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Abstract

Recent approaches to zero-shot commonsense001
reasoning have enabled Pre-trained Language002
Models (PLMs) to learn a broad range of com-003
monsense knowledge without being tailored to004
specific situations. However, they often suffer005
from human reporting bias inherent in textual006
commonsense knowledge, leading to discrep-007
ancies in understanding between PLMs and008
humans. In this work, we aim to bridge this009
gap by introducing an additional information010
channel to PLMs. We propose IMAGINE (Ma-011
chine Imagination-based Reasoning), a novel012
zero-shot commonsense reasoning framework013
designed to complement textual inputs with vi-014
sual signals derived from machine-generated015
images. To achieve this, we enhance PLMs016
with imagination capabilities by incorporating017
an image generator into the reasoning process.018
To guide PLMs in effectively leveraging ma-019
chine imagination, we create a synthetic pre-020
training dataset that simulates visual question-021
answering. Our extensive experiments on di-022
verse reasoning benchmarks and analysis show023
that IMAGINE outperforms existing methods by024
a large margin, highlighting the strength of ma-025
chine imagination in mitigating reporting bias026
and enhancing generalization capabilities1.027

1 Introduction028

Commonsense reasoning has been considered a cru-029

cial milestone in the pursuit of artificial general in-030

telligence (Gunning, 2018). While Pre-trained Lan-031

guage Models (PLMs; Devlin et al., 2019; Brown032

et al., 2020) often exhibit near-human reasoning033

capabilities after being fine-tuned on specific com-034

monsense datasets, they face challenges in zero-035

shot scenarios where examples differ significantly036

from their training data distribution (Mitra et al.,037

2019; Kim et al., 2022). Overcoming this limitation038

1Our code and data are available at https://anonymous.
4open.science/r/Imagine-C35A
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How do you butter toast?

[Physical Commonsense Reasoning (PIQA)]

A.
Sol1: Use a knife to grab the butter, and …
Sol2: Dip the toast into a tub of butter
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Figure 1: Example from the PIQA (Bisk et al., 2020)
with model predictions. Compared to the existing meth-
ods, IMAGINE performs reasoning with imagination.

is crucial for achieving human-level proficiency in 039

natural language understanding. 040

One promising approach to this limitation is 041

injecting commonsense knowledge from external 042

Knowledge Bases (KBs; Sap et al., 2019a; He 043

et al., 2022b) into PLMs. Specifically, this involves 044

transforming knowledge entities into a question- 045

answering (QA) format, resulting in a synthetic 046

QA dataset. This constructed dataset is then used 047

to train PLMs similarly to the pre-training phase. 048

Since the knowledge bases can cover a wide spec- 049

trum of commonsense knowledge, this approach 050

leads to substantial improvements in reasoning abil- 051

ity across diverse situations without specializing in 052

specific knowledge (Wang et al., 2023, 2024). 053

However, they often suffer from human report- 054

ing bias (Gordon and Durme, 2013), as textual 055

commonsense knowledge only captures the most 056

frequently occurring scenarios, thereby neglecting 057
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less common but equally critical knowledge nec-058

essary for comprehensive reasoning. Figure 1 il-059

lustrates a case where a recent model (Wang et al.,060

2023) fails to accurately reason about the question061

"How do you butter toast?". Since the existing mod-062

els rely solely on textual inputs, they often neglect063

contextual details, such as the fact that butter is typ-064

ically too solid to be dipped. In contrast, humans065

can easily answer such questions by visually imag-066

ining the shape, solidity, and interactions of butter067

with other objects. This observation motivates us068

to explore additional modalities to complement tex-069

tual commonsense knowledge.070

In this paper, we introduce IMAGINE (Machine071

Imagination-based Reasoning), a novel zero-shot072

commonsense reasoning framework designed to073

circumvent the reporting bias inherent in textual074

inputs. Inspired by the cognitive studies highlight-075

ing the beneficial effects of visual imagery on lan-076

guage understanding (Gambrell and Bales, 1986;077

Dessalegn and Landau, 2013), IMAGINE is de-078

signed to leverage visual signals to complement tex-079

tual inputs. To achieve this, we integrate PLMs with080

a conditional image generator, enabling machine081

imagination capabilities. To guide the model in082

learning to utilize visual and textual inputs jointly,083

we create a synthetic VQA dataset, which is then084

used to optimize PLMs. By acquiring a broad spec-085

trum of commonsense knowledge along with visual086

signals, IMAGINE enhances reasoning capabilities087

while circumventing human reporting bias.088

To verify the effectiveness of IMAGINE, we per-089

form extensive experiments, encompassing diverse090

reasoning benchmarks, architectures, and scales.091

The experimental results convincingly demonstrate092

that IMAGINE surpasses existing methods, includ-093

ing large language models, in reasoning capabili-094

ties. Moreover, our in-depth analysis reveals that095

IMAGINE effectively enables PLMs to adaptively096

leverage machine imagination capabilities in a ben-097

eficial manner. The contributions of this paper in-098

clude the following:099

• We introduce IMAGINE, a novel zero-shot100

commonsense reasoning framework, aimed101

at mitigating reporting bias and enhancing the102

generalizability of PLMs.103

• We construct a synthetic VQA dataset to en-104

able PLMs to jointly utilize textual and visual105

signals while achieving commonsense reason-106

ing ability.107

• We demonstrate that IMAGINE surpasses state- 108

of-the-art zero-shot reasoning models across 109

diverse reasoning tasks, highlighting the sig- 110

nificance of machine imagination. 111

2 Related Work 112

2.1 Zero-shot Commonsense Reasoning 113

There are two major approaches to zero-shot com- 114

monsense reasoning. The first approach involves 115

utilizing the inherent capabilities of the off-the- 116

shelf PLMs without updating their parameters. For 117

example, Trinh and Le (2018) utilized the per- 118

plexity of vanilla language modeling, and Li et al. 119

(2022) leveraged PLMs with specifically-designed 120

prompting. Shwartz et al. (2020) solicited the com- 121

monsense knowledge from the language models 122

through an iterative self-talk. Similarly, Dou and 123

Peng (2022) obtained additional knowledge for rea- 124

soning based on the cloze-style translation. The 125

second approach involves leveraging external com- 126

monsense knowledge bases (e.g., ATOMIC (Sap 127

et al., 2019a), ConceptNet (Speer et al., 2017)) to 128

provide language models with additional knowl- 129

edge. Specifically, recent studies have transformed 130

the knowledge entities (e.g., triplets of (head, rela- 131

tion, tail)) into synthetic QA pairs and trained the 132

models with them (Banerjee and Baral, 2020; Ma 133

et al., 2021). Recently, Wang et al. (2023) further 134

improved the synthetic signals through a conceptu- 135

alization process (Song et al., 2011) which abstracts 136

a commonsense knowledge triplet to many higher- 137

level instances. Subsequently, Wang et al. (2024) 138

injected the instantiation phase into the process of 139

synthetic dataset generation with the help of the 140

generation capabilities of LLMs. 141

2.2 Visual Information for Natural Language 142

Understanding 143

A few previous works have leveraged machine 144

imagination to address Natural Language Under- 145

standing (NLU) problems. For example, Tan and 146

Bansal (2020) proposed VOKEN, which introduces 147

visual supervision into language model pre-training 148

by incorporating external knowledge from images 149

retrieved for the tokens. Instead of retrieving visual 150

information, Lu et al. (2022) proposed generating 151

synthetic images (i.e., imagination) based on a gen- 152

erative model to tackle downstream NLU tasks. In 153

the context of commonsense reasoning, Liu et al. 154

(2022) utilized visual information to comprehend 155

spatial commonsense knowledge (e.g., how big is a 156
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Emory goes camping with friend. 
As a result, others felt:
(a) exhausted
(b) scared 
(c) relaxed

KBs Synthetic QA Synthetic VQA
QA Synthesis Machine

Imagination

(Goes camping with friend, oReact, relaxed)
(Brings the cake, oWant, eat it)
…
(takes guitar lessons, xReact, contented)

Knowledge Triples

Emory goes camping with friend. 
As a result, others felt:
(a) exhausted
(b) scared
(c) relaxed

Synthesized QA set Synthesized VQA set

(a) Construction procedures of synthetic VQA dataset

Q. 
Emory goes camping 
with friend. 
As a result, others felt:

Machine Imagination

A.
(a) exhausted
(b) scared 
(c) relaxed 

Text-to-Image
Generator

Imagination

Visual Encoder

ITM Adapter

LM AdapterMasked 
Inputs

Original 
Inputs

Pre-trained Language Model
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Multi-Head
Attention

Feed
Forward

× N Textual
features

Joint 
features

(c) relaxed

Textual feature
Visual feature

ITM
scores

LM 
scores

(b) Inference and optimization procedures of IMAGINE (ours)

Figure 2: Overall procedures for (a) constructing a synthetic VQA dataset and (b) the inference/optimization phase
of IMAGINE (ours) using the given QA pair. The process starts with the textual pair consisting of a question and
its answers, followed by the generation of visual signals (i.e., imagination) conditioned on the question. The two
distinct features from visual and textual models are then utilized to derive a comprehensive prediction.

lion?). Similar to the proposed method, Yang et al.157

(2022) introduced Z-LaVI, which integrated visual158

information with PLMs through both retrieval and159

synthesis to achieve zero-shot reasoning abilities.160

3 Machine Imagination-based Reasoning161

In this section, we elaborate on the proposed162

method, namely IMAGINE (Machine Imagination-163

based Reasoning), for zero-shot commonsense rea-164

soning. The core strategy is to complement textual165

commonsense knowledge with visual signals de-166

rived from machine-generated images. To achieve167

this, we first couple the PLMs with a text-to-image168

generator (§3.1), enabling machine imagination in169

text-based PLMs. We then construct a large-scale170

synthetic VQA dataset to learn the joint use of tex-171

tual and visual signals in the reasoning process172

(§3.2). By optimizing the model with additional173

signals that encapsulate commonsense knowledge,174

IMAGINE can effectively perform commonsense175

reasoning while avoiding human reporting bias in-176

herent in textual inputs (§3.3, §3.4). The overall177

procedure is depicted in Figure 2.178

3.1 Machine Imagination in PLMs179

We start by introducing the machine imagination in180

text-based PLMs. We denote PLMs as MT , which181

serve as the backbone for zero-shot commonsense 182

reasoning. For machine imagination, we incorpo- 183

rate two additional models to process visual signals. 184

Specifically, we introduce: (i) a text-to-image gen- 185

erator, MT2I , which creates relevant images by 186

conditioning the textual inputs, and (ii) a visual 187

encoder, MI , which acts as a feature extractor for 188

the given images. 189

The overall mechanism of machine imagination 190

operates as follows: Given a textual input, the text- 191

to-image model MT2I initially generates an image 192

that captures the essence of the text. With these gen- 193

erated images linked to textual inputs, both PLMs, 194

MT , and the visual encoder, MI , jointly encode 195

the textual input and the generated image. The re- 196

sultant features are then utilized to derive the com- 197

prehensive predictions. 198

3.2 Synthetic VQA Construction 199

Following the previous works (Ma et al., 2021; 200

Wang et al., 2023), we achieve zero-shot common- 201

sense reasoning ability by constructing the syn- 202

thetic QA dataset from the knowledge base. On top 203

of this dataset, we build a synthetic visual question- 204

answering (synthetic VQA) dataset with the help 205

of machine imagination. The dataset is designed 206

to: (i) instill commonsense reasoning abilities in 207
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Q: 	 Emory is walking home.

	 Emory is seen as...

A1:	 Bossy

A2:	 Tired

A3:  Independent


Q: 	 Berkeley folds his tent. 

	 Berkeley is seen as... 

A1:  Withdrawn

A2:  Dedicated

A3: 	Adventurous


Q: 	 A group of people walking down a street. 

	 Where is this scene from?

A1:	 This scene takes place in a university

A2:	 It looks like the middle east

A3:	 This scene is set before the nineteen hundreds


Q:	 A man and a woman sitting at a bar. 

	 Is Sam currently drunk?

A1:	 Yes, Bali recently drank alcohol

A2:	 Yes, Sam is intoxicated

A3:	 Possibly, but not presently


Figure 3: Examples of the Synthetic VQA dataset. The examples on the left are sourced from AbstractATOMIC
(Wang et al., 2023), while the two examples on the right are sourced from VCR (Zellers et al., 2019). Bold indicates
the correct answer, and underline denotes the generated image caption.

PLMs and (ii) teach them to harmoniously utilize208

both textual and visual inputs.209

The objective of this process is to construct VQA210

pairs (Q,A, I), where each pair includes a natural211

language question Q, a set of n answer choices212

A = A1, A2, ..., An, including one ground-truth213

answer and n− 1 distractors, along with an image214

I that corresponds to the question.215

Synthetic QA We first construct textual QA pairs216

from the KBs by following the recent work (Wang217

et al., 2023). Specifically, we transform the knowl-218

edge entities into the QA pairs through the concep-219

tualized augmentation of the entities (Wang et al.,220

2023) with the pre-defined natural language tem-221

plates (e.g., the relation of xWant is transformed222

to As a result, PersonX wanted to). This process223

results in textual synthetic QA pairs (Q,A).224

Synthetic VQA On the textual synthetic QA225

pairs, we input the textual question Q to the text-to-226

image model MT2I to generate the visual counter-227

part I that depicts the scenarios described in each228

question. These generated images provide an addi-229

tional layer of information, offering a visual context230

that enhances the reasoning ability based not only231

on textual descriptions but also on visual evidence.232

This augmentation leverages the strengths of visual233

imagery on language understanding (Gambrell and234

Bales, 1986; Dessalegn and Landau, 2013), poten-235

tially improving the robustness and accuracy of the236

model predictions.237

However, relying solely on the synthetic relation-238

ships between QA pairs and generated images can239

introduce challenges related to the alignment of240

visual content since machines often fail to generate241

well-aligned images with textual inputs (Feng et al.,242

2023). Therefore, we augment the synthetic VQA243

pairs with the widely used Visual Commonsense244

Reasoning (VCR) dataset (Zellers et al., 2019). 245

Each pair from this dataset consists of (Q,A,R, I), 246

where R is a rationale for the correct answer; how- 247

ever, we omit R since our focus is on the QA pairs 248

associated with relevant images. Additionally, to 249

enrich the input and enhance visual comprehension 250

for PLMs, we generate textual context information 251

for each image using an image captioning model2, 252

which we prepend as a prefix to each Q3. 253

3.3 Pre-training IMAGINE on Synthetic VQA 254

Based on the synthetic VQA dataset, we integrate 255

commonsense knowledge into the models. Since 256

IMAGINE involves two distinct modalities (i.e., text 257

and image), we introduce two separate objectives to 258

select the best answer choice: Language Modeling 259

(LM) and Image-Text Matching (ITM). To obtain 260

the LM scores, we calculate the masked language 261

modeling loss for the Transformer encoder-based 262

model, formulated as: 263

SLM (T ) = − 1

m

m∑
t=1

logP (wt|...wt−1, wt+1...).

(1) 264

For the decoder-based model, we compute the auto- 265

regressive language modeling loss, defined as: 266

SLM (T ) = − 1

m

m∑
t=1

logP (wt|w1...wt−1), (2) 267

where wi denotes the i-th word, and m is the num- 268

ber of tokens in the sequence T . To compute the 269

ITM scores, we first contextualize the visual fea- 270

tures based on the textual sequences. Let the visual 271

features from the visual encoder MI be denoted as 272

2We use InstructBLIP (Dai et al., 2023) for captioning.
3More details of synthetic VQA are in Appendix A.
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V , we derive the contextualized visual features as273

follows:274

C = softmax(
T̄ V ⊤
√
dv

)V, (3)275

where T̄ is the feature vector from the PLMs MT .276

For the encoder-based model, we use the final hid-277

den state of the [CLS] token as the context vector,278

and for the decoder-based model, we use the hidden279

state of the last token as the context vector. dv is the280

dimension of visual features. We then achieve the281

ITM scores by calculating the similarity between282

contextualized visual features and textual features283

as follows:284

SI(T, V ) = sim(T⃗ , C), (4)285

where sim(·) denotes the cosine similarity function.286

By combining two different scores, we produce the287

joint scores SJ as follows:288

SJ(T, V ) =
1

2
(SM (T ) + SI(T, V )), (5)289

After calculating all scores S(1), S(2), ..., S(n) for290

n answer candidates, we calculate the marginal291

ranking loss defined as:292

LQA(S) =
1

n

n∑
i=1,i ̸=y

max(0, η−S(y)+S(i)), (6)293

where y indicates the index of the correct answer294

and η is the pre-defined margin. The overall objec-295

tives are as follows:296

L = LQA(SM ) + LQA(SI) + LQA(SJ). (7)297

However, we have empirically observed that the298

ITM objective prevents the model from learning299

the LM objective, which is essential for develop-300

ing reasoning capabilities. To mitigate the conflict301

between these two objectives, we introduce two302

distinct adapters (He et al., 2022a), LM adapter303

and ITM adapter. Each adapter is trained separately304

with a different focus. It is important to note that305

only the weights within these adapters are opti-306

mized during training; all other parameters remain307

frozen. By separating the parameters for objectives,308

we can effectively reduce conflicts between them.309

3.4 Inference from IMAGINE310

For the zero-shot evaluation, we use the same strat-311

egy to compute the LM and ITM scores after syn-312

thesizing the image based on the question. How-313

ever, we ensemble two scores to derive the model’s314

prediction after obtaining the probability distribu- 315

tion through softmax. 316

P (S) = softmax(S(1), S(2), ..., S(n)), (8) 317
318

P (A|Q) = (1− λ) · P (SM ) + λ · P (SI), (9) 319

where λ is an ensemble coefficient that controls the 320

contributions between textual and visual features. 321

4 Experiments 322

In this section, we demonstrate the effectiveness 323

of IMAGINE. Specifically, we conduct extensive 324

experiments and analysis to answer the following 325

research questions: 326

Q1 (Generalizability) Does IMAGINE offer bet- 327

ter zero-shot performance across a broad 328

range of reasoning benchmarks? (§4.2) 329

Q2 (Multimodality) Does IMAGINE effectively 330

integrate visual signals (imagination) with tex- 331

tual knowledge? (§4.3, §4.4) 332

Q3 (Effectiveness) How effective are the compo- 333

nents of IMAGINE in zero-shot commonsense 334

reasoning? (§4.5) 335

4.1 Experimental Setup 336

Dataset. Following the previous works on zero- 337

shot reasoning (Ma et al., 2021; Yang et al., 2022), 338

we evaluate our framework on commonsense rea- 339

soning tasks and science QA tasks to assess its gen- 340

eralizability. Specifically, we evaluate each base- 341

line on the five reasoning benchmarks, including 342

Abductive NLI (αNLI; Bhagavatula et al., 2020), 343

CommonsenseQA (CSQA; Talmor et al., 2019), 344

PhysicalIQA (PIQA; Bisk et al., 2020), SocialIQA 345

(SIQA; Sap et al., 2019b), and Winogrande (WG; 346

Sakaguchi et al., 2020). These datasets vary sig- 347

nificantly in format (e.g., natural language infer- 348

ence, QA, pronoun resolution) and required knowl- 349

edge (e.g., social and physical knowledge for SIQA 350

and PIQA, respectively), enabling a comprehen- 351

sive evaluation of a wide spectrum of reasoning 352

capabilities. For science QA tasks, we assess each 353

baseline on the four benchmarks, including QA via 354

Sentence Composition (QASC; Khot et al., 2020), 355

Science Questions (SciQ; Welbl et al., 2017), and 356

the AI2 Reasoning Challenge (ARC-Easy, ARC- 357

Challenge; Clark et al., 2018). Given that science 358

QA datasets often contain various types of report- 359

ing bias, such as color and shape biases, we selected 360

these datasets to verify the efficacy of IMAGINE in 361

mitigating reporting bias. 362
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Method KB αNLI CSQA PIQA SIQA WG Avg.

GPT-2-L (Radford et al., 2019) - 56.5 41.4 68.9 44.6 53.2 52.9
RoBERTa-L (Liu et al., 2019) - 65.6 45.0 67.6 47.3 57.5 56.6
DeBERTa-v3-L (He et al., 2023) - 59.9 25.4 44.8 47.8 50.3 45.6

RoBERTa-L (MR; Ma et al., 2021) AT 70.8 64.2 72.1 63.1 59.6 66.0
Zero-shot Fusion (Kim et al., 2022) AT, CN, WD, WN 72.5 68.2 72.9 66.6 60.8 68.2
CAR-RoBERTa-L (Wang et al., 2023) AbsAT 72.7 66.3 73.2 64.0 62.0 67.6
CAR-DeBERTa-v3-L (Wang et al., 2023) AbsAT 79.6 69.3 78.6 64.0 78.2 73.9
CANDLE-DeBERTa-v3-L (Wang et al., 2024) CANDLE 81.2 69.9 80.3 65.9 78.3 75.1
CANDLE-VERA-T5-xxl (Wang et al., 2024) CANDLE 73.8 64.7 77.6 59.4 71.3 69.4
IMAGINE-GPT-2-L Synthetic VQA 61.5 63.9 68.9 53.0 55.2 58.5
IMAGINE-RoBERTa-L Synthetic VQA 74.7 67.5 72.3 64.3 61.2 68.0
IMAGINE-DeBERTa-v3-L Synthetic VQA 82.2 74.0 80.7 66.3 76.7 76.0

Human - 91.4 88.9 94.9 86.9 94.1 91.2

Table 1: Zero-shot evaluation results on commonsense reasoning tasks (Accuracy %). Bold and Underline indicate
the best and second-best results, respectively. AT, CN, WD, WN, and AbsAT refer to ATOMIC, ConcetNet,
WikiData, WordNet, and AbstractATOMIC. The full comparison is presented in Table 13 (Appendix). The results
are from each reference.

Method αNLI CSQA PIQA SIQA WG Avg.

GPT-3.5 61.8 68.9 67.8 68.0 60.7 65.4
ChatGPT 73.2 75.7 81.7 69.7 64.1 72.9
GPT-4 75.0 43.0 73.0 57.0 77.0 65.0
LLaMA213B 55.9 67.3 80.2 50.3 72.8 65.3
Mistral7B 51.0 59.6 83.0 42.9 75.3 62.4
IMAGINE 82.2 74.0 80.7 66.3 76.7 76.0

Human 91.4 88.9 94.9 86.9 94.1 91.2

Table 2: Zero-shot evaluation results of LLMs on com-
monsense reasoning tasks (Accuracy %). Bold and
Underline indicate the best and second-best results, re-
spectively. Results are taken from Wang et al. (2024),
and IMAGINE represents the results on DeBERTa-v3-L.

Method QASC SciQ ARC-E ARC-C

SMLM∗ 26.6 - 33.4 28.4
CAR-RoBERTa-L 56.7 60.7 57.0 36.5
CAR-DeBERTa-v3-L 70.0 76.9 75.3 53.2
OPT30B

∗ 39.7 72.7 58.2 34.8
FLAN137B

∗ - - 79.5 61.7

Z-LaVI (RoBERTa-L)∗ 27.2 51.3 51.8 33.4
Z-LaVI (BART-L)∗ 27.3 51.0 56.1 36.5
Z-LaVI (OPT30B)∗ 42.1 74.0 59.5 34.1
IMAGINE-GPT-2-L 46.5 58.4 55.1 35.1
IMAGINE-RoBERTa-L 57.1 63.7 57.9 39.1
IMAGINE-DeBERTa-v3-L 72.4 78.9 76.0 56.2

Table 3: Zero-shot evaluation results on four science
question-answering tasks (Accuracy %). Bold and
Underline indicate the best and second-best results, re-
spectively. Results (∗) are taken from references (Baner-
jee and Baral, 2020; Yang et al., 2022; Wei et al., 2022)

Baselines. We mainly compare IMAGINE with363

the following zero-shot commonsense reasoning364

frameworks: MR (Ma et al., 2021), SMLM (Baner-365

jee and Baral, 2020), Zero-shot Fusion (Kim et al., 366

2022), CAR (Wang et al., 2023), and the state- 367

of-the-art framework, CANDLE (Wang et al., 368

2024). To confirm the efficacy of training with 369

machine imagination in IMAGINE, we also com- 370

pare it with Z-LaVI (Yang et al., 2022), which 371

leverages machine imagination but does not in- 372

clude the training process. Beyond the reasoning 373

framework based on KBs, we evaluate the recent 374

LLMs, which include LLaMA213B (Touvron et al., 375

2023), Mistral7B (v0.1) (Jiang et al., 2023), OPT30B 376

(Zhang et al., 2022), FLAN137B (Wei et al., 2022), 377

and the GPT families (i.e., GPT-3.5, ChatGPT 378

(gpt-3.5-turbo), GPT-4). 379

Backbones. To verify the general applicability of 380

IMAGINE, we apply our method to the both encoder 381

and decoder models. Specifically, following the 382

previous works, we utilize RoBERTa-Large (Liu 383

et al., 2019) and DeBERTa-v3-Large (He et al., 384

2023). Each model has 362M and 443M param- 385

eters, respectively. As for the decoder model, we 386

use GPT-2-Large that involves 792M parameters. 387

Implementation details are in Appendix B. 388

4.2 Main Results 389

Tables 1, 2, and 3 show the results for the com- 390

monsense reasoning tasks and the science question- 391

answering tasks. Models based on IMAGINE reveal 392

either superior or competitive performance on over- 393

all reasoning tasks. This demonstrates the effec- 394

tiveness of IMAGINE and highlights the benefit of 395

leveraging machine imagination for reasoning. 396

In particular, compared to zero-shot common- 397
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[WG]

Q.	 It is an article of faith that the paper is 

	 more important than the exam, even though 

	 the _ weighs less heavily on the grade.

A1. 	Paper	 	 	 	 A2. Exam

[PIQA]

Q: Brush dust off eyebrows

A1:	Use toothbrush to groom

A2: Use dental floss to groom

[aNLI]

Q. 	 Everyone laughed at the funny video.

A1.	 They took a study break to film videos

A2.	 Beth found a funny cat video.

[SIQA]

Q.	 After starting the bar fight Kai told Riley that 

	 he had better go quickly. 

	 How would you describe Riley?

A1. 	A trouble maker	 	 A2.	 Full of adrenaline

A3. 	A peace maker

[CSQA]

Q.	 What part of a table 

	 would you put a ruler in?

A1.	 Drawer	 	 	 A2. 	Desk

A3. 	The backside	 	 A4. 	Office

A5. 	Measure distance

Existing Model: A2(X)	 	 IMAGINE: A1(O)

Existing Model: A3(X)		 	 IMAGINE: A3(X)

Existing Model: A1(X)	 	 IMAGINE: A2(O)

Existing Model: A1(O)	 	 IMAGINE: A1(O)

Existing Model: A2(X)	 	 IMAGINE: A2(X)

[CSQA]

Q. 	 Where usually lacks an elevator but 

	 sometimes has a telephone book?

A1. 	At hotel		 	 	A2. Kitchen

A3. 	Library		 		 	A4. Telephone booth

A5.	 House

Existing Model: A4(O)	 	 IMAGINE: A5(X)

Figure 4: Comparison of model predictions and the correctness from IMAGINE and the existing model (Wang et al.,
2023) on five commonsense reasoning tasks.

sense reasoning frameworks in commonsense rea-398

soning tasks (Table 1), IMAGINE-DeBERTa-v3-L399

model surpasses the previous state-of-the-art by400

0.9%p on average, and specifically by 4.1%p on401

the CSQA. This suggests that synthetic VQA sig-402

nificantly enhances generalization performance in403

zero-shot commonsense reasoning. Comparison re-404

sults with LLMs (Table 2) also shows that IMAG-405

INE outperforms recent LLMs, including ChatGPT406

and GPT-4 (OpenAI, 2023). This result suggests407

the superior efficiency and effectiveness of IMAG-408

INE’s multimodal approach.409

IMAGINE also proves effective for science QA410

tasks (Table 3). Compared to the models with KBs411

and larger models, IMAGINE presents better or412

competitive reasoning performance. These results413

confirm the effectiveness of the machine imagina-414

tion capabilities on science-related contexts. We415

also highlight the comparison results with Z-LaVI416

(Yang et al., 2022) that leverages imagination simi-417

lar to ours. IMAGINE outperforms this method by418

a significant margin (18.5%p on average), under-419

scoring the importance of the pre-training phase in420

effectively utilizing machine imagination.421

4.3 Impact of Imagination on Model Inference422

We analyze the inference results from the text-423

based model, CAR (Wang et al., 2023), and IMAG-424

INE to confirm the impact of machine imagination425

on the model inference. The results are shown in426

KB αNLI CSQA PIQA SIQA WQ Avg.

Synthetic VQA 74.7 67.5 72.3 64.3 61.2 68.0

w/o VCR 71.7 65.7 72.3 65.7 60.3 67.1
w/o AbsAT 75.6 67.5 71.7 56.2 58.8 66.0
w/o VCR, AbsAT 65.6 45.0 67.6 47.3 57.5 56.6

Table 4: Ablation results on Synthetic VQA. Bold and
underline indicate the best and second-best results.

Figure 4. We draw three major findings regard- 427

ing the impact of imagination: (i) When the text 428

contains limited commonsense knowledge, imag- 429

ination indeed helps the model to correctly infer 430

the answer (First row in the Figure), i.e., positive 431

impact on predictions (ii) When the generated im- 432

ages only partially capture the context of the text 433

query, imagination does not affect the inference re- 434

sults (Second row in the Figure). (iii) When images 435

deviate from the real world, imagination can lead 436

to incorrect inferences (Third row in the Figure). 437

Specifically, we empirically observe that longer 438

text queries often result in such cases. These results 439

suggest that incorporating a text-to-image model 440

with better alignment capabilities could potentially 441

mitigate the negative impacts of imagination4. 442

4.4 Contributions of Synthetic VQA 443

To confirm the effectiveness of each component 444

in Synthetic VQA, we evaluate the contribution of 445

4We provide more examples with the visualization of
model attention in Appendix F.
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LM ITM αNLI CSQA PIQA SIQA WG Avg.

✓ ✓ 74.7 67.5 72.3 64.3 61.2 68.0
✓ - 74.3 65.2 71.9 62.3 60.5 66.8
- ✓ 71.7 62.0 68.8 60.0 59.6 64.4
- - 65.6 45.0 67.6 47.3 57.5 56.6

Table 5: Ablation results on pre-training objective of
IMAGINE. We use a RoBERTa-L as a backbone.

Inference αNLI CSQA PIQA SIQA WG Avg.

Ensemble 74.7 67.5 72.3 64.3 61.2 68.0
LM 74.1 66.9 71.8 63.8 61.1 67.1
ITM 71.7 63.1 68.3 59.8 59.4 64.0

Table 6: Results of the different inference strategy (LM,
ITM). These strategies are evaluated on RoBERTa-L.

AbsAT and VCR. Table 4 presents the results on446

commonsense reasoning tasks. The model trained447

only with AbsAT (i.e., w/o VCR) shows supe-448

rior performance on datasets that contain longer449

sequences and require complex knowledge (e.g.,450

PIQA, SIQA). In contrast, the model trained only451

with VCR (i.e., w/o AbsAT) shows its strength on452

the dataset that contain simpler questions (αNLI,453

CSQA) which allows the better use of visual infor-454

mation. When combining these two components,455

the synthetic VQA results in well-generalized rea-456

soners across diverse reasoning tasks, demonstrat-457

ing the complementary effect of each component.458

4.5 Component Analysis on IMAGINE459

Ablation on Training Objectives. IMAGINE em-460

ploys two objectives (i.e., LM, ITM) to learn com-461

monsense knowledge from different modalities. We462

perform ablations on these objectives to verify their463

contributions in enhancing zero-shot reasoning ca-464

pabilities. Table 5 shows the ablation results. No-465

tably, omitting the LM objective leads to a signifi-466

cant drop in performance, underscoring the crucial467

role of language understanding in commonsense468

reasoning. Furthermore, while ITM alone does not469

significantly impact reasoning effectiveness, com-470

bining ITM with LM results in improved reasoning471

performance. These findings suggest that integrat-472

ing visual information in model optimization leads473

to better reasoning in commonsense situations.474

Effect of Ensemble Inference. IMAGINE per-475

forms reasoning based on ensemble of the LM476

and ITM scores. To investigate the contributions in477

scores obtained from these two different modalities,478

we evaluate each score independently. The results479

are presented in Table 6. We observe the lowest480

Model αNLI CSQA PIQA SIQA WG Avg.

Adapter 74.7 67.5 72.3 64.3 61.2 68.0
Full 73.0 65.4 71.1 61.5 61.2 66.4

Table 7: Evaluation results of IMAGINE with full fine-
tuning (Full) and adapter tuning (Adapter).

performance when evaluating only the ITM scores. 481

However, ensembling LM scores with the ITM 482

results in significant performance improvement 483

across all tasks, even though the scores derived 484

from images are much lower than those from text. 485

This indicates that integrating machine-generated 486

images can complement and enhance language- 487

based reasoning abilities5. 488

Impact of Adapter. IMAGINE utilizes adapters 489

(He et al., 2022a) to alleviate the conflicts between 490

the two objectives (i.e., LM, ITM) during the pre- 491

training. In this study, we examine whether separat- 492

ing parameters through adapters for distinct modal- 493

ity objectives is truly effective. Table 7 presents 494

the ablation results on adapters. We observe a sig- 495

nificant decline in reasoning performance when 496

adapters are removed. This suggests that direct 497

training of PLMs with images adversely affects 498

the acquisition of textual knowledge. One plausible 499

explanation for this phenomenon is possibly related 500

to catastrophic forgetting (Kirkpatrick et al., 2017), 501

where the model loses previously acquired knowl- 502

edge (i.e., textual knowledge inherent in PLMs). 503

This highlights the effectiveness of adapters in 504

maintaining the model’s linguistic understanding 505

when it learns from new modalities. 506

5 Conclusion 507

In this paper, we have proposed IMAGINE, a novel 508

zero-shot commonsense reasoning framework that 509

leverages visual signals to mitigate reporting bias. 510

To steer IMAGINE in effectively utilizing visual in- 511

formation, we have created a large-scale synthetic 512

VQA dataset and optimized the model to jointly use 513

both textual and visual information. We have con- 514

ducted extensive experiments across a broad range 515

of reasoning tasks. Comprehensive results have 516

shown that IMAGINE establishes new state-of-the- 517

art results on zero-shot commonsense reasoning 518

tasks compared to strong baselines, demonstrating 519

the efficacy of machine imagination. 520

5More analysis on ensemble methods are in Appendix D.
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Limitations521

We have demonstrated the efficacy of the machine522

imagination to improve zero-shot commonsense523

reasoning ability. However, we still have the fol-524

lowing limitations:525

Additional Computations While machine imag-526

ination leads to performance improvement in527

PLMs, it necessitates additional computations for528

generating and processing visual signals. This limi-529

tation can be addressed by retrieving relevant im-530

ages instead of synthesizing new ones, as demon-531

strated in previous work (Yang et al., 2022). We532

consider this approach a promising avenue for fu-533

ture research.534

Exploration of IMAGINE on LLMs In this work,535

we apply IMAGINE to only intermediate-size mod-536

els (300M to 790M), as one of our objectives is to537

show the smaller models with machine imagination538

outperforms LLMs on a broad range of common-539

sense reasoning tasks. However, we believe that540

IMAGINE can be effectively combined with LLMs,541

given that the reporting bias is an inherent issue in542

the pre-training corpus and not the models them-543

selves. We plan to explore the scaling of machine544

imagination in our future research.545
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Appendix880

A Synthetic VQA dataset881

Train Dev Total

# Images generated from AbsAT 18,838 1,695 20,533
# QA pairs from AbsAT 486,778 46,238 533,016

# Images from VCR 80,418 9,929 90,347
# QA pairs from VCR 212,923 26,534 239,457

# Total Images 99,256 11,624 110,880
# Total QA pairs 699,701 72,772 772,473

Table 8: Statistic of synthetic VQA dataset.

We construct a synthetic VQA dataset using Ab-882

stractATOMIC and VCR. First, we generate images883

using the questions from AbstractATOMIC. Since884

AbstractATOMIC consists only of text, we need885

to create images based on these questions. In this886

process, we standardize all the person names in887

the questions to “Person” and remove duplicate888

questions, resulting in approximately 20K images.889

To include more realistic images and common-890

sense questions corresponding to those images, we891

extract question-answer pairs from VCR images.892

However, most of these questions are directly re-893

lated to the images, making it difficult to answer894

without them, which poses a challenge for LM-895

based training. To address this, we replace the per-896

son indices in the questions with gender-neutral897

names and generate captions for the images to use898

as prefixes for the questions. In addition, each QA899

pair from VCR has four answer candidates, while900

each pair from AbstractATOMIC has three candi-901

dates. To combine them, we match the number of902

answer choices by randomly discarding one dis-903

tractor from VCR. The statistic of our dataset is904

provided in Table 8.905

B Implementation Details906

To construct the VQA pairs, we primarily use907

DALL-E 3-XL (Betker et al., 2023), a powerful im-908

age synthesis model. For generating images in the909

synthetic VQA dataset, we first remove overly spe-910

cific information, such as personal names, from the911

questions. Then, we generate images with a resolu-912

tion of 384× 384 using 50 inference steps. During913

the evaluation, we generate 512× 512 images for914

each task based on the questions, maintaining the915

same number of inference steps. We use the CLIP-916

Large (Radford et al., 2021) model to extract image917

features. Following prior work, we use two power-918

IMAGINE GPT-2-L RoBERTa-L DeBERTa-v3-L

Image Encoder CLIP-ViT-L/14
# Params. 792M + 428M 362M + 428M 443M + 428M
# Trainable Params. 7.9M 8.4M 8.4M
Training Time 70h 30h 80h
Batch Size 8, 16, 32, 64
Learning Rate 7e-6, 1e-5, 3e-5
Epoch 2

Table 9: Detailed training settings for IMAGINE. Bold
indicates the chosen hyperparameter.

ful PLMs as the backbone. We add Parallel Adapter 919

(He et al., 2022a) with a reduction factor of 16 to 920

each model and freeze all parameters except for 921

the adapters. We follow the training settings of Ma 922

et al. (2021) and Wang et al. (2023) to train Trans- 923

former decoder-based and encoder-based model 924

for the in-depth comparison. We report our results 925

derived from the ensemble score using the optimal 926

ensemble weight for each task. All experiments are 927

conducted using four NVIDIA A5000 GPUs. More 928

details are presented in Table 9. 929

C Impact of Image Quality 930

We aim to observe the changes in inference per- 931

formance based on image quality by generating 932

images of various qualities using three different 933

methods. First, similar to our main experiment, we 934

utilize the questions from the evaluation dataset 935

to generate images with a resolution of 512× 512 936

using both DALL-E 3-XL and the Latent Diffusion 937

Model (LDM; Rombach et al., 2022), which has 938

relatively lower image synthesis capabilities. Ad- 939

ditionally, we generate images with a resolution 940

of 384× 384 using DALL-E 3-XL, following the 941

same method used for creating the synthetic VQA 942

dataset. 943

IMAGINE αNLI CSQA PIQA SIQA WG Avg.

Text only 73.2 66.3 71.3 64.5 60.3 67.1
LDM (512× 512) 73.2 66.3 71.9 64.3 60.6 67.3
DALL-E 3 (384× 384) 74.5 66.8 71.9 64.3 60.6 67.6
DALL-E 3 (512× 512) 74.7 67.5 72.3 64.3 61.2 68.0

Table 10: Results of using various image synthesis mod-
els for evaluation. The numbers in parentheses indicate
the image resolution.

The results in Table 10 show that the IMAGINE 944

with the LDM model performs the worst, indicat- 945

ing that utilizing a less effective image synthesis 946

model can degrade overall performance. However, 947

all models benefit from incorporating various reso- 948

lutions of images. As seen in Figure 5, this is likely 949

because the generated images, despite varying in 950
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"Jerome was an awkward child of the 70s. 

So Jerome and Maria got married, had kids, and Jerome was happy."

"John loved to paint houses.  How did he usually do it?"

LDA (512x512) DALL-E 3-XL (384x384) DALL-E 3-XL (512x512)

LDA (512x512) DALL-E 3-XL (384x384) DALL-E 3-XL (512x512)

Figure 5: Comparison of generated images. The sen-
tences are the queries used to generate the images.

quality, mostly maintain contextual relevance to the951

query sentences, thereby having a similar positive952

impact on the inference results.953

D Ensemble Methods954

To verify the effectiveness of our framework’s mul-955

timodality approach, we train two unimodal models956

using different seeds on the synthetic VQA dataset,957

utilizing only the text. We then ensemble the scores958

obtained from these two models. The results are959

presented in Table 11. While ensembling scores960

from single modalities (LM+LM) provides perfor-961

mance benefits, ensembling scores from two dif-962

ferent modalities (LM+ITM), as done in IMAGINE,963

proves to be the most effective. This demonstrates964

that the multimodality approach plays a crucial role965

in enhancing zero-shot reasoning performance.966

RoBERTa-Large αNLI CSQA PIQA SIQA WG Avg.

LM 74.3 65.2 71.9 62.3 60.5 66.8
LM+LM 74.3 66.0 72.1 64.2 60.4 67.4
LM+ITM (IMAGINE) 74.7 67.5 72.3 64.3 61.2 68.0

Table 11: Results of two different ensemble methods.

We report the optimal ensemble weights used967

for our framework in Figure 6. The larger the en-968

semble weight, the greater the influence of the im-969

age scores. Additionally, we draw a line indicat-970

ing the average accuracy in each plot. From this,971

we can infer that the DeBERTa-v3-Large model972

utilizes image information more extensively than973

the RoBERTa-Large. When applying IMAGINE to974

DeBERTa-v3-Large, the performance improvement975

is greater than when using RoBERTa-Large, sug-976

gesting that visual information contributes posi- 977

tively to most reasoning tasks. 978

E IMAGINE with Decoder-based Model 979

We conducted experiments using GPT-2, a widely- 980

used decoder-based generative language model, to 981

verify the applicability to recent language models. 982

We follow the settings of (Ma et al., 2021) to train 983

to model on synthetic datasets.

αNLI CSQA PIQA SIQA WG Avg.

GPT-2-L 56.5 41.4 68.9 44.6 53.2 52.9
GPT-2-L (MR) 59.2 48.0 67.5 53.6 54.7 56.6
CAR-GPT-2-L 61.7 50.0 68.2 52.3 55.2 57.5
IMAGINE-GPT-2-L 61.5 53.9 68.9 53.0 55.2 58.5

Table 12: Zero-shot evaluation results with decoder-only
generative model.

984
The results in Table 12 demonstrate that IMAG- 985

INE is effective not only for encoder-based models 986

but also for decoder-based models. Based on these 987

findings, we plan to address methodologies in fu- 988

ture work that can effectively utilize images while 989

preserving the rich language understanding capa- 990

bilities of large language models. 991

F Visualization of Image Attention 992

We aim to visualize how the model utilizes spe- 993

cific parts of an image. The formula to compute 994

contextualized visual features used for computing 995

the ITM score calculation process is similar to the 996

attention algorithm, allowing us to derive attention 997

scores for each image patch. Based on these scores, 998

we erase 100 image patches with the lowest scores 999

to understand which parts the model focuses on. 1000

As shown in Figure 7, 8, and 9, each model tends 1001

to assign relatively high attention scores to objects 1002

related to the question in most cases, rather than 1003

using the image patches randomly. This is notable 1004

because the model can effectively capture the rela- 1005

tionship between text and images using adapters, 1006

despite training with much less data compared to 1007

existing visual-language modeling studies (Li et al., 1008

2023; Zhu et al., 2023). In addition, we observe that 1009

the DeBERTa-v3-Large model tends to focus more 1010

frequently on the correct parts than the RoBERTa- 1011

Large model. Figure 7 shows these cases clearly. 1012

This aligns with the result that the IMAGINE is more 1013

effective with DeBERTa-v3-Large, suggesting that 1014

a model with high generalization performance is 1015

also useful for learning new modalities. 1016
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IMAGINE-RoBERTa-L

IMAGINE-DeBERTa-v3-L

        

      

        

Figure 6: Model accuracy variation with different ensemble weights. The optimal w for each task is shown below
the plots. The line in the middle indicates the average accuracy.
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DeBERTa-v3-L RoBERTa-L
Q. 	 Joe was walking through downtown. 

	 He reluctantly agreed to give them an interview.

A1. 	He was approached by a pretty woman. 

A2.	 He was approached by a survey taker.

Q. 	 I got up from a nap feeling very hungry. 

	 After the inspector arrived and killed the rats, I felt very happy.

A1. 	I decided not to eat when I saw a rat in the kitchen. 

A2.	 I ate a lot of rats in my kitchen.

Q. 	 How to quickly cool down a bottled water drink?

A1. 	Run the paper towel under some water and wrap a 

	 bottle around it then place in the freezer for 20 minutes.

A2.		Run the bottle under some water and wrap a paper towel 

	 around it then place in the freezer for 20 minutes.

Q. 	 What is the best way to apply nail polish to a professional result?

A1.	 A quick way to apply nail polish is to use a large brush, 

	 then cover any messy areas with flesh-colored nail polish.

A2.	 Tape the cuticles with snugly fitting tape, then paint the 

	 nails. Remove the tape and use a nail polish remover-soaked 

	 q-tip to clean any excess polish from the cuticles or fingers.

DeBERTa-v3-L: A2 (O)		 RoBERTa-L: A1 (X)

DeBERTa-v3-L: A1 (O)		 RoBERTa-L: A1 (O)

DeBERTa-v3-L: A2 (O)		 RoBERTa-L: A2 (O)

DeBERTa-v3-L: A5 (O)		 RoBERTa-L: A2 (X)

DeBERTa-v3-L: A2 (O)		 RoBERTa-L: A2 (O)

DeBERTa-v3-L: A2 (O)		 RoBERTa-L: A2 (O)

Q. 	 Of all the sports, Billy enjoys football, 

	 but what does his concerned mother think of the sport?

A1. 	Very entertaining	 A2. Fun	 	 A3. Competitive

A4.	 Competitive	 	 A5. Violent


Q. 	 John didn't mind getting in line. It was what game after that 

	 he hated. The time, the sore feet. He did not like doing what?

A1. 	Have to wait for	 A2. Standing in line	 A3. Eat cake

A4.	 Less confusion	 A5. Being ordered


Figure 7: Randomly sampled examples from IMAGINE alongside the visualization of image attention from the
Abductive NLI, CommonsenseQA, and PIQA validation sets.
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DeBERTa-v3-L RoBERTa-L

Q. 	 Robin studied hard the night before, and found the test to be

	 very easy. Robin finished the test quickly.
	 How would Robin feel afterwards?

A1. 	Proud 	 	 	 A2.	 Motivated	 	 

A3.	 Nervous


Q. 	 Alex bought his entire team gold watches and when he gave

	 them the present he put each watch on their wrist himself.

	 How would you describe Alex?

A1. 	A greedy person	 A2. Satisfied over the gift he gave his team

A3.	 A thoughtful person


Q. 	 What cycle is the most directly affected by the combustion of

	 fossil fuels?

A1. 	Rock cycle	 	 A2. Water cycle	 	 A3. Carbon cycle

A4.	 Nitrogen cycle


Q.	 What energy change takes place when a piece of bread is 

	 toasted in a toaster?

A1.	 Chemical energy to light energy

A2.	 Electrical energy to heat energy

A3.	 Heat energy to chemical energy

A4.	 Light energy to electrical energy

DeBERTa-v3-L: A1 (O)		 RoBERTa-L: A1 (O)

DeBERTa-v3-L: A1 (X)		 RoBERTa-L: A3 (O)

DeBERTa-v3-L: A1 (O)		 RoBERTa-L: A1 (O)

DeBERTa-v3-L: A1 (X)		 RoBERTa-L: A1 (X)

DeBERTa-v3-L: A3 (O)		 RoBERTa-L: A3 (O)

DeBERTa-v3-L: A2 (O)		 RoBERTa-L: A3 (X)

Q. 	 The farmer had more corn to harvest than yams because

	 his cow hated eating the ___.

A1. 	Yam		 	 	 A2. Corn


Q. 	 As a parent, Catherine doesn't let her kids watch movies, 

	 but they can watch some TV chows. Catherine thinks the

	 ___ are too violent.

A1. 	Movies	 	 	 A2. TV shows	


Figure 8: Randomly sampled examples from IMAGINE alongside the visualization of image attention from the
SIQA, Winogrande, and ARC-easy validation sets.
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DeBERTa-v3-L RoBERTa-L

Q. 	 Where would it be most dangerous to work with electric tools?

A1. 	In a garage

A2.	 Beside a swimming pool

A3. 	Near a television or computer

A4. 	In a cool basement	 


Q. 	 When the motion of liquid water molecules slow, 

	 what most likely happens?

A1. 	The liquid water forms a solid

A2.	 The liquid water condenses

A3.	 The liquid water undergoes a chemical change

A4. The liquid water becomes a vapor

Q. 	 What are the outer planets of the solar system made of?

A1. 	Solids	 A2.	 Plasma	 A3.	 Liquids	 A4.	 Gases


Q.	 What do we call cyclones that form in tropical latitudes?

A1.	 Eruptions	 A2.	 Twister	 A3.	 Disturbances	 A4.	 hurricanes

DeBERTa-v3-L: A2 (X)		 RoBERTa-L: A2 (X)

DeBERTa-v3-L: A2 (X)		 RoBERTa-L: A3 (X)

DeBERTa-v3-L: A4 (O)		 RoBERTa-L: A1 (X)

DeBERTa-v3-L: A7 (X)		 RoBERTa-L: A4 (X)

DeBERTa-v3-L: A4 (O)		 RoBERTa-L: A4 (O)

DeBERTa-v3-L: A4 (O)		 RoBERTa-L: A4 (O)

Q.	 What has tiny hairs that trap particles?

A1.	 Sponges	 	 A2.	 Molecules

A3.	 Oaks	 	 A4.	 Lizards

A5.	 Protozoa	 	 A6.	 Snakes

A7.	 Cilia	 	 A8.	 Clouds


Q. 	 What is changing globally?

A1.	 The number of countries.	 A2.	 rapid growth

A3.	 How they move	 	 	 A4.	 Temperature and moisture

A5.	 Differences in speed	 	 A6.	 Net biomass

A7.	 Occurs over a wide range	 A8.	 Exposure to oxygen and water


Figure 9: Randomly sampled examples from IMAGINE alongside the visualization of image attention from the
ARC-challenge, QASC, and SciQ validation sets.
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Method KB αNLI CSQA PIQA SIQA WG Avg.

Pre-trained Language Models
GPT-2-L (Radford et al., 2019) - 56.5 41.4 68.9 44.6 53.2 52.9
RoBERTa-L (Liu et al., 2019) - 65.6 45.0 67.6 47.3 57.5 56.6
DeBERTa-v3-L (He et al., 2023) - 59.9 25.4 44.8 47.8 50.3 45.6
Self-talk (Shwartz et al., 2020) - - 32.4 70.2 46.2 54.7 -
COMET-DynGen (Bosselut et al., 2021) AT - - - 50.1 - -
SMLM (Banerjee and Baral, 2020) * 65.3 38.8 - 48.5 * -
GPT-2-L (MR; Ma et al., 2021) AT 59.2 48.0 67.5 53.6 54.7 56.6
RoBERTa-L (MR; Ma et al., 2021) AT 70.8 64.2 72.1 63.1 59.6 66.0
DeBERTa-v3-L (MR; Ma et al., 2021) AT 76.0 67.0 78.0 62.1 76.0 71.8
MICO (Su et al., 2022) AT - 44.2 - 56.0 - -
Zero-shot Fusion (Kim et al., 2022) AT, CN, WD, WN 72.5 68.2 72.9 66.6 60.8 68.2
Multi-hop Knowledge Injection (Guan et al., 2023) AT, CN, WD, WN 72.5 71.0 73.1 - 61.0 -
CAR-GPT-2-L (Wang et al., 2023) AbsAT 61.7 50.0 68.2 52.3 55.2 57.5
CAR-RoBERTa-L (Wang et al., 2023) AbsAT 72.7 66.3 73.2 64.0 62.0 67.6
CAR-DeBERTa-v3-L (Wang et al., 2023) AbsAT 79.6 69.3 78.6 64.0 78.2 73.9
CANDLE-DeBERTa-v3-L (Wang et al., 2024) CANDLE 81.2 69.9 80.3 65.9 78.3 75.1

Large Language Models
GPT-3.5 (text-davinci-003) - 61.8 68.9 67.8 68.0 60.7 65.4
ChatGPT (gpt-3.5-turbo) - 73.2 75.7 81.7 69.7 64.1 72.9
GPT-4 (gpt-4) - 75.0 43.0 73.0 57.0 77.0 65.0
LLAMA2-13B (Touvron et al., 2023) - 55.9 67.3 80.2 50.3 72.8 65.3
Mistral-v0.1-7B (Jiang et al., 2023) - 51.0 59.6 83.0 42.9 75.3 62.4
VERA-T5-xxl (Liu et al., 2023) AT 71.2 61.7 76.4 58.2 67.2 66.9
VERA-T5-xxl (Liu et al., 2023) AbsAT 73.2 63.0 77.2 58.1 68.1 68.0
CANDLE-VERA-T5-xxl (Wang et al., 2024) CANDLE 73.8 64.7 77.6 59.4 71.3 69.4

Ours
IMAGINE-GPT-2-L Synthetic VQA 61.5 63.9 68.9 53.0 55.2 58.5
IMAGINE-RoBERTa-L Synthetic VQA 74.7 67.5 72.3 64.3 61.2 68.0
IMAGINE-DeBERTa-v3-L Synthetic VQA 82.2 74.0 80.7 66.3 76.7 76.0

Supervised & Human
RoBERTa-L (Supervised) - 85.6 78.5 79.2 76.6 79.3 79.8
DeBERTa-v3-L (Supervised) - 89.0 82.1 84.5 80.1 84.1 84.0
Human - 91.4 88.9 94.9 86.9 94.1 91.2

Table 13: Zero-shot evaluation results on five commonsense reasoning tasks (Accuracy %). Bold and Underline
indicate the best and second-best results, respectively. AT, CN, WD, WN, and AbsAT refer to ATOMIC, ConcetNet,
WikiData, WordNet, and AbstractATOMIC. The results of the large language models including GPT series are
taken from Wang et al. (2024). SMLM (*) used different KBs for the different benchmarks.
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