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ABSTRACT

The typical contrastive self-supervised algorithm uses a similarity measure in la-
tent space as the supervision signal by contrasting positive and negative images
directly or indirectly. Although the utility of self-supervised algorithms has im-
proved recently, there are still bottlenecks hindering their widespread use, such
as the compute needed. In this paper, we propose a module that serves as an ad-
ditional objective in the self-supervised contrastive learning paradigm. We show
how the inclusion of this module to regress the parameters of an affine transfor-
mation or homography, in addition to the original contrastive objective, improves
both performance and learning speed. Importantly, we ensure that this module
does not enforce invariance to the various components of the affine transform, as
this is not always ideal. We demonstrate the effectiveness of the additional objec-
tive on two recent, popular self-supervised algorithms. We perform an extensive
experimental analysis of the proposed method and show an improvement in per-
formance for all considered datasets. Further, we find that although both the gen-
eral homography and affine transformation are sufficient to improve performance
and convergence, the affine transformation performs better in all cases.

1 INTRODUCTION

There is an ever-increasing pool of data, particularly unstructured data such as images, text, video,
and audio. The vast majority of this data is unlabelled. The process of labelling is time-consuming,
labour-intensive, and expensive. Such an environment makes algorithms that can leverage fully
unlabelled data particularly useful and important. Such algorithms fall within the realm of unsuper-
vised learning. A particular subset of unsupervised learning is known as Self-Supervised Learning
(SSL). SSL is a paradigm in which the data itself provides a supervision signal to the algorithm.

Somewhat related is another core area of research known as transfer learning (Wang et al., 2020).
In the context of computer vision, this means being able to pre-train an encoder network offline on
a large, varietal dataset, followed by domain-specific fine-tuning on the bespoke task at hand. The
state-of-the-art for many transfer learning applications remains dominated by supervised learning
techniques (Tan et al., 2020; Martinez et al., 2019; Donahue et al., 2014; Girshick et al., 2014), in
which models are pre-trained on a large labelled dataset.

However, self-supervised learning techniques have more recently come to the fore as potential al-
ternatives that perform similarly on downstream tasks, while requiring no labelled data. Most self-
supervised techniques create a supervision signal from the data itself in one of two ways. The one
approach are techniques that define a pre-text task beforehand that a neural network is trained to
solve, such as inpainting (Pathak et al., 2016) or a jigsaw puzzle (Noroozi & Favaro, 2016). In this
way, the pre-text task is a kind of proxy that, if solved, should produce reasonable representations
for downstream visual tasks such as image or video recognition, object detection, or semantic seg-
mentation. The other approach is a class of techniques known as contrastive methods (Chen et al.,
2020a; He et al., 2019; Chen et al., 2020b). These methods minimise the distance (or maximise
the similarity) between the latent representations of two augmented views of the same input image,
while simultaneously maximising the distance between negative pairs. In this way, these methods
enforce consistency regularisation (Sohn et al., 2020), a well-known approach to semi-supervised
learning. These contrastive methods often outperform the pre-text task methods and are the current
state-of-the-art in self-supervised learning. However, most of these contrastive methods have several
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drawbacks, such as requiring prohibitively large batch sizes or memory banks, in order to retrieve
the negative pairs of samples (Chen et al., 2020a; He et al., 2019).

The intuition behind our proposed module is that any system tasked with understanding images
can benefit from understanding the geometry of the image and the objects within it. An affine
transformation is a geometric transformation that preserves parallelism of lines. It can be composed
of any sequence of rotation, translation, shearing, and scaling. A homography is a generalisation of
this notion to include perspective warping. A homography need not preserve parallelism of lines,
however, it ensures lines remain straight. Mathematically, a homography is shown in Equation
1. It has 8 degrees of freedom and is applied to a vector in homogenous coordinates. An affine
transformation has the same form, but with the added constraint that φ3,1 = φ3,2 = 0.

Hφ =

[
φ1,1 φ1,2 φ1,3
φ2,1 φ2,2 φ2,3
φ3,1 φ3,2 1

]
(1)

The ability to know how a source image was transformed to get to a target image implicitly means
that you have learned something about the geometry of that image. An affine transformation or,
more generally, a homography is a natural way to encode this idea. Forcing the network to estimate
the parameters of a random homography applied to the source images thereby forces it to learn
semantics about the geometry. This geometric information can supplement the signal provided by a
contrastive loss, or loss in the latent space.

In this paper, we propose an additional module that can be used in tandem with contrastive self-
supervised learning techniques to augment the contrastive objective (the additional module is high-
lighted in Figure 1). The module is simple, model-agnostic, and can be used to supplement a con-
trastive algorithm to improve performance and supplement the information learned by the network
to converge faster. The module is essentially an additional stream of the network with the objec-
tive of regressing the parameters of an affine transformation or homography. In this way, there is a
multi-task objective that the network must solve: 1. minimising the original contrastive objective,
and 2. learning the parameters of a homography applied to one of the input images from a vector
difference of their latent representations. We force the latent space to encode the geometric trans-
formation information by learning to regress the parameters of the transformation in an MLP that
takes the vector difference of two latent representations of an input, x, and its transformed analogue,
x′. By including the information in this way, the network is not invariant to the components of
the transformation but is still able to use them as a self-supervised signal for learning. Moreover,
this approach serves as a novel hybrid of the pre-text tasks and contrastive learning by enforcing
consistency regularisation (Sohn et al., 2020).

Figure 1: Proposed architecture. The highlighted box highlights the additional proposed module
tasked with regressing the parameters of an affine transformation or homography.

Through extensive empirical studies, we show that the additional objective of regressing the trans-
formation parameters serves as a useful supplementary task for self-supervised contrastive learning,
and improves performance for all considered datasets in terms of linear evaluation accuracy and
convergence speed.

The remainder of the paper is structured as follows. In Section 2, we cover the related work in
the area of self-supervised learning, going into detail where necessary. In Section 3 we detail our
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proposed method. We first introduce a framework and set of notation to make the formalisation of
the approach clear. We then delve into the details behind the architecture and choices for the various
part of the system. This is followed by a comprehensive set of experiments in Section 4, including
results of various datasets, as well as an ablative study. Finally, the paper is concluded with some
closing remarks in Section 5.

2 RELATED WORK

SSL is a popular research area within computer vision. Previous approaches can be broadly classed
into two main categories. The first is where pre-text tasks are manually defined, and the goal of the
algorithms is to solve these hand-crafted tasks (Lee et al., 2020; Doersch et al., 2015; Gidaris et al.,
2018; Zhang et al., 2016; Misra & Maaten, 2020). Examples of such methods include inpainting
(Pathak et al., 2016), colourising (Zhang et al., 2016), jigsaw puzzles (Noroozi & Favaro, 2016),
patch prediction (Doersch et al., 2015), and geometric image transformations (Dosovitskiy et al.,
2014) such as using rotation as the pre-text task (Gidaris et al., 2018; Feng et al., 2019). Some
of these pre-text approaches that deal with geometric image transformations are similar in spirit to
our method. Gidaris et al. (2018); Feng et al. (2019) are two variants of predicting image rotations
as an auxiliary task for unsupervised learning. Perhaps closer to our method is Dosovitskiy et al.
(2014), in which a set of transformations is applied to image patches, and the network is trained
in a fully-unsupervised manner to predict surrogate classes defined by a set of transformed image
patches by minimising the log loss. Our method, however, investigates a different, particular set of
transformations (those that define an affine transformation of general homography), and show this
can be used to aid self-supervised performance, using the transformation parameters themselves as
targets that need to be regressed (using mean-squared error) by the contrastive algorithm in a multi-
task manner. The discrepancy in the network’s ability to predict the actual values of the parameters
of the affine transformation/homography serves as our additional supervision signal.

A somewhat related approach to our proposed method within the pre-text task domain is proposed by
Lee et al. (2020). They propose to augment the learning process of a supervised learning algorithm
with additional labels constructed using self-supervised labels. These labels are rotation classes and
colour permutations. Importantly, they create a loss function which is based on a joint distribution of
the original (supervised) labels and the self-supervised (augmented) labels. In this way, the network
is not forced to be invariant to the transformations under consideration, since this has been shown to
hurt performance (Lee et al., 2020). Our method is different to this in that we propose a module to be
integrated specifically with self-supervised algorithms. Additionally, we regress the transformation
parameters in real vector space and do not create classes for the parameters.

The other broad category of SSL is based on contrastive learning (Chen et al., 2020a; He et al.,
2019; Caron et al., 2020), and this class of techniques represent the current state-of-the-art in self-
supervised learning, outperforming the hand-crafted pre-text task methods. These approaches learn
representations by contrasting positive pairs of samples from negative pairs of samples in latent
space. Such methods typically require that careful attention be paid to the negative samples. Ad-
ditionally, they have the disadvantage of requiring prohibitively large batch sizes (4096-16000),
memory banks, or other mechanisms to retrieve the relevant negative samples.

One popular such method is known as SimCLR (Chen et al., 2020a). SimCLR is a general frame-
work for contrastive learning, and in its vanilla formulation consists of an encoder network param-
eterised by a CNN (usually a variant of ResNet (He et al., 2016)) and an MLP projection head. An
input image is sampled, and two distinct views of that same input image are computed using a ran-
dom augmentation. The augmentation consists of colour jiterring, Gaussian blurring, and random
cropping. The two views are sent through the encoder network to produce two latent representa-
tions. These latent vectors are then sent through the projection head to produce final latent vectors.
It is from these vectors that the loss is computed. In the case of SimCLR, the loss is normalised
temperatured cross-entropy (NT-Xent).

A recent approach proposed in Grill et al. (2020) (BYOL) somewhat overcomes the aforementioned
disadvantages of requiring negative pairs of samples (which implicitly requires a large batch size).
Two separate networks with their own weights are used in tandem to learn the representation. An
online network (consisting of an encoder, MLP projection head, and MLP prediction network) is
trained to predict the representation outputted by a target network. During training, the online
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network parameters are updated using backpropagation of error derivatives computed using a mean-
squared error loss. However, the target network parameters are updated using an exponential moving
average. In this way, BYOL overcomes collapsed solutions in which every image produces the same
representation. We test our module with both SimCLR and BYOL, since these two methods serve
as two popular, recent approaches to contrastive SSL.

Some helpful findings for guiding self-supervised research were demonstrated in Kolesnikov et al.
(2019). Core among these are that 1) standard architecture designs that work well in the fully-
supervised setting do not necessarily work well in the self-supervised setting, 2) in the self-
supervised setting larger CNNs often means higher quality learned representations, and 3) the linear
evaluation paradigm for assessing performance may take a long time to converge. Moreover, Newell
& Deng (2020) find that the effectiveness of self-supervised pretraining decreases as the amount of
labelled data increases, and that performance on one particular downstream task is not necessarily
indicative of performance on other downstream tasks.

3 PROPOSED METHOD

We first introduce a mathematical framework for discussing our method. Let B1 be a set of base
transformations. A base transformation is a transformation that cannot be decomposed into more
basic transformations and is interpreted as per Grill et al. (2020); Chen et al. (2020a). Examples
of base transformations include colour jittering, cropping, and horizontal flipping. We define the
possible base transformations a-priori, and |B1| < ∞. Next, we define a new set of base spatial
transformations B2 that correspond to the general affine transformations (i.e. rotation, translation,
scaling and shearing) or the full homography (i.e. affine transformations and perspective projection).
Further, we impose the following condition:

B1 ∩ B2 = ∅ (2)

The reason for this restriction will be apparent later.

A transformation tb,θ is parameterised by its associated base transformation b ∈ B1 ∪ B2 and trans-
formation parameters θ ∈ Θ. Then, the set of all possible transformations for a particular base
transformation set B may be defined as:

Ti := {tb,θ|b ∈ Bi, θ ∈ Θ} (3)

Clearly, we may have that |Ti| =∞, since some parameters may take on any value within compact
subsets of R. This is important because we want to be able to sample from an infinite sample space
during training to ensure the network sees a variety of samples.

We can now define an augmentation, which is an ordered sequence of n transformations. As such,
each unique ordering will necessarily produce a unique augmentation (e.g. flipping and then crop-
ping is different from cropping and then flipping). Formally, an augmentation a is defined as:

a(x) = tbn,θn ◦ · · · ◦ tb2,θ2 ◦ tb1,θ1(x) (4)

Denote the set of all possible augmentations for a transformation set Ti as ATi . Under this defini-
tion, AT2 is the set of all possible affine or homographic transformations. Examples of the affine
transformations and homographies can be seen in Appendix A.

Now, consider an input image x sampled at random from a dataset of images X ⊂ X , where X is
the sample space of images. We sample augmentations a, b ∈ AT1

, and apply them to x to produce
augmented views x1 and x2, respectively. We then sample an affine/homographic transformation
cφ ∈ AT2 and apply it to x1 to produce x′1. Note that x1 and x′1 are related by a homography. This
is a core assumption relied upon by further inductive biases we introduce into our model.

We now describe the proposed architecture as depicted in Figure 1. Let the mapping f : X → Rp
be parameterised by a CNN, and the mappings g : Rp → Rk and h : Rp → Rm be parameterised
by MLPs, where p, k, and m are the dimensionality of the encoder latent vector, projection head
latent vector, and homography parameter vector, respectively. f and g are the encoder and projection
head from the original SimCLR (Chen et al., 2020a) and BYOL (Grill et al., 2020) formulations,
respectively, whereas h is a new MLP tasked with estimating the homography parameters. Note that
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if we are regressing all parameters of a general affine transformation, then m = 6, whereas for a full
homography we have m = 8. For brevity, we have denoted both streams in the architecture to be a
network with the same shared weights, although it may be the case that the two streams consist of
networks with different weights (as is the case with BYOL).

The loss function for our method contains two terms. First is the original loss function as defined
by the original method: NT-Xent for SimCLR and squared L2 for BYOL. We define this first term
as L1(z1, z2), where z1 = g(f(x1)) and z2 = g(f(x2)). The second term can be seen as forcing
the network to explicitly learn the affine transformation or homography between x1 and x′1. Let the
latent representations of x1 and x′1 be l1 = f(x1) and l′1 = f(x′1). We send the vector difference l1−
l′1 through h to produce an estimate of the homography’s parameters. We regress to these parameters
using mean-squared error: L2(h(l1 − l′1), φ), where φ are the ground truth affine transformation
parameters. Thus, the complete loss function is given by:

L1(z1, z2) + L2(h(l1 − l′1), φ) (5)

The vector difference naturally describes the transformation needed to move from l1 to l′1. With our
architecture and learning objective, we force this vector difference transformation vector to encode
the homography between x1 and x′1. This interpretation may be seen as natural and intuitive. Hence,
the L1 term enforces invariance to the transformations in B1 and L2 enforces non-invariance to the
transformations in B2.

Note that this is still completely self-supervised. Moreover, the restriction imposed in Equation 2 is
necessary because we cannot have any transformations in cφ’s sequence that would destroy the fact
that x1 and x′1 are related through a homography. For example, adding a cropping transformation
would break the homography assumption. One may add transformations that do not break this
restriction (e.g. colour jitter), however, we do not explore this here.

We may interpret this extended architecture as solving a multi-task learning objective in which 1)
the contrastive loss between differing augmented views of the image must be minimised, and 2)
another network must be able to estimate the homography between images, which explicitly forces
the latent space to encode this spatial information during training.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

This section presents an empirical study comparing the original SimCLR and BYOL techniques
on the CIFAR10, CIFAR100 and SVHN benchmark datasets, with and without our proposed mod-
ule. Our goal is not to achieve near state-of-the-art performance on the datasets, but is rather to
demonstrate the effectiveness of the proposed additional homography estimation objective under
consistent experimental settings. In all cases, the proposed module improves the performance of a
linear classifier on the learned representation and improves the learning speed.

The experimental setup for the self-supervised training of SimCLR and BYOL can be found in
Table 1. The batch size is somewhat lower than the original methods since the original methods
focused on performance on ImageNet, which requires a considerably larger batch size to perform
well. In some additional experiments, we find performance decreased for our datasets with batch
sizes larger than 256 for all methods (original SimCLR and BYOL, as well as our method). Further,
we found alternative optimised hyperparameter values (learning rate, optimiser, and weight decay)
that worked better than those proposed in the original formulations of SimCLR and BYOL, which
can be attributed to similar reasons as the batch size arguments. We use the same type of learning
rate decay as the previous methods, and train for the same number of epochs (and warmup epochs)
as SimCLR. We use a temperature of 0.5 for the NT-Xent loss and keep all images at their default
resolution of 32× 32. Lastly, all reported confidence intervals are the average across 10 trials of the
full pipeline trained from scratch (SSL pretraining + linear evaluation).

Performance is measured as per the literature, using linear evaluation on the relevant dataset. The
experimental setup for linear evaluation can be seen in Table 1. We freeze the encoder and only
optimise the weights of a final linear layer using cross-entropy.
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Table 1: Experimental setup.

SSL
SimCLR BYOL

Batch size 256 256
Optimiser Adam SGD
LR 3e-04 0.03
Momentum - 0.9
Weight decay 10e-06 4e-04
Epochs (warmup) 100 (10) 100 (10)
LR schedule Cosine decay Cosine decay

Linear Evaluation
SimCLR BYOL

Batch size 64 64
Optimiser Adam Adam
LR 3e-04 3e-04
Epochs 200 200

Hardware
V100 16GB GPU

We parameterise f as ResNet50, while g and h are parameterised as two-layer ReLU
MLPs (Figure 1). Further, to ensure consistency with SimCLR, we have that B1 =
{random crop, random horizontal flip, colour jitter,Gaussian blur, random grayscale}. The output
of h is a six-dimensional real vector, where the six components are defined according to the parame-
ters of a general affine transform: 1) rotation angle, 2) vertical translation, 3) horizontal translation,
4) scaling factor, 5) vertical shear angle, and 6) horizontal shear angle. For a homography, the output
of h is instead an eight-dimensional vector. For details about the transformations, see Appendix A.

4.2 AFFINE AND HOMOGRAPHY OBJECTIVE

From Tables 2 and 3 (‘+ H’ and ‘+ A’ for homography and affine, respectively) we can see that the
estimation of the affine transformation and the homography both assist performance and allow for
faster learning. In particular, we note statistically significant improvements across all datasets for
both SimCLR and BYOL with the affine objective.1 We posit that the ability to explicitly estimate
the affine transformation or homography between input images in this way allows the encoder to
learn complementary information early on in training that is not available from the contrastive su-
pervision signal. The ability to estimate the affine transform or homography means that the network
is encoding the geometry of the input images. This explicit geometric information is not directly
available from the contrastive signal. Interestingly, the affine objective outperforms the full homog-
raphy in all cases, even though an affine transformation is a subset of a homography. We perform
a sweep of the distortion amount for the homography and find it consistently performs similar to or
a little worse than the affine transform (see Appendix B). When the distortion factor becomes too
large, accuracy drops noticeably as the images are too distorted to learn effectively. We note that
incorporating our module into a network results in an average 30% additional training time versus
the respective original methods.

Table 2: Performance with SimCLR on various datasets (mean ± 99% confidence interval).

CIFAR10 CIFAR100 SVHN
SimCLR 63.34 ± 0.0016 28.53 ± 0.0017 83.19 ± 0.0017
SimCLR + H 64.04 ± 0.0029 29.10 ± 0.0025 82.37 ± 0.0024
SimCLR + A 64.71 ± 0.0023 31.33 ± 0.0024 83.85 ± 0.0017

Table 3: Performance with BYOL on various datasets (mean ± 99% confidence interval).

CIFAR10 CIFAR100 SVHN
BYOL 56.56 ± 0.0026 23.25 ± 0.0026 72.34 ± 0.0047
BYOL + H 58.78 ± 0.0033 25.88 ± 0.0029 76.56 ± 0.0054
BYOL + A 60.19 ± 0.0016 28.10 ± 0.0018 78.71 ± 0.0050

Figure 2 shows the linear evaluation accuracy trained on the embeddings extracted from the model
at each epoch during the SSL training. We can see that performance and convergence improves with
the inclusion of the proposed module. The module and its accompanying additional objective of

1Using a t-test and significance level of 1%
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(a) SimCLR results (measured every 10 epochs). (b) BYOL results (measured every 10 epochs).

Figure 2: Graph of the linear evaluation accuracy at various points during training for both Sim-
CLR and BYOL with and without our proposed module. The shaded region indicates one standard
deviation from the mean.

regressing the affine transform/homography may be seen as a regulariser for the original contrastive
objective. This is further evidenced by the shaded regions in the figures, in which the proposed
method results in more stable performance.

We note that the relative benefit of our proposed module diminishes with longer training time for
SimCLR and BYOL. This makes sense as the relative benefit of the module decreases with time
as the model learns to estimate the affine transformation or homography more accurately as the
epochs progress. We performed additional experiments on SimCLR and BYOL training the model
for longer, and note that the proposed module still outperforms or performs similarly to the original
methods on all datasets. This is shown in Table 4. These results also verify the findings of previous
works that find that larger models trained for longer benefits self-supervised architectures (Chen
et al., 2020a; Grill et al., 2020; Chen et al., 2020b; Kolesnikov et al., 2019).

Table 4: Performance comparison of SimCLR and BYOL on various datasets trained for 500 epochs.

CIFAR10 CIFAR100 SVHN
SimCLR 76.96 ± 0.0031 42.17 ± 0.0001 88.37 ± 0.0030
SimCLR + A 76.80 ± 0.0020 42.53 ± 0.0014 88.83 ± 0.0015
BYOL 78.00 ± 0.0060 38.05 ± 0.0007 90.78 ± 0.0067
BYOL + A 77.45 ± 0.0020 40.91 ± 0.0005 90.74 ± 0.0025

We note that the performance gap between SimCLR and BYOL evident in Tables 2 and 3 in general
can be attributed to the fact that in the original works, BYOL was trained for 10x as long as SimCLR,
whereas we trained both for the same number of epochs as the original SimCLR work. We posit
that BYOL has simply not converged sufficiently, since BYOL eventually outperforms SimCLR (as
evidenced by Table 4). This is consistent with the findings from the original works.

4.3 INVARIANCE IS NOT ALWAYS DESIRABLE

In order for a function f to be invariant to a transformation T , we must have that, for all x, f(x) =
f(Tx). Thus, one way to encourage invariance to T in a neural network f is to add a term to the
loss function which minimises:

L(f(x), f(Tx)) (6)
for some measure of similarity L. If we rewrite our loss function from Equation 5 in terms of our
input image x and augmentations a, b, cφ, we get:

L1(g(f(ax)), g(f(bx))) + L2(h(f(ax)− f(cφax)), φ) (7)

The first term of the above loss, corresponding to the SimCLR/BYOL loss, is clearly of the form of
Expression 6. This means that we are encouraging our representation to be invariant to the transfor-
mations within B1. However, the second term in the loss (i.e. the term corresponding to the affine
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transformation/homography parameter estimation) is not of the form of Expression 6, since we have
recast the objective into a parameter prediction task. Thus, we are not encouraging invariance to the
transformations within B2. We provide some empirical evidence for this in Table 5. When we re-
cast the module to minimise L2(f(x1), f(x′1)) (L2 being the mean squared error loss), performance
decreases notably on all datasets, with an average relative decrease of over 8%. This is because,
with this loss, we have enforced invariance to the transformations in B2. In particular, we have
encouraged invariance to all the elements of an affine transformation, which proves problematic.

Table 5: Performance for SimCLR for transformation invariant and non-transformation invariant
representations using the affine objective.

CIFAR10 CIFAR100 SVHN ‘6’ vs ‘9’
Invariant 61.43 ± 0.0053 26.13 ± 0.0074 80.32 ± 0.0047 68.64 ± 0.0085
Not Invariant 64.71 ± 0.0023 31.33 ± 0.0024 83.85 ± 0.0017 72.35 ± 0.0058

To delve deeper into the effect of transformation invariance on performance, we extract only the ‘6’
and ‘9’ classes of the SVHN dataset as a new dataset and repeat the SSL pre-training and linear
evaluation tasks. The goal of this experiment is to observe how performance degrades when the
neural network is encouraged to be invariant to certain transformations - including rotation - in a
setting where certain invariance (i.e. rotation) is not desirable. Results can also be seen in Table
5. This further suggests that invariance to certain transformations is not always desirable. Evidence
from Table 5 suggests that transformation invariance (for this particular class of transformations) in
SSL may not always be desirable, and may, in fact, hurt performance, even when this may not be
expected (as in the case with CIFAR10 and CIFAR100, since no classes of these seem as if they
should be affected by transformation invariance like the ‘6’ vs ‘9’ case). For more details on the
invariance analyses, see Appendix C.

4.4 TRANSFORM COMPONENT ANALYSIS

Table 6 shows the performance of the various components of an affine transformation in terms of
linear evaluation accuracy on the dataset.2 To compute these results, the output dimensionality of
mapping h needs to be changed accordingly. Namely, rotation, translation, scale, and shear have
corresponding output dimensionalities m of 1, 2, 1, and 2, respectively. Interestingly, shear alone
outperforms the three other transforms on all datasets for both SimCLR and BYOL. We hypothesise
that this is because shear corrupts the image the most out of the four transforms, but still in a
recognisable way. This forces the networks to learn more complex geometry and information about
the object that the other transforms. We leave further investigation of this to future work.

Table 6: Performance comparison of the components of an affine transformation for SimCLR and
BYOL. Best-performing transformation highlighted in bold for each dataset.

SimCLR BYOL
CIFAR10 CIFAR100 SVHN CIFAR10 CIFAR100 SVHN

Rotation 63.57 ± 0.0031 29.40 ± 0.0035 83.46 ± 0.0036 58.66 ± 0.0020 26.46 ± 0.0042 76.34 ± 0.0073
Translation 64.36 ± 0.0036 29.83 ± 0.0008 82.60 ± 0.0053 58.45 ± 0.0038 25.74 ± 0.0022 77.50 ± 0.0059
Scale 64.05 ± 0.0035 30.34 ± 0.0027 82.80 ± 0.0037 59.12 ± 0.0034 25.47 ± 0.0023 76.53 ± 0.0102
Shear 64.56 ± 0.0051 31.05 ± 0.0033 84.25 ± 0.0020 60.21 ± 0.0048 26.94 ± 0.0038 77.69 ± 0.0059

4.5 ADDITIONAL ABLATIONS

We perform various additional experiments to motivate the choice of architecture. We experiment
with other means of encoding the latent transformation, specifically, concatenation instead of vector
difference. However, this results in marginal performance gains of an average of 0.28 percentage
points across the 3 datasets. These results do not seem to justify the noticeable additional compu-
tational cost from the transformation representation being twice the size. For primarily this reason,

2Due to apparent instability in training BYOL with our module for these low-dimensional outputs (e.g.
single real value output for rotation and scale), we temporarily replace MSE with logcosh, which stabilises
training in this setting
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we opt to stick with vector difference. Further, we experiment with having the module operate on
the output of g instead of f . Performance degrades for all datasets (SimCLR): 64.38 for CIFAR10,
29.99 for CIFAR100, and 82.49 for SVHN. Lastly, we perform some preliminary experiments into
having two modules: one operating on x1 and the other operating on x2 (instead of just one module
as per our original experimental setup). The resulting performance difference is negligible with this
setup: CIFAR10 65.28 ± 0.61, CIFAR100 31.68 ± 1.04, and SVHN 84.10 ± 0.23. We posit that
this is because if the one module can solve the homography estimation for x1, then a module oper-
ating on x2 will have to be able to solve the homography estimation for it, since the same types of
random homographies/affine transformations are being applied to both streams.

5 CONCLUSION

Network size and time of training is a bottleneck in modern SS architectures that can compete on
a performance level like supervised alternatives. We have shown that the proposed module that
regresses the parameters of an affine transformation or homography as an additional objective as-
sists this training bottleneck with faster convergence and better performance. The architecture of the
module does not encourage invariance to the affine or homographic transformation, as invariance has
been previously shown to be potentially harmful (Lee et al., 2020). Rather, the proposed module en-
courages these transformations to be encoded within the latent space itself by directly estimating the
parameters of the transformation. Lastly, we note that the affine transformation performs better in all
cases than the full homography, even though the homography is a superset of affine transformations.
The experiments suggest that the additional ability of perspective transform in a homography does
not yield any tangible benefit over a regular affine transformation in such low-resolution settings.
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A DATA AUGMENTATION DETAILS

Tables 7 and 8 detail the parameter values and value ranges used in the experiments for the base
transformation sets B1 and B2, respectively. The transformations from B1 are applied with a speci-
fied probability. We also normalise the parameters of the affine transformations in the following way.
Consider a rotation angle α, translation values tx, ty , and shear angles sx, sy . We perform the fol-
lowing normalisation on these parameters: α := α/360; tx := tx/W ; ty := ty/H; sx := sx/smax;
sy := sy/smax, where H,W are the image height and width, respectively, and smax is the maximum
allowed shear.

B AFFINE VS HOMOGRAPHY

In addition to the perspective distortion factor of 0.5, we perform a sweep across this parameter for
the values {0.1, 0.2, 0.8}. The results can be seen in Table 9. Interestingly, most distortion factors
perform similarly on these datasets, with a distortion factor of 0.5 performing best on average.
However, when the factor gets too large, as is the case for 0.8, then the images become too corrupted
for the neural network to seemingly learn anything useful.
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Table 7: Parameter values for base transformation set B1.

Transformation Parameter Value Probability
Colour Jitter (brightness) 0.8 0.8
Colour Jitter (contrast) 0.8 0.8
Colour Jitter (saturation) 0.8 0.8
Colour Jitter (hue) 0.2 0.8
Random Resized Crop (0.08, 1.0) 1
Random Horizontal Flip - 0.5
Random Grayscale - 0.2
Gaussian Blurring (kernel size) 3× 3 1
Gaussian Blurring (variance) [0.1, 2] 1

Table 8: Parameter values for base transformation set B2.

Base Transformation Parameter Value
Rotation [−90, 90]
Translation (x and y) [0%, 25%]
Scaling [0.7, 1.3]
Shear (x and y) [−25, 25]
Perspective 0.5

Table 9: Sweep across the distortion factor for the homography using SimCLR.

CIFAR10 CIFAR100 SVHN
Factor = 0.8 57.17 ± 0.0319 23.13 ± 0.0089 78.67
Factor = 0.5 64.04 ± 0.0029 29.1 ± 0.0025 82.38 ± 0.0024
Factor = 0.2 62.82 ± 0.0094 29.39 ± 0.0028 82.73 ± 0.0030
Factor = 0.1 62.45 ± 0.152 29.07 ± 0.0035 82.89 ± 0.0014

C INVARIANCE ANALYSIS

Figures 4 and 5 shows the confusion matrices for a particular run of the SVHN dataset for SimCLR
when enforcing (and not enforcing) transformation invariance. Interestingly, transformation invari-
ance negatively affects most classes of the dataset. Unsurprisingly, the classes ‘6’ and ‘9’ are most
negatively affected when transformation invariance is enforced. Rotation invariance in this context
is prohibitive, and performance subsequently drops. By recasting the module as proposed - encode
the transformation and predict its parameters - we do not enforce invariance, and instead allow the
network to learn from a richer supervision signal by learning to estimate a homography.
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(a) CIFAR10 original. (b) CIFAR10 affine transforma-
tion. (c) CIFAR10 homography.

(d) CIFAR100 original. (e) CIFAR100 affine transforma-
tion. (f) CIFAR100 homography.

(g) SVHN original. (h) SVHN affine transformation. (i) SVHN homography.

Figure 3: Example affine transformations and homographies for all considered datasets.

Figure 4: Confusion matrix on SVHN when enforcing transformation invariance.

Figure 5: Confusion matrix on SVHN when not enforcing transformation invariance.
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