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ABSTRACT

Graph contrastive learning (GCL), designing contrastive objectives to learn em-
beddings from augmented graphs, has become a prevailing method for learning
embeddings from graphs in an unsupervised manner. As an important procedure in
GCL, graph data augmentation (GDA) directly affects the model performance on
the downstream task. Currently, there are three types of GDA styles: trial-and-error,
precomputed method, and adversarial method. However, these strategies ignore
the connection between the two consecutive augmentation results because GDA is
regarded as an independent process. In this paper, we regard the GDA in GCL as a
Markov decision process. Based on this point, we propose a reinforced method,
i.e., the fourth type of GDA strategy, using a novel Graph Advantage Actor-Critic
(GA2C) model for GCL. On 23 graph datasets, the experimental results verify that
GA2C outperforms the SOTA GCL models on a series of downstream tasks such
as graph classification, node classification, and link prediction.

1 INTRODUCTION

Graph representation learning aims to extract low-dimensional representation vectors from the graph
data. These representation vectors encode the abundant structural and semantic information of the
graph. Graph representation learning has become an effective technique of graph mining and can be
applied to a series of fields including bioinformatics Ang et al. (2021); Wang et al. (2021), social
networks Matakos et al. (2022); Shen et al. (2022), and recommender systems Xu et al. (2022); Carroll
et al. (2022). Due to the sparsity of labeling information in the real world, learning representations
from graphs in a self-supervised manner has become a new research highlight Wu et al. (2021).
Graph contrastive learning (GCL), as an important member of self-supervised representation learning
on graphs, has achieved state-of-the-art (SOTA) performance on many downstream tasks Yu et al.
(2022b); Suresh et al. (2021).

Graph data augmentation (GDA) is an important procedure in GCL. It defines the augmented views
(i.e., the specific contents of input data for contrastive learning) and affects the model performance on
the downstream task directly. Typically, GDA strategies include edge adding, edge removing, attribute
masking, and so on. Prior work designs three types of GDA styles in total, including trial-and-error,
precomputed method, and adversarial method. In the trial-and-error (e.g., GRACE Zhu et al. (2020)
and BGRL Thakoor et al. (2021)) and precomputed method (e.g., GCA Zhu et al. (2021)), GDA is
frozen in the training. While in the adversarial method (e.g., AD-GCL Suresh et al. (2021)), GDA is
learnable and can be optimized by the view learner in the training.

Motivation: The Training Bottleneck in the Learnable GDA. Currently, GCL with learnable
GDA unleashes the potential of contrastive learning and has achieved SOTA performance in the
downstream task. Then a new potential question arises: how does a good augmented view evolve to
promote graph contrastive learning? As an example, we plot the results of AD-GCL in Figure 1(a)
where the x-axis, left y-axis, and right y-axis represents the epoch index, logarithmic number of
removed edges, and area under the ROC curve (AUC) on the test data, respectively. We can see that
the evolution of GDA does not promote graph contrastive learning well: on the one hand, after the
sixth epoch, GDA does not work anymore; on the other hand, the AUC performance on the test data
is unstable and has high variance. It indicates that the current learnable GDA in the GCL model has a
potential bottleneck in the training, i.e., the problematic design mechanism of GDA makes the GCL
model be updated effectively. We expect to achieve an advanced GDA that can evolve progressively.
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(a) AD-GCL (b) GA2C (ours)

Figure 1: Comparison of AD-GCL and GA2C. The results are from the graph classification task in
the BBBP dataset Hu et al. (2020) composed of 2,039 molecular graphs.

In this work, we propose reinforced GDA for GCL, making the augmentation procedure explore an
optimal learning path actively. The view learner in GDA is regarded as an agent that interacts with
the encoder network, such as graph isomorphism networks (GIN) Xu et al. (2019a), in the training
environment. Based on this idea, we design a Graph Advantage Actor-Critic (GA2C) model where
the joint use of the Actor submodel and Critic submodel contributes to the progressive evolution of
GDA. To illustrate it, we plot the result of GA2C in Figure 1(b). Surprisingly, like a student doing
exercises from easy problems to hard problems, we find that the view learner actively explores a
learning path corresponding to the order from simple topology structures to complex ones. At the
same time, the AUC performance on the test data improves from 65% to 75% and keeps relatively
stable after the 32nd epoch.

The main contributions of this work are summarized as follows:

• We propose a reinforced GDA strategy that formulates a Markov Decision Process for GDA.

• Under this strategy, we design a Graph Advantage Actor-Critic (GA2C) model to achieve continuous
and learnable GDA. The view evolution in this model significantly promotes GCL.

• On 17 graph datasets covering 5 different types, we verify that GA2C is robust and superior to
other graph contrastive learning models on the graph classification task.

2 PRELIMINARIES

Graph contrastive learning. Graph contrastive learning (GCL) is an important type of unsupervised
learning on the graph Wu et al. (2021). As shown in Figure 2, GCL typically includes three
main procedures: graph data augmentation (GDA), network encoding, and contrastive loss based
optimization. Assume an input graph Gi is sampled from the distribution P(G) defined over a universal
graph set G, two augmented views are obtained by two specific GDA operations Aώ and Aὼ where ώ
and ὼ are two augmentation parameters. Aώ and Aὼ are from the distribution P(A1,A2) defined over
all possible parameters of two augmentation strategies A1 and A2. The two views are then passed
into the encoder network fϕ(·) and the projection network gφ(·). Finally, the graph embedding is
calculated by an optimization process based on a predefined contrastive loss. The definition of graph
contrastive learning is as follows:
Definition 1. (Graph contrastive learning). Given an attributed graph Gi=(AGi

,XGi
) and its two

augmented views Ǵi=(AǴi
,XǴi

), G̀i=(AG̀i
,XG̀i

) (adjacency matrices AGi ,AǴi
,AG̀i

∈RNi×Ni , at-
tribute matrices XGi

,XǴi
,XG̀i

∈RNi×Mi ), the goal of graph contrastive learning is to learn a function
FGCL: G → Z or N → H, where G is graph space (Gi, Ǵi, G̀i∈G), N node space (u, v, · · · ∈N), Z
graph embedding space, and H node embedding space. For the graph embedding Zi∈RD (D≪Mi)
in Z, we call it the contrastive embedding of graph Gi. For the node embedding hu∈RD, we call it
the contrastive embedding of node u.
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Figure 2: Graph contrastive learning framework.

Downstream tasks. GCL is generally used as
a pretext task which is followed by downstream
tasks such as graph classification, node classifi-
cation, and link prediction. When GCL is com-
plete, the trained parameters ϕ and φ in the en-
coder network and projection network are used
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Figure 3: Illustration of the graph reinforced augmentation framework in one training epoch.

as the initial solution of the model in a down-
stream task. Taking the graph classification task
for an example, its definition is as follows:
Definition 2. (Graph classification). Given an input set of n attributed graphs D = {G1,G2, · · · ,Gn}
and the label li of each graph Gi, the goal of graph classification is to learn a function FGC : G → L
(D ⊂ G, li∈L), where G is graph space and L label set.

3 METHODS

In this section, we present the proposed graph reinforced augmentation framework and GA2C model.
For frequently used notations in the paper, we list and describe them in Table 1.

3.1 GRAPH REINFORCED AUGMENTATION FRAMEWORK

Table 1: Frequently used notations in this paper.

Notations Descriptions

D= {G1,G2, · · · ,Gn} Input set of n attributed graphs.
Gi=(Vi, Ei) The i-th attributed graph in D.
Vi, Ei Node set and edge set of Gi.
Ni,Mi∈R+ Node number and attribute number of Gi.
D∈R+ Hidden size of embeddings.
AGi

∈RNi×Ni Adjacency matrix of Gi.
XGi

∈RNi×Mi Attribute matrix of Gi.
Ǵi=(AǴi

,XǴi
) First augmented view of Gi.

G̀i=(AG̀i
,XG̀i

) Second augmented view of Gi.
Zi∈RD Graph embeddings of Gi.
Ź

(t)
i , Z̀

(t)
i ∈RD Graph embeddings of Ǵi, G̀i at time t.

h(k)
v Node embedding of v at k-th-layer network.

Aώ(·), Aὼ(·) Graph data augmentation (GDA) operations.
ώ

(t)
i GDA parameter of Gi at time t.

fϕ(·), gφ(·) Encoder network and projection network.
θA, θC Parameter of Actor, parameter of Critic.
T Duration time of Actor or Critic.

Reinforcement learning involves no supervisor
and only a reward signal is used for an agent
to determine if it is doing well or not. From
this point, reinforcement learning is suitable to
characterize an evolving view learner in GDA.
We illustrate the graph reinforced augmentation
framework in Figure 3. Specifically, there are
two novel designs in this framework as follow,

1. Alternate optimization of contrastive loss
and cumulative reward. We design two-stage
model learning: the first stage is to maximize
the expected cumulative reward between two
augmented graph embeddings Ź(t)

i and Z̀
(t)
i at

time t by only updating GDA parameters; the
second stage is to minimize the InfoNCE loss
L(·) between two views by only updating the
encoder and projection parameters ϕ and φ. The
whole optimization objective is as follows:

min
ϕ,φ
−

n∑
i=1

L(gφ(fϕ(Aώ∗
i
(Gi))), gφ(fϕ(Aὼ∗

i
(Gi)))), (ώ∗

i , ὼ
∗
i ) = argmax

ώi,ὼi

{JA,JC} , (1)

where JA (JC) is the cumulative reward function of the Actor (Critic) model.

2. Continuous and learnable GDA. Different from the discrete and frozen GDA in the prior work,
the GDA procedure in our framework is continuous and learnable. The continuity ensures that the
view learner can adjust the current augmentation parameters according to the state at the previous
time. This contributes to that the augmented views evolve to a better result steadily in the training.

3.2 GRAPH ADVANTAGE ACTOR-CRITIC MODEL

In this subsection, we present the design of GA2C in detail, including the Markov decision process
for GDA, model architecture, updating Actor, and updating Critic.

Markov decision process for GDA. The determination of GDA parameters is regarded as a Markov
decision process: given the present augmented view Ǵ(t)

i of graph Gi at time t, the augmented
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view Ǵ(t+1)
i of next time is independent of any past view Ǵ(t′)

i where t′ < t (note that we omit the
discussion about G̀(t)

i and ὼ
(t+1)
i to save more space because they have the same property as Ǵ(t)

i

and ώ
(t+1)
i ). It can be formalized as follows:

P(Ǵ(t+1)
i |Ǵ(t)

i ) = P(Ǵ(t+1)
i |Ǵ(1)

i , · · · , Ǵ(t)
i ). (2)

Since edge removing is an effective and popular GDA choice for graph classification, we adopt edge
removing as the GDA strategy of GA2C and ώ

(t)
i represents the removing probability of edges in Ǵi

at time t. A Markov decision process for GDA can be formulated as a 4-tuple (S,A, P,R):

• State (S): S is the set of all possible augmented views. A state s in S represents a certain
augmented view Ǵi. Also, the state at time t is denoted as Ǵ(t)

i .
• Action (A): A is the set of all possible augmentation operations. An action a in A represents a

certain augmentation operation Aώi
(·). Also, the action at time t is denoted as A

ώ
(t)
i

. For example,
given a graph G= {V, E} where V= {v1, v2, v3} and E= {(v1, v2), (v1, v3)}, we define an edge
index dictionary E= {1:(v1, v2), 2:(v1, v3)}. Then the action set for the edge removing strategy is
A= {[0, 0], [0, 1], [1, 0], [1, 1]} where “0” and “1” represents removing and retaining, respectively
(e.g., [0, 1] represents removing the 1st edge (v1, v2) and retaining the 2nd edge (v1, v3)).

• Transition probability (P ): P is a state transition probability matrix where the entry pss′ corre-
sponds to the probability transiting from state s to state s′.

• Reward (R): R is the total reward of the trajectory measuring the reward value generated by
a series of states. Also, the reward at time t is denoted as R(t). To decrease the redundant
information between two views as much as possible, we set Rt as the negative mutual information
between two augmented graph embeddings Ź

(t)
i and Z̀

(t)
i , i.e., R(t)= − I(Ź(t)

i , Z̀
(t)
i ) where

Ź
(t)
i =gφ(fϕ(Aώi

(Gi))) and Z̀
(t)
i =gφ(fϕ(Aὼi

(Gi))).
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Figure 4: Graph advantage Actor-Critic.

Model architecture. The Graph Advantage
Actor-Critic (GA2C) model contains two sub-
models of Actor and Critic. The advantage func-
tion in GA2C can be approximated by the tem-
poral difference (TD) error. We illustrate GA2C
in Figure 4. The Actor model with parameter θA
receives the information in Ǵ(t)

i and estimates
the GDA parameter ώ

(t+1)
i corresponding to

an augmentation operation A
ώ

(t+1)
i

(·) by three-
layer graph neural networks:

ώ
(t+1)
i = BN(CONCAT(READOUT(

{
h(k)

v |v∈Ǵ
(t)
i

}
)|k=1, 2, 3)),

h(k)
v = MLP

(k)
θA

(h(k−1)
v +

∑
u∈N

Ǵ(t)
i

(v)

h(k−1)
u ), (3)

where BN(·) is the batch normalization layer, READOUT(·) the readout layer calculating the graph
embedding from node embeddings, h(k)

v the embedding of node v (v∈Vi) at the k-th layer neural
network, NǴ(t)

i
(v) the node v’s neighbor set in Ǵ(t)

i , and h
(0)
u corresponds to the attribute vector of

node u. The Critic model with parameter θC receives Ǵ(t)
i , ώ(t+1)

i and estimates the Q-value Q́(t+1)
i

by three-layer graph neural networks. Like simulating an action on a state, we conduct the edge
removing operation with parameter ώ(t+1)

i on Ǵ(t)
i and then obtain Ǵ(t+1)

i :

Ǵ(t+1)
i = A

ώ
(t+1)
i

(Ǵ(t)
i ). (4)

The node v’s neighbor set in Ǵ(t+1)
i is denoted as NǴ(t+1)

i
. The Critic model is formalized as follows:

Q́
(t+1)
i = BN(CONCAT(READOUT(

{
h(k)

v |v∈Ǵ
(t+1)
i

}
)|k=1, 2, 3)),

h(k)
v = MLP

(k)
θC

(h(k−1)
v +

∑
u∈N

Ǵ(t+1)
i

(v)

h(k−1)
u ). (5)
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We train the Actor model and Critic model using the gradient ascent algorithm. Specifically, it
contains the following two aspects.

Updating Critic. The optimization objective of the Critic model is JC = −
∑T

t=1[Á
(t)
i (Ǵ(t)

i , ώi)]
2

and the gradient of the Critic parameter θC is computed as follows:

d

dθC

T∑
t=1

[Á
(t)
i (Ǵ(t)i , ώi)]

2, (6)

where the advantage function Á
(t)
i (Ǵ(t)

i , ώi) denotes how much better it is to take the action of edge
removing with parameter ώi compared to the average action at the given state Ǵ(t)

i . For Á(t)
i (Ǵ(t)

i , ώi),
we use the difference of the Q-value Q́

(t)
i (Ǵ(t)

i , ώi) and V-value V́
(t)
i (Ǵ(t)

i |G̀(t)
i ):

Á
(t)
i (Ǵ(t)i , ώi) = Q́

(t)
i (Ǵ(t)i , ώi)− V́

(t)
i (Ǵ(t)i |G̀

(t)
i ), (7)

where Q́
(t)
i (Ǵ(t)

i , ώi) is defined in Eq. 5 and V́
(t)
i (Ǵ(t)

i |G̀(t)
i ) is defined as follows:

V́
(t)
i (Ǵ(t)i |G̀

(t)
i ) =

t∑
j=1

γjR(t) =

t∑
j=1

−γjI(gφ(fϕ(Aώi(Gi))), gφ(fϕ(Aὼi(Gi)))). (8)

Updating Actor. The optimization objective of Actor is JA =
∑T

t=1 logπi(ώi|Ǵ(t)
i )·Á(t)

i (Ǵ(t)
i , ώi)+

λJreg (λ is the coefficient of regularization term) and the gradient of the Actor parameter θA is
computed as follows:

T∑
t=1

dlogπi(ώi|Ǵ(t)i )

dθA
· Á(t)

i (Ǵ(t)i , ώi) +
λJreg

dθA
, (9)

where the policy function πi(ώi|Ǵ(t)
i ) is designed by using the sigmoid function to turn each entry

[ώ
(t+1)
i ]j,k in ώ

(t+1)
i (defined in Eq. 3) into a probability value:

[πi(ώi|Ǵ(t)i )]j,k =
1

1 + e−[ώ
(t+1)
i ]j,k

(10)

and the regularization term Jreg = ώ
(t+1)
i prevents GA2C not to remove massive edges from the

graph. The pseudocode for the complete training process of GA2C is shown in Algorithm 1. For the
computational complexity analysis of GA2C, please see Appendix A.

Algorithm 1: Training process of GA2C
Data: A set of graphs D = {G1,G2, · · · ,Gn}, encoder network fϕ, projection network gφ, Actor with

parameter θA, Critic with parameter θC , epoch number Nepoch, duration time T , learning rate
αA of Actor, learning rate αC of Critic, and learning rate αE of encoder or projection network.

Result: Trained encoder network fϕ and trained projection network gφ.
1 Initialize ϕ, φ, θA, and θC using the Glorot uniform initializer; Initialize k: k ← 0;
2 while k < Nepoch do
3 for Gi ∈ D do
4 Initialize t: t← 0; Initialize Ǵ(t)i : Ǵ(t)i ← Gi; Initialize ώ

(t)
i as an all-one vector;

5 while t < T do
6 Calculate ώ

(t+1)
i based on Eq. 3 and take action based on Eq. 4;

7 Calculate πi(ώi|Ǵ(t)i ) based on Eq. 10;
8 Calculate Á

(t)
i (Ǵ(t)i , ώi) based on Eqs. 5,7,8; t← t+ 1;

9 end

10 Update θA: θA ← θA + αA

∑T
t=1

dlogπi(ώi|Ǵ
(t)
i )

dθA
· Á(t)

i (Ǵ(t)i , ώi) +
λJreg

dθA
;

11 Update θC : θC ← θC + αC
d

dθC

∑T
t=1[Á

(t)
i (Ǵ(t)i , ώi)]

2;

12 Calculate the InfoNCE loss L with ώ∗
i = ώ

(T )
i based on Eq. 1;

13 Update ϕ and φ: ϕ← ϕ− αE
dL
dϕ

, φ = φ− αE
dL
dφ

;
14 end
15 k ← k + 1;
16 end
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4 EXPERIMENTS

In the experiments, we first describe the used datasets and baselines (for the detailed experimental
setups, please see Appendix B). Next, we present the experimental results on three downstream
tasks. Then we conduct an ablation study and sensitivity analysis on GA2C. Finally, we analyze the
cumulative reward in GA2C and visualize the embedding results learned by GA2C.

4.1 DATASETS AND BASELINES

Datasets. We adopt the same datasets and data splitting in AD-GCL Suresh et al. (2021). These
datasets are for graph classification and from TU Benchmark Morris et al. (2020) and Open Graph
Benchmark (OGB) Hu et al. (2020). They cover five types of graphs including biochemical molecules
(NCI1, PROTEINS, MUTAG, and DD), social networks (COLLAB, RDT-B, RDT-M, IMDB-B,
and IMDB-M), physical chemistry (ESOL, Lipophilicity, and FreeSolv), biophysics (BACE), and
physiology (BBBP, ClinTox, Tox21, and SIDER). The statistics of these datasets are shown in Table 2.
For the datasets containing more than one task (e.g., ClinTox has two binary classification tasks for
1,477 drug compounds with known chemical structures), we report the mean metric values over all
tasks. For the datasets of node classification and link prediction, please see Appendix C.

Baselines. For graph classification, we compare GA2C with eight baselines totally, including one
supervised learning model (F-GIN Xu et al. (2019b)), three GCL models with frozen GDA (RU-
GIN Xu et al. (2019b), InfoGraph Sun et al. (2020), and GraphCL You et al. (2020)), three GCL
models with learnable GDA (AD-GCL Suresh et al. (2021), LP-InfoMin You et al. (2022), and
LP-InfoBN You et al. (2022)), and one GCL model with no GDA (SimGRACE Xia et al. (2022)). For
node classification, we compare GA2C with five baselines including four GZL models with frozen
GDA (DGI Velickovic et al. (2019), MVGRL Hassani & Khasahmadi (2020), GraphCL You et al.
(2020), and BGRL Thakoor et al. (2021)) and one GZL model with precomputed GDA (GCA Zhu
et al. (2021)). For link prediction, we compare GA2C with four GCL models (DGI Velickovic et al.
(2019), MVGRL Hassani & Khasahmadi (2020), GMI Peng et al. (2020), and SAIL Yu et al. (2022b))
and one unsupervised model (CAN Meng et al. (2019)) which are from Yu et al. (2022b).

4.2 PERFORMANCE ON DOWNSTREAM TASKS

Graph classification. We run experiments on five types of graphs and the corresponding experimental
results are shown in Table 3. From Table 3, we can see that the proposed model GA2C has better
overall performance than other baselines on biochemistry and social networks. On some datasets
(e.g., PROTEINS, DD, and RDT-M), GA2C has even outperformed the supervised F-GIN model.
Particularly, on IMDB-M, GA2C relatively outperforms F-GIN by about 4.1%. Based on this
observation, we guess that the reinforced GDA plays an important role in GCL. From the RMSE
(root mean square error) or AUC results on physical chemistry, biophysics, and physiology, we can
see that GA2C still has good performance. For example, on the datasets of BACE and BBBP, GA2C
relatively outperforms the runner-ups AD-GCL and LP-InfoBN by 4.03% and 6.57%, respectively.
Moreover, on ESOL, FreeSolv, and Tox21, seven baselines fall behind the supervised F-GIN but
GA2C outperforms it. This indicates the advantage of reinforced GDA in GCL again.

Table 2: Statistics of the used datasets. The left part is the biochemical and social networks from TU
Benchmark Morris et al. (2020). The right part is the physical chemistry, biophysics, and physiology
from Open Graph Benchmark (OGB) Hu et al. (2020). Here “#Nodes” and “#Edges” are the average
node number and average edge number in each graph, respectively.

Dataset Type #Graph #Node #Edge #Class Dataset Type #Graph #Node #Edge #Task

NCI1 Biochemistry 4,110 29.87 32.30 2 ESOL Physical chemistry 1,128 13.3 13.7 1
PROTEINS Biochemistry 1,113 39.06 72.82 2 Lipophilicity Physical chemistry 4,200 27.0 29.5 1

MUTAG Biochemistry 188 17.93 19.79 2 FreeSolv Physical chemistry 642 8.7 8.4 1
DD Biochemistry 1,178 284.32 715.66 2 BACE Biophysics 1,513 34.1 36.9 1

COLLAB Social networks 5,000 74.5 2457.78 3 BBBP Physiology 2,039 24.1 26.0 1
RDT-B Social networks 2,000 429.6 497.75 2 ClinTox Physiology 1,477 26.2 27.9 2
RDT-M Social networks 4,999 508.8 594.87 5 Tox21 Physiology 7,831 18.6 19.3 12
IMDB-B Social networks 1,000 19.8 96.53 2 SIDER Physiology 1,427 33.6 35.4 27
IMDB-M Social networks 1,500 13.0 65.94 3
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Table 3: Comparison results of baselines and GA2C on TU Benchmark and OGB Benchmark. For
each column, apart from the result of F-GIN (a supervised learning model, denoted as “sup.”), the
best result is bolded and the runner-up is underlined. “Lipo” denotes the dataset of Lipophilicity.

Method AUC (%)(↑) Accuracy (%)(↑) RMSE (↓)
BACE BBBP ClinTox Tox21 SIDER NCI1 PROTEINS MUTAG DD COLLAB RDT-B RDT-M IMDB-B IMDB-M ESOL Lipo FreeSolv

F-GIN (sup.) 72.97 68.17 88.14 74.91 57.60 78.27 72.39 90.41 74.87 74.82 86.79 53.28 71.83 48.46 1.173 0.757 2.755

RU-GIN 75.07 64.48 72.29 71.53 62.29 62.98 69.03 87.61 74.22 63.08 58.97 27.52 51.86 32.81 1.706 1.075 7.526
InfoGraph 74.74 66.33 64.50 69.74 60.54 68.13 72.57 87.71 75.23 70.35 78.79 51.11 71.11 48.66 1.344 1.005 10.01
GraphCL 74.32 68.22 74.92 72.40 61.76 68.54 72.86 88.29 74.70 71.26 82.63 53.05 70.80 48.49 1.272 0.910 7.679
AD-GCL 76.37 68.24 80.77 71.42 63.19 69.67 73.59 89.25 74.49 73.32 85.52 53.00 71.57 49.04 1.217 0.842 5.150

LP-InfoMin 75.82 70.32 71.83 72.52 60.62 69.53 71.90 88.69 74.07 71.52 81.27 53.05 71.08 48.79 1.245 0.974 7.698
LP-InfoBN 76.23 70.45 76.38 72.10 60.95 69.08 71.34 88.68 73.50 72.43 80.84 53.12 70.25 48.43 1.220 0.955 7.304
SimGRACE 76.05 70.24 76.70 71.39 60.61 68.62 72.15 89.15 74.40 71.66 81.59 53.04 71.31 49.56 1.387 0.920 5.485
GA2C (ours) 79.45 75.08 81.62 75.41 63.84 72.34 73.77 90.11 75.64 73.50 85.80 53.95 72.60 50.47 1.034 0.833 2.540

(a) Node classification (b) Link prediction

Figure 5: Comparison results on the tasks of node classification and link prediction.

Node classification. The results of the node classification task are shown in Figure 5(a). If the out-of-
memory error happens in some model (e.g., GCA on ogbn-arxiv), we do not plot its corresponding bar.
From Figure 5(a), we can see that GA2C and GCA (precomputed method) perform better than other
baselines on Cora and CS. We infer that precomputed GDA and learnable GDA can generate more
suitable views for the input graph than the trial-and-error method. In addition, GA2C outperforms
other baselines in the three datasets, which indicates the graph reinforced augmentation framework
works well on the node classification task.

Link prediction. The results of the node classification task are shown in Figure 5(b). From it, we
can see that GA2C is competitive with the SOTA GCL models. Also, SAIL adopts self-augmented
views to advance the expressivity of GNNs and achieves the runner-up in the comparison. Therefore,
we conclude that the procedure of GDA is crucial for either GCL or GNNs.

4.3 ABLATION STUDY

To evaluate which reinforcement learning model is more suitable for the graph reinforced augmen-
tation framework, we conduct an ablation study on GA2C by replacing the advantage Actor-Critic
model with other two reinforce models: vanilla policy gradient (namely GPG) and standard Actor-
Critic model (namely GAC). The experimental results are shown in Table 4. From it, we can see the
obvious advantage of GA2C over GPG and GAC. We explain that GA2C using advantage Actor-Critic
has more stable performance and lower variance, which improves GPG and GAC. In addition, we
evaluate the effects of different GDA strategies on the model performance on downstream tasks. The
used GDA strategies include edge removing (“ER”), edge perturbation (“EP”), and attribute masking
(“AM”). The corresponding results are shown in the last three lines in Table 4. We find that AM fails
behind the EP and ER. AM is not suitable for GA2C because the evolution of topological structure,
rather than semantic information, reflects the significant changes in graph characteristics.

4.4 SENSITIVITY ANALYSIS

In this part, we conduct the sensitivity analysis to GA2C. The hyperparameters to be analyzed include
the number of encoder network layers, learning rate αE (note that we set αE = αA = αC), dropout
ratio, and regularization coefficient λ. Based on the testing results on three representative datasets
(i.e., MUTAG, IMDB-B, and IMDB-M) under different hyperparameter values, we plot the Accuracy
curve in Figure 6. From it, we can see that GA2C is robust to these hyperparameters apart from
the number of encoder network layers. Based on the results in Figure 6(a), we find that the optimal
number of encoder network layers is 3 from the candidate set of {1, 3, 5, 7, 9}. When the number
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Table 4: The results of ablation study. “ER”, “ED”, and “AM” denote edge removing, edge perturba-
tion, and attribute masking, respectively.

model AUC (%)(↑) Accuracy (%)(↑) RMSE(↓)
BACE BBBP ClinTox Tox21 SIDER NCI1 PROTEINS MUTAG DD COLLAB RDT-B RDT-M IMDB-B IMDB-M ESOL Lipo FreeSolv

GPG+ER 79.69 74.94 79.45 74.93 63.52 71.24 71.33 87.78 75.38 72.72 84.60 53.43 71.20 49.87 1.056 0.856 2.671
GAC+ER 78.42 74.16 77.41 75.02 63.41 71.58 73.04 89.97 75.04 72.36 83.55 54.05 70.90 50.07 1.054 0.873 2.698

GA2C+ER 79.45 75.08 81.62 75.41 63.84 72.34 73.77 90.11 75.64 73.50 85.80 53.95 72.60 50.47 1.034 0.833 2.540
GA2C+EP 78.50 74.06 79.30 74.35 61.21 72.30 73.43 89.03 75.12 73.45 84.55 53.95 72.10 50.90 1.062 0.859 2.662
GA2C+AM 70.34 72.38 70.55 71.79 56.84 66.40 70.05 86.46 73.37 70.09 81.62 51.18 69.95 49.65 1.088 0.865 2.671

(a) Number of encoder
network layers

(b) Learning rate αE (c) Dropout ratio (d) Regularization coeffi-
cient λ

Figure 6: The results of sensitivity analysis on MUTAG, IMDB-B, and IMDB-M.

is set too small, GA2C has bad performance because shallow layers are not enough to encode the
abundant structural and semantic information in the graph.

4.5 ANALYSIS OF CUMULATIVE REWARD

(a) Results on ESOL (b) Results on FreeSolv

Figure 7: The learning curves in terms of cumu-
lative reward on ESOL and FreeSolv. We run all
models five times respectively. The solid line rep-
resents the mean value of cumulative reward and
the shadowed area is enclosed by the min and max
value of five training runs.

In this part, we evaluate the cumulative reward
of GPG, GAC, and GA2C in the training phase.
The learning curves in terms of cumulative re-
ward on two representative datasets (i.e., ESOL
and FreeSolv) are shown in Figure 7. From Fig-
ure 7, we can see that the performance of GPG
(in blue) is unstable and worse than the other
two models due to the existence of exploding
gradients. Specifically, the exploding gradients
happen at the 156th epoch and 213-rd epoch on
ESOL and FreeSolv, respectively. By replacing
the sampled reward values with the expected
reward values learned by the Critic, both GAC
(in red) and GA2C (in green) keep stable perfor-
mance in the training.

4.6 VISUALIZATION

To evaluate the quality of node embeddings learned by baselines and GA2C qualitatively, we plot
their t-SNE 2D projection results on Cora in Figure 8. We select DGI, GCA, and MVGRL as
representatives because they perform well on Cora (see Figure 5(a)). From Figure 8(d), we can see
that the boundary of clusters is clear, which indicates the embedding learned by GA2C is reasonable.
On the contrary, we notice that the boundary of clusters in Figure 8(a) is blurred, which reveals that
the embeddings learned by DGI are not well matched to their own clusters.

(a) DGI (b) GCA (c) MVGRL (d) GA2C

Figure 8: Embedding visualization results on Cora. Different colors represent different classes.
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5 RELATED WORK

5.1 GRAPH CONTRASTIVE LEARNING

GCL has three procedures: graph data augmentation (GDA), network encoding, and contrastive loss
based optimization. According to the difference in GDA, we categorize GCL methods as follows:

GCL Methods with frozen graph data augmentation. Traditional GCL methods You et al. (2020);
Sun et al. (2020) adopt frozen augmentation parameters to generate different graph views. Generally,
the augmentation parameters are set empirically (i.e., trial-and-error). Different from the trial-and-
error method, GCA Zhu et al. (2021) adopts precomputed method: it calculates GDA parameters
based on some indicators of centrality in the graph (e.g., degree centrality and eigenvector centrality)
and uses these precomputed parameters to augment the graph.

GCL Methods with learnable graph data augmentation. For the GCL with frozen augmentation,
there is a risk that the redundant information is captured by the InfoMax principle Tschannen et al.
(2020). The redundant information hinders the better performance of GZL on the downstream task.
To avoid this, learnable GDA is introduced into GCL, i.e., the parameters of GDA can be learned
automatically in the training. For example, AD-GCL Suresh et al. (2021) adopts adversarial training,
i.e., the contrastive optimization aims to i) maximize the correspondence between the embeddings of
different views when fixing GDA and updating network encoding; ii) minimize the correspondence
between the embeddings of different views when fixing network encoding and updating GDA. Also,
inspired by image manifolds, You et al. (2022) extend the frozen and discrete GDA parameters to the
learnable ones and leverage both principles of information minimization (InfoMin) and information
bottleneck (InfoBN) to regularize the learned GDA parameters.

GCL Methods with no graph data augmentation. Recent work removes GDA from GCL and
adopts the learning framework without GDA to extract representations from graphs. For example,
SimGRACE Xia et al. (2022) takes the raw graph as the input and uses the Graph Neural Networks
(GNNs) encoder as well as its perturbed version to generate two correlated views for contrast.
Instead of GDA, AF-GCL Wang et al. (2022) constructs positive and negative pairs based on the
representations obtained by GNNs. SimGCL Yu et al. (2022a) creates contrastive views by adding
random noises to the representations obtained by GNNs.

Compared to prior work, our work differs in that we introduce reinforced GDA into GCL, making the
view learner explore an optimal learning path actively.

5.2 GRAPH REINFORCEMENT LEARNING

To address the problem that existing GNNs ignore the semantics of subgraphs, SUGAR Sun et al.
(2021) learns the representations of the significant subgraphs which are adaptively selected by Q-
learning. Policy-GNN Lai et al. (2020) adopts the DQN algorithm to determine the aggregation range
of nodes in a large-scale graph. To adaptively learn the optimal curvature in the graph, ACE-HGNN Fu
et al. (2021) leverages multi-agent reinforcement learning where the agents are updated by the Nash
Q-leaning algorithm. Removing noise data from graphs is helpful to improve the performance of
graph representation learning. GDPNet Xue et al. (2021) and GAM Lee et al. (2018) adopt Markov
Decision Process (MDP) and Partially Observable Markov Decision Process (POMDP) to model
the noisy neighborhoods removing process and the information collection process, respectively. For
heterogeneous graphs, RIOGNN Peng et al. (2022) leverages the reinforcement learning algorithm
to select the most similar neighbors within a relation; RL-HGNN Zhong et al. (2020) models the
process of designing meta-paths as MDP to replace the manual designing process.

Different from these graph reinforcement learning methods, our work uses the Advantage Actor-Critic
model to adjust the current optimal GDA parameters adaptively.

6 CONCLUSION

In this paper, we design a novel graph reinforced augmentation framework which can ensure that
the augmented views evolve well to promote graph contrastive learning. Under this framework, the
graph advantage Actor-Critic (GA2C) model is proposed to learn graph embeddings in an unsuper-
vised manner. Through extensive experiments, we verify that GA2C outperforms the SOTA graph
contrastive learning models on downstream tasks such as graph classification, node classification,
and link prediction. In the future, we plan to study graph contrastive learning with learnable graph
data augmentation on heterogeneous graphs and text-rich graphs.
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A COMPUTATIONAL COMPLEXITY ANALYSIS

Let LE be the encoder network layer number, LA neural network layer number in Actor (or Critic),
Navg. average node number in each augmented graph, and Mavg. average attribute number in
each augmented graph, for each training epoch, the total computational complexity of GA2C is
O(n(TLA + LE)Navg.M

2
avg.)) where n and T are the graph number and duration time of Actor or

Critic.

B EXPERIMENTAL SETUPS AND METRICS

Experimental setups. We use Adam optimizer to train the encoder network, projection network,
Actor model, and Critic model in GA2C. The learning rates αE , αA, and αC are set as 0.01 for
COLLAB, RDT-M and 0.001 for other datasets. The layer number of the encoder network is set as 3.
For biochemistry and social networks, the embedding dimension is set as 32 and the batch size is set
as 128; for physical chemistry, biophysics, and physiology, the embedding dimension is set as 300
and the batch size is set as 64. The drop ratio and regularization coefficient are set as 0.0 and 5.0,
respectively.

For the downstream tasks, we adopt Linear Support Vector Classification (LinearSVC) as the down-
stream classifier. We follow the data splitting method in AD-GCL Suresh et al. (2021): for OGB
Benchmark, we adopt the proceed data including the training set, validation set, and test set; for TU
Benchmark, we adopt 10-fold cross-validation where the total data are split as 70% training set, 20%
validation set, and 10% test set.

Metrics. For the regression task (i.e., ESOL, Lipophilicity, and FreeSolv), we adopt the metric of
RMSE (root mean square error). For the classification task, we evaluate the dataset of biochemical
and social networks under the metric of Accuracy and the other datasets under the metric of AUC
(area under the receiver operating characteristic curve).

C DATASETS FOR NODE CLASSIFICATION AND LINK PREDICTION

Datasets for node classification. We use three datasets for the node classification task, including
Cora, CS, and ogbn-arxiv. Cora is a citation network where the node and edge represent the paper
and citation relationship between papers, respectively. The node attributes represent the paper topics.
For Cora, the task is to classify each paper into a domain class. CS is a collaboration network where
the node and edge represent the author and co-author relationship between authors, respectively. The
node attributes represent the keyword information in the papers published by the author. For CS, the
task is to classify each author into a research field. ogbn-arxiv is also a citation network where the
papers are all from the open-access repository of arXiv. The detailed statistics of the above three
datasets are shown in Table 5.

Table 5: The statistics of the used datasets for the node classification task. The last column is the
ratio of node numbers in the training set, validation set, and test set.

Dataset #Node #Edge #Feature #Class Split ratio

Cora 2,708 5,429 1,433 7 1:1:8
CS 18,333 81,894 6,805 15 1:1:8

ogbn-arxiv 169,343 1,166,243 128 40 1:1:8

Datasets for link prediction. We use three datasets for the link prediction task, including Citeseer,
Computers, and Photo. The dataset of CiteSeer is a citation network, which consists of 3312
scientific publications classified into one of 6 classes. CiteSeer consists of 4732 links. Each
publication in CiteSeer is described by a 0/1-valued word vector indicating the absence/presence
of the corresponding word from the dictionary. The dictionary consists of 3703 unique words. The
datasets of Computers and Photo are both co-purchase networks extracted from Amazon, where
nodes represent products, edges represent the co-purchased relations of products, and features are
bag-of-words vectors extracted from product reviews.
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Figure 9: Time-performance curve.

D EXPERIMENTAL RESULTS ON RUNNING TIME

Here we compare the running time of GA2C and baselines when the space complexity of models is
the same. On some representative datasets (MUTAG, PROTEINS, and DD), the results are shown in
Table 6. We find that GA2C is more efficient than AD-GCL and performs better than all the baselines.

Table 6: The comparison of baselines and GA2C on the running time.

Method Time (seconds)
MUTAG PROTEINS DD

GraphCL 150.3 662.6 696.0
AD-GCL 87.3 419.8 601.7

LP-InfoMin 442.3 1948.7 2004.1
LP-InfoBN 440.8 1957.0 2018.4
SimGRACE 68.4 274.6 312.9

GA2C 65.3 266.2 310.6

In adiition, we plot the wall-clock time of the training dynamics of different methods in Figure 9
to observe the relationship between running time and model performance. In this figure, the x-axis
represents training time and y-axis represents validation performance. We find that GA2C performs
better than AD-GCL in most cases. Also, the performance of AD-GCL is unstable and it has high
variance, while GA2C is more stable than AD-GCL.
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