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Abstract

Many time series classification tasks where labels vary over time are affected by
label noise that also varies over time. Such noise can cause label quality to improve,
worsen, or periodically change over time. We first propose and formalize temporal
label noise, an unstudied problem for sequential classification of time series. In
this setting, multiple labels are recorded in sequence while being corrupted by a
time-dependent noise function. We demonstrate the importance of modelling the
temporal nature of the label noise function and how existing methods consistently
underperform. We then demonstrate the surprising noise tolerance of time series
foundation models and how this collapses under temporal label noise.

1 Introduction

Most methods addressing label noise are designed for static, time-invariant data [2, 22, 24, 34], but
many real-world tasks, such as healthcare, involve time series data where labels evolve over time.
We introduce temporal label noise, a concept that remains largely unstudied. Examples include
seasonal biases in self-reporting for mental health studies [4, 27], mislabeled activities in human
activity recognition [15, 31], and noisy clinical annotations in electronic health records during busy
or chaotic periods [40].

Existing static noise-robust methods [25, 26] underperform with temporal noise. We propose novel
loss-correction techniques to train time series classifiers that are provably robust to label noise. We
then explore the effects of temporal label noise on time series foundation models, and demonstrate
the utility of our approaches even with pre-trained models.

2 Related Work

Time Series Machine learning for time series, especially in healthcare, often combines autoregres-
sive modeling with deep neural networks [7, 19, 33]. RNNs and state space models are popular for
sequence-to-sequence tasks due to their ability to represent data as latent states evolving over time.
Attention mechanisms enhance performance by focusing on relevant data segments [37], improving
tasks like outcome prediction and treatment optimization [9, 16, 32, 35, 38, 45]. These models
mainly use supervised learning to capture changes in latent states, such as clinical labels (e.g., sick vs.
healthy). A less explored issue is label noise in time series — how time series model performance is
affected when training labels are corrupted.

Label Noise Our work addresses gaps in the literature on noisy labels [2, 22, 24, 34]. Most research
addresses static label noise, which does not vary over time. We examine label noise that evolves
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Figure 1: Label quality can vary over time due to temporal label noise. Existing methods assume noise is
time-invariant (static) leading to loss in performance. Accurate modeling of temporal label noise, improves
performance.

dynamically. Existing methods for noise in time series [1, 8] focus on identifying noisy samples
rather than developing robust methods for temporal label noise.

We propose learning through empirical risk minimization with noise-robust loss functions [10, 18,
22, 25, 39]. Static approaches identify correct labels [13, 44] or use regularization to mitigate
incorrect labels [14, 20]. Our results highlight learning from noisy labels when the noise process
is known [25, 26]. We also provide additional methods to model noise directly from noisy data
[17, 18, 26, 41, 42, 46] in Appendix A.

3 Methods

Preliminaries Consider a sequential classification task over C classes and T time steps. Each
instance is characterized by a triplet of sequences over T time steps (x1:T ,y1:T , ỹ1:T ) ∈ X ×Y ×Y .
Where X ⊆ Rd×T and Y = {1, . . . , C}T . Here, x1:T , y1:T , and ỹ1:T are sequences of instances,
clean labels and noisy labels, respectively.

Under temporal label noise, the true label sequence y1:T is unobserved, and we only have access to a
set of n noisy instances D = {(x1:T , ỹ1:T )i}ni=1. We assume that each sequence in D is generated
i.i.d. from a joint distribution Px1:T ,y1:T ,ỹ1:T

, where the label noise process can vary over time. This
distribution obeys two standard assumptions in sequential modeling and label noise [3, 6, 36]:
Assumption 1 (Future Independence). A label at time t depends only on the past sequence of feature
vectors up to t: p(y1:T | x1:T ) =

∏T
t=1 p(yt|x1:t)

Assumption 2 (Feature Independence). The sequence of noisy labels is conditionally independent of
the features given the true labels: ỹ1:t ⊥⊥ x1:t | y1:t for t = 1, . . . , T

Assumption 1 allows the joint sequence distribution to factorize as: p(ỹ1:T |x1:T ) =
∏T
t=1 qt(ỹt|x1:t).

Assumption 2 allows for the noisy label distribution at t to be further decomposed as:

qt(ỹt|x1:t) =
∑
y∈Y

qt(ỹt | yt = y)p(yt = y | x1:t) (1)

3.1 Learning from Temporal Label Noise

Our goal is to learn a sequential classification model hθ : X → RC with model parameters θ ∈ Θ.
Here, hθ(x1:t) returns an estimate of p(yt|x1:t). To infer the label at time step t, hθ takes as input a
sequence of feature vectors up to t, and outputs a sequence of labels by taking the argmax of the
predicted distribution for each time step (see e.g., [3, 36]). We estimate parameters θ̂ for a model
robust to noise, by maximizing the expected accuracy as measured in terms of the clean labels:

θ̂ = argmax
θ∈Θ

Ey1:T |x1:T

T∏
t=1

p(yt = hθ(x1:t) | x1:t)
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However, during training time we only have access to sequences of noisy labels. To demonstrate how
we can sidestep this limitation, we first need to introduce a flexible way to model sequential noisy
labels. Existing methods assume that noise is time-invariant (Fig. 1). To relax this assumption, we
capture the temporal nature of noisy labels using a temporal label noise function, in Def. 1.
Definition 1. Given a sequential classification task with C classes and noisy labels, the temporal
label noise function is a matrix-valued functionQ : R+ → [0, 1]C×C that specifies the label noise
distribution at any time t > 0.

We denote the output of the temporal noise function at time t asQt := Q(t). This is a C ×C matrix
whose i, jth entry encodes the flipping probability of observing a noisy label j given clean label i at
time t: qt(ỹt = j | yt = i). We observe thatQt is positive, row-stochastic, and diagonally dominant
— ensuring thatQt encodes a valid probability distribution [18, 26].

3.2 Loss Correction with Temporal label Noise

Modeling temporal label noise is crucial for training robust time series classifiers, but leveraging these
models in empirical risk minimization is still a challenge. It is unclear how existing loss correction
methods apply to time series. We provide theoretical results showing that learning is feasible when
the true temporal noise functionQ(t) is known. Proofs are included in Appendix B.

We begin by treating the noisy posterior as the matrix-vector product of a noise transition matrix and
a clean class posterior (Eq. (1)). To this effect, we define the forward sequence loss:
Definition 2. Given a sequential classification task over T time steps, a noise function Q(t), and
a proper composite loss function1 ℓt, the forward sequence loss of a model hθ on an instance
(ỹ1:T ,x1:T ) is:

−→
ℓ seq(ỹ1:T ,x1:T ,hθ) :=

T∑
t=1

ℓt(ỹt,Q
⊤
t hθ(x1:t))

An intriguing property of the forward sequence loss is that the minimizer of the forward sequence
loss over the noisy labels maximizes the likelihood of the data over the clean labels. This suggests
that the forward sequence loss is robust to label noise:
Theorem 1. A classifier that minimizes the empirical forward sequence loss over the noisy labels
maximizes the empirical likelihood of the data over the clean labels.

argmin
θ∈Θ

Eỹ1:T ,x1:T

−→
ℓ seq(ỹ1:T ,x1:T ,hθ) = argmin

θ∈Θ

T∑
t=1

Ey1:t,x1:tℓt(yt,hθ(x1:t))

4 Experiments

We benchmark our methods on real-world time series classification tasks to evaluate robustness to
temporal label noise and identify when accounting for such noise is critical. Our datasets include
accelerometer data for human activity recognition (har and har70) and EEG signals for sleep and
blink detection (eeg_sleep and eeg_eye). We consider ground truth labels as clean and corrupt
them using various temporal noise functions for training, as is the gold-standard evaluation in noisy
labels research [34, 25, 22]. Accuracy of models is evaluated on a test set with clean labels.

We compare our proposed forward sequence loss under three settings where we either: Ignore Noise,
assume the noise is Static (i.e., best case performance of existing approaches) or model the Temporal
noise. In our first set of experiments, we fit GRU models on each dataset. In the second set, we
leverage a popular time series foundation model MOMENT [12] to study the effects of temporal label
noise on pre-trained models with and without loss correction.

Detailed setup and results are provided in Appendix E.

4.1 Results and Discussion

We now study the effects of temporal noise when learning models that are more robust to label noise.
1A loss that is well-calibrated for probability estimation (e.g., NLL loss) and incorporates a link function

mapping model outputs to probability estimates (see [28] for more detail)
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Loss Correction Strategy

Dataset Attributes Ignore Noise (Acc %) Static (∆Acc %) Temporal (∆Acc %)

HAR[29] n = 192, d = 14, T = 50 83.0±4.8 +8.6±4.8 +15.1±0.8

HAR70[23] n = 444, d = 6, T = 100 81.5±1.4 +1.0±1.8 +11.0±0.3

EEG_SLEEP[11] n = 964, d = 7, T = 100 76.4±1.7 -3.2±0.9 +10.7±0.5

EEG_EYE[30] n = 299, d = 14, T = 50 67.0±3.0 +0.2±3.3 +5.9±3.3

Table 1: Acc % when we Ignore Noise and ∆ Acc % assuming noise is either Static or Temporal. We report
the mean value ± st.dev for each metric over 10 runs. We show results for Mixed noise function, which denotes
class-conditional noise where one class has increasing noise and one class has decreasing noise over time. In all
settings, accounting for temporal noise leads to the most gains in performance.
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Figure 2: Performance of MOMENT time series foundation model after 25 epochs of fine-tuning using forward
sequence loss. ∆ Acc % measures the improvement in accuracy with loss correction when noise is Static or
Temporal. The baseline performance of MOMENT is not dramatically improved when the label noise is Static
but it is substantially improved when noise is Temporal. We show results for on har and har70. We report
the mean value ± st.dev for each metric over 10 runs. We show results for Mixed noise function, which denotes
class-conditional noise where one class has increasing noise and one class has decreasing noise over time.

On the Importance of Modeling Temporal Noise First, we show clear value in accounting
for temporal label noise in Table 1. We find that the modelling the Temporal label noise leads to
better performing models than assuming the noise is Static (e.g., existing approaches), highlighting
the importance of modelling temporal noise.Overall, these findings suggest that we can improve
performance by explicitly modeling how noise varies across time instead of assuming it is distributed
uniformly in time.

On the Noise Robustness of Time Series Foundation Models In Fig. 2, we find that when label
noise is Static, pre-trained foundation models do not substantially benefit from loss correction -
indicating that they remain quite noise tolerant without modification. However, when the underlying
label noise process is Temporal, loss correction dramatically improves performance.

5 Concluding Remarks

Many classification tasks, especially in healthcare, involve sequential label classification under label
noise. While it is known that noisy labels impact static classification, time series labels can experience
varying noise rates over time, complicating classification. Existing static methods are not equipped
to handle temporal label noise, and our work demonstrates their significant underperformance in
such settings. We demonstrate the importance of modelling temporal label noise when training from
scratch as well as with time series foundation models.
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A Methods

We have shown how to leverage the temporal label noise function to train models robust to noise.
However, the label noise function is generally not available a priori and should ideally be estimated
from data. In this section we propose a method that simultaneously learns a time series classifier
and temporal noise function. Given a noisy dataset, we learn these elements by solving following
∀t ∈ [1, T ]:

min
ω,θ

Vol(Qω(t))

s.t. Qω(t)
⊤hθ(x1:t) = p(ỹt | x1:t)

(2)

This objective — the Temporal Noise Robust objective (TENOR) —is designed to return a faithful
representation of the noise function ω̂ by imposing the minimum-volume simplex assumption [18],
and a noise-tolerant sequential classifier θ̂ by minimizing the forward sequence loss in Def. 2.

Here, the objective minimizes the volume of the noise matrix, denoted as Vol(Qt). This returns a
matrixQt, at each time step, that obeys the minimum-volume simplex assumption, which is a standard
condition used to ensure identifiability in static classification tasks [see e.g., 18, 43]. In practice, the
minimum-volume simple assumption ensures that Qt encloses the noisy conditional data distribution
at time t: p(ỹt | x1:t). Here containment ensures that the estimated noise matrix could have generated
each point in the noisy dataset – i.e., so that the corresponding noisy probabilities p(ỹt | x1:t) obey
Eq. (1). Our use of this assumption guarantees the identifiability ofQt when the posterior distribution
is sufficiently-scattered over the unit simplex [see also 18, for details].

Implementation The formulation above applies to any generic matrix-valued function according to
Def. 1 with parameters ω. Because time series classification tasks can admit many types of temporal
label noise functions, we must ensure ω has sufficient representational capacity to handle many noise
functions. Therefore in practice, we instantiate our solution as a fully connected neural network with
parameters ω,Qω(·) : R→ [0, 1]c×c, adjusted to meet Def. 1 (see Appendix E.2).

We can now model any temporal label noise function owing to the universal approximation properties
of neural networks. Provided the function space Θ defines autoregressive models of the form
p(yt|x1:t) (e.g., RNNs, Transformers, etc.), we can solve Eq. (2) using an augmented Lagrangian
method for equality-constrained optimization problems [5]:

L(θ, ω) = 1

T

T∑
t=1

[
∥Qω(t)∥F + λRt(θ, ω) +

c

2
|Rt(θ, ω)|2

]
(3)

Here: ∥Qω(t)∥F denotes the Frobenius norm of Qω(t), which acts as a convex surrogate for
Vol(Qω(t)). Likewise, Rt(θ, ω) = 1

n

∑n
i=1 ℓt(yt,i,Qω(t)

⊤hθ(x1:t,i)) denotes the violation of the
equality constraint for each t = 1 . . . T . λ ∈ R+ is the Lagrange multiplier and c > 0 is a penalty
parameter. Both are initially set to a default value of 1, we gradually increase the penalty parameter
until the constraint holds and λ converges to the Lagrangian multiplier of Eq. (2) [5]. This approach
recovers the best-fit parameters to the optimization problem in Eq. (2). Additional details on our
implementation can be found in Appendix C.

An alternative strategy to learning the noise function, is to assume that there is no temporal re-
lationship between each Qt across time and treat each time step independently. This is realistic
in situations where time steps are unevenly spaced or there are long periods of time between
subsequent labels (e.g., some clinical data involves labels collected over years or decades). We
can carry out this discontinuous estimation by adopting a similar objective as above. Denoting
Rt(θ) =

1
n

∑n
i=1 ℓt(yt,i, Q̂

⊤
t hθ(x1:t,i)):

L(θ, [Q̂t]
T
t=1) =

1

T

T∑
t=1

[
Rt(θ) + λ · log det(Q̂t)

]
(4)

The objective in Eq. (4), denoted as VolMinTime, minimizes the volume ofQ using the log det of a
square matrix [18]. In contrast to Eq. (3), each Q̂t is parameterized with a separate set of trainable
real-valued weights, which are learned independently with the data from time t using a standard
convex optimization algorithm (e.g., gradient descent). This provides a direct time-series modification
of a state-of-the-art technique for noise transition matrix estimation in the static setting [18].
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A.1 Plug-In Estimation

It is also advantageous to have a simple, plug-in estimator of the temporal noise function. Plug-in
estimators are model-agnostic, can flexibly be deployed to other models, and can be efficient to
estimate. We can construct a plug-in estimator of temporal label noise using anchor points, instances
whose labels are known to be correct. Empirical estimates of the class probabilities of anchor
points can be used to estimate the noise function. This estimate can then be plugged into any of
the aforementioned loss correction methods in ??. Formally, in a sequential setting, anchor points
[21, 26, 41] are instances that maximize the probability of belonging to class i at time step t:

x̄it = argmax
xt

p(ỹt = i | x1:t) (5)

Since p(yt = i | x̄i1:t) ≈ 1 for the clean label, we can express each entry of the label noise matrix as:

Q̂(t)i,j = p(ỹt = j | x̄i1:t) (6)

We use a two-step approach, which we call AnchorTime, to get a plug-in estimate of Q̂(t). We
identify anchor points for each class y ∈ Y and t = 1, . . . , T and set each entry of Q̂(t)i,j by Eq. (6)
(see Appendix D). This is analogous to the approach in static prediction tasks by Patrini et al. [26].

A.2 Discussion

All three methods improve performance in sequential classification tasks by accounting for temporal
label noise (see e.g., Fig. 1 and Section 4). However, they each have their own strengths and
limitations. Here we provide practical guidance for users to discriminate between methods:

• Joint Continuous Estimation (TENOR) imposes continuity across time steps – assuming that nearby
points likely have similar noise levels. This assumption can improve reconstruction, and thus
performance, in settings with multiple time steps as it reduces the effective number of model
parameters. Conversely, it may also lead to misspecification in settings that exhibit discontinuity.

• Joint Discontinuous Estimation (VolMinTime) can handle discontinuous temporal noise processes,
but requires fitting more parameters, which scales according to T – this can lead to computational
challenges and overfitting, especially for long sequences.

• Plug-In estimation (AnchorTime) has a simpler optimization problem, useful when separate datasets
are used in noise estimation and classifier training, but verifying anchor points is difficult [41].

B Proofs

In what follows, we use vector notation for completeness and clarity of exposition.

We make the following assumptions regarding the conditional time series distribution for the clean
labels p(y1:T | x1:T ) and noisy labels p(ỹ1:T | x1:T ):

We make the following assumptions about the clean data distribution:
Assumption 3. The clean labels yt at times t = 1, . . . , T are conditionally independent given the
features observed up to time t x1:t.

yt ⊥⊥ y1:t−1 | x1:t (7)
Assumption 4. The clean labels yt at time t is conditionally independent from xt+1 given x1:t:

p(y1:T | x1:T ) =

⊤∏
t=1

p(yt | x1:t). (8)

Assumption 5. The noisy labels at time t ỹt are conditionally independent of x1:t given the clean
labels yt at time t.

p(ỹt | x1:t) =

C∑
c=1

qt(ỹt | yt = c)p(yt = c | x1:t) (9)

Note that the following property follows from the above assumptions:

p(ỹ1:T | x1:T ) =

⊤∏
t=1

qt(ỹt | x1:t). (10)
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Definitions We start by defining some of the quantities that will be important for our forward and
backward proofs:

p(yt | x1:t) := [p(yt = c | x1:t)]
⊤
c=1:C ,∈ RC×1 (Vector of probabilities for each label value, for the

clean label distribution)

p(ỹt | x1:t) := [p(yt = c | x1:t)]
⊤
c=1:C ∈ RC×1 (Vector of probabilities for each possible label

value, for the noisy label distribution)

hθ(x1:t) = pθ(yt | x1:t = x1:t) : Rd×t → RC (Classifier that predicts label distribution at t given
preceding observations)

hθ(x1:t) = ψ
−1(gθ(x1:t)) (When hθ is a deep network, gθ is the final logits and ψ : ∆C−1 → RC

represents an invertible link function whose inverse maps the logits to a valid probability; i.e. a
softmax function). We thus assume that

Qt := [qt(ỹt = k | yt = j)]j,k ∈ RC×C (The temporal noise matrix at time t)

ℓt(yt,hθ(x1:t)) = − log pθ(yt = yt | x1:t = x1:t) : Y × RC → R (loss at t)

ℓψ,t(yt,hθ(x1:t)) = ℓt(yt,ψ
−1hθ(x1:t)) (A composite loss function is a loss function that uses the

aid of a link function: ψ)

ℓt(hθ(x1:t)) = [ℓt(c,hθ(x1:t)]
⊤
c=1:C : RC → RC (vector of NLL losses, for each possible value of

the ground truth)
−→
ℓ t,ψ(c,hθ(x1:t)) = ℓt(c,Q

⊤
t ·ψ−1(gθ))

−→
ℓ seq,ψ(y1:T ,hθ(x1:t)) =

∑⊤
t=1

−→
ℓ t,ψ(c,hθ(x1:t))

Theorem 2. argminθ Eỹ1:T ,x1:T

−→
ℓ seq,ψ(y1:T , gθ(x1:T )) = argminθ

∑⊤
t=1 Ey1:t,x1:t

ℓt,ϕ(y1:T , gθ(x1:T )).

Proof. First, note that:

−→
ℓ t,ψ(yt,hθ(x1:t)) = ℓt(yt,Q

⊤
t ψ

−1(gθ(x1:t))) (11)
= ℓϕt,t(yt, gθ(x1:t)), (12)

where ϕ−1
t = ψ−1 ◦Q⊤

t . Thus, ϕt : ∆
C−1 → RC is invertible, and is thus a proper composite loss

[28].

Thus, as shown in Patrini et al. [26]:

argmin
θ

Eỹt,x1:tℓϕ,t(yt, gθ(x1:t)) = argmin
θ

Eỹt|x1:t
ℓϕt,t(yt, gθ(x1:t)) (13)

= ϕt(p(ỹt | x1:t)) (property of proper composite losses)

= ψ((Q−1
t )⊤p(ỹt | x1:t))) (14)

= ψ(p(yt | x1:t)) (15)

The above holds for the minimizer at a single time step, not the sequence as a whole. To find the
minimizer of the loss over the entire sequence:
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argmin
θ

Ex1:T ,ỹ1:T

−→
ℓ seq,ψ(ỹ1:T , gθ(x1:T )) = argmin

θ
Eỹ1:T |x1:T

−→
ℓ seq,ψ(ỹ1:T , gθ(x1:T )) (16)

= argmin
θ

Eỹ1:T |x1:T

⊤∑
t=1

−→
ℓ t,ψ(ỹt, gθ(x1:t)) (17)

= argmin
θ

⊤∑
t=1

Eỹ1:T |x1:T

−→
ℓ t,ψ(ỹt, gθ(x1:t)) (18)

= argmin
θ

⊤∑
t=1

Eỹt|x1:t

−→
ℓ t,ψ(ỹt, gθ(x1:t)) (19)

= argmin
θ

⊤∑
t=1

Eỹt|x1:t
ℓt,ϕ(ỹt, gθ(x1:t)) (20)

As the minimizer of the sum will be the function that minimizes each element of the
sum, then argminθ Eỹ1:T ,x1:T

−→
ℓ seq,ψ(y1:T , gθ(x1:T )) = ψ(p(y1:T | x1:T )). Note that the

argminθ
∑⊤
t=1 Ey1:t,x1:t

ℓt,ϕ(y1:T , gθ(x1:T )) = ψ(p(y1:T | x1:T )), because the minimizer
of the NLL is the data distribution. Thus, argminθ Eỹ1:T ,x1:T

−→
ℓ seq,ψ(y1:T , gθ(x1:T )) =

argminθ
∑⊤
t=1 Ey1:t,x1:t

ℓt,ϕ(y1:T , gθ(x1:T )).

C TENOR Learning Algorithm

We summarize the augmented Lagrangian approach to solving the TENOR objective in Algorithm 1

Algorithm 1 TENOR Learning Algorithm

Input: Noisy Training Dataset D, hyperparameters γ and η
Output: Model θ, Temporal Noise Function ω
c← 1 and λ← 1
for k = 1, 2, 3, . . . , do

θk, ωk = argminθ,ω L(θ, ω) ▷ Computed with SGD using the Adam optimizer
λ← λ+ c ∗Rt(θk, ωk) ▷ Update Lagrange multiplier
if k > 0 and Rt(θ

k, ωk) > γRt(θ
k−1, ωk−1) then

c← ηc
else

c← c
end if
if Rt(θk, ωk) == 0 then

break
end if

end for

For all experiments we set λ = 1,c = 1, γ = 2, and η = 2. k and the maximum number of SGD
iterations are set to 15 and 10, respectively. This is to ensure that the total number of epochs is 150,
which is the max number of epochs used for all experiments.

D AnchorTime Procedure

1. Fit a probabilistic classifier to predict noisy labels from the observed data.

2. For each class y ∈ Y and time t ∈ [1 . . . T ]:

i Identify anchor points for class y: x̄jt = argmaxxt
p(ỹt = y | x1:t).

ii Set Q̂(t)y,y′ as the probability of classifier predicting class y′ at time t given x̄jt .

11



E Experimental Details

Our code is available in an anonymized repository.

Dataset Classification Task n d T

eeg_eye [30] Eye Open vs Eye Closed 299 14 50

eeg_sleep [11] Sleep vs Awake 964 7 100

har [29] Walking vs Not Walking 192 9 50

har70 [23] Walking vs Not Walking 444 6 100

synth [describe model in notation] 1,000 50 100

Table 2: Datasets used in the experiments. Classification tasks, number of samples (n), dimensionality at each
time step (d), and sequence length (T ) are shown.

E.1 Dataset Details

Synthetic We generate data for binary and multiclass classification with n = 1000 samples and
d = 50 features over T = 100 time steps. We generate the class labels and obvservations for each
time step using a Hidden Markov Model (HMM). The transition matrix generating the markov chain
is uniform ensuring an equal likelihood of any state at any given time. We corrupted them using
multidimensional (50) Gaussian emissions. The mean of the gaussian for state/class c is set to c
with variance 1.5 (i.e. class 1 has mean 1 and variance 1.5). The high-dimensionality and overlap in
feature-space between classes makes this a sufficiently difficult task, especially under label noise. We
use a batchsize of 256

HAR from UC Irvine [29] consists of inertial sensor readings of 30 adult subjects performing
activities of daily living. The sensor signals are already preprocessed and a vector of features at each
time step are provided. We apply z-score normalization at the participant-level, then split the dataset
into subsequences of a fixed size 50. We use a batchsize of 64.

HAR70 from UC Irvine [23] consists of inertial sensor readings of 18 elderly subjects performing
activities of daily living. The sensor signals are already preprocessed and a vector of features at each
time step are provided. We apply z-score normalization at the participant-level, then split the dataset
into subsequences of a fixed size 100. We use a batchsize of 256.

EEG SLEEP from Physionet [11] consists of EEG data measured from 197 different whole nights
of sleep observation, including awake periods at the start, end, and intermittently. We apply z-score
normalization at the whole night-level. Then downsample the data to have features and labels each
minute, as EEG data is sampled at 100Hz and labels are sampled at 1Hz. We then split the data into
subsequences of a fixed size 100. We use a batchsize of 512.

EEG EYE from UC Irvine [30] consists of data measured from one continuous participant tasked
with opening and closing their eyes while wearing a headset to measure their EEG data . We apply
z-score normalization for the entire sequence, remove outliers (>5 SD away from mean), and split
into subsequences of a fixed size 50. We use a batchsize of 128.

E.2 Specific Implementation Details

GRU the GRU r : Rd×Z→ RC×Z produces an output vector such that the output of r(xt, zt−1)
is our model for hθ(x1:t), and a hidden state zt ∈ Z that summarizes x1:t. We use a softmax
activation on the output vector of the GRU to make it a valid parameterization of pθ(yt | x1:t). The
GRU has a single hidden layer with a 32 dimension hidden state.

TENOR TENOR uses an additional fully-connected neural network with 10 hidden layers that
outputs a C ∗ C-dimensional vector to represent each entry of a flattened Q̂t. To ensure the output of
this network is valid for Def. 1, we reshape the prediction to be C × C, apply a row-wise softmax
function, add this to the identity matrix to ensure diagonal dominance, then rescale the rows to be
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row-stochastic. These operations are all differentiable, ensuring we can optimize this network with
standard backpropagation.

VolMinNet and VolMinTime We do a similar parameterization for VolMinNet and VolMinTime,
using a set of differentiable weights to represent the entries ofQt rather than a neural network.

Anchor and AnchorTime Patrini et al. [26] show that in practice taking the 97th percentile anchor
points rather than the maximum yield better results, so we use that same approach in our experiments.
They also describe a two-stage approach: 1) estimate the anchor points after a warmup period 2) use
the anchor points to train the classifier with forward corrected loss. We set the warmup period to 25
epochs.

E.3 Experimental Parameters

Given that the learning algorithm only has access to a noisy training dataset and performance is
evaluated on a clean test set, a validation set must be drawn from clean test data or by manually
cleaning the noisy training dataset which may be impractical. This makes hyperparameter tuning
difficult in noisy label learning. As the optimal set of hyperparameters within each could vary for
each method, noise type, amount of noise, and dataset, this represents a difficult task. To be fair
for our experimental evaluations, we use the same set of hyperparameters for experiment, and only
manually set batch size for each dataset.

Each model was trained for 150 epochs using the adam optimizer with default parameters and a
learning rate of 0.01.

For VolMinNet, VolMinTime, and TENOR we use adam optimizer with default parameters and a
learning rate of 0.01 to optimize each respective Q̂t-estimation technique. λ was set to 1e− 4 for
VolMinNet and VolMinTime for all experiments, based on what was published previously [18] .

E.4 Noise Injection

To the best of our knowledge there are no noisy label time series datasets (i.e.: standardized datasets
with both clean and noisy labels) to evaluate our methods. In line with prior experimental approaches,
we propose a noise injection strategy which assumes some temporal noise function that can give us a
noisy distribution to evaluate from. We deliberately pick a wide variety of noise types, varying the
amount and functional form of time-dependent noise, including static noise setting (uniform noise at
every time, akin to what baseline methods assume), and class-dependent noise structure Fig. 3.

13



Figure 3: Temporal functions that can be specified using a temporal label noise function Q(t). We present
six examples for binary classification task (from top-left clockwise): time independent, exponential decay
sinusoidal noise, mixed class-dependent noise, linear decay noise, sigmoid increasing noise. Each plot shows the
off-diagonal entries of various parameterized forms of Q(t).
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