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Abstract

The notion of duality – that a given physical sys-
tem can have two different mathematical descrip-
tions – is a key idea in modern theoretical physics.
Establishing a duality in lattice statistical mechan-
ics models requires the construction of a dual
Hamiltonian and a map from the original to the
dual observables. By using neural networks to
parameterize these maps and introducing a loss
function that penalises the difference between cor-
relation functions in original and dual models, we
formulate the process of duality discovery as an
optimization problem. We numerically solve this
problem and show that our framework can redis-
cover the celebrated Kramers-Wannier duality for
the 2d Ising model, numerically reconstructing
the known mapping of temperatures. We further
investigate the 2d Ising model deformed by a pla-
quette coupling and find families of “approximate
duals”. We discuss future directions and prospects
for discovering new dualities within this frame-
work. 1.

1. Background
A key concept in physics is duality, i.e. the idea that the
same physical system can have two different mathematical
descriptions. Duality sits at the heart of modern theoretical
physics. In this work we seek to formalize the notion of
duality in statistical physics in a manner that allows modern
machine learning techniques to be used to systematically
search for dualities.
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Background on duality: Consider a statistical physics
model with microstates σ and Hamiltonian functional
H[β, σ], where β are macroparameters such as the tem-
perature. The model is determined by its partition function
Z =

∑
σ e

−H[β,σ]. However, in nature we often have access
to sets of expectation values of observables Oα(σ) (some
real-valued functions of the microstates, e.g. correlation
functions, with α being an arbitrary label)

⟨Oα(σ)⟩H =
1

Z

∑
σ

Oα(σ) exp(−H[β, σ]). (1)

It is a profound physical fact that occasionally there are alter-
native representations of these sets of correlation functions
(see e.g. (Savit, 1980; Kramers & Wannier, 1941b;a; Peskin,
1978; Dasgupta & Halperin, 1981; Coleman, 1975; Wegner,
1971) for influential examples). That is, there exists another
set of microstates σ̃, another Hamiltonian H̃[β̃, σ̃] and for
each observable Oα(σ) a dual observable Õα(σ̃i) such that

⟨Oα(σ)⟩H = ⟨Õα(σ̃)⟩H̃ . (2)

When this happens, we have a duality –the same physical
system has at least two distinct mathematical descriptions,
which may be useful for different reasons.

A prototypical example of such a duality is Kramers-
Wannier duality for the 2d Ising model (Kramers & Wannier,
1941b). The 2d Ising model2 consists of spins σi = ±1 liv-
ing on the sites of a square lattice at temperature β−1, with
Hamiltonian that sums over neighbouring spins ⟨ij⟩

H[β, σ] = −β
∑
⟨ij⟩

σiσj . (3)

It is a remarkable fact that the model described by (3) is
precisely equivalent to a different 2d Ising model model
with spins σ̃i = ±1 living on the dual lattice, with a dual
Hamiltonian of the same functional form

H̃[β̃, σ̃] = −β̃
∑
⟨ij⟩

σ̃iσ̃j (4)

but with β̃ satisfying

sinh(2β) sinh(2β̃) = 1 . (5)

2See e.g. (Kardar, 2007) for a textbook treatment.
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Figure 1. The two-point product of spins in the original frame σiσj

is related to the product of spins σ̃i∗ σ̃j∗ in the dual frame, where
i∗, j∗ are related to ij as shown.

Note that this maps low temperatures to high temperatures.
The fact that the functional form of the Hamiltonian is the
same is exceptional, and in this case one can call the duality
a self -duality.

Importantly, all observables constructed from the σi can be
mapped to observables of the σ̃i. Consider for instance two
neighbouring spins σi and σj . We can build an observable
Oij = σiσj , which we call a link product. Then the KW
duality implies that

⟨Oij · · · ⟩H =
〈
Õij(σ̃) · · ·

〉
H̃
, Õij(σ̃) = e−2β̃σ̃i∗σ̃j∗

(6)
where the notation σ̃i∗ refers to sites on the dual lattice
such that the link connecting sites i∗ and j∗ intersects the
link connecting i and j, as shown in Figure 1. The · · ·
indicate that this is an operator equation which holds for
arbitrary insertions of operators and thus can be used to
construct any expectation value of an even number of the
σi. Appropriate products of the link products determine all
correlation functions.3

Deformations of this prototypical duality have explicitly
been studied in some special cases (Strycharski & Koza,
2013; Cobanera et al., 2011; Aasen et al., 2016). However,
even in this controlled setup a lot remains to be understood
and a fully systematic approach is not available. For in-
stance, to our knowledge an explicit study of dual models
to the plaquette model

H[β, σ] = −β
∑
⟨ij⟩

σiσj − κ
∑
⟨ijkl⟩

σiσjσkσl, (7)

3Due to a Z2 symmetry the expectation value of a moment
of an odd number of spins formally vanishes in a finite model,
though as usual in the symmetry spontaneously broken phase this
might not be observed in a simulation that uses local updates. We
also note that the relation is modified if we consider precisely the
same two-spin operator twice, i.e. (σiσj)

2 = 1, when a careful
derivation of the duality shows that the right-hand side must be
modified and is also identically 1.

where the second sum is a sum over plaquettes (squares)
⟨ijkl⟩, has not yet been performed.

In this work we tackle the problem of finding statistical
physics dualities using machine learning. In particular, start-
ing from an original model (H,O) determined by a Hamil-
tonian H and selected observables O, we formulate an op-
timization problem whose solution can recover both this
model as well as dual descriptions (H̃, Õ). As a first step,
we will focus on the 2d Ising model with Hamiltonian (3)
and observable Oij = σiσj , as well as on the plaquette
model (7). We demonstrate that the optimization problem
recovers the known dual to the 2d Ising model, thus offer-
ing an automated discovery of a duality. We furthermore
give evidence for the absence of certain self-dualities of the
plaquette model. As we shall see, also this negative result
highlights interesting physical features.

Previous work: The problem of learning the parameters
in a Hamiltonian from data is precisely that of training a
Boltzmann machine, and has a very long history. Our case
differs from the classical situation in that we are simultane-
ously learning a mapping of observables.

Other work on using machine learning to probe dualities in
statistical physics includes (Betzler & Krippendorf, 2020).
Section 3 of that work has some overlap with ours, where
the key differences are: (1) in that work the input into the du-
ality mapping is spin configurations sampled in the original
frame, after which a second step of sampling is done: this
is not exactly the usual setup for duality in physics, where
one usually just samples once (importantly, in a dual frame)
and then performs a deterministic mapping, as in our work.
(2) It seems that the loss function used in that work cannot
be formulated unless the duality mapping of temperatures
is known already, and thus that this work cannot be used to
find new dualities, which our formalism allows.

We also note work in the context of duality in quantum field
theory (Bao et al., 2020).

2. Methodology
We now explain how, starting from the Hamiltonian H[β, σ]
of some statistical model on a lattice, we can learn candi-
dates H̃[β̃, σ̃] for dual models as well as a dictionary be-
tween original and dual observables. This includes learning
the fact that the dual model is defined on a different lattice,
such as the dual lattice.

Framework and loss function: We assume that H̃ can
be written in terms of local couplings of spins:

H̃[β̃, σ̃i] = −β̃
∑
⟨ij⟩

σ̃iσ̃j − κ̃
∑
⟨ijkl⟩

σ̃iσ̃j σ̃kσ̃l − · · · (8)
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Figure 2. We parametrize G as a neural network that takes neigh-
boring links of a given link (in this case # 6) as its input. The
assignment on horizontal links is related to that on vertical ones
by a rotation and reflection.

where the couplings (β̃, κ̃, etc.) are parameters to be learned.
We would like to find dual representations of the link prod-
ucts Oij we described for the Ising model. We assume that
the link product in the original model is mapped to some
functions of nearby link products in the dual model, more
precisely

Õij(σ̃) = G({σ̃kσ̃l}) (9)

where {σ̃kσ̃l} is a set of link products such as the one shown
in Figure 2.

G is designed to be sufficiently flexible to recover models
on lattices related in various ways to the original one. Note
that a choice must be made about how to relate the assign-
ment of link products neighbouring a horizontal link to the
assignment of link products neighbouring a vertical link, as
multiple choices are consistent with rotational invariance.
In Figure 2 we display the choice used, which relates them
by a rotation composed with a reflection. As we will see
later, this choice is important for recovering the geometry
of the dual lattice.

We now construct a loss function L that is minimized when
all correlation functions of Oij and Õij agree on the two
sides of the duality. This is similar to the matching of mo-
ments of two distributions, which is a standard problem,
and for which one can construct general kernels that are
minimized only when all of the moments of two distribu-
tions agree (see e.g. (Li et al., 2015)). Unfortunately, in the
present case we cannot use kernels because of one concep-
tual and one technical problem: 1) certain moments need not
be matched, as per Footnote 2, and 2) no notion of locality
is embedded in standard moment matching. In the present
case, correlation functions of faraway spins carry little in-
formation, and thus attempting to match their moments is a
waste of computation.

6
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Figure 3. Examples of three features showing link products con-
sidered.

Instead we explicitly match features – i.e. moments of a
small number of nearby link products, as shown in Figure 3
– which we then spatially average over the lattice. Denoting
these features as ϕa with a running over features, we then
construct the loss

L(G, H̃) =
∑
a

ℓaℓa ℓa = ⟨ϕa[G(σ̃i)]⟩H̃ − ⟨ϕ
a[σi]⟩H

(10)
ℓa can be thought of as a vector in feature space indicating
how far apart the two theories are.

For the 2d Ising model, it is clear that this loss can be mini-
mized in two scenarios: (a) H̃ = H and G(σ̃iσ̃j) = σ̃iσ̃j ,
i.e., the original model is rediscovered, or (b) H̃ ̸= H
and G(σ̃iσ̃j) ̸= σ̃iσ̃j , representing a nontrivial dual model
where (selected) moments nevertheless perfectly match
those of the original model. The plaquette model has no
dual that is known explicitly.

Optimization: We now need to solve the following opti-
mization problem:

G∗, H̃∗ = argmin
G,H̃

L(G, H̃) (11)

G is represented by a neural network with parameters θ,
G = Gθ.

Algorithm 1 outlines the procedure for optimization. Given
a trial set of parameters θ and couplings for the dual Hamil-
tonian β̃a, we simultaneously perform Markov Chain Monte
Carlo (MCMC) sampling from the original and dual Hamil-
tonians using a standard Metropolis algorithm to obtain spin
configurations σi and σ̃i drawn from the appropriate distri-
butions respectively. We can then evaluate the expectation
values in (10), and compute the loss L.

To minimize it we also need to compute gradients ∂θL and
∂β̃a
L. For θ this can be done straightforwardly using con-

ventional automatic differentiation techniques. For the β̃a

we cannot backpropagate through a stochastic sampler, but
explicit differentiation shows that we can relate the gradients
to expectation values that can be evaluated through MCMC
sampling from the dual Hamiltonian. For concreteness we
demonstrate the argument with only a single nonzero cou-
pling β̃ in (8), but the generalization to other couplings (and
in particular the plaquette coupling κ̃) is immediate. For any
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function of spins O[σ̃] we have

⟨O⟩H̃ ≡
1

Z(β̃)

∑
{σ̃i}

O[σ̃]e(β̃
∑

⟨ij⟩ σ̃iσ̃j) (12)

where Z(β̃) ≡
∑

{σ̃i} e
(β̃

∑
⟨ij⟩ σ̃iσ̃j) and the sum over {σi}

runs over all spin configurations. Now we have

∂β̃L = 2
∑
a

ℓa∂β̃⟨ϕ
a[G(σ̃i)]⟩H̃ , (13)

where we have used the definition of ℓa in (10). From (12)
the gradient of any observable with respect to β̃ is

∂β̃⟨O⟩H̃ = −⟨O⟩H̃⟨
∑
⟨ij⟩

σ̃iσ̃j⟩H̃ +
∑
⟨ij⟩

⟨σ̃iσ̃jO⟩H̃ (14)

where the first term comes from differentiating Z(β̃) and the
second from differentiating inside the Boltzmann measure
weighting each configuration in (12). Using this expression
to evaluate (14) for O = ϕa[G(σ̃i)] we find:

∂β̃L = −2
∑
a

ℓa
〈⟨∑

⟨ij⟩

σ̃iσ̃j⟩H̃ −
∑
⟨ij⟩

σ̃ĩσ̃j

ϕa[Gθ(σ̃)]

〉
H̃

.

(15)
We can now evaluate the expectation value by MCMC sam-
pling from the dual Hamiltonian. We note that this evalu-
ation is computationally expensive, as each gradient step
requires us to equilibrate an MCMC chain. For training
conventional Boltzmann machines one can use more effi-
cient approaches such as contrastive divergence (Carreira-
Perpinan & Hinton, 2005). Due to the presence of the map-
ping G, we are not aware of a similarly efficient algorithm in
our case, and indeed all likelihood-based approaches seem
conceptually difficult.

Algorithm 1 Machine learning for finding statistical me-
chanical duality

1: Inputs: β, η (learning rate), N (number of samples)
2: Initialize: β̃0 ∈ R, θ ∈ Rd

3: for each epoch t = 1, 2, . . . , T do
4: Draw N samples {σi}Ni=1 ∼ p(σ|β)
5: Draw N samples {σ̃i}Ni=1 ∼ p(σ̃|β̃) where β̃ ̸= β

6: Compute the loss L = 1
N

∑N
i=1 L(σi, Gθ(σ̃i))

7: Compute the gradients ∂β̃L and ∂θL
8: Update the parameters:

β̃t+1 ← β̃t − η∂β̃L
θt+1 ← θt − η∂θL

9: if L has not improved for the last X epochs then
10: Stop the optimization
11: end if
12: end for

Improving convergence through variance reduction in
gradient estimation. Theoretically, computing gradients
as described above should be sufficient. In practice, we
observe significant noise, which hinders the optimization
process. Computing gradients using MCMC inherently has
high variance, making the optimization procedure highly
sensitive to inefficient sampling. We find this problem to be
especially severe in the case of two or more couplings.

To address this, we leverage the fact that in our training
procedure, the target system remains unchanged across
steps. This allows us to aggregate the target feature vec-
tor over multiple steps, thereby stabilizing it over time. Let
ta = ⟨ϕa[σi]⟩H denote the running expectation of the tar-
get feature after a sufficient number of steps, such that its
variance is minimized. The difference in feature vectors can
be written as

ℓa = ⟨ϕa[G(σ̃i)]⟩H̃ − ta (16)

For the second issue, we mitigate the variance in MCMC-
based gradient estimation using control variates, a common
variance reduction technique. Practical constraints limit our
ability to obtain sufficiently large samples that accurately
reflect the underlying distribution. To counter this, we in-
troduce a constant baseline as a control variate (Mohamed
et al., 2020; Greensmith et al., 2004). Since the target sta-
bilizes over time, our baseline includes the target feature
itself, effectively reducing variance in the gradient estima-
tion process. Thus, gradients are estimated as follows:

∂β̃L = −2
∑
a

ℓa
〈∑

⟨ij⟩

⟨σ̃iσ̃j⟩H̃ −
∑
⟨ij⟩

σ̃ĩσ̃j

×
(ϕa[Gθ(σ̃)]− ta)

〉
H̃

. (17)

Note that the extra term here relative to (14) is that in ta; as
usual for such baselines, it is proportional to ∂β̃ log p and
thus vanishes in expectation, but reduces the variance.

3. Experiments
In this section, we describe some simple experiments using
the above machinery.

Neural Network architecture for G: For a given link
product in the dual frame we assemble the 7 nearby links
shown in Fig. 2 into a 7-dimensional vector f⟨ij⟩ ∈ (Z2)

7,
where each element of the vector is the product of the two
spins living on the two ends of the link. We consider a
simplistic neural network acting on this input, with parame-
ters formed by θ1 ∈ R7, and scalars θ2 and θ3. We opt for
hard attention using Gumbel-Softmax (Jang et al., 2016) so
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that only a few of the seven nearby links are utilized in the
prediction task. Thus, the mapping is defined by,

Gθ(f⟨ij⟩) = θ2 · Gumbel-Softmax(θ1)T f⟨ij⟩ + θ3 (18)

As the elements of f⟨ij⟩ are ±1, a very simple network
provides a very expressive function. In our experiments, we
initialize θ2 and θ3 from a uniform distribution, U(−1, 1),
and θ1 from a normal distribution, N (0, 1).

3.1. Original 2d Ising model

We take our original Hamiltonian H to be that of the 2d
Ising model (3), and we take the dual Hamiltonian H̃ in (8)
to have only one non-zero parameter β̃ (and so κ̃ = 0, etc.).

Figure 4. Final β̃ as found by the deep learning framework closely
matches that of the theoretical results. Points are scaled by the
negative logarithm of the best loss such that the size of the points
is inversely proportional to the loss. We cap the minimum size so
that smaller points are visible. The loss is a minimum along two
fronts, i.e, original frame β = ±β̃ and the dual frame along the
lines sinh(2β) sinh(2β̃) = 1.

.

Rediscovery of the 2d Ising duality. In Figure 4, we show
the result of deploying the above machinery on different
model values of β on an 8×8 lattice with periodic boundary
conditions. For each value of the input β, we ran a total of
10 optimizations, five from each of the two initializations
of β̃, i.e., β̃0 = 0.2 and β̃0 = 0.5. Due to the randomness
involved in MCMC sampling, each seed is expected to be
an independent run.

We record the value of β̃ obtained. There are three branches
of solutions: the original model β̃ = β, the dual model
sinh(2β) sinh(2β̃) = 1, and an antiferromagnetic analogue
of the original model β̃ = −β. The latter is equivalent to
the original frame, and is obtained by making the change
of variables σi → −σi on every other site, thus flipping the
sign of β → −β. Note that the existence of the dual branch
of solutions can be viewed as a numerical “rediscovery” of
the KW duality line

sinh(2β) sinh(2β̃) = 1 (19)

Figure 5. Emergence of dual lattice: e.g. if four original links
(marked by 6) form a square, the corresponding four links that are
referenced by the neighbour mapping (marked by 2) in Figure 2
form a cross, as expected for the dual lattice.

Interestingly, we find that the method does not perform re-
liably as we approach the phase transition β = βc ≈ 0.44,
where the dual and original branches coincide. In addition,
we find that it does not work equally well for β > βc, when
the original frame is in the symmetry-broken phase. We
show the same plot for this phase in Supplementary Ma-
terial. This is somewhat reminiscent of known difficulties
in learning parameters of Hamiltonians at high β (see e.g.
Appendix B of (Haah et al., 2024)) and deserves further
study.

Further details on the experiments (including an exploration
on how they depend on the system size) are shown in the
Supplementary Material.

It is interesting to ask how the model recovers the structure
of the dual lattice, as well as the dual observables. The
attention mechanism used encourages the model to use only
a single link of the input, and for the runs that find the dual
temperature this ends up using the links numbered either 2
or 5 instead of the original 6 in Figure 2. As we show in an
example in Figure 5, this is equivalent to finding the dual
lattice from the original. Note that here it is important that
we relate horizontal to vertical links by the composition of
a rotation and reflection as shown in Figure 2; other choices
will not result in the possibility of finding the dual lattice,
and indeed in our experiments they do not find a duality.
The optimized values of Gθ closely match theoretical results
Õij(σ̃) = e−2β̃σ̃i∗σ̃j∗ , as shown in more details through the
sampled training trajectories in the Supplementary Material.

In this approach, the one-to-one mapping of β to β̃ is only
found numerically; one could possibly supplement this nu-
merical determination with symbolic regression (Schmidt
& Lipson, 2009) to obtain an analytic formula such as (19),
but in more complicated examples of the duality we do not
expect there to necessarily exist a simple analytic formula
and thus have not explored this.
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Figure 6. We display the both the target couplings (β, κ) and the output couplings (β̃, κ̃) from the optimization procedure. We also
indicate theoretical duals to models with (β ̸= 0, κ = 0). Note that duals to models with κ ̸= 0 are not known. Similar to Figure 4, the
size of the points is inversely proportional to the loss. The optimization often finds the original frame (β, κ) (or its antiferromagnetic
image (−β, κ)). When the target κ = 0, duals are still recovered, though accompanied by clusters along the lines β̃ + κ̃ = const, the
reason for which we discuss in Section 3.2.

3.2. Plaquette 2d Ising model

We now turn to a slight generalization of the familiar Ising
model by adding an extra 4-spin coupling:

H[β, κ;σi] = −β
∑
⟨ij⟩

σiσj − κ
∑
(ijkl)

σiσjσkσl (20)

where in the second term we take the product of four spins
around an elementary square plaquette. This “2d Ising pla-
quette model” is no longer exactly solvable and has been pre-
viously studied as a nontrivial testbed for ML approaches to
statistical physics problems (see e.g. (Huang & Wang, 2017;
Wang, 2017)). This model again has a disordered phase at
small (β, κ) and an ordered phase at larger couplings. For
completeness we present a simple mean-field description
of the phase diagram in Appendix A. As mentioned in the
introduction, no precise Kramers-Wannier duality for this
exact model is known for finite κ.

We now discuss the results from applying the machinery
above to search for a duality with the same functional form,
i.e.

H[β̃, κ̃; σ̃i] = −β̃
∑
⟨ij⟩

σ̃iσ̃j − κ̃
∑
(ijkl)

σ̃iσ̃j σ̃kσ̃l (21)

The results are shown in Figure 6. We ran a total of 300 ex-

periments, corresponding to 20 runs for each combination of
(β, κ) in the set {0.15, 0.2, 0.25, 0.3, 0.35}×{0.0, 0.1, 0.2}.
Here we see that the output from the optimization often
recovers the original frame (β, κ) (or, as above, its antifer-
romagnetic image (−β, κ)). However we do not find any
new dual theories when κ ̸= 0.

This is somewhat expected. Recall that away from the con-
ventional 2d Ising model, one does not necessarily expect
the dual Hamiltonian to take precisely the same functional
form – i.e. have exactly the same nonzero couplings – as
the original. Thus, our analysis gives evidence against such
an hypothetical fortuitous scenario. A more systematic
approach would require us to turn on a larger number of
couplings (e.g. we could imagine allowing for all couplings
that couple spins in a neighbourhood of a given size).

We should still however ask whether – now that model κ̃ is
allowed to vary – we can still find the standard expected KW
duals to theories with the target κ = 0, which are shown
as circles in Figure 6. Though we find these, we also find
clusters of theories along lines of the form β̃ + κ̃ = const
emerging from the known duals. To understand the physics
behind this surprising fact, note that this happens when the
dual model is deep in the ordered phase. Consider now a
typical configuration of spins in this phase. To good approx-

6



A Machine Learning Approach to Duality in Statistical Physics

imation, the spins will all be pointing in the same direction,
i.e. we may imagine σ̃i = 1 for almost all i, with occasional
very rare spin flips to σ̃i = −1. From the Hamiltonian (21)
we can compute that the energy cost to flip a spin against this
background is 8(β̃+κ̃), so the probability to flip the spin (as
compared to keeping it constant) behaves as p ∼ e−8(β̃+κ̃).
This single spin flip probability – which depends only on
the combination β̃+ κ̃ – will determine essentially all of the
observables, as the chance of flipping two nearby spins is
itself even smaller. Thus we see that almost all observables
depend only on β̃ + κ̃, and the optimization algorithm finds
it difficult to distinguish points along this line.

This “approximate duality” is not specific to this model and
will essentially happen any time we are dealing with a dual
frame which is deep in an ordered phase. It reflects the
fact that all systems which can be described by a dilute gas
approximation (i.e. described by a density of dilute objects
such as rare flipped spins) have a kind of universality in that
all observables are determined by a single parameter: the
probability of the rare event, in our case e−8(β̃+κ). In this
sense matching this parameter alone will result in a “dual”
description. To localize the system along the line we need
to increase the precision of our observables so that they can
be sensitive to even lower probability events involving the
interaction of multiple rare events. In practice this will likely
require more sample-efficient optimization techniques.

Empirical support for approximate duality. We now
show that a broad set of moments – including correlation
length – is accurately matched across approximate duals. To
do so in a completely generalizable fashion, (a) we evaluate
moments that were not included in the training loss, (b) we
compute these moments on 24 × 24 lattices, beyond the
training regime, (c) we include approximate duals along the
hypothesized line for comparison. Due to computational
constraints, training directly on large lattices like 24 × 24
is infeasible. Instead, we apply learned mappings Gθ from
8× 8 lattices to estimate features on larger systems without
retraining.

Figure 7 shows that the average moments across all approx-
imate duals for β0 ∈ {0.2, 0.25, 0.3} exactly match that
of the theoretical dual frames. Due to the lack of space,
we provide an extensive comparison in the supplementary
material.

Impact of variance reduction on convergence. We com-
pare our proposed algorithm, which incorporates variance
reduction techniques for gradient estimation in (17), with
the theoretically derived gradients from (15) in this section.

To quantify deviations, we define the ∆ as the maximum
absolute deviation in β, Gθ(+1), Gθ(−1), κ. Figure 8
presents the number of experiments where ∆ remains below

Figure 7. The moments formed from the product of consecutive
links forming a linear chain in a lattice of size 24 × 24 match
across approximate duals found from the framework across β0 ∈
{0.2, 0.25, 0.3} and their corresponding theoretical duals. We
cover extensive comparisons on other types of moments in the
supplementary material.

a given threshold ϵ. Ideally, we aim to maximize the area
under this curve.

We conduct 10 experiments for each combination of (β, κ)
in the set {0.25} × {0.0, 0.1}, evaluating both conditions:
with and without variance reduction. The dominance of
blue lines (with variance reduction) over orange lines (no
variance reduction) highlights that methods without variance
reduction techniques exhibit poor convergence.

Figure 8. Here we benchmark the control variate technique that we
use, determining how many of our runs recover a known target
theory to within a given tolerance ϵ. As the tolerance is relaxed
more and more runs are counted; the area under this curve is a
measure of the success of the algorithm. We see a clear increase in
efficiency from using the variance reduction technique.

Interpreting model learning behavior. Figure 10 pro-
vides a visual representation of mappings learned by the
models for σiσj = ±1, in the optimization results obtained
from Figure 6. Notably, the majority of runs converge to

7
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Figure 9. Left. The attention mechanism generally picks a single link to determine the observable. In the labeling of Figure 2, we display
the links chosen at the endpoint of the run for cases where κ = 0 and where κ ̸= 0. Note that when κ = 0 generally link 6 is obtained
(which indicates the rediscovery of the original theory), and when κ ̸= 0 there is a reasonable chance to find links 2 or 5, indicating a
mapping to the dual lattice and Kramers-Wannier duality, as explained around Figure 5. Right, we demonstrate that runs where links
(2, 5, 6) are chosen generally have much lower loss and attention entropy.

the expected mappings, either learning the original mapping
in the ferromagnetic phase with Gθ(x) = x or in the anti-
ferromagnetic phase with Gθ(x) = −x. The results that
align with ”approximate duality” exhibit mapping values
close to those expected under perfect duality when κ = 0.
This visualization gives a close look into what models are
actually learning at an internal level.

To further investigate which mappings the models predomi-
nantly learned, we examine the frequency of selected links
in the left panel of Figure 9. As discussed earlier, only links
numbered 2 and 5 correspond to the correct dual mapping,
while link 6 represents the original link. Our optimization
results predominantly select links 2, 5 or 6, with the ma-
jority favoring the original link, particularly in cases where
κ ̸= 0. On the right panel of Figure 9, we plot, as a func-
tion of the loss, the entropy of link selection computed as∑6

l=0 θ1l ∗ log θ1l, where l corresponds to the links. Inter-
estingly, as indicated by the spatial clustering of blue and
orange dots, optimization results with lower uncertainty in
link selection (i.e., lower entropy) exhibit a higher proba-
bility of selecting the correct link. These optimization runs
also achieve lower loss values, reaching as low as 1e − 7.
Thus, a high entropy in link selection is associated with
suboptimal optimization outcomes.

Figure 10. We display the mapping functions found by the algo-
rithm, plotting Gθ(+1) against Gθ(−1) and indicating the trivial
ferromagnetic solution (where Gθ(x) = x), the antiferromagnetic
solution (where Gθ(x) = −x) and the non-trivial duality (where
Gθ(x) = exp(−2β̃x)). The FM and AFM clusters contain many
runs.

4. Conclusions
Above we have explained how the process of finding dual-
ities can be automated, demonstrating the mechanism by
“rediscovering” the well-known Kramers-Wannier duality of
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the 2d Ising model, and by testing our system on the more
general plaquette model. This is only a proof of principle,
and much work remains to be done.

For example, as discussed in Section 2, at present we match
a number of features which are constructed by hand. It
would be ideal to find a kernel that allows matching of all
the required moments while simultaneously giving lower
weight to those involving faraway spins. On the operational
side, it would be helpful to have a more efficient way of
training; contrastive divergence fails here as there appears
to be no simple way to map the likelihood of a single spin
configuration across the duality.

On the physics side, we hope to use such techniques to
find new dualities or to understand approximate dualities.
One direction that we have initiated above is to search for
Kramers-Wannier duals of deformed Ising models, where
extra spin-spin couplings such as the plaquette term above
have been added to the action. While some results exist
for specific models (Strycharski & Koza, 2013; Cobanera
et al., 2011; Aasen et al., 2016), we are not aware of a
completely general approach that provides very explicit
results. Our experiments show that adding more couplings
generically increases the difficulty, highlighting the need for
more sample-efficient techniques. Finally, a less concrete
but far more exciting direction would be if one could use
the approach to find entirely new dualities, unconnected to
any existing ones. We hope to return to this in the future.
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A. Mean-field discussion of plaquette model
Here we establish some basic features of the plaquette model defined by

H[β, κ;σi] = −β
∑
⟨ij⟩

σiσj − κ
∑
(ijkl)

σiσjσkσl (22)

There is no known exact solution to this model for all β, κ. On general grounds we expect a disordered phase at small
(β, κ) and an ordered phase for larger (β, κ). We present a simple mean-field discussion of the Hamiltonian to confirm this
expectation, noting that while we expect gross features of the phase diagram to survive, it is not expected to be quantitatively
correct in d = 2.

Denote the true probability distribution for this model by

pβ,κ(σi) =
1

Z(β, κ)
exp(−H[β, κ;σi]) (23)

As usual we perform a mean-field treatment by postulating a simpler distribution qϕ(σi) labeled by some variational
parameters ϕi and minimize the KL divergence between the true distribution and the variational one:

DKL(qϕ||pβ,κ) ≡
〈
log

qϕ(σi)

pβ,κ(σi)

〉
q

= ⟨H[β, κ;σi] + log qϕ(σi)⟩qϕ + const (24)

The constant contains the intractable partition function Z(β, κ), but it is independent of the variational parameters and so
can be neglected. In physics this is precisely the minimzation of the free energy E − TS, where our choice of where to
place the factors of β means that factors of T appear slightly differently. We now pick a trial qϕ which is factorized on the
sites, i.e.

qϕ[σi] =
∏
i

exp(ϕiσi)

2 cosh(ϕi)
(25)

where our variational parameter ϕi on each site can be thought of loosely as a classical coarse-grained field. This is the most
general factorized distribution for a binary variable.

Computing the KL divergence for the choice where ϕi = ϕ is constant on all sites we find

DKL(qϕ||pβ,κ) = −2β tanh2 ϕ− κ tanh4 ϕ+ ϕ tanhϕ− log(2 cosh(ϕ)) (26)

This function always has a stationary point at ϕ = 0 due to the Z2 symmetry ϕ→ −ϕ. Exploration of the minima indeed
shows that this stationary point is a minimum of the free energy for small (β, κ) but is no longer a minimum at large (β, κ).
The existence of a minimum of the free energy at a nonzero value of ϕ indicates an ordered phase with spontaneous breaking
of the Z2 symmetry.

We focus on the limiting cases: at κ = 0 there is a second order transition at β = 1
4 (this is the standard result for the

mean-field treatment of the 2d Ising model), and at β = 0 there is a first-order transition at κ ≈ 0.688, where the precise
value was found numerically through balancing the free energy at the trivial and nontrivial minima of (26). Numerical
exploration shows that the phase transition line connects these two points straightforwardly.

We include this discussion for completeness, noting that the quantitative features are unlikely to survive (e.g. note the
well-appreciated fact that even at κ = 0 the true value for the transition at β ≈ 0.44 differs significantly from the mean-field
estimate βMF = 0.25). For that reason we have not found the precise location of the change from second-order to first-order,
as it is unlikely to be accurate for the real model. However the topology of the phase diagram is likely to have the shape
shown, as is borne out by our numerical experiments.

B. Neural network training
Our models are all implemented in PyTorch (Paszke et al., 2017). We used the Adam (Kingma & Ba, 2014) optimizer
with the learning rate of 0.01. Moreover, we used the early stopping criterion to stop the training if the loss didn’t improve
over 200 epochs. We ran the sampler in each experiment to generate 1000 samples for the lattice. We ran the training for
a maximum of 25000 epochs, and our runs took about 1-3 hours each. The experiments in the main paper are run on the
lattice size of 8× 8.
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C. Typical training curves
We provide some further details on our experimental results. The plots below are representative and were obtained with the
control variate technique.

Figure 11 shows runs for β = 0.25 grouped by β0 and frame discovered by the runs, illustrating how the training progresses
under different scenarios. For the seeds where either the dual or original frame is recovered, the loss goes to 0. Further, we
track the entropy of Gumbel-Softmax(θ1) to assess how the algorithm is weighing each feature. A value of 0 corresponds to
a strong preference for one out of the seven input links.

Figure 11. Training progress for runs from β = 0.25, grouped by β0 and the final frame discovered to showcase the trajectory of various
metrics. We show exponentially smoothed moving average of the following metrics: (A) Loss, (B) β, (C) Mapping of observables, (D)
Entropy of Gumbel-Softmax(θ1) For (B) and (C) we denote theoretically expected values in original and dual frames by the dashed lines.
Note that these runs are for recovering the original 2d-Ising model.

D. Scaling to bigger lattices
Figure 12 shows the fraction of instances in which either β̃, β, or −β were successfully recovered. We observe that the
convergence rate improves as the lattice size increases to 10× 10, 12× 12, and 14× 14.

12
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Figure 12. Fraction of optimization results with a maximum deviation, ∆ less than threshold, ϵ for optimization runs on β = 0.25. We
observe that increasing N beyond eight results in only a marginal improvement in performance.

E. Post-phase transition performance
Figure 13 shows a plot similar to Figure 4 but for the phase transition phase, β > βc. We observe that the method does not
work as well as with the lower βs.

Figure 13. Optimization results for post-phase transition don’t work as well as before the phase transition.
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F. Empirical support for approximate duals
We now provide evidence to show that a broad set of moments—including correlation length—is accurately matched across
approximate duals. This close agreement suggests that the essential physics is preserved; as discussed in the main text we
believe this largely follows from the fact that the single-spin-flip probability determines much of the physics in this regime.

To assess generalization, we compare feature statistics between approximate duals (both found from our experiments in the
paper and from the hypothesised line β + κ = const) and the corresponding theoretical duals. Importantly,

• We evaluate various features not included in the training loss
• We compute these features on larger lattices of size 24× 24, beyond the training regime
• We include approximate duals along the hypothesised line for comparison

Due to computational constraints, training directly on large lattices like 24× 24 is infeasible. Instead, we apply the learned
mappings from 8× 8 lattices to estimate features on larger systems without retraining.

In all the plots, the top panel shows average feature values across all approximate duals for β0 ∈ {0.2, 0.25, 0.3}— the
original-frame β values that yielded these approximate duals, and the lower panels show individual approximate duals
(marked by x). Squares mark the features corresponding to theoretical dual configurations.

We consider three categories of features. For each category, we present two plots: (Framework) one based on approximate
duals found by our framework, and (Hypothesized) another based on duals inferred from the hypothesized line β+κ = const,
where the constant is chosen to intersect the known dual point βdual.

• Product of consecutive links in a linear chain in a lattice of size 24x24: There are 24 such features (not used in
the training loss). Figure 14 & 15 shows the plots for approximate duals found by the framework and those from the
hypothesised approximate duals. Both sets of approximate duals closely match theoretical expectations

• 13 features constructed from link products used in the training loss: Figure 16 & 17 shows the plots for approximate
duals found by the framework and those from the hypothesised approximate duals. These features match well across
both sets of approximate duals, despite being trained on smaller 8x8 lattices.

• 101 Features constructed from all possible (up to gauge equivalence) link products in a grid (not used in the
training loss): Figure 18 & 19 shows the plots for approximate duals found by the framework and those from the
hypothesised approximate duals. Even this exhaustive set of features shows strong alignment with the theoretical dual,
reinforcing the robustness of our approach.
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Figure 14. (Framework) The moments (product of consecutive links in a linear chain in a lattice of size 24x24) computed from the
approximate duals found by our framework closely match those of theoretical duals.
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Figure 15. (Hypothesis). The moments (product of consecutive links in a linear chain in a lattice of size 24x24) computed from the
approximate duals along the hypothesized line (β + κ = const) closely match those of theoretical duals.
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Figure 16. (Framework) The moments (13 features constructed from link products used in the training loss) computed from the approximate
duals found by our framework closely match those of theoretical duals.
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Figure 17. (Hypothesis) The moments (13 features constructed from link products used in the training loss) computed from the approximate
duals along the hypothesized line (β + κ = const) closely match those of theoretical duals.
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Figure 18. (Framework) The moments (101 Features constructed from all possible (up to gauge equivalence) link products in a grid (not
used in the training loss) computed from the approximate duals found by our framework closely match those of theoretical duals.
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Figure 19. (Hypothesis) The moments (101 Features constructed from all possible (up to gauge equivalence) link products in a grid (not
used in the training loss) computed from the approximate duals along the hypothesized line (β + κ = const) closely match those of
theoretical duals.
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