

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PIXEL-LEVEL RESIDUAL DIFFUSION TRANSFORMER: SCALABLE 3D CT VOLUME GENERATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Generating high-resolution 3D CT volumes with fine details remains challenging due to substantial computational demands and optimization difficulties inherent to existing generative models. In this paper, we propose the Pixel-Level Residual Diffusion Transformer (PRDiT), a scalable generative framework that synthesizes high-quality 3D medical volumes directly at voxel-level. PRDiT introduces a two-stage training architecture comprising 1) a local denoiser in the form of an MLP-based blind estimator operating on overlapping 3D patches to separate low-frequency structures efficiently, and 2) a global residual diffusion transformer employing memory-efficient attention to model and refine high-frequency residuals across entire volumes. This coarse-to-fine modeling strategy simplifies optimization, enhances training stability, and effectively preserves subtle structures without the limitations of an autoencoder bottleneck. Extensive experiments conducted on the LIDC-IDRI and RAD-ChestCT datasets demonstrate that PRDiT consistently outperforms state-of-the-art models, such as HA-GAN, 3D LDM and WDM-3D, achieving significantly lower 3D FID, MMD and Wasserstein distance scores.

1 INTRODUCTION

Synthesizing high-resolution 3D medical images, such as CT volumes, is crucial for supporting various clinical applications, including diagnosis, segmentation, and anomaly detection. However, existing generative models struggle to balance the fidelity of local details with global structural coherence, and often suffer from computational inefficiency or insufficient representation of high-frequency features. Such prior works are mainly categorized into GAN-based and Diffusion-based methods. GAN-based approaches, such as HA-GAN (Sun et al., 2022), MM-GAN (Sun et al., 2020) and 3D-StyleGAN (Hong et al., 2021), can effectively generate realistic local details. However, they often suffer from mode collapse and training instability, and their substantial memory requirements pose a significant challenge, particularly when processing high-resolution 3D volumes.

As a compelling alternative, diffusion-based models have recently demonstrated more stable training dynamics and higher image fidelity. Representative diffusion-based methods include the 3D-DDPM (Dorjsembe et al., 2022), latent diffusion models (LDM) (Khader et al., 2023; Pinaya et al., 2022; Rombach et al., 2022), wavelet diffusion models (WDM-3D) (Friedrich et al., 2024) and triplane diffusion models (Zhang et al., 2025). Nevertheless, current diffusion models often rely on convolutional architectures like U-Net (Ronneberger et al., 2015), which inherently limit their capability to capture global context and long-range dependencies that are crucial for accurately synthesizing coherent structures.

In the context of 3D medical imaging, these architectural limitations become even more pronounced. Because the volume of a voxel feature map grows cubically with resolution, deploying a deep U-Net directly on high-resolution 3D volumes not only incurs extremely high memory and compute costs, but also typically requires compromise strategies such as patch-based processing, downsampling, or latent-space compression using VAE (Kingma et al., 2013) or VQ-VAE (Van Den Oord et al., 2017) methods. However, patch-based methods and downsampling inherently restrict the effective receptive field, compromising the model’s ability to capture global anatomical coherence and long-range dependencies critical for clinical utility. In addition, methods relying on latent-space compression often struggle to learn robust and representative features in the context of 3D medical imaging. The

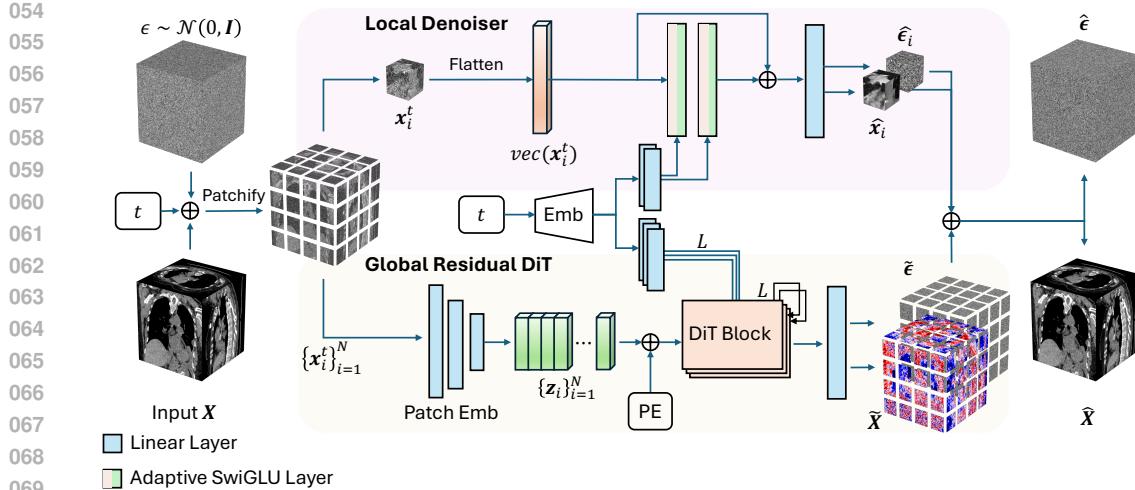


Figure 1: Overview of our *Pixel-Level Residual Diffusion Transformer* (PRDiT) model, composed of a **Local Denoiser** and a **Global Residual DiT**. The given input volume \mathbf{X} is first divided into N 3D patches. Each patch is flattened and passed through the ‘local’ multilayer perceptron (MLP) denoiser composed of Adaptive SwiGLU and Linear layers to provide *local* predictions $\hat{\mathbf{x}}_i$ and $\hat{\epsilon}_i$. Complementing these ‘local’ predictions, the L layer *Global Residual Diffusion Transformer* (DiT) module refines the overall prediction via residuals based on the global context. PE indicates the positional encodings, which are only seen by the global residual DiT module.

limited availability of training samples makes it difficult to adequately optimize the latent encoders, leading to poor reconstruction quality and the loss of critical anatomical details.

To address these limitations, we propose the *Pixel-Level Residual Diffusion Transformer* (PRDiT), a scalable diffusion transformer framework specifically designed for high-resolution 3D medical volume synthesis. PRDiT directly operates at the voxel level, bypassing the need for an autoencoder bottleneck, thus preserving essential details without compromising computational efficiency. The core idea is a two-stage residual learning strategy: a lightweight MLP-based Local Denoiser estimates coarse structures from overlapping 3D patches, and a Global Residual Diffusion Transformer with memory-efficient attention refines the remaining high-frequency residuals across the entire volume. To overcome the challenge that naively scaling Transformers to higher resolutions would increase the token count by $8\times$ and the attention cost by roughly $64\times$ when doubling the resolution, we further introduce a scaling strategy that reuses the pretrained low-resolution backbone. Focusing on only learning the missing high-frequency refinement at the higher resolution enables our model to perform high-resolution synthesis with minimal additional computational overhead.

The main contributions of this paper can be summarized as follows:

- We propose a two-stage diffusion transformer framework that directly synthesizes high-resolution 3D medical volumes at voxel-level, eliminating the need for an autoencoder bottleneck and thereby effectively preserving critical anatomical details.
- We demonstrate that using ‘hot’ diffusion sampling to introduce controlled stochasticity during generation helps to improve sample diversity and reconstruction fidelity by balancing deterministic guidance with adaptive noise injection.
- We show that PRDiT scales efficiently to higher resolutions by reusing pretrained low-resolution components, substantially reducing training cost compared to conventional training on higher resolution datasets.
- We demonstrate the scalability and effectiveness of our PRDiT model through extensive experiments on the LIDC-IDRI (Armato III et al., 2011) and Rad-ChestCT (Draelos et al., 2020) datasets, achieving substantial improvements over state-of-the-art baselines across multiple quantitative metrics including 3D FID, MMD, and Wasserstein distances.

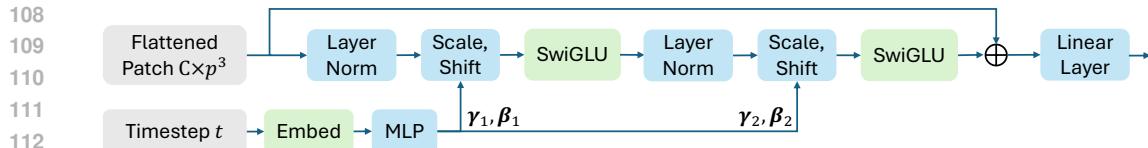


Figure 2: Detailed structure of our *Local Denoiser* module. The time embedding is used to modulate the local predictions via adaptive layer normalization (Peebles & Xie, 2022).

2 RELATED WORK

Generative models have significantly advanced our ability to synthesize realistic medical images, helping to alleviate data-scarcity and class-imbalance issues and improving the performance of downstream tasks such as segmentation and diagnosis. Existing research has explored GAN-based methods for generating 3D medical images. Kwon et al. (2019) combine an auto-encoder with a GAN model to generate 3D brain MRI samples, while Hong et al. (2021) tackle this problem by extending StyleGAN2 (Karras et al., 2020). HA-GAN (Sun et al., 2022) instead employs a hierarchical patch-based generator and discriminator to produce high-resolution 3D medical images.

Despite the promising works, GAN-based models still suffer from a range of issues including mode collapse, substantial memory requirements and low generation quality. Consequently, recent research has increasingly focused on diffusion models as a promising alternative, due to their increased training stability and higher fidelity in generated samples. 3D-DDPM (Dorjsembe et al., 2022) introduce denoising diffusion probabilistic models tailored for 3D medical data to generate high-resolution brain MRI scans. However, building diffusion models directly on 3D medical data incurs significant computational and memory costs, limiting scalability to high-resolution volumes. Following this, several new models propose corresponding improvements. Medicaldiffusion (Khader et al., 2023) combines a VQ-GAN-based latent space with a denoising diffusion probabilistic model to achieve high-quality synthesis of multi-modal 3D medical images, effectively enhancing the clarity and diversity of the generated images. Wavelet Diffusion Model (WDM) (Friedrich et al., 2024) improves efficiency by applying diffusion to wavelet-decomposed images, enabling high-resolution synthesis with reduced memory demands. TCAM-Diff (Zhang et al., 2025) incorporates a triplane-aware cross-attention mechanism that efficiently generates high-resolution 3D medical images while significantly reducing memory usage. However, all these models are based on U-Net architectures (Ronneberger et al., 2015), and excel at capturing local features but are limited in modeling crucial long-range dependencies.

To address this limitation in 2D tasks, Diffusion Transformer (DiT) (Peebles & Xie, 2022) models have recently been proposed, replacing convolutional patch embedders with Transformer blocks to better capture global context and long-range dependencies in image generation. DiT has demonstrated state-of-the-art performance in 2D image synthesis and has also shown promise when adapted to sparse 3D settings such as voxelized point clouds (Mo et al., 2023). However, despite these advances, we found that DiT still encounters substantial challenges in dense 3D scenarios, including unstable training behavior and optimization difficulties, in addition to the high computational cost required for scaling. Motivated by this, our work introduces a Residual Diffusion Transformer that decomposes the generation process into two stages: a lightweight MLP-based local denoiser operating on 3D patches, followed by a Transformer module that models and refines the global residuals. This two-stage design effectively balances computational efficiency with enhanced capability to capture both fine local details and global structural information, enabling scalable and high-fidelity synthesis of high-resolution 3D medical volumes.

3 SCALABLE 3D CT VOLUME GENERATION WITH PRDiT

When processing high-resolution 3D medical images, training a Transformer-based diffusion model to capture both low- and high-frequency components can quickly become prohibitively expensive and time-consuming. To overcome this challenge, we introduce our *Pixel-Level Residual Diffusion Transformer* (PRDiT) in this section. As illustrated in Figure 1, PRDiT decomposes the 3D diffusion process into two distinct branches: a *Local Denoiser* and a *Global Residual DiT* model. The local

denoiser estimates the ‘local’ content of each 3D patch independently to provide a prior estimate of both signal and noise of the 3D volume purely based on within-patch information, and is described in detail in Section 3.1. The residual diffusion Transformer’s job is then to compute a refinement to these predictions by leveraging its global receptive field to correct any remaining errors across patch boundaries, as detailed in Section 3.2. We detail our *predictor-corrector* diffusion sampling method in Section 3.3, before introducing an efficient way to scale our 3D generative architecture to higher resolutions with only minimal computational overhead in Section 3.4.

3.1 THE LOCAL DENOISER

Given an input volume $\mathbf{X} \in \mathbb{R}^{C \times H \times W \times D}$, we extract N volumetric patches $\{\mathbf{x}_i \in \mathbb{R}^{C \times p \times p \times p}\}_{i=1}^N$ using a sliding window of size p and stride $s < p$ to allow overlap between neighboring patches. This ensures that adjacent patches share contextual information at their borders, which we found to improve continuity in the reconstructed volume and helps to mitigate boundary artifacts (see Table 4). Each patch is then vectorized (i.e., flattened) to $\mathbf{v}_i = \text{vec}(\mathbf{x}_i) \in \mathbb{R}^d$, with $d = C \times p^3$.

Following the forward diffusion process proposed by Zhang et al. (2023), we sample a timestep $t \in \{1, \dots, T\}$ and compute the noisy input volume at this timestep as

$$\mathbf{v}_i^t = \cos\left(\frac{t \pi}{T}\right) \mathbf{v}_i + \sin\left(\frac{t \pi}{T}\right) \boldsymbol{\epsilon}_i, \quad \text{with } \boldsymbol{\epsilon}_i \sim \mathcal{N}(0, I). \quad (1)$$

At each diffusion timestep t , we first compute a base embedding $\mathbf{c} = \text{TimeEmbed}(t) \in \mathbb{R}^h$ which is shared between both branches to facilitate consistent temporal conditioning. We project \mathbf{c} into a *branch-specific* time embedding for the local branch as $\mathbf{c}_{\text{local}} \in \mathbb{R}^d$ using a linear layer, and pass it to the AdaLN-modulation network (Peebles & Xie, 2022) to produce the LayerNorm’s shift/scale parameters $(\gamma_1, \beta_1, \gamma_2, \beta_2)$. As illustrated in Figure 2, these parameters allow our denoiser to adapt its processing of the volumetric patches based on the provided timestep for both refinement steps

$$\begin{aligned} \mathbf{z}_1 &= \text{SwiGLU}(\gamma_1 \odot \text{LayerNorm}(\mathbf{v}_i^t) + \beta_1) \\ \mathbf{z}_2 &= \text{SwiGLU}(\gamma_2 \odot \text{LayerNorm}(\mathbf{z}_1) + \beta_2), \end{aligned} \quad (2)$$

which yields, after a residual skip connection $\mathbf{z} = \mathbf{z}_2 + \mathbf{v}_i^t$ followed by a linear projection and reshaping, the predictions of the denoised input patch $\hat{\mathbf{x}}_i \in \mathbb{R}^{C \times s^3}$ as well as the noise $\hat{\boldsymbol{\epsilon}}_i \in \mathbb{R}^{C \times s^3}$. Note that the reshaped outputs do no longer overlap but provide estimates at the exact same dimensions as the input image and noise – aligning our Local Denoiser’s output predictions with the standard diffusion objective of jointly estimating clean signal and noise.

We train the denoiser by minimizing the per-patch loss

$$\mathcal{L}_{\text{local}} = \mathbb{E}_i \left[\|\hat{\mathbf{x}}_i - \mathbf{x}_i\|_2^2 + \|\hat{\boldsymbol{\epsilon}}_i - \boldsymbol{\epsilon}_i\|_2^2 \right] \quad (3)$$

to ensure we efficiently capture the local structure of each patch and accurately estimate its noise. At inference time, the denoised patch predictions $\{\hat{\mathbf{x}}_i\}^N$ together with the corresponding noise estimates $\{\hat{\boldsymbol{\epsilon}}_i\}^N$ are reassembled to provide a prior estimate of the entire input volume’s signal and noise. This allows our Global Residual Diffusion Transformer, which will be described in the following, to focus exclusively on correcting the outputs via ‘global’ residuals $\{\mathbf{x}_i - \hat{\mathbf{x}}_i\}^N$, thereby reducing overall learning complexity and training time.

3.2 THE GLOBAL RESIDUAL DIFFUSION TRANSFORMER

Complementing the Local Denoiser, which processes each volume-patch independently without any global information, our Global Residual Diffusion Transformer component leverages the ‘*global*’ full-volume context by jointly attending to all patch embeddings through multi-head self-attention. Following the original 2D DiT (Peebles & Xie, 2022), our model inherits the scalable nature of Diffusion Transformers, meaning it can enhance generation quality at increased computational resources by adjusting the Transformer’s depth, width, or patch size, without necessitating network redesign. This adaptability supports diverse resolutions and volumes of medical data.

We freeze the Local Denoiser and train our global component to produce residuals that refine the local predictions (see Figure 1) using the same per-patch diffusion loss

$$\mathcal{L}_{\text{global}} = \mathbb{E}_i \left[\|\tilde{\mathbf{x}}_i - \mathbf{x}_i\|_2^2 + \|\tilde{\boldsymbol{\epsilon}}_i - \boldsymbol{\epsilon}_i\|_2^2 \right], \quad (4)$$

now with $\tilde{\mathbf{x}}_i = \hat{\mathbf{x}}_i + \Delta \hat{\mathbf{x}}_i$ denoting the refined patch and $\tilde{\boldsymbol{\epsilon}}_i = \hat{\boldsymbol{\epsilon}}_i + \Delta \hat{\boldsymbol{\epsilon}}_i$ the refined noise.

216 3.3 IMPROVING SAMPLE QUALITY VIA PREDICTOR-CORRECTOR DIFFUSION SAMPLING
217

218 During inference, PRDiT generates 3D CT volumes using a modified reverse-diffusion sampling
219 method derived from the deterministic ('cold') gradient-update scheme in (Zhang et al., 2023). Our
220 approach reformulates their gradient-based generative path into distinct *cold predictor* and *hot corrector*
221 steps: predicting k steps forward before correcting by $k - 1$ backwards steps. We found this
222 to significantly improve both stability and generative quality (see ablations Section 4.4).

223 Concretely, given a diffusion schedule with T timesteps, the predictor step advances k timesteps
224 forward by iteratively applying gradient updates:

$$226 \quad \mathbf{x}_{t-k} = \mathbf{x}_t - k \cdot \nabla \left(\cos(\beta_t) \hat{\mathbf{x}}_0 + \sin(\beta_t) \hat{\mathbf{\epsilon}} \right), \quad k \geq 1, \quad (5)$$

227 with $\beta_t = \frac{t}{T} \frac{\pi}{2}$, and $\hat{\mathbf{x}}_0$ and $\hat{\mathbf{\epsilon}}$ are the estimated clean volume and noise component predicted by
228 the model. When $k = 1$, this procedure reduces to the standard single-step gradient update used
229 in conventional *cold* diffusion sampling. For $k > 1$, the method becomes a *hot* diffusion process,
230 introducing multiple forward gradient steps per update to increase the level of stochastic exploration.
231

232 Following the k -step predictor stage, we perform a correction through $k - 1$ backward diffusion
233 steps to reintroduce controlled noise and refine the sample as

$$235 \quad \mathbf{x}_{t-1} = \Gamma_t^{(k)} \mathbf{x}_{t-k} + \sqrt{1 - (\Gamma_t^{(k)})^2} \mathbf{\epsilon}', \quad \text{with } \Gamma_t^{(k)} := \frac{\cos(\beta_{t-1})}{\cos(\beta_{t-k})} \quad (6)$$

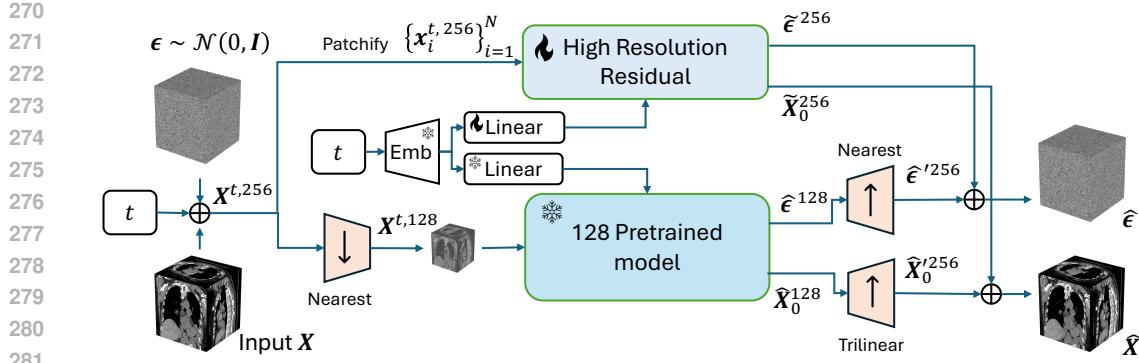
236 and where $\mathbf{\epsilon}' \sim \mathcal{N}(0, I)$ is newly injected random noise. This predictor–corrector scheme balances
237 deterministic guidance (cold predictor) with adaptive stochasticity (hot corrector), enabling PRDiT
238 to better preserve fine structures while maintaining global coherence in the generated volumes.
239

240 3.4 EFFICIENTLY GENERATING 3D VOLUMES AT HIGHER RESOLUTIONS
241

242 Training Diffusion Transformers from scratch at high resolutions like 256^3 is impractical under
243 typical GPU budgets: moving from 128^3 to 256^3 increases the voxel/token count by $8\times$, and the
244 quadratic cost of self-attention raises memory/compute by roughly $64\times$. In practice this forces tiny
245 batch sizes, triggers frequent out-of-memory failures, and destabilizes optimization, which makes
246 the end-to-end high-resolution training inefficient and brittle (and often infeasible). To mitigate
247 this, we construct a high-resolution generator that reuses our already-trained low-resolution model.
248 As illustrated in Figure 3, we train only an additional high-resolution residual refinement module,
249 which operates locally on individual volume patches and focuses on recovering the missing high-
250 frequency details. Given a high-resolution noisy input volume \mathbf{X}^{HR} , we first downsample it to the
251 lower resolution, apply the trained low-resolution model, and then upsample the prediction back to
252 high resolution. This yields our initial 'rough' estimates for both signal and noise to be refined.

253 A key design choice is the use of *nearest downsampling*. Unlike smoother methods such as tri-
254 linear interpolation, nearest downsampling avoids averaging pixel values, which would otherwise
255 attenuate high-frequency noise and reduce the signal's overall energy. Preserving this energy is es-
256 sential to maintain the noise statistics expected by the pretrained low-resolution model, ensuring the
257 downsampled input aligns with the model's training distribution and thereby avoiding mismatches
258 during denoising. For the upsampling step, we apply trilinear interpolation to the predicted clean
259 low-resolution image $\hat{\mathbf{X}}_0^{\text{LR}}$ to obtain $\hat{\mathbf{X}}_0^{\text{HR}}$, as this smoother interpolation better preserves structural
260 continuity and reduces artifacts in the anatomical features, yielding a more natural high-resolution
261 initialization. Since the noise is inherently stochastic and discontinuous, we apply nearest upsam-
262 pling to the predicted noise $\hat{\mathbf{\epsilon}}^{\text{LR}}$ to obtain $\hat{\mathbf{\epsilon}}^{\text{HR}}$, ensuring its energy level is preserved.

263 To recover details lost during down- and upsampling, we introduce a high-resolution residual re-
264 finement module based our previously-introduced Local Denoiser design (Figure 2). This module
265 refines the upsampled signal and noise estimates from the low-resolution component using the set
266 of noisy input volume-patches and information about the current time step as shown in Figure 3.
267 We keep the already-trained low-resolution model frozen and train only the refinement module at
268 high resolution, which helps it focus its capacity on fine structures rather than relearning global
269 anatomy. Our training uses the standard signal-and-noise estimation objective on high-resolution
patches (Equation (3)), augmented with a low-frequency consistency term that encourages the down-

Figure 3: High-resolution PRDiT↑²⁵⁶ model utilizing the lower resolution pretrained PRDiT₁₂₈.

sampled high-resolution predictions to match the low-resolution outputs. We found this simple constraint to help keeping large-scale appearance stable while allowing the residual module to allocate its capacity to high-frequency detail.

Unlike cascaded super-resolution methods that typically modify only the final sample and often disrupt the low-frequency structure learned during diffusion, our approach integrates the high-resolution residual refinement module directly within the sampling loop. At each step, we downsample the current state to query the low-resolution model, upsample its estimate, and immediately refine high-frequency details before proceeding. This in-loop strategy yields sharp textures, reduces edge artifacts and promotes more stable detail formation throughout the diffusion process.

4 EXPERIMENTS

We start with a brief overview of the datasets, related baselines and metrics that are used for evaluation. We then present a number of qualitative and quantitative insights to demonstrate our approach’s advantages in unconditional volume synthesis over related methods. Implementation details are provided in Appendix A.9, and additional experimental results can be found in Appendix A.11.

Datasets. We evaluate the performance of our model on two publicly available 3D medical imaging datasets: LIDC-IDRI (Armato III et al., 2011) and Rad-ChestCT (Draelos et al., 2020). LIDC-IDRI contains 1,018 thoracic CT scans with annotations of lung nodules from multiple expert radiologists. The scans exhibit varied resolutions and patient anatomies. For preprocessing, we clip the intensity values to the lung window range, resample all volumes to an isotropic voxel spacing of 1 mm, and crop or pad them to a uniform size of 256 × 256 × 256. For experiments involving lower resolutions, volumes are downsampled via average pooling, then normalized to [−1, 1]. Rad-ChestCT includes 3,630 chest CT scans from 1,800 adult patients, representing approximately 10% of the full dataset, which contains 35,747 scans from 19,661 patients. The dataset encompasses a broad spectrum of thoracic diseases and anatomical variations. We center-crop to a fixed field of view, resize to 256 × 256 × 256, optionally downsample, and normalize to [−1, 1] for consistency with LIDC-IDRI.

Baseline Models. We contrast our PRDiT to three recently published 3D medical image generation models. WDM-3D (Friedrich et al., 2024), a diffusion model that decomposes each 3D volume into multi-resolution subbands via discrete wavelet transforms, denoises each subband with a 3D U-Net, and then reconstructs the full volume with an inverse wavelet transform. 3D LDM (Khader et al., 2023), a latent diffusion model that employs a VQ-GAN encoder to map volumes into a compact latent space, performs diffusion in that latent space and reconstructs volumes with a matching 3D convolutional decoder. HA-GAN (Sun et al., 2022) in contrast uses a hierarchical GAN whose generator comprises a low-resolution “global” and a high-resolution “local” 3D convolutional network, each guided by multi-scale discriminators on corresponding sub-volumes.

Evaluation Metrics. We evaluate unconditional generative quality using the 3D Fréchet Inception Distance (FID), Maximum Mean Discrepancy (MMD) (Gretton et al., 2012; Sun et al., 2022) and the pairwise Wasserstein distance using WGAN (Arjovsky et al., 2017; Zhang et al., 2025). Following common practice, we extract volumetric embeddings from both real and generated CT volumes using a pretrained Med3D encoder (Chen et al., 2019), then quantify their distributional discrepancy

324 by fitting multivariate Gaussians and computing the 3D FID as well as by applying an RBF-kernel
 325 MMD (Gretton et al., 2012) in the same feature space. Lower 3D FID and MMD values indicate
 326 that the generated feature distribution more closely matches the real distribution. The Wasserstein
 327 distance is obtained by comparing the WGAN critic’s scores on generated samples against those on
 328 real data, following the evaluation approach of Zhang et al. (2025). A lower Wasserstein distance
 329 indicates that the critic assigns similar scores to generated and real volumes, implying the generated
 330 distribution closely matches the true data distribution and thus higher sample fidelity. We perform
 331 pairwise comparisons to one ‘anchor’ model. See Appendix A.9.3 for additional details.

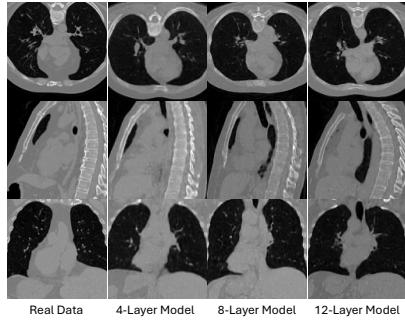
332 4.1 CONTRASTING PRDiT TO THE STATE-OF-THE-ART

333 To demonstrate the performance of our PRDiT, we compare three model variants (4 layers, 8 layers
 334 and 12 layers) against the baselines HA-GAN (Sun et al., 2022), 3D-LDM (Khader et al., 2023)
 335 and WDM-3D (Friedrich et al., 2024) on both LIDC-IDRI (Armato III et al., 2011) and RAD-
 336 ChestCT (Draelos et al., 2020) and report the results in Table 1. Our smallest 4 layer PRDiT-4L
 337 variant already achieves lower 3D FID and MMD scores than its competitors across both datasets,
 338 outperforming them across all metrics despite its shallow depth. Increasing PRDiT’s depth to 8
 339 and 12 layers yields consistent improvements in generative quality and demonstrates the scalability
 340 of our approach; albeit at increased computational cost. Note, however, that all PRDiT variants
 341 reuse the same Local Denoiser module which only has to be trained once, effectively reducing the
 342 computational overhead and training time when scaling our architecture to greater depths.

343 Following Zhang et al. (2023), we additionally report the pairwise W-Scores with our PRDiT-12L
 344 as the ‘reference’ model. This score effectively quantifies the ratio between the distances of each
 345 model’s distribution of generated samples to that of the real data (see Appendix A.9.3). A score
 346 of ‘1.0’ indicates equal generative quality between two models, while values greater than 1 reflect
 347 degraded performance relative to the reference - reaffirming the quality of even our 4-layer model.

350 4.2 COMPARING PERCEIVED IMAGE QUALITY – SAGITTAL SLICES

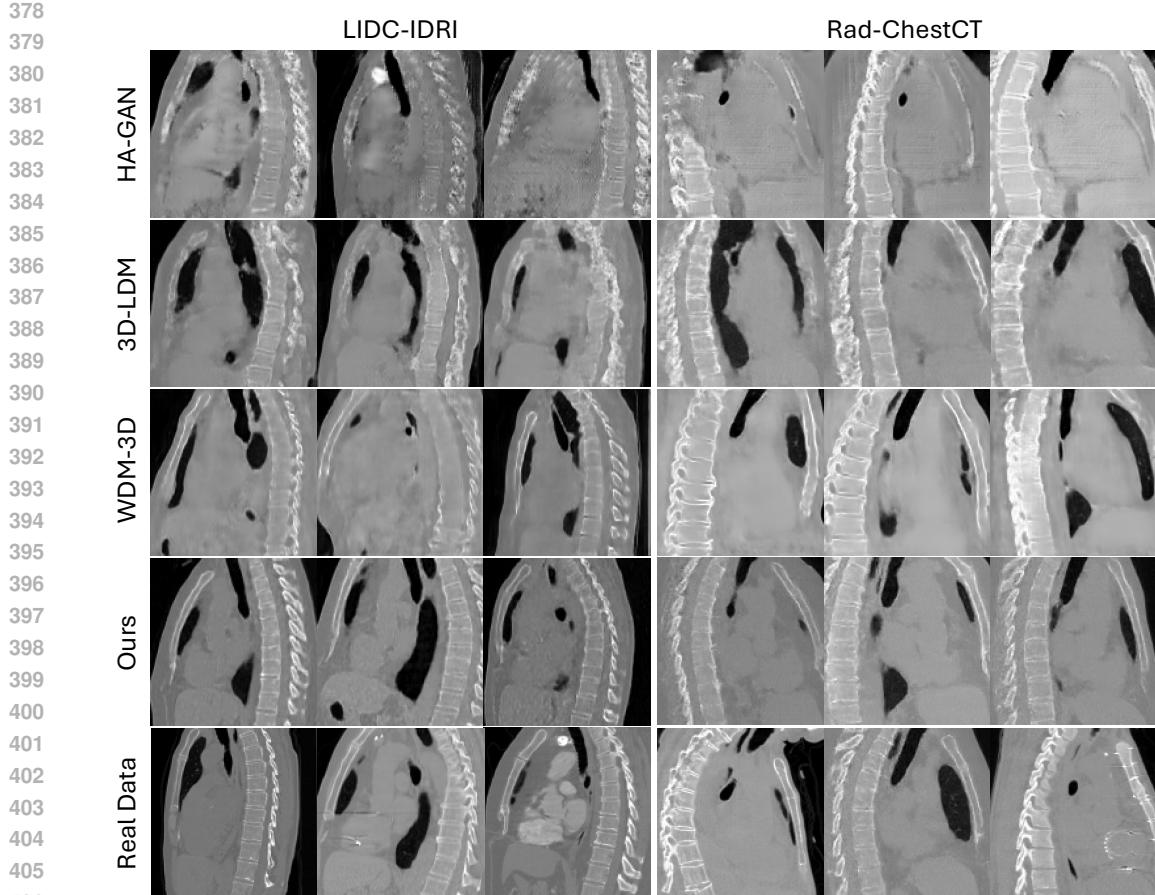
351 Figure 5 shows sagittal slices from each generative method
 352 alongside real CT scans, providing a qualitative comparison
 353 between our PRDiT model and its competitors.
 354 HA-GAN (Sun et al., 2022) notably blurs bone contours
 355 and introduces unnatural texture artifacts throughout the
 356 volume. 3D-LDM (Khader et al., 2023) in contrast demon-
 357 strates clearer structural details and reduced noise, however
 358 still suffers from insufficient anatomical detail and streak-
 359 like artifacts. WDM-3D (Friedrich et al., 2024) further im-
 360 proves clarity and reduces overall artifacts, but continues
 361 to exhibit noticeable blocky noise and unclear bone bound-
 362aries. Our residual DiT model substantially addresses these
 363 shortcomings by delivering sharper bone edges, smoother
 364



365
 366 Figure 4: Variation of image quality
 367 across different depths of PRDiT.
 368

369 Table 1: Comparison of unconditional 3D generative methods on LIDC-IDRI (Armato III et al.,
 370 2011) and RAD-ChestCT (Draelos et al., 2020), evaluated on volumes of size 128^3 . FID values are
 371 scaled by 10^3 . Reported are mean \pm std over three seeds. Pairwise W-Score (ratio) is computed
 372 using a trained WGAN-GP critic against PRDiT-12L as reference. See Appendix A.9.3 for details.

373 374 375 376 377 Model	378 LIDC-IDRI			379 RAD-ChestCT		
	380 FID \downarrow	381 MMD \downarrow	382 W-Score \downarrow	383 FID \downarrow	384 MMD \downarrow	385 W-Score \downarrow
386 HA-GAN	3.26 \pm 0.27	0.2071 \pm 0.004	5.42 \pm 1.46	3.92 \pm 0.38	0.183 \pm 0.015	2.48 \pm 0.14
387 3D-LDM	7.62 \pm 0.21	0.3458 \pm 0.006	2.62 \pm 0.28	4.14 \pm 0.74	0.228 \pm 0.017	2.87 \pm 0.36
388 WDM-3D	3.67 \pm 0.38	0.1885 \pm 0.017	1.31 \pm 0.26	4.11 \pm 0.58	0.213 \pm 0.039	1.27 \pm 0.11
389 PRDiT-4L (ours)	2.04 \pm 0.18	0.1852 \pm 0.009	1.23 \pm 0.08	1.92 \pm 0.28	0.169 \pm 0.010	1.21 \pm 0.04
390 PRDiT-8L (ours)	1.86 \pm 0.12	0.1650 \pm 0.011	1.14 \pm 0.13	1.62 \pm 0.07	0.149 \pm 0.010	1.02 \pm 0.02
391 PRDiT-12L (ours)	1.41 \pm 0.17	0.1501 \pm 0.010	1.00	1.45 \pm 0.21	0.159 \pm 0.007	1.00



407 Figure 5: Qualitative comparison of unconditional 3D generative methods on the LIDC-IDRI (Ar-
 408 matto III et al., 2011) and Rad-ChestCT (Draelos et al., 2020). From top to bottom, the
 409 rows correspond to (1) HA-GAN (Sun et al., 2022), (2) 3D-LDM (Khader et al., 2023), (3)
 410 WDM-3D (Friedrich et al., 2024), (4) our method, and (5) real medical data. Our approach
 411 better preserves fine anatomical details such as vertebral bone edges and organ boundaries while
 412 suppressing spurious artifacts compared to prior models. Additional examples are provided in Ap-
 413 pendix A.11. *Note: Images are independently generated, and cannot be compared column-wise.*

414 and more consistent organ boundaries, and clearer anatomical details. These improvements high-
 415 light our method’s capability to more accurately reconstruct subtle features present in real medical
 416 scans. In addition, increasing model depth yields progressively sharper cortical bone edges, clearer
 417 bronchial walls and vessel bifurcations, and smoother soft-tissue boundaries (Figure 4). These qual-
 418 itative gains align with the results in Table 1, which show a consistent decrease in FID and MMD as
 419 depth increases.

421 4.3 EFFICIENTLY SCALING UP TO HIGHER RESOLUTIONS

423 We contrast our efficient high-resolution PRDiT
 424 against its competitors using the LIDC-IDRI (Ar-
 425 matto III et al., 2011) dataset at 256^3 resolution.
 426 As the results in Table 2 show, our PRDiT-4L \uparrow^{256}
 427 clearly outperforms the other methods on both FID
 428 and MMD while incurring substantially lower training
 429 costs. While training 3D-LDM proved infeasible
 430 in our setup due to memory constraints, WDM-3D
 431 exhibited pronounced sensitivity to random seeds.
 While most seeds yield high-quality samples, a small fraction of severely degraded outputs dis-

432 Table 2: Results on LIDC-IDRI at 256^3 res-
 433 olution. GPU-hours reported on an A100.
 434 FID values are scaled by 10^3 (as is usual).

Model	FID \downarrow	MMD \downarrow	Training Cost
HA-GAN	3.98	0.2237	140 GPUh
3D-LDM	OOM	OOM	-
WDM-3D	5.60	0.2590	120 GPUh
PRDiT-4L \uparrow^{256}	2.28	0.1370	36 GPUh

432 proportionately inflates FID/MMD, resulting in high variance and reduced evaluation robustness.
 433 Generated images of all methods are provided in Appendix A.11.3 for visual inspection.
 434

435 To efficiently validate the quality our high-
 436 resolution upsampling strategy against expen-
 437 sive from-scratch training, we additionally train
 438 a PRDiT model at 64^3 and upgrade to 128^3
 439 using our proposed high-resolution upsampling
 440 methodology, and compare its results to the
 441 PRDiT model trained from scratch on 128^3 .
 442 While training from scratch does indeed lead
 443 to slightly improved performance across FID and MMD, our efficient variant is more than 6 times
 444 faster in training – providing a convincing tradeoff in terms of quality-to-compute (Table 3).
 445

446 4.4 ABLATION EXPERIMENTS

447 Contributions of Individual 448 Design Choices.

449 We conduct ablation experiments on
 450 the LIDC-IDRI (Armato III
 451 et al., 2011) dataset us-
 452 ing our PRDiT-4L model to
 453 assess the contributions of
 454 our design choices. Ta-
 455 ble 4(left) shows that re-
 456 moving the overlap between

457 patches significantly worsens 3D FID and MMD scores due to boundary inconsistencies. Training
 458 our model without the Local Denoiser (i.e., DiT-only) also markedly reduces the performance –
 whereas using *only* the local component without any global refinement leads to the worst results.

459 **Hot-vs-Cold Diffusion.** We evaluate the effect of varying the predictor step k of our PRDiT-4L
 460 variant model using the LIDC-IDRI (Armato III et al., 2011) dataset. The results in Table 4 (right)
 461 demonstrate that the transition from ‘cold’ ($k = 1$) to ‘hot’ ($k > 1$) significantly enhances generative
 462 output performance, with $k = 2$ achieving the best results in this setup. Note that the number of steps
 463 is technically not limited to integers, and future work might explore whether further optimization
 464 along this axis might yield even greater quality improvements.

465 **Inference times.** To further assess PRDiT’s suitability for practical, time-sensitive applications,
 466 we compare its inference speed against three competing models. All inference times are measured
 467 with a batch size of 1 on an A100 GPU at resolution 128^3 , with detailed results presented in Ap-
 468 pendix A.7. It is worth noting that, due to its GAN-based architecture and non-iterative, single-pass
 469 image generation, HA-GAN (Sun et al., 2022) is by far the fastest, with an average inference time
 470 of just 0.01s. Among the diffusion-based approaches, all PRDiT variants run markedly faster than
 471 the competitors, with inference times ranging from 11.5s (4L) to 21.9s (12L), compared to 26.1s for
 472 3D-LDM (Khader et al., 2023) and 34.6s for WDM-3D (Friedrich et al., 2024).
 473

474 5 CONCLUSION

475 In this paper, we have presented *PRDiT* – a novel and scalable residual Diffusion Transformer model
 476 which efficiently solves the 3D CT Volume generation task via two dedicated branches and a two-
 477 stage training strategy, consisting of: a Local Denoiser and a Global Residual Transformer. By
 478 decoupling the task of modeling coarse local details and refining high-frequency global residuals,
 479 PRDiT effectively reduces computational overhead. Extensive evaluations on LIDC-IDRI and Rad-
 480 ChestCT datasets demonstrate that our method achieves superior generative performance compared
 481 to state-of-the-art methods such as HA-GAN, 3D LDM and WDM-3D, consistently producing lower
 482 3D FID, MMD, and Wasserstein distances. Our experiments further validate the model’s scalability,
 483 illustrating consistent performance improvements with increasing transformer depth. These results
 484 highlight PRDiT’s potential as a powerful and efficient method for synthesizing high-resolution 3D
 485 medical volumes, with promising applicability to various clinical and diagnostic scenarios.

486 **6 REPRODUCIBILITY STATEMENT**

488 We have made every effort to ensure that the results presented in this paper are reproducible. We
 489 explain all datasets, data preprocessing, baseline models, evaluation metrics, and training details
 490 used in our method in experimental section. To support reproducibility, we include detailed archi-
 491 tecture introduction in Figure 1,2,3, which fully describe the design. In addition, the experimental
 492 setup, including training steps, model configurations, and hardware details, is described in detail in
 493 Appendix A.9. Additionally, 3D medical CT datasets, such as LIDC-IDRI and Rad-ChestCT, are
 494 publicly available, ensuring consistent and reproducible evaluation results. Besides, the code will be
 495 released publicly upon acceptance.

496 **REFERENCES**

499 Martín Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. *ArXiv*, abs/1701.07875,
 500 2017. URL <https://api.semanticscholar.org/CorpusID:13943041>.

501 Samuel G Armato III, Geoffrey McLennan, Luc Bidaut, Michael F McNitt-Gray, Charles R Meyer,
 502 Anthony P Reeves, Binsheng Zhao, Denise R Aberle, Claudia I Henschke, Eric A Hoffman,
 503 et al. The lung image database consortium (lidc) and image database resource initiative (idri): a
 504 completed reference database of lung nodules on ct scans. *Medical physics*, 38(2):915–931, 2011.

505 Sihong Chen, Kai Ma, and Yefeng Zheng. Med3d: Transfer learning for 3d medical image analysis.
 506 *arXiv preprint arXiv:1904.00625*, 2019.

508 Zolnamar Dorjsembe, Sodtavilan Odonchimed, and Furen Xiao. Three-dimensional medical image
 509 synthesis with denoising diffusion probabilistic models. In *Medical imaging with deep learning*,
 510 2022.

512 R. L. Draelos, D. Dov, M. A. Mazurowski, J. Y. Lo, R. Henao, G. D. Rubin, and L. Carin. RAD-
 513 ChestCT Dataset (1.0), 2020. URL <https://doi.org/10.5281/zenodo.6406114>.
 514 [Data set].

515 Paul Friedrich, Julia Wolleb, Florentin Bieder, Alicia Durrer, and Philippe C Cattin. Wdm: 3d
 516 wavelet diffusion models for high-resolution medical image synthesis. In *MICCAI Workshop on*
 517 *Deep Generative Models*, pp. 11–21. Springer, 2024.

519 Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola.
 520 A kernel two-sample test. *The journal of machine learning research*, 13(1):723–773, 2012.

521 Ishaaq Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Im-
 522 proved training of wasserstein gans. *Advances in neural information processing systems*, 30,
 523 2017.

525 Sungmin Hong, Razvan Marinescu, Adrian V Dalca, Anna K Bonkhoff, Martin Bretzner, Natalia S
 526 Rost, and Polina Golland. 3d-stylegan: A style-based generative adversarial network for genera-
 527 tive modeling of three-dimensional medical images. In *MICCAI Workshop on Deep Generative*
 528 *Models*, pp. 24–34. Springer, 2021.

530 Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-
 531 ing and improving the image quality of stylegan. In *Proceedings of the IEEE/CVF conference on*
 532 *computer vision and pattern recognition*, pp. 8110–8119, 2020.

533 F Khader, G Mueller-Franzes, ST Arasteh, T Han, C Haarburger, M Schulze-Hagen, et al. Medical
 534 diffusion: Denoising diffusion probabilistic models for 3d medical image generation [internet].
 535 arxiv; 2023, 2023.

536 Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

538 Gihyun Kwon, Chihye Han, and Dae-shik Kim. Generation of 3d brain mri using auto-encoding
 539 generative adversarial networks. In *International Conference on Medical Image Computing and*
 540 *Computer-Assisted Intervention*, pp. 118–126. Springer, 2019.

540 Shentong Mo, Enze Xie, Ruihang Chu, Lanqing HONG, Matthias Nießner, and Zhenguo Li. Dit-3d:
 541 Exploring plain diffusion transformers for 3d shape generation. In *Thirty-seventh Conference on*
 542 *Neural Information Processing Systems*, 2023.

543

544 William Peebles and Saining Xie. Scalable diffusion models with transformers. *arXiv preprint*
 545 *arXiv:2212.09748*, 2022.

546 Walter HL Pinaya, Petru-Daniel Tudosi, Jessica Dafflon, Pedro F Da Costa, Virginia Fernandez,
 547 Parashkev Nachev, Sebastien Ourselin, and M Jorge Cardoso. Brain imaging generation with
 548 latent diffusion models. In *MICCAI workshop on deep generative models*, pp. 117–126. Springer,
 549 2022.

550

551 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 552 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 553 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

554

555 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
 556 ical image segmentation. In *International Conference on Medical image computing and computer-
 557 assisted intervention*, pp. 234–241. Springer, 2015.

558

559 Li Sun, Junxiang Chen, Yanwu Xu, Mingming Gong, Ke Yu, and Kayhan Batmanghelich. Hierar-
 560 chical amortized gan for 3d high resolution medical image synthesis. *IEEE journal of biomedical
 561 and health informatics*, 26(8):3966–3975, 2022.

562

563 Yi Sun, Peisen Yuan, and Yuming Sun. Mm-gan: 3d mri data augmentation for medical image
 564 segmentation via generative adversarial networks. In *2020 IEEE International conference on
 565 knowledge graph (ICKG)*, pp. 227–234. IEEE, 2020.

566

567 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in
 568 neural information processing systems*, 30, 2017.

569

570 Zhenkai Zhang, Krista A Ehinger, and Tom Drummond. Improving denoising diffusion models via
 571 simultaneous estimation of image and noise. *arXiv preprint arXiv:2310.17167*, 2023.

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

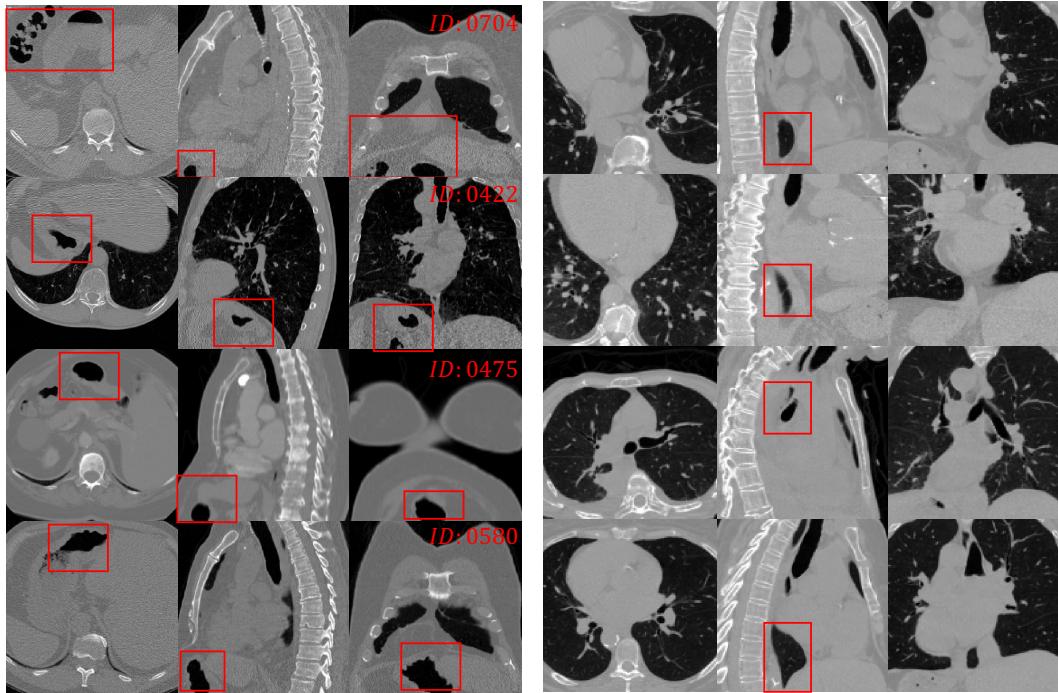
591

592

593

594 **A APPENDIX**
595596 **A.1 LLM USAGE**
597598 In this paper, Large Language Models (LLMs) were utilized as a general-purpose assist tool to aid
599 and polish the writing process. We used the LLM to refine language and improve clarity across the
600 Introduction, Related Work and Conclusion sections.
601602 **A.2 HALLUCINATION RISKS AND POTENTIAL MISUSE**
603604 In the context of this work, ‘hallucination’ would refer to anatomically implausible or extremely
605 rare structures that lie far outside the training distribution.
606607 From a technical angle, we monitor this risk partly via the W-score metric: if the model frequently
608 produced unrealistic volumes, the WGAN critic would assign larger distances between real and
609 generated samples, and the W-score would deteriorate. In practice, our W-scores remain close to
610 those of real data, which suggests that severe hallucinations are uncommon in our experiments.
611612 That said, we want to emphasize that we do *not* position PRDiT as a tool for direct clinical decision-
613 making. Synthetic CT volumes should be used only for research, simulation, or carefully controlled
614 data augmentation, and always under expert supervision. Any downstream clinical application must
615 rely on appropriate validation on real patient data and the involvement of qualified radiologists.
616617 **A.3 LIMITATIONS AND FUTURE WORK**
618619 Our current implementation is constructed upon a simple linear mapping, including patch embed-
620 dings, which we treat as the base structure. While effective, this design may limit the model’s ability
621 to capture complex local spatial correlations. A natural extension would be to incorporate convolu-
622 tional neural networks (CNNs) for feature extraction, which could enhance representational richness
623 and further improve generative quality. We leave this direction as an important opportunity for future
624 exploration.
625626 PRDiT inherits the high training cost of Transformer-based models, especially in handling full-
627 volume 3D attention. Future work might explore 3D-specific optimizations, such as linear or win-
628 dowed attention, to reduce computational demands. We also plan to extend PRDiT to conditional
629 generation tasks, enabling guidance from segmentation masks or sparse inputs for broader clinical
630 applications.
631632 It is important to point out that there generally exists no voxel-wise ‘ground truth’ for novel
633 unconditionally-generated volumes. This means that downstream segmentation or detection studies
634 would require dense, expert annotations for both real and synthetic CT volumes, which are expensive
635 and therefore unfortunately beyond the scope and resources of this work.
636637 The objective of this paper is to make high-fidelity unconditional 3D CT generation feasible at
638 scale and to rigorously evaluate distributional fidelity. We therefore (i) do not claim that immediate
639 clinical deployment of our method or similar methods of this kind are feasible, and (ii) want to point
640 out that such downstream and clinical evaluations are outside the scope of the present paper, and
641 we have to leave a systematic study of using our model for downstream segmentation/detection and
642 assessing its clinical impact as future work.
643644 **A.4 CHARACTERISTICS OF THE TRAINING DATASETS**
645646 In this section, we explain why some of the generated CT outputs appear to contain black ‘voids’ in
647 the parts of the images, like the lower-left region within Figure 5. Careful inspection of the original
648 datasets shows that these dark ‘void’ regions actually correspond to naturally occurring low-density
649 air cavities that are also present in the real data, rather than artifacts introduced by the hot-diffusion
650 sampler or hallucination issues, as illustrated in Figure 6. In addition, following standard practice in
651 prior works, our pre-processing clamps HU values to a fixed window, which further accentuates such
652

648 air regions as dark areas in both real and generated scans. For easier debugging and later verification,
 649 we additionally overlay the case IDs from the LIDC-IDRI dataset onto the images.
 650



673
 674 Figure 6: Ground truth CT samples from LIDC-IDRI (left) and Rad-ChestCT (right). Red boxes
 675 highlight naturally occurring low-density air cavities, showing that similar dark void regions are
 676 also present in the real data.

678 A.5 THE LOCAL DENOISER

680 This section provides additional details for the local denoiser module. When processing high-
 681 resolution 3D medical images, training diffusion models with Transformers to capture both low-
 682 and high-frequency components is prohibitively expensive and time-consuming. As illustrated in
 683 Figure 1, we therefore decompose the learning process into two stages: a local denoiser estimates
 684 the content of each 3D patch locally (see Figure 2), and a diffusion model with Transformers focuses
 685 exclusively correcting these via global residuals.

686 Concretely, given an input volume

$$687 \mathbf{X} \in \mathbb{R}^{C \times H \times W \times D},$$

688 we extract N cubic patches

$$689 \{\mathbf{x}_i \in \mathbb{R}^{C \times p \times p \times p}\}_{i=1}^N$$

690 using a sliding window of size p and stride $s < p$ to allow overlap between neighboring patches,
 691 which ensures that adjacent patches share contextual information at their borders to improve conti-
 692 nuity in the reconstructed volume and mitigate boundary artifacts. Each patch is vectorized as

$$694 \mathbf{v}_i = \text{vec}(\mathbf{x}_i) \in \mathbb{R}^d, \quad d = C \times p^3.$$

696 To follow the forward diffusion process (Zhang et al., 2023), we sample a timestep $t \in \{1, \dots, T\}$
 697 and compute

$$698 \mathbf{v}_i^t = \cos\left(\frac{t}{T} \frac{\pi}{2}\right) \mathbf{v}_i + \sin\left(\frac{t}{T} \frac{\pi}{2}\right) \boldsymbol{\epsilon}_i, \quad \boldsymbol{\epsilon}_i \sim \mathcal{N}(0, I).$$

700 Given a diffusion timestep t , we first compute a shared base embedding

$$701 \mathbf{c} = \text{TimeEmbed}(t) \in \mathbb{R}^h.$$

702 We then project \mathbf{c} into a stage-specific time embedding for the local stage
 703

$$704 \mathbf{c}_{\text{local}} = W_{\text{c}} \mathbf{c} + \mathbf{b}_{\text{c}} \in \mathbb{R}^d,$$

705 and feed $\mathbf{c}_{\text{local}}$ into the AdaLN modulation network to produce the LayerNorm shift/scale parameters
 706

$$707 (\gamma_1, \beta_1, \gamma_2, \beta_2) = \text{AdaLN}(\mathbf{c}_{\text{local}}) \in \mathbb{R}^{4d}.$$

708 In the global residual stage, we similarly compute
 709

$$710 \mathbf{c}_{\text{fine}} = W_{\text{f}} \mathbf{c} + \mathbf{b}_{\text{f}} \in \mathbb{R}^h,$$

711 and use \mathbf{c}_{fine} within each AdaLN layer of the DiT blocks, ensuring consistent temporal conditioning
 712 across both modules.

713 The signal is then refined via two SwiGLU-MLP blocks
 714

$$715 \mathbf{z}_1 = \text{SwiGLU}(\gamma_1 \odot \text{LayerNorm}(\mathbf{v}_i^t) + \beta_1),$$

$$716 \mathbf{z}_2 = \text{SwiGLU}(\gamma_2 \odot \text{LayerNorm}(\mathbf{z}_1) + \beta_2),$$

717 and added residually as $\mathbf{z} = \mathbf{z}_2 + \mathbf{v}_i$. A final linear projection produces
 718

$$719 [\hat{\mathbf{v}}_i, \hat{\epsilon}_i] = W_{\text{final}}(\mathbf{z}) \in \mathbb{R}^{2d}, \quad \hat{\mathbf{v}}_i, \hat{\epsilon}_i \in \mathbb{R}^d,$$

720 which is reshaped back to $\hat{\mathbf{x}}_i \in \mathbb{R}^{C \times s^3}$. Here $\hat{\mathbf{v}}_i$ is the denoised patch and $\hat{\epsilon}_i$ is the predicted noise,
 721 which aligns our MLP's outputs with the standard diffusion objective of jointly estimating clean
 722 signal and noise.

723 We train the denoiser by minimizing the per-patch loss
 724

$$725 \mathcal{L} = \mathbb{E}_i \left[\|\hat{\mathbf{x}}_i - \mathbf{x}_i\|_2^2 + \|\hat{\epsilon}_i - \epsilon_i\|_2^2 \right],$$

726 ensuring efficient capture of local patche structure and accurate noise estimation. At inference, the
 727 denoised and overlapping patches $\{\hat{\mathbf{x}}_i\}^N$ are passed to the Residual Diffusion Transformer, which
 728 focuses exclusively on correcting the predictions via global residuals $\{\mathbf{x}_i - \hat{\mathbf{x}}_i\}$, thereby reducing
 729 overall learning complexity and training time.

731 A.6 PREDICTOR-CORRECTOR SAMPLING

732 This section provides more detail on our sampling scheme introduced in Section 3.3, and shows how
 733 it differs from previous standard ancestral or 'DDIM' samplers.
 735

736 A.6.1 ALGORITHMIC DESCRIPTION

737 Algorithm 1 defines the predictor-corrector sampling method to provide further detailed explanation
 738 of our sampling scheme introduced in Section 3.3.
 739

740 A.6.2 QUALITATIVE INSIGHTS FOR VARYING k

741 To provide further insight in addition to the quantitative analysis of varying k in the main paper,
 742 we provide qualitative results across different k values across axial, coronal, and sagittal views in
 743 Figures 7 8 9.
 745

746 A.6.3 RELATIONSHIP TO CONVENTIONAL 'HOT' DIFFUSION SAMPLING

747 In this section, we outline how our sampling procedure differs from standard ancestral or 'DDIM'
 748 samplers: it is tailored to the cosine-sine schedule (Zhang et al., 2023) and lets us inject a controlled
 749 amount of extra stochasticity per step, which we show empirically improves FID/MMD over both
 750 deterministic sampling ($k = 1$, Table 4, main paper) as well as previous methods (following).
 751

752 The conventional ancestral 'hot' sampler performs a single stochastic update from x_t to x_{t-1} using
 753 only the predicted noise ϵ . Our sampler can be viewed as a predictor-corrector variant of this ances-
 754 tral sampler: instead of one stochastic step, we take k deterministic denoising sub-steps followed
 755 by $k - 1$ stochastic correction steps, which lets us inject a stronger but controllable amount of noise
 per outer step.

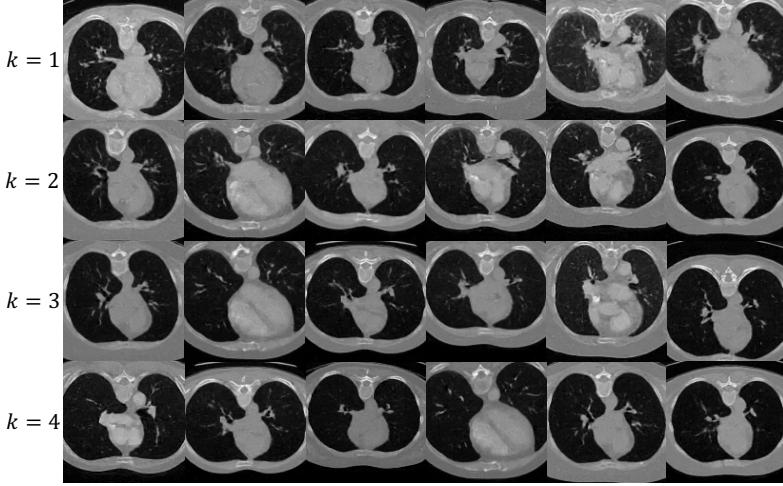
756 **Algorithm 1:** Predictor–Corrector Sampling

757 **Input:** Initial sample $x_T \in \mathbb{R}^{B \times C \times D \times H \times W}$;
 758 Timestep schedule $(t_\ell)_{\ell=0}^L$ with $0 = t_0 < \dots < t_L = T$;
 759 Diffusion model f_θ with $f_\theta(x_t, t) := (\epsilon_t, \hat{x}_0^t)$;
 760 Predictor step multiplier $p \geq 1$.
 761 **Output:** Sample sequence $\mathcal{X} = (x_{t_\ell})_{\ell=0}^L$ and predictions $\hat{\mathcal{X}}_0 = (\hat{x}_0^{t_\ell})_{\ell=1}^L$

762 **Initialize:** $\mathcal{X} \leftarrow \{x_T\}$, define angle map $\theta(t) \leftarrow \frac{\pi}{2} \frac{t}{T}$. **for** $\ell = L, L-1, \dots, 1$ **do**

763 $t \leftarrow t_\ell, t' \leftarrow t_{\ell-1}, \Delta t \leftarrow t - t'$;
 764 $x_t \leftarrow$ last element of \mathcal{X} ;
 765 $\theta_t \leftarrow \theta(t), \theta_{t'} \leftarrow \theta(t')$;
 766 // Model prediction at time t
 767 $(\epsilon_t, \hat{x}_0^t) \leftarrow f_\theta(x_t, t)$;
 768 // Gradient direction in the cosine plane
 769 $g_t \leftarrow \sin(\theta_t) \hat{x}_0^t - \cos(\theta_t) \epsilon_t$;
 770 // Predictor: p -step gradient jump in time
 771 $t_{\text{pred}} \leftarrow t - p \Delta t$;
 772 $\theta_{\text{pred}} \leftarrow \theta(t_{\text{pred}})$;
 773 $\Delta \theta \leftarrow \theta_{\text{pred}} - \theta_t$;
 774 $\tilde{x} \leftarrow x_t - \Delta \theta g_t$;
 775 // Corrector: exact Gaussian transition from t_{pred} to t'
 776 $\alpha \leftarrow \frac{\cos(\theta_{t'})}{\cos(\theta_{\text{pred}})}$;
 777 $\sigma \leftarrow \sqrt{1 - \alpha^2}$;
 778 Sample $z \sim \mathcal{N}(0, I)$ with $\text{shape}(z) = \text{shape}(\tilde{x})$;
 779 $x_{t'} \leftarrow \alpha \tilde{x} + \sigma z$;
 780 Append $x_{t'}$ to \mathcal{X} .

781 **return** $\hat{\mathcal{X}}_0, \mathcal{X}$.



803 Figure 7: Qualitative comparison: axial view of generated chest CT samples for different k values
 804 in LIDC-IDRI dataset.

805
806
807

808 **Settings.** Our model in the main paper is trained to jointly predict the clean image x_0 and the
 809 noise ϵ , whereas the conventional hot sampler only relies on ϵ . For a fair comparison, we therefore
 refactor our generation process so that it also depends solely on the predicted noise. In this way, we

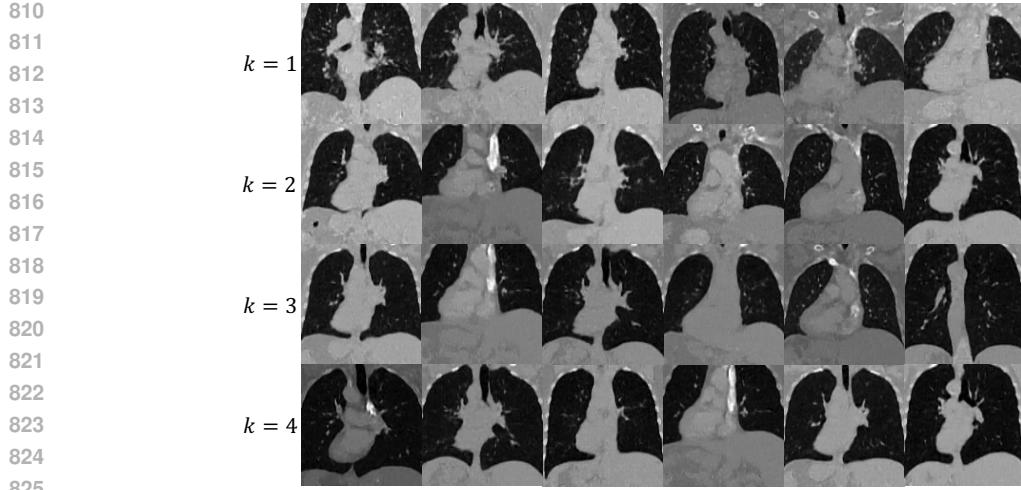


Figure 8: Qualitative comparison: coronal view of generated chest CT samples for different k values in LIDC-IDRI dataset.

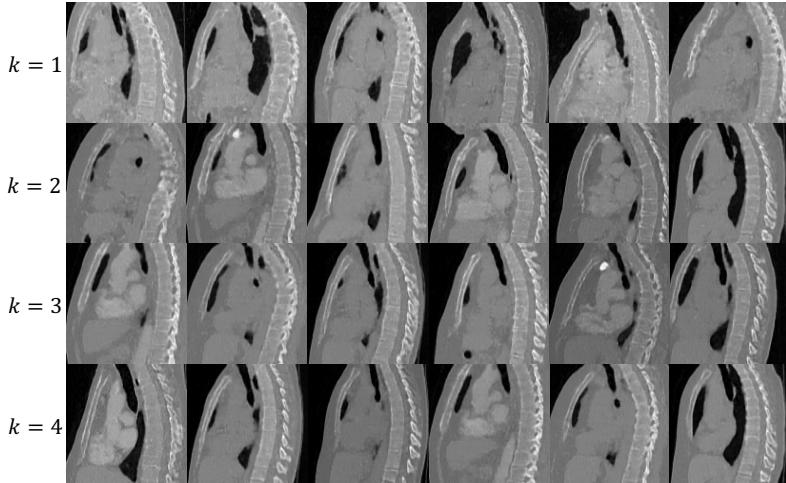


Figure 9: Qualitative comparison: sagittal view of generated chest CT samples for different k values in LIDC-IDRI dataset.

get the \hat{x}_0 through

$$\hat{x}_0(x_t, t) = \frac{x_t - \sqrt{1 - \alpha_t} \epsilon_\theta(x_t, t)}{\sqrt{\alpha_t}},$$

which exactly follows the method from conventional sampler. The conventional sampling method is defined as

$$x_{t-1} = \sqrt{\alpha_{t-1}} \hat{x}_0(x_t, t) + \sqrt{1 - \alpha_{t-1} - \sigma_t^2} \epsilon_\theta(x_t, t) + \sigma_t z \quad (7)$$

where $z \sim \mathcal{N}(0, I)$, $\sigma_t = \sqrt{\frac{1 - \alpha_{t-1}}{1 - \alpha_t}} \sqrt{1 - \frac{\alpha_t}{\alpha_{t-1}}}$, $\sqrt{\alpha_t} = \cos(\beta_t)$, $\sqrt{1 - \alpha_t} = \sin(\beta_t)$, which is same sampling method used in DDPM or DDIM (setting $\eta = 1$).

Recalling Equations 5 and 6, our sampling method results in

$$x_{t-1} = \Gamma_t^{(k)} \left(x_t - k \cdot \nabla \left(\sqrt{\alpha_t} \hat{x}_0(x_t, t) + \sqrt{1 - \alpha_t} \epsilon_\theta(x_t, t) \right) \right) + \sqrt{1 - (\Gamma_t^{(k)})^2} z, \quad (8)$$

with $\Gamma_t^{(k)} = \frac{\sqrt{\alpha_{t-1}}}{\sqrt{\alpha_{t-k}}}$, where $k = \{1, 2, \dots\}$, and k is not restricted to integer values.

<i>k</i>	FID \downarrow	MMD \downarrow
1 (cold sampling)	7.031	0.7285
2	6.132	0.6023
2.5	5.950	0.5893
3	5.736	0.5699
3.5	5.718	0.5682
4	6.960	0.6273
Conventional (hot diffusion)	6.456	0.6100

Table 5: Ablation experiments: quantitative comparison on the number of predictor-corrector sub-steps k in our *modified noise-only* sampler on LIDC-IDRI, compared to the conventional hot-diffusion sampler. FID is reported as 10^2 .

Experiments. To clearly highlight the differences between our proposed hot-diffusion sampling method and the conventional sampler, we provide both qualitative (Figure 10) and quantitative (Table 5) comparisons of their respective generation quality. The results show that our hot diffusion (e.g. $k = 3$) achieves better FID/MMD than both the deterministic case ($k = 1$) and the conventional hot-diffusion sampler, indicating that our proposed modified stochastic schedule is genuinely beneficial rather than just a reparameterization of the standard sampler.

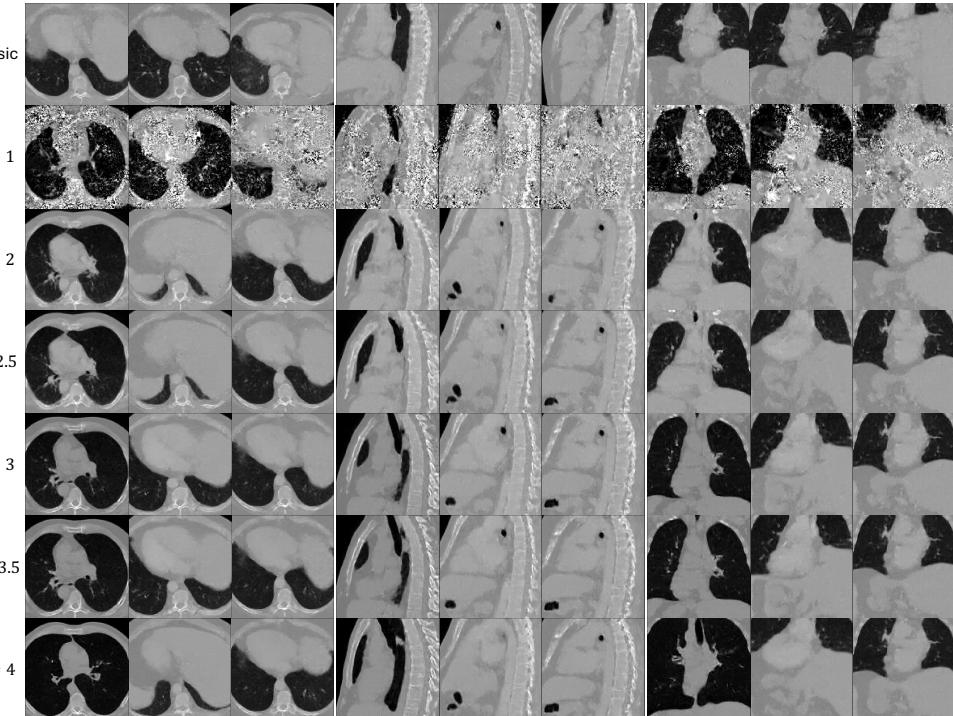


Figure 10: Ablation experiments: qualitative comparison on the number of predictor-corrector sub-steps K in our *modified noise-only* sampler on LIDC-IDRI, compared to the conventional hot-diffusion sampler (classic in row 1).

A.7 INFERENCE TIME

We quantify inference speed in Table 6 by measuring sampling time across three baseline models and our three variant models. All timings are reported as the mean of 10 runs with a batch size of 1.

918 Table 6: Inference sampling time per sample (seconds) with a batch size of 1 on an A100 GPU.
 919 Reported are mean \pm std over 10 runs.
 920

921	Method	922 Mean (s)	923 Std (s)
924	HA-GAN (Sun et al., 2022)	0.01020	0.00139
925	3D-LDM (Khader et al., 2023)	26.0518	0.1009
926	WDM-3D (Friedrich et al., 2024)	34.6328	0.5915
927	PRDiT-4L (ours)	11.4590	1.1665
928	PRDiT-8L (ours)	18.3414	0.7329
929	PRDiT-12L (ours)	21.9311	0.8646

931 A.8 HIGH RESOLUTION MODELS ARCHITECTURE

933 The architectural structure of our high-resolution 3D CT image generation approach is provided in
 934 the body of the main paper in Figure 3. In this section, we additionally provide insights on the
 935 difference in image quality between our efficient high-resolution variant and expensive from-scratch
 936 training of PRDiT directly on higher-resolution images. Results are provided in Table 7 and demon-
 937 strate that while training from scratch does indeed lead to slightly improved performance across FID
 938 and MMD, our efficient variant is close to 7 times faster in training, providing a convincing tradeoff
 939 in terms of quality-to-compute.

940 Table 7: Ablation experiments: Comparison of high-resolution training strategies on LIDC-IDRI.
 941 We report a model trained directly at 128^3 (Scratch) versus our progressive strategy that reuses a
 942 pretrained 64^3 model and extends it to 128^3 (Pretrained Low-to-High). FID is reported as 10^3 .
 943

944 Method	945 FID \downarrow	946 MMD \downarrow	947 Training Cost
PRDiT $_{128}^{\text{scratch}}$	2.04	0.1853	80 GPUh
PRDiT $_{64}^{\uparrow 128}$	2.89	0.1893	12 GPUh

949 In our high-resolution PRDiT \uparrow^{256} model experiments, we freeze the entire low-resolution back-
 950 bone, which includes both Local Denoiser and the Global Residual DiT modules, and only train a
 951 lightweight high-resolution refinement module. We made this choice on purpose: fine-tuning the
 952 full backbone at 256^3 would be very memory- and compute-heavy, while the refinement module
 953 can concentrate on adding the missing high-frequency details on top of a already well-trained low-
 954 resolution anatomy.

955 In practice, PRDiT-4L \uparrow^{256} still outperforms all high-resolution baselines on LIDC-IDRI in both
 956 FID and MMD, and it does so with much lower GPU cost (Table 2). This suggests that freezing
 957 the backbone does not noticeably hurt performance at 256^3 . In addition, our comparison of from-
 958 scratch 128^3 training with the progressive $64^3 \rightarrow 128^3$ variant (Table 3) shows only a small drop in
 959 FID/MMD for more than a $6\times$ reduction in training time, which further supports this design.

960 To provide further insight into how a frozen backbone compares against a jointly fine-tuned setup,
 961 we performed an ablation at $128^3 \rightarrow 256^3$, directly comparing a model with a frozen low-resolution
 962 backbone to one where we fine-tune the entire backbone. For the fine-tuned variant, we use a
 963 conservative learning rate of 1×10^{-6} for 100 epochs to avoid disrupting the well-trained low-
 964 resolution weights, and evaluate it under exactly the same setup as the frozen-backbone model. As
 965 Table 8 shows, the fine-tuned backbone gives a modest but consistent improvement over the frozen
 966 one (better FID and MMD), indicating that full fine-tuning can help, but the gain is relatively small
 967 compared with the additional computational cost, which supports our choice to freeze the backbone
 968 in the main 256^3 experiments.

969 To make these experiments reproducible, we detail below the exact configurations used to train all
 970 high-resolution models.
 971

972 A.8.1 TRAINING SETUP FOR HIGH-RESOLUTION MODELS
973974 **Frozen-backbone settings.** We first freeze the entire low-resolution backbone (both the Local
975 Denoiser and the Global DiT) and train only the high-resolution refinement module. The refinement
976 operates on overlapping 3D patches of size (12, 12, 12) with stride 8 and padding 2 voxels, matching
977 the local denoiser configuration in the low-resolution model. We optimize with AdamW, using a
978 learning rate of 6×10^{-5} , gradient clipping at 1.0, a batch size of 8 per GPU, and train for 2000
979 epochs.
980981 **Full fine-tuning setting.** For the fine-tuning ablation, we start from the converged frozen-
982 backbone high-resolution model and then unfreeze the entire pretrained backbone and high-
983 resolution module, training all parameters jointly. To avoid disrupting the well-trained low-
984 resolution weights, we use a much smaller learning rate of 1×10^{-6} , gradient clipping at 0.4, a
985 batch size of 2 per GPU, and train for 100 epochs under otherwise the same setup.
986
987988 A.8.2 EXPERIMENTS RESULTS
989990 As Table 8 and Figure 11 show, the fine-tuned backbone gives a modest but consistent improvement
991 over the frozen one (better FID and MMD), indicating that full fine-tuning can help, but the gain
992 is relatively small compared with the additional computational cost, which supports our choice to
993 freeze the backbone in the main 256^3 experiments.
994995 Table 8: Ablation experiments: Comparison of high-resolution performance between frozen low-
996 resolution model and fine-tune entire models. FID is reported as 10^3 .
997

Model	FID \downarrow	MMD \downarrow
Frozen 128^3	2.280	0.1370
Fine-tuned 128^3	1.702	0.1315

1003 A.9 MODEL CONFIGURATIONS IN DETAIL
10041005 In this section, we describe the network architecture, training setup and evaluation protocol to enable
1006 full reproducibility. In addition, we use the FlashAttention-v2 included with Pytorch version 2.2.
10071008 A.9.1 NETWORK ARCHITECTURE CONFIGURATIONS
10091010 The PRDiT model comprises two primary components: a Local Denoiser (MLP-based) and an
1011 Global Residual DiT models (Transformer-based), enabling a two-stage training process. Stage 1
1012 trains the coarse path ($\text{depth}=0$), while stage 2 freezes the local path and trains the global path
1013 ($\text{depth}>0$). The architecture processes 3D volumes of shape $[B, C, D, H, W]$ into patch sequences
1014 for denoising. Key components are described below, with parameters summarized in Table 9, 10.
10151016 A.9.2 TRAINING SETUP
10171018 We provide the details of how to train the methods.
10191020

- **Optimization Function:** AdamW with $\beta_1 = 0.9$, $\beta_2 = 0.999$, and weight decay 0.0. The
1021 objective is mean squared error (MSE) loss.
- **Learning Rate:**
 - Stage 1 (LocalDenoiser): 10^{-4} .
 - Stage 2 (GlobalResidual DiT):
 - * 9×10^{-5} ($\text{depth}=4$),
 - * 6×10^{-5} ($\text{depth}=8$),
 - * 4×10^{-5} ($\text{depth}=12$)

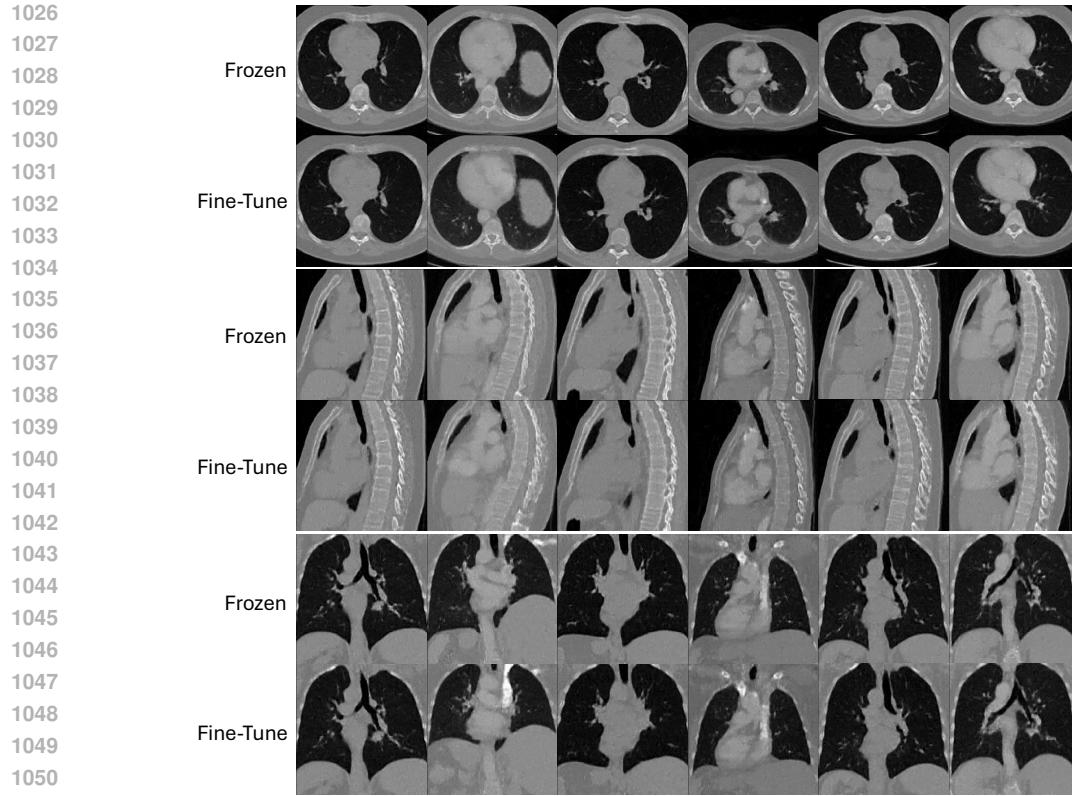


Figure 11: Ablation on freezing vs. fine-tuning the low-resolution backbone at 128^3 on LIDC-IDRI. Fine-tuning with a small learning rate yields slightly better FID/MMD, while the frozen backbone already achieves competitive performance.

Parameter	Value
Input Channels (C_{in})	1
Patch Size ($P \times P \times P$)	$12 \times 12 \times 12$
Stride	8
Padding	2
MLP Structure	Two-layer SwiGLU
Hidden Size	$C_{\text{in}} \cdot P^3 = 1 \cdot 12^3 = 1728$
MLP Ratio (R_{mlp})	1.0
Output Channels (C_{out})	2
Normalization	LayerNorm
Conditioning	AdaLN_modulation with TimeEmbedding
Activation	SwiGLU
Dropout	0.0
Weight Initialization	Zero-initialized for AdaLN and final linear layer

Table 9: Configurations of the LocalDenoiser module for PRDiT.

for new parameters; pretrained parameters (Local Denoiser) are frozen during second-stage training.

- **Device:** NVIDIA A100 80GB GPUs with BFP16 mixed precision.
- **Batch Size:** 128 volumes (16 per GPU), 256 volumes (4 per GPU).
- **Diffusion Schedule:** Linear, 1000 timesteps.
- **Training Steps:** Stage 1: 6,000 epoches; Stage 2: 8,000 epoches.

Parameter	Value
Input Channels (C_{in})	1
Patch Size ($P \times P \times P$)	$12 \times 12 \times 12$
Stride	8
Padding	2
Depth	$\{4, 8, 12\}$
Hidden Size (D_{hidden})	$\{768, 1152\}$
Number of Heads	$\{12, 16\}$
MLP Ratio (R_{mlp})	4.0
Output Channels (C_{out})	2
Normalization	LayerNorm
Positional Embedding	3D sinusoidal, shape $[1, N, D_{\text{hidden}}]$, non-learnable
Conditioning	AdaLN-Modulation with TimeEmbedding
Attention	Multi-head self-attention with memory-efficient attention
Dropout	0.0
Weight Initialization	Zero-initialized for AdaLN-Zero and final linear layer

Table 10: Configurations of the GlobalResidual DiT module (global residual path) for PRDiT, with depths 4, 8, and 12. All models share the same pretrained LocalDenoiser model from Stage 1 training.

- **Gradient Clipping:** Maximum norm of 1.0.
- **Data Split:** Randomly-sampled data split of 90% for actual training and a 10% validation set for tracking progress (both datasets).

A.9.3 EVALUATION PROTOCOL WITH FOCUS ON THE W-SCORE METRIC

In here, we provide the details about how to measure the performance of the generative models. In this paper, we use the three evaluation metrics, 3D FID (Friedrich et al., 2024), 3D MMD (Sun et al., 2022), and W-GAN scores (Zhang et al., 2025). We explain how to use the WGAN-GP Critic scores to measure the generative quality in our experiments.

The Goal. We use a single 1-Lipschitz critic f_{θ} (WGAN-GP) as a measurement to estimate the Wasserstein-1 distance between the real data distribution \mathbb{P}_{real} and a model m 's distribution \mathbb{P}_m :

$$\widehat{W}_1(\mathbb{P}_{\text{real}}, \mathbb{P}_m) = \mathbb{E}_{x \sim \mathbb{P}_{\text{real}}} [f_{\theta}(x)] - \mathbb{E}_{\tilde{x} \sim \mathbb{P}_m} [f_{\theta}(\tilde{x})]. \quad (9)$$

Lower is better. We compare models $m \in \{\text{HA-GAN}, \text{3D-LDM}, \text{WDM-3D}, \text{PRDiT-4L (ours)}, \text{PRDiT-8L (ours)}\}$ against our PRDiT-12L as the best performance standard.

Data Splits & Preprocessing.

1. **Real:** Split the dataset into *Real-Train* and *Real-Val* (no overlap with any generator's training data).
2. **Fake per model:** For each generator m , split its generated volumes into *Fake-Train*^(m) and *Fake-Val*^(m) (no overlap).
3. **Preprocessing:** Apply identical resampling/cropping and intensity normalization (e.g., HU $\rightarrow [0, 1]$) to both real and fake data, during training, it will map $[0, 1] \rightarrow [-1, 1]$.
4. **Mixed Fake for training:** Build *Fake-Train-Mix* by combining the pairs of *Fake-Train*^(m) sets.

Critic & Training Objective. A 3D conv stack with stride-2 downsamples, InstanceNorm3d and LeakyReLU activations, which is following the 2D WGAN-GP (Gulrajani et al., 2017) define. *No* sigmoid at the end. In addition, the objective (maximize)

$$\mathcal{L}_{\text{critic}} = \mathbb{E}_{x \sim \text{Real-Train}} [f_{\theta}(x)] - \mathbb{E}_{\tilde{x} \sim \text{Fake-Train-Mix}} [f_{\theta}(\tilde{x})] - \lambda \text{GP}(\theta), \quad (10)$$

1134 with gradient penalty GP on random interpolates and setting $\lambda = 10$. The default configurations is
 1135 Adam ($\text{lr} = 10^{-5}$, $\beta_1=0.5$, $\beta_2=0.999$). The batch size is 40 real / 40 fake, and the fake samples are
 1136 consisting of the generative model and our anchor PRDiT-12L output.
 1137

1138 **Pair-Comparisons vs. PRDiT-12L (Anchor)** Given *PRDiT-12L* is the anchor (chosen by 3D
 1139 FID/MMD), for each competitor c :

$$1141 \quad r_c = \frac{\widehat{W}_1(c)}{\widehat{W}_1(\text{Ours-12L})} \quad (>1 \Rightarrow \text{PRDiT-12L better}). \quad (11)$$

1142 Our experiments report the mean ratio and std over three different random seeds with the trained
 1143 critic.
 1144

1145 A.10 COMPREHENSIVE PAIRWISE COMPARISONS ACROSS ANCHORS

1146 In this section, we propose to choose the different model as the anchor to compute the WGAN ratio
 1147 score, and for better visualization, we use the log of WGAN ratio. Using the log ratio makes results
 1148 signed and interpretable (positive = better than the column model; negative = worse). The results
 1149 show in Table 11.
 1150

	HA-GAN	3D-LDM	WDM-3D	PRDiT-4L	PRDiT-8L	PRDiT-12L
HA-GAN	0 (± 0)	-0.302 (± 0.002)	-1.950 (± 0.055)	-0.969 (± 0.036)	-1.199 (± 0.095)	-1.433 (± 0.051)
3D-LDM	0.302 (± 0.002)	0 (± 0)	-1.602 (± 0.069)	-0.753 (± 0.043)	-0.963 (± 0.031)	-1.045 (± 0.068)
WDM-3D	1.950 (± 0.055)	1.602 (± 0.069)	0 (± 0)	-0.142 (± 0.055)	-0.208 (± 0.080)	-0.371 (± 0.049)
PRDiT-4L	0.969 (± 0.036)	0.753 (± 0.043)	0.142 (± 0.055)	0 (± 0)	-0.011 (± 0.003)	-0.104 (± 0.008)
PRDiT-8L	1.199 (± 0.095)	0.963 (± 0.031)	0.208 (± 0.080)	0.011 (± 0.003)	0 (± 0)	-0.073 (± 0.011)
PRDiT-12L	1.433 (± 0.051)	1.045 (± 0.068)	0.371 (± 0.049)	0.104 (± 0.008)	0.073 (± 0.011)	0 (± 0)

1151 Table 11: Pairwise log-WGAN ratio comparisons. For every model pair (i, j) , we report $\mu \pm \sigma$ of
 1152 the log ratio between the WGAN critic scores for samples from model i and model j (averaged over
 1153 4 evaluations). Values > 0 indicates the row model is judged more realistic than the column model,
 1154 < 0 indicates the opposite. The matrix is anti-symmetric ($s_{i,j} = -s_{j,i}$) with zeros on the diagonal.
 1155

1156 A.11 ADDITIONAL QUALITATIVE INSIGHTS

1157 Here we present additional qualitative examples that complement the quantitative results for the
 1158 LIDC-IDRI dataset in Figure 12 and Rad-chestCT dataset in Figure 13 for our 4-layer, 8-layer and
 1159 12-layer models.
 1160

1161 A.11.1 LIDC-IDRI

1162 We provide additional generated 3D CT images for our PRDiT models with 4, 8 and 12 layers
 1163 trained on LIDC-IDRI dataset in Figure 12.
 1164

1165 A.11.2 RAD-CHESTCT

1166 We provide additional generated 3D CT images for our PRDiT models with 4, 8 and 12 layers
 1167 trained on Rad-ChestCT dataset in Figure 13.
 1168

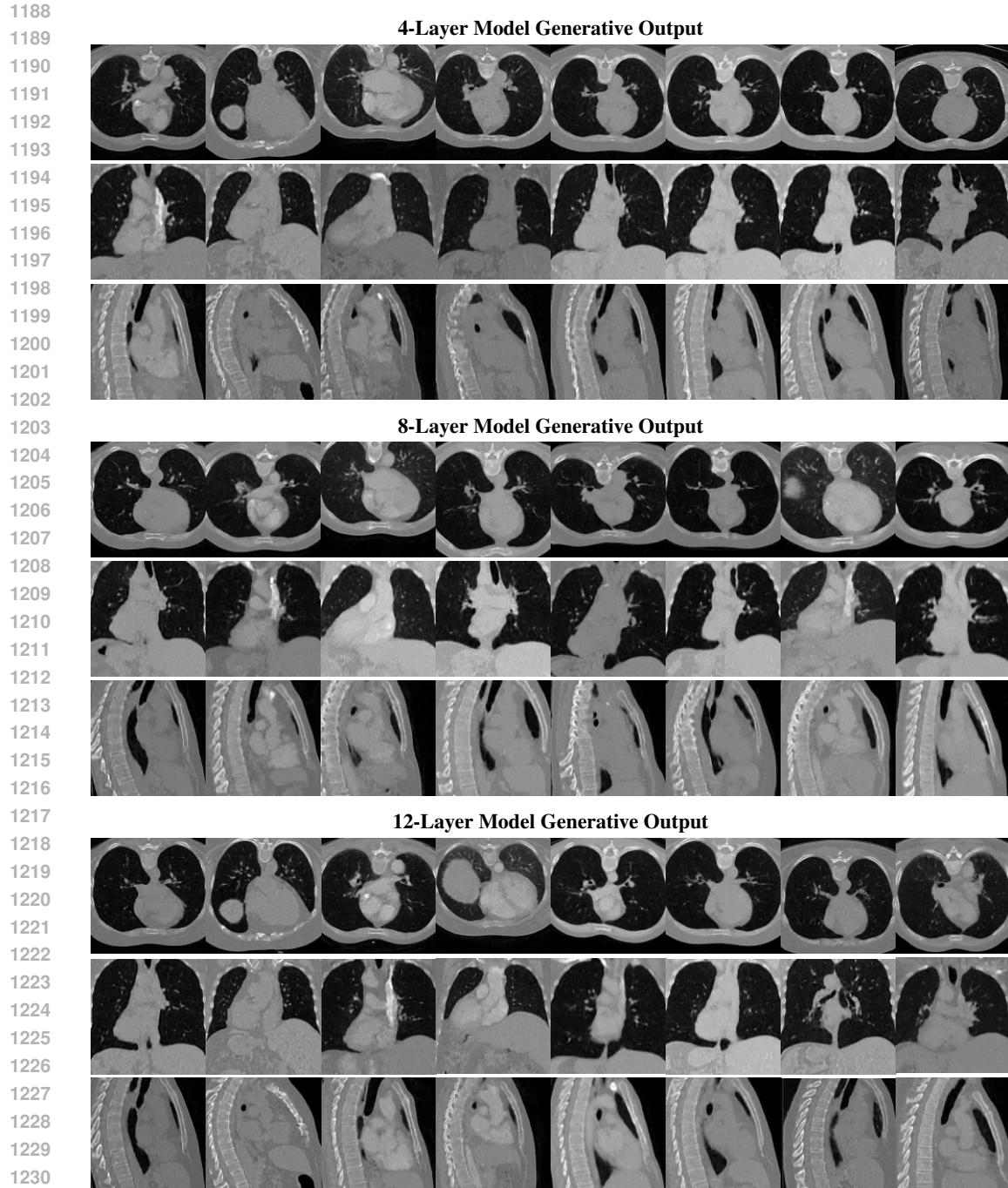
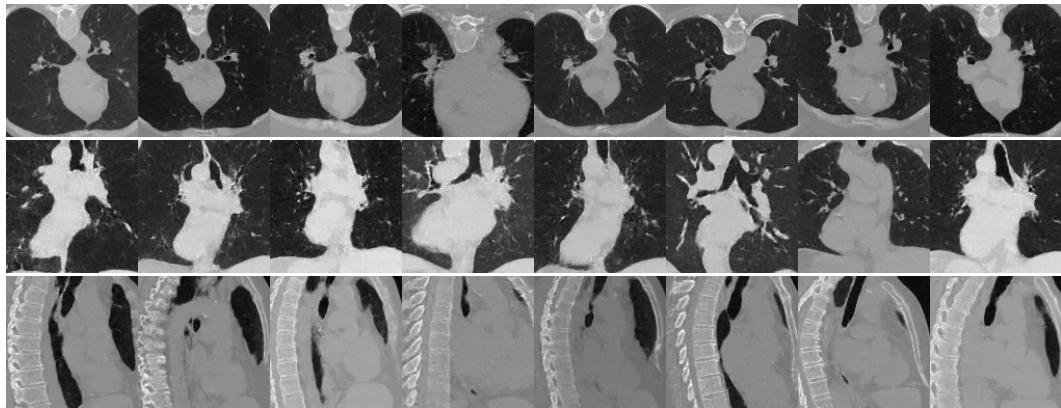


Figure 12: Extended qualitative results for different model within LIDC-IDRI dataset.

A.11.3 COMPARISONS IN 256^3 DATASET

We provide the additional generated samples across the HA-GAN, WDM-3D, and our PRDiT-4L with the 256^3 LIDC-IDRI dataset, in Figure 14.

1242

4-Layer Model Generative Output

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

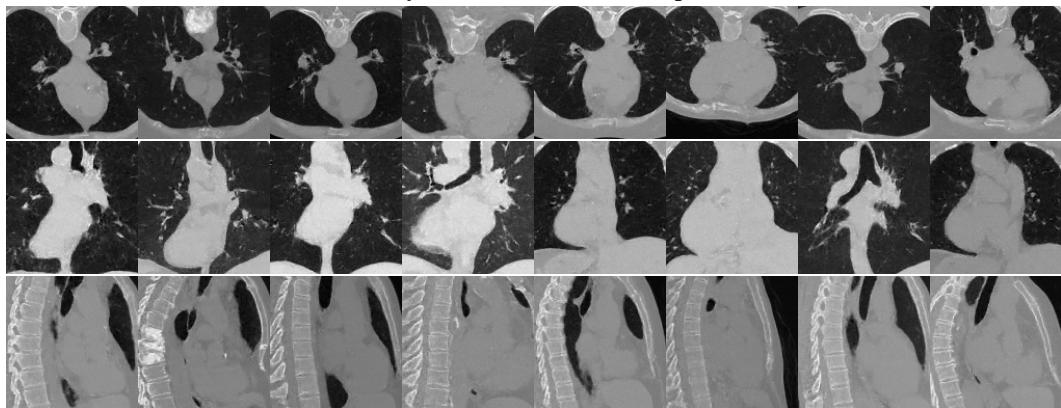
1253

1254

1255

1256

1257

8-Layer Model Generative Output

1258

1259

1260

1261

1262

1263

1264

1265

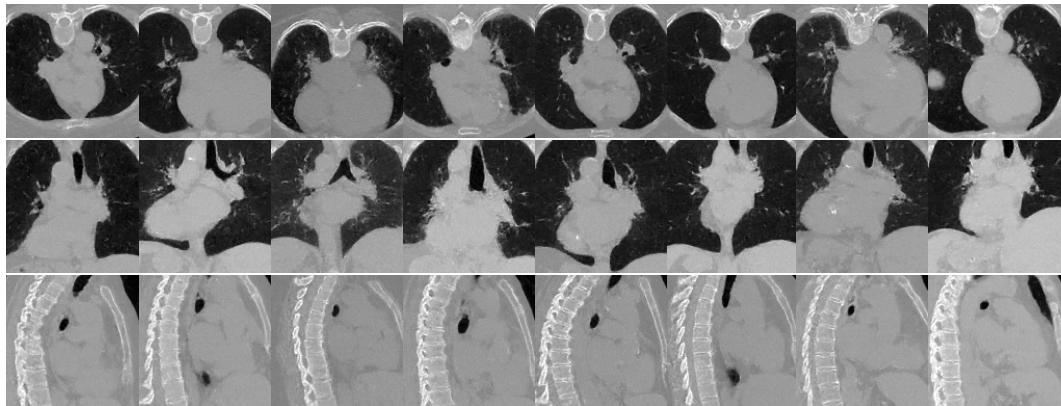
1266

1267

1268

1269

1270

12-Layer Model Generative Output

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

A.11.4 EXTENDED QUALITATIVE RESULTS

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

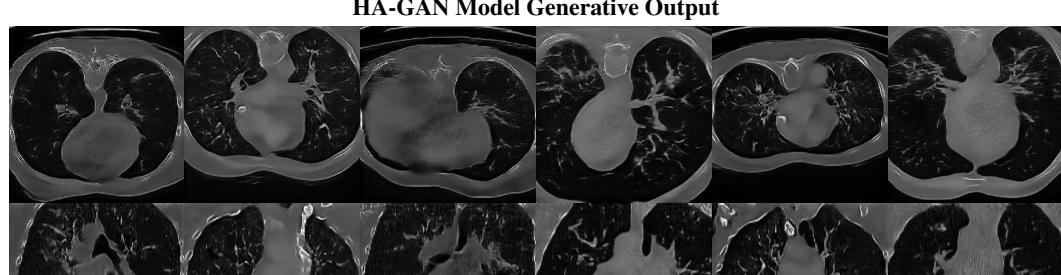
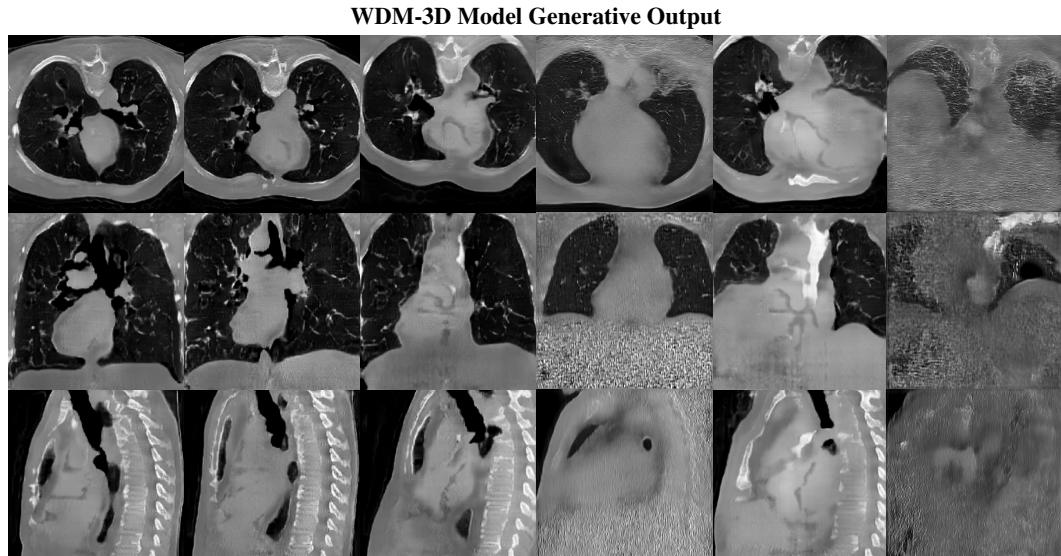
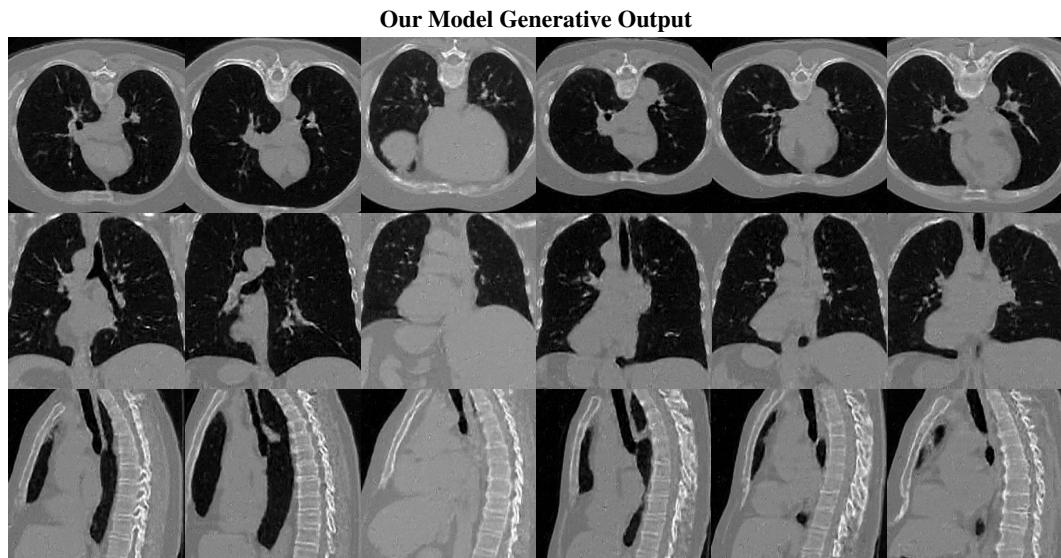
1329

1330

1331

1332

1333

Figure 14: Extended qualitative results for different model within 256^3 LIDC-IDRI dataset.

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

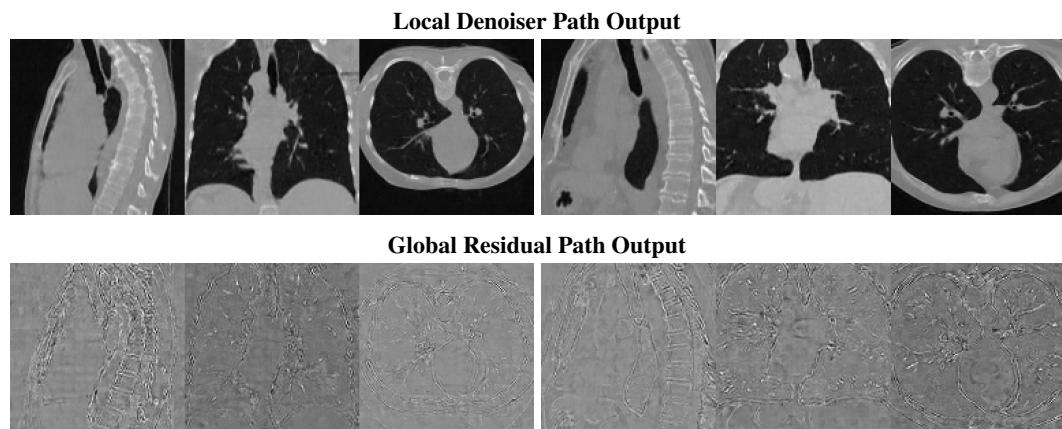


Figure 15: Extended qualitative results for visualizing the output from Local Denoiser and Global Residual module.