on the synthetic dataset (Lai
et al., 2021) in the appendix G.

Baselines. We compare FITS with models such as TimesNet (Wu et al., 2023), Anomaly Trans-
former (Xu et al., 2022), THOC (Shen et al., 2020), Omnianomaly (Su et al., 2019), DGHL (Challu
et al., 2022). Following TimesNet (Wu et al., 2023), we also compare the anomaly detection per-
formance with other models (Zeng et al., 2023; Zhang et al., 2022; Woo et al., 2022; Zhou et al.,
2022a).

Evaluation metrics. Following the previous works (Xu et al., 2022; Shen et al., 2020; Wu et al.,
2023), we use Precision, Recall, and F1-score as metrics.
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Implementation details. We use a window size of 200 and downsample the time series segment by a
factor of 4 as the input to train FITS to reconstruct the original segment. We follow the methodology
of the Anomaly Transformer (Xu et al., 2022), where time points exceeding a certain reconstruction
loss threshold are classified as anomalies. The threshold is selected based on the highest F1 score
achieved on the validation set. To handle consecutive abnormal segments, we adopt a widely-used
adjustment strategy (Su et al., 2019; Xu et al., 2018; Shen et al., 2020), considering all anomalies
within a specific successive abnormal segment as correctly detected when one anomalous time point
is identified. This approach aligns with real-world applications, where an abnormal time point often
triggers the attention to the entire segment.

Table 6: Anomaly detection result of F1-scores on 5 datasets. The best result is highlighted in bold,
and the second best is highlighted with underline. Full results are reported in the Appendix.

Models FITS TimesNet Anomaly
Transformer THOC Omni

Anomaly
Stationary

Transformer DGHL OCSVM IForest LightTS Dlinear IMP

SMD 99.95 85.81 92.33 84.99 85.22 84.72 N/A 56.19 53.64 82.53 77.1 7.62
PSM 93.96 97.47 97.89 98.54 80.83 97.29 N/A 70.67 83.48 97.15 93.55 -3.93
SWaT 98.9 91.74 94.07 85.13 82.83 79.88 87.47 47.23 47.02 93.33 87.52 4.83
SMAP 70.74 71.52 96.69 90.68 86.92 71.09 96.38 56.34 55.53 69.21 69.26 -25.95
MSL 78.12 85.15 93.59 89.69 87.67 77.5 94.08 70.82 66.45 78.95 84.88 -15.96

5.3 COMPARISONS WITH SOTAS

In Table 6, FITS stands out with outstanding results on various datasets. Particularly, on SMD and
SWaT datasets, FITS achieves nearly perfect F1-scores, around 99.95% and 98.9%, respectively,
showcasing its precision in anomaly detection and classification. In contrast, models like TimesNet,
Anomaly Transformer, and Stationary Transformer struggle to match FITS’ performance on these
datasets.

However, FITS shows comparatively lower performance on the SMAP and MSL datasets. These
datasets present a challenge due to their binary event data nature, which may not be effectively
captured by FITS’ frequency domain representation. In such cases, time-domain modeling is
preferable as the raw data format is sufficiently compact. Thus, models specifically designed for
anomaly detection, such as THOC and Omni Anomaly, achieve higher F1-scores on these datasets.

For a more comprehensive evaluation, waveform visualizations and detailed analysis can be found
in the appendix, providing deeper insights into FITS’ strengths and limitations in different anomaly
detection scenarios. It is important to note that the reported results are achieved with a parameter
range of 1-4K and MACs (Multiply-Accumulate Operations) of 10-137K, which will be further
detailed in the appendix.

While the datasets in use are instrumental, it is imperative to acknowledge their limitations as
delineated in (Lai et al., 2021). Particularly on the synthetic dataset from (Lai et al., 2021), FITS
demonstrates impeccable detection capabilities, registering a flawless 100% F1 score. For a detailed
breakdown, readers can refer to the table in appendix G. This dataset marries a sinusoidal wave of a
single frequency with intricately introduced anomaly patterns, which pose challenges for identification
in the time domain. Yet, FITS, leveraging the frequency domain, adeptly discerns these anomalies,
particularly those introducing unexpected frequency components.

Moreover, FITS boasts an impressive sub-millisecond inference speed — a marked distinction when
compared to the latency typical of larger models or communication overheads. This speed underscores
FITS’s suitability as a first-responder tool for promptly spotting critical errors. When paired as a
preliminary filter with a specialized AD algorithm geared for detailed detection, the combined system
stands as a paragon of both robustness and swift responsiveness facing diverse anomalies.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we propose FITS for time series analysis, a low-cost model with 10k parameters
that can achieve performance comparable to state-of-the-art models that are often several orders of
magnitude larger. As the future work, we plan to evaluate FITS on more real-world scenario and
improve the interpretability of it. Further, we also aim to explore the frequency domain large-scale
complex-valued neural network such as complex-valued Transformers.

9



Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS

This work is supported in part by the CUHK SSFCRS funding under Grant No. 3136023, and in part
by the Research Matching Grant Scheme under Grant No. 7106937, 8601130, and 8601440.

REFERENCES

Ahmed Abdulaal, Zhuanghua Liu, and Tomer Lancewicki. Practical approach to asynchronous
multivariate time series anomaly detection and localization. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery; Data Mining, KDD ’21, pp. 2485–2494, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383325. doi:
10.1145/3447548.3467174. URL https://doi.org/10.1145/3447548.3467174.

E. O. Brigham and R. E. Morrow. The fast fourier transform. IEEE Spectrum, 4(12):63–70, 1967.
doi: 10.1109/MSPEC.1967.5217220.

Cristian Challu, Kin G Olivares, Boris N Oreshkin, Federico Garza Ramirez, Max Mergenthaler
Canseco, and Artur Dubrawski. Nhits: neural hierarchical interpolation for time series forecasting.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 6989–6997, 2023.

Cristian I Challu, Peihong Jiang, Ying Nian Wu, and Laurent Callot. Deep generative model with
hierarchical latent factors for time series anomaly detection. In International Conference on
Artificial Intelligence and Statistics, pp. 1643–1654. PMLR, 2022.

Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom Soder-
strom. Detecting spacecraft anomalies using LSTMs and nonparametric dynamic threshold-
ing. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Dis-
covery &amp Data Mining. ACM, jul 2018. doi: 10.1145/3219819.3219845. URL https:
//doi.org/10.11452F3219819.3219845.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Reversible
instance normalization for accurate time-series forecasting against distribution shift. In Interna-
tional Conference on Learning Representations, 2022. URL https://openreview.net/
forum?id=cGDAkQo1C0p.

Kwei-Herng Lai, Daochen Zha, Junjie Xu, Yue Zhao, Guanchu Wang, and Xia Hu. Revisiting
time series outlier detection: Definitions and benchmarks. In Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021. URL https:
//openreview.net/forum?id=r8IvOsnHchr.

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontanon. Fnet: Mixing tokens with
fourier transforms, 2022.

Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet:
Time series modeling and forecasting with sample convolution and interaction. In Advances in
Neural Information Processing Systems, 2022a.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X. Liu, and Schahram Dust-
dar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling
and forecasting. In International Conference on Learning Representations, 2022b. URL
https://openreview.net/forum?id=0EXmFzUn5I.

Aditya P. Mathur and Nils Ole Tippenhauer. Swat: a water treatment testbed for research and training
on ics security. In 2016 International Workshop on Cyber-physical Systems for Smart Water
Networks (CySWater), pp. 31–36, 2016. doi: 10.1109/CySWater.2016.7469060.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In International Conference on Learning
Representations, 2023.

Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-BEATS: neural basis
expansion analysis for interpretable time series forecasting. CoRR, abs/1905.10437, 2019. URL
http://arxiv.org/abs/1905.10437.

10

https://doi.org/10.1145/3447548.3467174
https://doi.org/10.11452F3219819.3219845
https://doi.org/10.11452F3219819.3219845
https://openreview.net/forum?id=cGDAkQo1C0p
https://openreview.net/forum?id=cGDAkQo1C0p
https://openreview.net/forum?id=r8IvOsnHchr
https://openreview.net/forum?id=r8IvOsnHchr
https://openreview.net/forum?id=0EXmFzUn5I
http://arxiv.org/abs/1905.10437


Published as a conference paper at ICLR 2024

Lifeng Shen, Zhuocong Li, and James Kwok. Timeseries anomaly detection using temporal hier-
archical one-class network. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 13016–13026. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/97e401a02082021fd24957f852e0e475-Paper.pdf.

Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust anomaly detec-
tion for multivariate time series through stochastic recurrent neural network. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery; Data Mining,
KDD ’19, pp. 2828–2837, New York, NY, USA, 2019. Association for Computing Machinery.
ISBN 9781450362016. doi: 10.1145/3292500.3330672. URL https://doi.org/10.1145/
3292500.3330672.

Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Etsformer: Exponential
smoothing transformers for time-series forecasting, 2022.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with auto-correlation for long-term series forecasting. Advances in Neural Information Processing
Systems, 34:22419–22430, 2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In International Conference on
Learning Representations, 2023.

Haowen Xu, Yang Feng, Jie Chen, Zhaogang Wang, Honglin Qiao, Wenxiao Chen, Nengwen Zhao,
Zeyan Li, Jiahao Bu, Zhihan Li, Ying Liu, Youjian Zhao, and Dan Pei. Unsupervised anomaly
detection via variational auto-encoder for seasonal KPIs in web applications. In Proceedings of
the 2018 World Wide Web Conference on World Wide Web - WWW '18. ACM Press, 2018. doi:
10.1145/3178876.3185996. URL https://doi.org/10.1145/2F3178876.3185996.

Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Anomaly transformer: Time series
anomaly detection with association discrepancy, 2022.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? 2023.

Tianping Zhang, Yizhuo Zhang, Wei Cao, Jiang Bian, Xiaohan Yi, Shun Zheng, and Jian Li. Less is
more: Fast multivariate time series forecasting with light sampling-oriented mlp structures. arXiv
preprint arXiv:2207.01186, 2022.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pp. 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International Conference
on Machine Learning, 2022a.

Tian Zhou, Ziqing Ma, xue wang, Qingsong Wen, Liang Sun, Tao Yao, Wotao Yin, and Rong Jin.
FiLM: Frequency improved legendre memory model for long-term time series forecasting. In
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural
Information Processing Systems, 2022b. URL https://openreview.net/forum?id=
zTQdHSQUQWc.

11

https://proceedings.neurips.cc/paper_files/paper/2020/file/97e401a02082021fd24957f852e0e475-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/97e401a02082021fd24957f852e0e475-Paper.pdf
https://doi.org/10.1145/3292500.3330672
https://doi.org/10.1145/3292500.3330672
https://doi.org/10.1145/2F3178876.3185996
https://openreview.net/forum?id=zTQdHSQUQWc
https://openreview.net/forum?id=zTQdHSQUQWc


Published as a conference paper at ICLR 2024

A PIPELINE FOR RECONSTRUCTION

The pipeline for the reconstruction task is shown in Fig. 4. In this process, the model input x is
derived from a segment of the time series y using an equidistant sampling technique with a specified
downsample rate η. Subsequently, FITS performs frequency interpolation, generating an upsampled
output x̂up−sampled with the same length as y. The reconstruction loss is computed by comparing the
original y and the upsampled x̂up−sampled. Please note that, due to space constraints, the depicted
downsample/upsample rate η in the figure is shown as 1.5, which is not a practical value. In our
actual experiments, we employ a η value of 4.
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Figure 4: Pipeline of FITS, with a focus on the Reconstruction task.

B DETAILS OF FORECASTING DATASETS

We report the characteristics in the tab.7.

Table 7: The statistics of the seven used forecasting datasets.
Dataset Traffic Electricity Weather ETTh1&ETTh2 ETTm1 &ETTm2

Channels 862 321 21 7 7
Sampling Rate 1hour 1hour 10min 1hour 15min
Total Timesteps 17,544 26,304 52,696 17,420 69,680

C CRITICAL DIFFERENCE PLOT

We generate the critical difference plot on our result with the default alpha as 0.05 as shown in
Fig. 5. FITS’s placement at the top of the critical difference plot, without intersecting with other lines,
demonstrates its consistent and superior performance in terms of MSE compared to the other models.
This signifies the effectiveness of FITS in forecasting tasks. Moreover, the absence of intersection
indicates the statistical significance of the performance difference, indicating that the disparity in
MSE between FITS and others is unlikely due to chance alone. The critical difference plot also
showcases the robustness of FITS’s performance across various evaluation metrics, reinforcing its
reliability. As the top performer in terms of MSE, FITS emerges as a strong contender for model
selection when tackling regression problems. The statistical significance illustrated by the critical
difference plot further bolsters the confidence in the performance comparison, providing substantial
evidence that FITS outperforms the alternatives significantly.

D MORE RESULTS ON FORECASTING TASK

We show the comparison with transformer-based models, short-term forecasting on M4, and the
impact of random seeds below.
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Figure 5: The Critical Difference Plot on the FITS and other baselines with alpha=0.05.

D.1 COMPARISON WITH TRANSFORMER-BASED METHODS

We further compare FITS with Autoformer (Wu et al., 2021), Informer (Zhou et al., 2021),
FiLM (Zhou et al., 2022b) and Pyraformer (Liu et al., 2022b). The results are shown in Tab. 8
and Tab. 9. Note that the results in these tables are directly reterived from the original paper and may
still suffer from the bug mentioned above. We cannot rerun these models because of the incomplete
codebase or the extereme large time consumption.

Table 8: Long-term forecasting results on ETT datasets in MSE. The best result is highlighted in
bold.

Dataset ETTh1 ETTh2 ETTm1 ETTm2
Horizon 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

Autoformer 0.449 0.500 0.521 0.514 0.358 0.456 0.482 0.515 0.505 0.553 0.621 0.671 0.255 0.281 0.339 0.433
Informer 0.865 1.008 1.107 1.181 3.755 5.602 4.721 3.647 0.672 0.795 1.212 1.166 0.365 0.533 1.363 3.379

FEDFormer 0.376 0.420 0.459 0.506 0.346 0.429 0.496 0.463 0.379 0.426 0.445 0.543 0.203 0.269 0.325 0.421
Pyraformer 0.664 0.790 0.891 0.963 0.645 0.788 0.907 0.963 0.543 0.557 0.754 0.908 0.435 0.730 1.201 3.625

FiLM 0.371 0.414 0.442 0.465 0.284 0.357 0.377 0.439 0.302 0.338 0.373 0.420 0.165 0.222 0.277 0.371
FITS 0.368 0.404 0.405 0.425 0.255 0.307 0.306 0.368 0.305 0.339 0.366 0.414 0.164 0.217 0.269 0.347

Table 9: Long-term forecasting results on three popular datasets in MSE. The best result is highlighted
in bold.

Dataset Electricity Traffic Weather
Horizon 96 192 336 720 96 192 336 720 96 192 336 720

Autoformer 0.201 0.222 0.231 0.254 0.613 0.616 0.622 0.660 0.266 0.307 0.359 0.419
Informer 0.274 0.296 0.300 0.373 0.719 0.696 0.777 0.864 0.300 0.598 0.578 1.059

FEDFormer 0.193 0.201 0.214 0.246 0.587 0.604 0.621 0.626 0.217 0.276 0.339 0.403
Pyraformer 0.386 0.386 0.378 0.376 2.085 0.867 0.869 0.881 0.896 0.622 0.739 1.004

FiLM 0.154 0.164 0.188 0.236 0.416 0.408 0.425 0.520 0.199 0.228 0.267 0.319
FITS 0.137 0.142 0.165 0.202 0.381 0.381 0.410 0.446 0.145 0.188 0.236 0.308

D.2 COMPARISON WITH NBEATS & NHITS

We show the comparison with mentioned N-HiTS and N-BEATS on MSE in the following table.
FITS outperforms these two models in most cases while maintaining a compact model size. We will
consider adding the following results to our main result. The results for N-HiTS and N-BEATS are
retrieved from the paper of N-HiTS (Challu et al., 2023).

D.3 SHORT-TERM FORECASTING ON M4

We evaluate FITS’ performance on the M4 dataset following the TimesNet (Wu et al., 2023). We
retrieve the following results from the TimesNet paper. As shown in Tab.11, FITS shows the
suboptimal results on the M4 dataset. The reason for this outcome is threefold. First, the M4 dataset
is a collection of many time series from different domains. These time series have different temporal
information and periodicity, and no correlations exist among them. We can not regard them as
simple multivariate forecasting tasks. Second, other models have a very large amount of parameters,
especially TimesNet, which makes them have enough capability to model such diverse datasets with
one model. However, considering the lightweight of FITS, it is hard for it to achieve ideal results.
Finally, the setting for the M4 dataset is not suitable for FITS. The look-back window is set to
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Table 10: Comparison with N-HiTS and N-BEATS on MSE
Dataset Horizon FITS N-BEATS N-HiTS

Electricity

96 0.138 0.145 0.147
192 0.152 0.180 0.167
336 0.166 0.200 0.186
720 0.205 0.266 0.243

Traffic

96 0.401 0.398 0.402
192 0.407 0.409 0.420
336 0.420 0.449 0.448
720 0.456 0.589 0.539

Weather

96 0.145 0.167 0.158
192 0.188 0.229 0.211
336 0.236 0.287 0.274
720 0.308 0.368 0.351

ETTm2

96 0.164 0.184 0.176
192 0.217 0.273 0.245
336 0.269 0.309 0.295
720 0.347 0.411 0.401

Table 11: Results on M4 dataset in SMAPE.
FITS DLinear TimesNet N-Hits N-Beats

Yearly 14.00 16.96 13.38 13.41 13.43
Quarterly 10.72 12.14 10.1 10.2 10.12
Monthly 13.49 13.51 12.67 12.7 12.67

12, 16, and 36 for yearly, quarterly, and monthly prediction accordingly, which is twice the length
of the forecasting horizon. Such a short look-back window is very difficult to extract meaningful
frequency representation, which further worsens the FITS’ performance. We compare FITS with
lightweight model DLinear (Zeng et al., 2023), state-of-the-art model TimesNet (Wu et al., 2023)
and two hierarchical time series modeling model N-Hits (Challu et al., 2023) and N-Beats (Oreshkin
et al., 2019).

E CASE STUDY ON OTHER DATASETS

We show the parameter table and performance on other datasets below.

E.1 ETTH1, ETTM1 & M2

Tab.12 shows the corresponding results on ETTh1 dataset with different settings. ETTh1 shows a
abnormal behavior since FITS does not benefits form the longer look-back window, i.e. 720. Instead,
it achieves the sota performance at look-back window of 360. We also find this phenomenon in the
ETTm1 dataset. We attribute this phenomenon to the distribution shift that exist in the datasets. The
longer look-back window will introduce more information from a shifted distribution and sabotage
the forecasting result.

Tab. 13 shows the parameter count of parameters of FITS with different settings on the ETTm1 & 2
datasets. Tab. 14 and Tab.15 show the corresponding results on ETTm1 and ETTm2 datasets with
different settings. Note that FITS constantly achieves SOTA performance on the ETTm2 dataset with
under 10k parameters.
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Table 12: The results on the ETTh1 dataset. Values are visualized with a green background, where
darker background indicates worse performance. The top-5 best results are highlighted with a red
background, and the absolute best result is highlighted with red bold font. F represents supervision
on the forecasting task, while B+F represents supervision on backcasting and forecasting tasks.

Look-back Window 90 180 360 720
Horizon COF/nth Harmonic F B+F F B+F F B+F F B+F

2 0.391210 0.391987 0.388999 0.389400 0.396473 0.396321 0.402964 0.403307
3 0.390959 0.389857 0.385510 0.386088 0.380594 0.380825 0.386660 0.387143
4 0.387971 0.388607 0.383368 0.384021 0.377323 0.377619 0.383072 0.383700
5 0.386867 0.387619 0.382036 0.382446 0.374568 0.375034 0.380786 0.381331

96

6 0.386679 0.386013 0.380810 0.381219 0.372101 0.372712 0.379216 0.379815
2 0.441343 0.442006 0.432260 0.432547 0.426438 0.426715 0.435860 0.440504
3 0.440369 0.440186 0.429132 0.429812 0.411548 0.411818 0.420554 0.422348
4 0.438746 0.439231 0.427605 0.427898 0.409010 0.409368 0.417933 0.418202
5 0.437784 0.438436 0.426070 0.426605 0.406772 0.407058 0.415545 0.416382

192

6 0.436423 0.437092 0.425226 0.425557 0.404390 0.404649 0.414150 0.415508
2 0.482840 0.483552 0.458024 0.460152 0.448917 0.448952 0.455474 0.462104
3 0.482419 0.482874 0.455709 0.458133 0.433826 0.434296 0.440474 0.447663
4 0.481796 0.482031 0.454570 0.456531 0.431753 0.432849 0.437971 0.447336
5 0.480466 0.480184 0.453879 0.455248 0.430369 0.430036 0.434967 0.440387

336

6 0.477769 0.478893 0.452324 0.454378 0.427425 0.427670 0.434515 0.439989
2 0.471969 0.474663 0.442253 0.444961 0.445856 0.447131 0.450286 0.451247
3 0.470309 0.472660 0.440675 0.443468 0.430920 0.432436 0.435924 0.436795
4 0.469793 0.471439 0.438692 0.442282 0.428483 0.430407 0.433446 0.438730
5 0.470391 0.471038 0.437598 0.441572 0.426720 0.428304 0.431934 0.433103

720

6 0.468232 0.469044 0.438001 0.440176 0.424749 0.425963 0.430258 0.431978

Table 13: The number of parameters under different settings on ETTm1 & ETTm2 dataset.
Look-back Window

Horizon COF/nth Harmonic 90 180 360 720

96

4 420 513 621 1330
6 561 759 1015 2444
8 703 1053 1505 3835
10 861 1426 2050 5609
12 1035 1820 2726 7636
14 1225 2262 5561 16974

192

4 645 703 759 1505
6 850 1035 1218 2726
8 1064 1431 1820 4307
10 1302 1922 2501 6248
12 1564 2450 3290 8549
14 1875 3042 6767 18942

336

4 990 969 966 1715
6 1275 1449 1566 3149
8 1615 1998 2275 5015
10 1974 2666 3157 7242
12 2392 3395 4136 9960
14 2825 4212 8509 21894

720

4 1890 1710 1518 2380
6 2448 2530 2436 4324
8 3078 3510 3570 6844
10 3780 4650 4920 9940
12 4554 5950 6486 13612
14 5400 7410 13266 30012

E.2 TRAFFIC

Tab. 16 shows the parameter count of parameters of FITS with different settings on the Traffic dataset.
Tab. 17shows the result on the Traffic dataset with different settings correspondingly. The traffic
dataset has a very large amount of channels, making many models need many parameters to model
the temporal information. FITS only needs 50k parameters to achieve comparable performance.
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Table 14: The results on the ETTm1 dataset. Values are visualized with a green background, where
darker background indicates worse performance. The top-5 best results are highlighted with a red
background, and the absolute best result is highlighted with red bold font. F represents supervision
on the forecasting task, while B+F represents supervision on backcasting and forecasting tasks.

Look-back Window 90 180 360 720

Horizon COF/nth Harmonic F B+F F B+F F B+F F B+F
6 0.365445 0.364920 0.312641 0.312953 0.305685 0.306146 0.314674 0.314514
8 0.364851 0.364060 0.312192 0.312162 0.304728 0.304859 0.311096 0.311866

10 0.364031 0.363901 0.311927 0.312576 0.303561 0.304319 0.310334 0.310245
12 0.363204 0.363368 0.311663 0.311027 0.303412 0.303837 0.309762 0.309719

96

14 0.362444 0.362795 0.311292 0.311589 0.303153 0.303350 0.309248 0.309280

6 0.400734 0.400507 0.348337 0.348248 0.339300 0.339427 0.342016 0.342371
8 0.400492 0.400347 0.347860 0.347737 0.338135 0.338368 0.339153 0.339648

10 0.399691 0.399442 0.347713 0.348003 0.337680 0.337875 0.338802 0.338988
12 0.399838 0.398958 0.347586 0.347586 0.337414 0.337599 0.338334 0.338354

192

14 0.399357 0.399249 0.347410 0.347304 0.337172 0.337290 0.337920 0.338687

6 0.431620 0.431774 0.384310 0.384216 0.372982 0.373155 0.369938 0.369875
8 0.431072 0.431733 0.384172 0.384051 0.371957 0.372328 0.367226 0.367214

10 0.431126 0.431569 0.383794 0.383776 0.371696 0.371917 0.366873 0.367586
12 0.430388 0.431283 0.383467 0.383656 0.371289 0.371662 0.366383 0.366726

336

14 0.430749 0.431064 0.383719 0.383675 0.371363 0.371460 0.366238 0.366492

6 0.492552 0.492473 0.443358 0.443911 0.427787 0.428065 0.418358 0.418436
8 0.491822 0.492750 0.443295 0.443706 0.427054 0.427269 0.415964 0.416064

10 0.492088 0.492691 0.443319 0.443260 0.426868 0.427377 0.415702 0.416024
12 0.491904 0.492589 0.443103 0.443476 0.426748 0.426819 0.415402 0.415881

720

14 0.491202 0.491228 0.443076 0.443384 0.426571 0.427071 0.415266 0.415599

Table 15: The results on the ETTm2 dataset. Values are visualized with a green background, where
darker background indicates worse performance. The top-5 best results are highlighted with a red
background, and the absolute best result is highlighted with red bold font. F represents supervision
on the forecasting task, while B+F represents supervision on backcasting and forecasting tasks.

Look-back Window 90 180 360 720

Horizon COF/nth Harmonic F B+F F B+F F B+F F B+F
6 0.185981 0.185774 0.174363 0.174277 0.166817 0.166589 0.164719 0.164500
8 0.185601 0.185615 0.174002 0.173797 0.166025 0.165700 0.164127 0.163744

10 0.185515 0.185338 0.173717 0.173536 0.165634 0.165413 0.163178 0.162928
12 0.185489 0.185038 0.173951 0.173368 0.165369 0.165113 0.162719 0.162550

96

14 0.185646 0.185048 0.173502 0.173315 0.165362 0.165198 0.162575 0.162346
6 0.249365 0.249119 0.233717 0.233428 0.221364 0.220948 0.218563 0.218267
8 0.249366 0.248945 0.233405 0.233171 0.220596 0.220165 0.218115 0.217808

10 0.248919 0.248686 0.233276 0.232929 0.220104 0.220518 0.217338 0.216963
12 0.248677 0.248890 0.233005 0.233042 0.220007 0.219895 0.216927 0.216714

192

14 0.248678 0.248454 0.233162 0.232763 0.219897 0.219597 0.216879 0.216650
6 0.309083 0.308863 0.286387 0.286170 0.273920 0.273816 0.269833 0.269620
8 0.309234 0.308577 0.286186 0.286041 0.273418 0.273171 0.269393 0.269252

10 0.308768 0.308713 0.286102 0.285768 0.273038 0.272893 0.268921 0.268596
12 0.308741 0.308568 0.286529 0.285881 0.272931 0.272763 0.268468 0.268273

336

14 0.308759 0.308393 0.286232 0.285711 0.272905 0.272804 0.268366 0.268219
6 0.408977 0.408844 0.384164 0.383995 0.366645 0.366654 0.350173 0.349770
8 0.409260 0.408714 0.383980 0.383899 0.366070 0.366085 0.349659 0.349619

10 0.408793 0.408703 0.383886 0.383827 0.365909 0.365935 0.349019 0.348881
12 0.408698 0.408639 0.383921 0.383664 0.365810 0.365805 0.348831 0.348863

720

14 0.408765 0.408479 0.383926 0.383620 0.365790 0.365801 0.348938 0.348766

E.3 WEATHER

Tab. 18 shows the parameter count of parameters of FITS with different settings on the Weather
dataset. Tab. 17shows the result on the Traffic dataset with different settings correspondingly. Note
that we achieve the result in the main table by setting the COF as 75 and the look-back window as
700.
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Table 16: The number of parameters under different settings on Traffic dataset.
Look-back Window

Horizon COF/nth Harmonic 90 180 360 720
96 3 1035 1820 4307 12064

5 1922 3876 10374 31042
8 3698 8475 24186 75628
10 N/A 12558 36765 116202

192 3 1564 2450 5192 13520
5 2914 5253 12558 34694
8 5633 11400 29329 84434
10 N/A 16926 44460 130005

336 3 2392 3395 6608 15704
5 4402 7293 15834 40006
8 8514 15900 36974 97902
10 N/A 23478 56088 150549

720 3 4554 5950 10266 21424
5 8370 12750 24570 54780
8 16254 27750 57546 133644
10 N/A 40950 87210 205440

Table 17: The results on the Traffic dataset. Values are visualized with a green background, where
darker background indicates worse performance. The top-5 best results are highlighted with a red
background, and the absolute best result is highlighted with red bold font. F represents supervision
on the forecasting task, while B+F represents supervision on backcasting and forecasting tasks.

Look-back Window 90 180 360 720

Horizon COF/nth Harmonic F B+F F B+F F B+F F B+F
3 0.694065 0.694425 0.474606 0.475881 0.455815 0.457292 0.436317 0.436616
5 0.686110 0.684290 0.457057 0.456547 0.419903 0.419748 0.397558 0.397210
8 0.682876 0.681464 0.452024 0.451470 0.410857 0.410458 0.387791 0.38883096

10 N/A N/A 0.451340 0.450850 0.409948 0.409614 0.385763 0.386596

3 0.627212 0.636434 0.481686 0.485085 0.463516 0.464170 0.442661 0.443547
5 0.622882 0.622451 0.467921 0.467470 0.431367 0.431097 0.407908 0.407850
8 0.620314 0.620003 0.463119 0.462929 0.422517 0.422336 0.399032 0.399101192

10 N/A N/A 0.462595 0.461907 0.421705 0.421677 0.397286 0.398034

3 0.635301 0.662283 0.496200 0.510793 0.473090 0.476491 0.454243 0.456989
5 0.632244 0.631760 0.481267 0.480599 0.442476 0.442128 0.420268 0.420239
8 0.629962 0.629700 0.477111 0.476673 0.434504 0.434124 0.411608 0.412114336

10 N/A N/A 0.476248 0.476044 0.433656 0.433456 0.410500 0.410417
3 0.685472 0.732168 0.529004 0.606921 0.500635 0.587891 0.488116 0.489934
5 0.670385 0.669979 0.507742 0.507104 0.469442 0.469337 0.456470 0.456207
8 0.668054 0.668322 0.504645 0.536565 0.463208 0.463744 0.449778 0.449220720

10 N/A N/A 0.503795 0.503702 0.462643 0.463091 0.448882 0.448182

E.4 ELECTRICITY

Tab. 20 shows the parameter count of parameters of FITS with different settings on the Electricity
dataset. Tab. 21 shows the result on the Electricity dataset with different settings correspondingly. We
find that the Electricity dataset is sensitive to the COF. This is because this dataset shows significant
multi-periodicity, which requires capturing high-frequency components. Otherwise, FITS will not
learn such information.
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Table 18: The number of parameters per channel under different settings on Weather dataset.
Look-back Window

Horizon COF/nth Harmonic 90 180 360 720
96 5 496 630 806 1845

8 703 1053 1505 3835
10 861 1426 2050 5609
12 1035 1820 2726 7636

192 5 752 861 988 2050
8 1064 1431 1820 4307
10 1302 1922 2501 6248
12 1564 2450 3290 8549

336 5 1136 1197 1248 2378
8 1615 1998 2275 5015
10 1974 2666 3157 7242
12 2392 3395 4136 9960

720 5 2160 2100 1950 3280
8 3078 3510 3570 6844
10 3780 4650 4920 9940
12 4554 5950 6486 13612

Table 19: The results on the Weather dataset. Values are visualized with a green background, where
darker background indicates worse performance. The top-5 best results are highlighted with a red
background, and the absolute best result is highlighted with red bold font. F represents supervision
on the forecasting task, while B+F represents supervision on backcasting and forecasting tasks.

Look-back Window 90 180 360 720
Horizon COF/nth Harmonic F B+F F B+F F B+F F B+F

5 0.168999 0.167446 0.154289 0.153895 0.146525 0.147573 0.145413 0.145591
8 0.168489 0.167466 0.154478 0.152689 0.150962 0.145706 0.150321 0.144873

10 0.167841 0.16671 0.157372 0.154233 0.144939 0.145926 0.14378 0.14366396

12 0.167211 0.167596 0.153383 0.152575 0.145388 0.144406 0.144109 0.143549
5 0.216142 0.214978 0.199501 0.20005 0.190332 0.188983 0.188193 0.187653
8 0.215683 0.214616 0.2003 0.197924 0.190594 0.188961 0.187488 0.187293

10 0.216368 0.215074 0.198559 0.196907 0.188374 0.188846 0.189149 0.187211192

12 0.215767 0.214471 0.19829 0.196227 0.188737 0.188946 0.186627 0.187315
5 0.271176 0.268613 0.252509 0.250649 0.2425 0.241132 0.238817 0.237748
8 0.271297 0.269261 0.254065 0.251179 0.242187 0.241113 0.237223 0.236302

10 0.270489 0.26817 0.25271 0.25147 0.241169 0.241497 0.237585 0.23675336

12 0.270616 0.268199 0.252692 0.250244 0.241046 0.240129 0.236639 0.236732
5 0.350177 0.347762 0.331098 0.329988 0.317609 0.317085 0.307792 0.308279
8 0.350805 0.348277 0.332104 0.329343 0.317169 0.316756 0.307681 0.307556

10 0.350146 0.347992 0.331052 0.329464 0.317204 0.316535 0.307876 0.307997720

12 0.349919 0.347507 0.330589 0.328929 0.31728 0.317051 0.307549 0.307695
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Table 20: The number of parameters under different settings on Electricity dataset.
Look-back Window

Horizon COF/nth Harmonic 90 180 360 720

96

4 1431 2752 6975 20385
6 2450 5192 14338 43734
8 3698 8475 24186 75628

10 N/A 12558 36765 116202

192

4 2187 3698 8475 22815
6 3710 7021 17334 48856
8 5633 11400 29329 84434

10 N/A 16926 44460 130005

336

4 3321 5160 10725 26460
6 5600 9794 21828 56539
8 8514 15900 36974 97902

10 N/A 23478 56088 150549

720

4 6318 9030 16650 36180
6 10710 17110 34026 77224
8 16254 27750 57546 133644

10 N/A 40950 87210 205440

Table 21: The results on the Electricity dataset. Values are visualized with a green background, where
darker background indicates worse performance. The top-5 best results are highlighted with a red
background, and the absolute best result is highlighted with red bold font. F represents supervision
on the forecasting task, while B+F represents supervision on backcasting and forecasting tasks.

Look-back Window 90 180 360 720

Horizon COF/nth Harmonic F B+F F B+F F B+F F B+F
4 0.211863 0.211541 0.164613 0.164616 0.156359 0.156297 0.150566 0.150438
6 0.207940 0.207753 0.158720 0.158540 0.145222 0.145141 0.141353 0.141240
8 0.205725 0.205731 0.155645 0.155360 0.141808 0.141797 0.136764 0.13651896

10 N/A N/A 0.153865 0.153727 0.140404 0.140146 0.134548 0.134512
4 0.208883 0.208732 0.177320 0.177169 0.170017 0.169900 0.164768 0.164958
6 0.204794 0.204745 0.171682 0.171478 0.159142 0.158998 0.155794 0.155677
8 0.202812 0.202812 0.168498 0.168369 0.155829 0.155772 0.151284 0.151151192

10 N/A N/A 0.166973 0.166850 0.154208 0.154133 0.149191 0.149113
4 0.223752 0.223654 0.193835 0.193764 0.185941 0.185745 0.180178 0.180076
6 0.225369 0.228277 0.188469 0.188316 0.175312 0.175207 0.171449 0.171408
8 0.217910 0.217896 0.185530 0.185429 0.172143 0.172221 0.167087 0.167156336

10 N/A N/A 0.184023 0.183940 0.170639 0.170568 0.165106 0.165353

4 0.264973 0.264844 0.232324 0.231985 0.223079 0.222988 0.217765 0.217644
6 0.262983 0.262587 0.227060 0.227014 0.213388 0.213266 0.209735 0.209591
8 0.261890 0.262908 0.224484 0.224334 0.210542 0.210451 0.205780 0.205604720

10 N/A N/A 0.223122 0.223114 0.209192 0.209104 0.204054 0.203816

F FULL ANOMALY DETECTION RESULTS

The full results with Accuracy, Precision, Recall, and F1-score are shown in Tab. 22. For better
performance, we also conduct experiments only on the first channel of the SML dataset, denoted as
(C0). We also trained FITS using only the analog channels of SWaT, denoted as (analog).

Table 22: Full results on five datasets.
Datasets Accuracy Precision Recall F1-score

SMD 99.92 99.9 100 99.95
PSM 94.43 97.2 90.43 93.69
SWaT 99.42 97.84 100 98.9

SWaT(analog) 97.81 91.74 100 95.69
SMAP 89.39 77.52 65.05 70.74
MSL 81.52 61.38 80.16 69.52

MSL(C0) 83.77 81.34 75.15 78.12

G ANOMALY DETECTION RESULTS ON SYNTHETIC DATASET

We generate the synthetic dataset using the script provided in the benchmark with the default setting,
i.e., 5% outlier on each channel with different outlier types. We generate 4000 time-steps as our
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Model Precision Recall F1-score

FITS-win24 1 1 1
FITS-win50 1 1 1
FITS-win100 1 0.9993 0.9996
FITS-win400 1 0.9991 0.9995
AR 0.59 0.77 0.64
GBRT 0.47 0.56 0.51
LSTM-RNN 0.22 0.26 0.24
IForest 0.48 0.57 0.52
OCSVM 0.62 0.74 0.67
AutoEncoder 0.20 0.24 0.22
GAN 0.15 0.15 0.15

Table 23: Results on the synthetic dataset.

dataset, in which we take 2500 for training and the rest 1500 for testing. For our FITS model, we
use four different reconstruction windows, labeled as FITS-winxxx. We compare with the results
retrieved from Table 17 of the original paper (Lai et al., 2021). The result is shown in 23.

H DATASETS VISUALIZATION ON ANOMALY DETECTION

As shown in Fig. 6 and Fig. 7, most PSM and SMD datasets channels are analog values. Especially
the PSM dataset shows great periodicity.

Figure 6: Waveform of PSM dataset.

While some channels in the SWaT dataset are binary event values, as shown in Fig. 8.
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Figure 7: Waveform of SMD dataset.

21



Published as a conference paper at ICLR 2024

Figure 8: Waveform of SWAT dataset.

However, as shown in Fig. 9 and Fig. 10, for SMAP and MSL datasets, most channels are binary
event values that are hard for FITS to learn frequency representation.

Figure 9: Waveform of SMAP dataset.
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Figure 10: Waveform of MSL dataset.
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I PARAMETER COUNTS FOR ANOMALY DETECTION

We use a fixed sliding window of 200 and 400 for all the datasets and do not apply any frequency
filter. The downsample rate is set as 4 for any dataset. Thus, the number of parameters is as Tab. 24.

Table 24: MACs and parameter count of FITS on Anomaly Detection task. We report the MACs on
the SWaT dataset which has 55 channels.

Window Params MACs

200 2600 137.5k
400 10200 550k
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