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ABSTRACT

Generating high-resolution 3D CT volumes with fine details remains challenging
due to substantial computational demands and optimization difficulties inherent
to existing generative models. In this paper, we propose the Pixel-Level Resid-
ual Diffusion Transformer (PRDiT), a scalable generative framework that synthe-
sizes high-quality 3D medical volumes directly at voxel-level. PRDIT introduces
a two-stage training architecture comprising 1) a local denoiser in the form of an
MLP-based blind estimator operating on overlapping 3D patches to separate low-
frequency structures efficiently, and 2) a global residual diffusion transformer em-
ploying memory-efficient attention to model and refine high-frequency residuals
across entire volumes. This coarse-to-fine modeling strategy simplifies optimiza-
tion, enhances training stability, and effectively preserves subtle structures without
the limitations of an autoencoder bottleneck. Extensive experiments conducted on
the LIDC-IDRI and RAD-ChestCT datasets demonstrate that PRDiT consistently
outperforms state-of-the-art models, such as HA-GAN, 3D LDM and WDM-3D,
achieving significantly lower 3D FID, MMD and Wasserstein distance scores.

1 INTRODUCTION

Synthesizing high-resolution 3D medical images, such as CT volumes, is crucial for supporting
various clinical applications, including diagnosis, segmentation, and anomaly detection. However,
existing generative models struggle to balance the fidelity of local details with global structural
coherence, and often suffer from computational inefficiency or insufficient representation of high-
frequency features. Such prior works are mainly categorized into GAN-based and Diffusion-based
methods. GAN-based approaches, such as HA-GAN (Sun et al., 2022), MM-GAN (Sun et al.| [2020)
and 3D-StyleGAN (Hong et al.|, 2021])), can effectively generate realistic local details. However, they
often suffer from mode collapse and training instability, and their substantial memory requirements
pose a significant challenge, particularly when processing high-resolution 3D volumes.

As a compelling alternative, diffusion-based models have recently demonstrated more stable train-
ing dynamics and higher image fidelity. Representative diffusion-based methods include the 3D-
DDPM (Dorjsembe et al., [2022)), latent diffusion models (LDM) (Khader et al.| 2023} [Pinaya et al.,
2022; [Rombach et al., 2022}, wavelet diffusion models (WDM-3D) (Friedrich et al., |2024) and
triplane diffusion models (Zhang et al., [2025). Nevertheless, current diffusion models often rely
on convolutional architectures like U-Net (Ronneberger et al.l |2015), which inherently limit their
capability to capture global context and long-range dependencies that are crucial for accurately syn-
thesizing coherent structures.

In the context of 3D medical imaging, these architectural limitations become even more pronounced.
Because the volume of a voxel feature map grows cubically with resolution, deploying a deep U-Net
directly on high-resolution 3D volumes not only incurs extremely high memory and compute costs,
but also typically requires compromise strategies such as patch-based processing, downsampling, or
latent-space compression using VAE (Kingma et al.||2013) or VQ-VAE (Van Den Oord et al.,[2017)
methods. However, patch-based methods and downsampling inherently restrict the effective recep-
tive field, compromising the model’s ability to capture global anatomical coherence and long-range
dependencies critical for clinical utility. In addition, methods relying on latent-space compression
often struggle to learn robust and representative features in the context of 3D medical imaging. The
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Figure 1: Overview of our Pixel-Level Residual Diffusion Transformer (PRDiT) model, composed
of a Local Denoiser and a Global Residual DiT. The given input volume X is first divided into
N 3D patches. Each patch is flattened and passed through the ‘local’ multilayer perceptron (MLP)
denoiser composed of Adaptive SwiGLU and Linear layers to provide local predictions X; and €;.
Complementing these ‘local’ predictions, the L layer Global Residual Diffusion Transformer (DiT)
module refines the overall prediction via residuals based on the global context. PE indicates the
positional encodings, which are only seen by the global residual DiT module.

limited availability of training samples makes it difficult to adequately optimize the latent encoders,
leading to poor reconstruction quality and the loss of critical anatomical details.

To address these limitations, we propose the Pixel-Level Residual Diffusion Transformer (PRDiT),
a scalable diffusion transformer framework specifically designed for high-resolution 3D medical
volume synthesis. PRDIT directly operates at the voxel level, bypassing the need for an autoen-
coder bottleneck, thus preserving essential details without compromising computational efficiency.
The core idea is a two-stage residual learning strategy: a lightweight MLP-based Local Denoiser
estimates coarse structures from overlapping 3D patches, and a Global Residual Diffusion Trans-
former with memory-efficient attention refines the remaining high-frequency residuals across the
entire volume. To overcome the challenge that naively scaling Transformers to higher resolutions
would increase the token count by 8 x and the attention cost by roughly 64 x when doubling the res-
olution, we further introduce a scaling strategy that reuses the pretrained low-resolution backbone.
Focusing on only learning the missing high-frequency refinement at the higher resolution enables
our model to perform high-resolution synthesis with minimal additional computational overhead.

The main contributions of this paper can be summarized as follows:

* We propose a two-stage diffusion transformer framework that directly synthesizes high-
resolution 3D medical volumes at voxel-level, eliminating the need for an autoencoder
bottleneck and thereby effectively preserving critical anatomical details.

* We demonstrate that using ‘hot’ diffusion sampling to introduce controlled stochasticity
during generation helps to improve sample diversity and reconstruction fidelity by balanc-
ing deterministic guidance with adaptive noise injection.

* We show that PRDIT scales efficiently to higher resolutions by reusing pretrained low-
resolution components, substantially reducing training cost compared to coventional train-
ing on higher resolution datasets.

* We demonstrate the scalability and effectiveness of our PRDiT model through extensive

experiments on the LIDC-IDRI (Armato III et al., 2011 and Rad-ChestCT (Draelos et al.

2020) datasets, achieving substantial improvements over state-of-the-art baselines across
multiple quantitative metrics including 3D FID, MMD, and Wasserstein distances.
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Figure 2: Detailed structure of our Local Denoiser module. The time embedding is used to modulate
the local predictions via adaptive layer normalization (Peebles & Xie, [2022).

2 RELATED WORK

Generative models have significantly advanced our ability to synthesize realistic medical images,
helping to alleviate data-scarcity and class-imbalance issues and improving the performance of
downstream tasks such as segmentation and diagnosis. Existing research has explored GAN-based
methods for generating 3D medical images. [Kwon et al.| (2019) combine an auto-encoder with a
GAN model to generate 3D brain MRI samples, while Hong et al.|(2021) tackle this problem by ex-
tending StyleGAN?2 (Karras et al., 2020). HA-GAN (Sun et al.}[2022)) instead employs a hierarchical
patch-based generator and discriminator to produce high-resolution 3D medical images.

Despite the promising works, GAN-based models still suffer from a range of issues including mode
collapse, substantial memory requirements and low generation quality. Consequently, recent re-
search has increasingly focused on diffusion models as a promising alternative, due to their increased
training stability and higher fidelity in generated samples. 3D-DDPM (Dorjsembe et al.l [2022)
introduce denoising diffusion probabilistic models tailored for 3D medical data to generate high-
resolution brain MRI scans. However, building diffusion models directly on 3D medical data incurs
significant computational and memory costs, limiting scalability to high-resolution volumes. Fol-
lowing this, several new models propose corresponding improvements. Medicaldiffusion (Khader
et al.,|2023)) combines a VQ-GAN-based latent space with a denoising diffusion probabilistic model
to achieve high-quality synthesis of multi-modal 3D medical images, effectively enhancing the clar-
ity and diversity of the generated images. Wavelet Diffusion Model (WDM) (Friedrich et al., [2024)
improves efficiency by applying diffusion to wavelet-decomposed images, enabling high-resolution
synthesis with reduced memory demands. TCAM-Diff (Zhang et al.||2025) incorporates a triplane-
aware cross-attention mechanism that efficiently generates high-resolution 3D medical images while
significantly reducing memory usage. However, all these models are based on U-Net architec-
tures (Ronneberger et al., [2015), and excel at capturing local features but are limited in modeling
crucial long-range dependencies.

To address this limitation in 2D tasks, Diffusion Transformer (DiT) (Peebles & Xiel 2022) mod-
els have recently been proposed, replacing convolutional patch embedders with Transformer blocks
to better capture global context and long-range dependencies in image generation. DiT has demon-
strated state-of-the-art performance in 2D image synthesis and has also shown promise when adapted
to sparse 3D settings such as voxelized point clouds (Mo et al., 2023). However, despite these ad-
vances, we found that DiT still encounters substantial challenges in dense 3D scenarios, including
unstable training behavior and optimization difficulties, in addition to the high computational cost
required for scaling. Motivated by this, our work introduces a Residual Diffusion Transformer that
decomposes the generation process into two stages: a lightweight MLP-based local denoiser operat-
ing on 3D patches, followed by a Transformer module that models and refines the global residuals.
This two-stage design effectively balances computational efficiency with enhanced capability to
capture both fine local details and global structural information, enabling scalable and high-fidelity
synthesis of high-resolution 3D medical volumes.

3 ScCALABLE 3D CT VOLUME GENERATION WITH PRDIT

When processing high-resolution 3D medical images, training a Transformer-based diffusion model
to capture both low- and high-frequency components can quickly become prohibitively expensive
and time-consuming. To overcome this challenge, we introduce our Pixel-Level Residual Diffusion
Transformer (PRDIT) in this section. As illustrated in Figure[I] PRDiT decomposes the 3D diffusion
process into two distinct branches: a Local Denoiser and a Global Residual DiT model. The local
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denoiser estimates the ‘local’ content of each 3D patch independently to provide a prior estimate of
both signal and noise of the 3D volume purely based on within-patch information, and is described
in detail in Section[3.1] The residual diffusion Transformer’s job is then to compute a refinement to
these predictions by leveraging its global receptive field to correct any remaining errors across patch
boundaries, as detailed in Section We detail our predictor-corrector diffusion sampling method
in Section [3.3] before introducing an efficient way to scale our 3D generative architecture to higher
resolutions with only minimal computational overhead in Section [3.4]

3.1 THE LoCAL DENOISER

Given an input volume X € REXH>XWXD "ywe extract N volumetric patches {x; € RO*P*PxPIN
using a sliding window of size p and stride s < p to allow overlap between neighboring patches.
This ensures that adjacent patches share contextual information at their borders, which we found
to improve continuity in the reconstructed volume and helps to mitigate boundary artifacts (see
Table . Each patch is then vectorized (i.e., flattened) to v; = vec(x;) € R4, with d = C x p3.

Following the forward diffusion process proposed by [Zhang et al.| (2023), we sample a timestep

t € {1,...,T} and compute the noisy input volume at this timestep as
4 t
vl = cos(fg)vi + sin(Tg)ei, with €; ~ N(0,1). (1)

At each diffusion timestep ¢, we first compute a base embedding ¢ = TimeEmbed(t) € R" which
is shared between both branches to facilitate consistent temporal conditioning. We project ¢ into a
branch-specific time embedding for the local branch as ¢joca1 € R? using a linear layer, and pass
it to the AdaLN-modulation network (Peebles & Xiel [2022) to produce the LayerNorm’s shift/scale
parameters (71, 31,2, 32). As illustrated in Figure these parameters allow our denoiser to adapt
its processing of the volumetric patches based on the provided timestep for both refinement steps

z1 = SwiGLU(y; ® LayerNorm(v}) + B31)
z9 = SwiGLU (’)/2 ©® LayerNorm(z1) + ,82),

which yields, after a residual skip connection z = 25 + v! followed by a linear projection and

2

reshaping, the predictions of the denoised input patch &; € RE*5” as well as the noise € € ROxs®,
Note that the reshaped outputs do no longer overlap but provide estimates at the exact same di-
mensions as the input image and noise — aligning our Local Denoiser’s output predictions with the
standard diffusion objective of jointly estimating clean signal and noise.

We train the denoiser by minimizing the per-patch loss
Lioeat = Ei[l13; — will3 + 1€ — el 3

to ensure we efficiently capture the local structure of each patch and accurately estimate its noise.
At inference time, the denoised patch predictions {#;}"V together with the corresponding noise
estimates {€;}"V are reassembled to provide a prior estimate of the entire input volume’s signal
and noise. This allows our Global Residual Diffusion Transformer, which will be described in the
following, to focus exclusively on correcting the outputs via ‘global’ residuals {x; — &;}'V, thereby
reducing overall learning complexity and training time.

3.2 THE GLOBAL RESIDUAL DIFFUSION TRANSFORMER

Complementing the Local Denoiser, which processes each volume-patch independently without any
global information, our Global Residual Diffusion Transformer component leverages the ‘global’
full-volume context by jointly attending to all patch embeddings through multi-head self-attention.
Following the original 2D DiT (Peebles & Xie, 2022)), our model inherits the scalable nature of
Diffusion Transformers, meaning it can enhance generation quality at increased computational re-
sources by adjusting the Transformer’s depth, width, or patch size, without necessitating network
redesign. This adaptability supports diverse resolutions and volumes of medical data.

We freeze the Local Denoiser and train our global component to produce residuals that refine the
local predictions (see Figure[I)) using the same per-patch diffusion loss

Leiobal = Ei[||@; — ;|5 + ||& — €3], 4)
now with &; = &; + A&; denoting the refined patch and €; = €; + A€, the refined noise.
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3.3 IMPROVING SAMPLE QUALITY VIA PREDICTOR-CORRECTOR DIFFUSION SAMPLING

During inference, PRDIT generates 3D CT volumes using a modified reverse-diffusion sampling
method derived from the deterministic (‘cold’) gradient-update scheme in (Zhang et al.| |2023). Our
approach reformulates their gradient-based generative path into distinct cold predictor and hot cor-
rector steps: predicting k steps forward before correcting by k£ — 1 backwards steps. We found this
to significantly improve both stability and generative quality (see ablations Section [.4).

Concretely, given a diffusion schedule with 7' timesteps, the predictor step advances k timesteps
forward by iteratively applying gradient updates:

T =x; — k- V(cos(ﬂt):io + sin(ﬁt)é), kE>1, (5)

with g; = %g, and &, and € are the estimated clean volume and noise component predicted by
the model. When k = 1, this procedure reduces to the standard single-step gradient update used
in conventional cold diffusion sampling. For £ > 1, the method becomes a hot diffusion process,

introducing multiple forward gradient steps per update to increase the level of stochastic exploration.

Following the k-step predictor stage, we perform a correction through £ — 1 backward diffusion
steps to reintroduce controlled noise and refine the sample as

_ (kN2 s . k) cos(Bi—1)
=T k1= (T th T3% .= =20/ 6
Tt i Pkt (L)€, wi t cos(Bt—x) ©

and where € ~ N(0, I) is newly injected random noise. This predictor—corrector scheme balances
deterministic guidance (cold predictor) with adaptive stochasticity (hot corrector), enabling PRDiT
to better preserve fine structures while maintaining global coherence in the generated volumes.

3.4 EFFICIENTLY GENERATING 3D VOLUMES AT HIGHER RESOLUTIONS

Training Diffusion Transformers from scratch at high resolutions like 256 is impractical under
typical GPU budgets: moving from 1282 to 256 increases the voxel/token count by 8x, and the
quadratic cost of self-attention raises memory/compute by roughly 64 x. In practice this forces tiny
batch sizes, triggers frequent out-of-memory failures, and destabilizes optimization, which makes
the end-to-end high-resolution training inefficient and brittle (and often infeasible). To mitigate
this, we construct a high-resolution generator that reuses our already-trained low-resolution model.
As illustrated in Figure [3] we train only an additional high-resolution residual refinement module,
which operates locally on individual volume patches and focuses on recovering the missing high-
frequency details. Given a high-resolution noisy input volume X", we first downsample it to the
lower resolution, apply the trained low-resolution model, and then upsample the prediction back to
high resolution. This yields our initial ‘rough’ estimates for both signal and noise to be refined.

A key design choice is the use of nearest downsampling. Unlike smoother methods such as tri-
linear interpolation, nearest downsampling avoids averaging pixel values, which would otherwise
attenuate high-frequency noise and reduce the signal’s overall energy. Preserving this energy is es-
sential to maintain the noise statistics expected by the pretrained low-resolution model, ensuring the
downsampled input aligns with the model’s training distribution and thereby avoiding mismatches
during denoising. For the upsampling step, we apply trilinear interpolation to the predicted clean
low-resolution image X, o} to obtain X o, as this smoother interpolation better preserves structural
continuity and reduces artifacts in the anatomical features, yielding a more natural high-resolution
initialization. Since the noise is inherently stochastic and discontinuous, we apply nearest upsam-
pling to the predicted noise €® to obtain €™®, ensuring its energy level is preserved.

To recover details lost during down- and upsampling, we introduce a high-resolution residual re-
finement module based our previously-introduced Local Denoiser design (Figure [2). This module
refines the upsampled signal and noise estimates from the low-resolution component using the set
of noisy input volume-patches and information about the current time step as shown in Figure [3]
We keep the already-trained low-resolution model frozen and train only the refinement module at
high resolution, which helps it focus its capacity on fine structures rather than relearning global
anatomy. Our training uses the standard signal-and-noise estimation objective on high-resolution
patches (Equation (3)), augmented with a low-frequency consistency term that encourages the down-
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Figure 3: High-resolution PRDiT12°¢ model utilizing the lower resolution pretrained PRDiT;os.

sampled high-resolution predictions to match the low-resolution outputs. We found this simple con-
straint to help keeping large-scale appearance stable while allowing the residual module to allocate
its capacity to high-frequency detail.

Unlike cascaded super-resolution methods that typically modify only the final sample and often
disrupt the low-frequency structure learned during diffusion, our approach integrates the high-
resolution residual refinement module directly within the sampling loop. At each step, we down-
sample the current state to query the low-resolution model, upsample its estimate, and immediately
refine high-frequency details before proceeding. This in-loop strategy yields sharp textures, reduces
edge artifacts and promotes more stable detail formation throughout the diffusion process.

4 EXPERIMENTS

We start with a brief overview of the datasets, related baselines and metrics that are used for evalua-
tion. We then present a number of qualitative and quantitative insights to demonstrate our approach’s
advantages in unconditional volume synthesis over related methods. Implementation details are pro-
vided in Appendix [A.9] and additional experimental results can be found in Appendix[A.T1]

Datasets. We evaluate the performance of our model on two publicly available 3D medical imaging
datasets: LIDC-IDRI (Armato III et al., [2011)) and Rad-ChestCT (Draelos et al.,[2020). LIDC-IDRI
contains 1,018 thoracic CT scans with annotations of lung nodules from multiple expert radiologists.
The scans exhibit varied resolutions and patient anatomies. For preprocessing, we clip the intensity
values to the lung window range, resample all volumes to an isotropic voxel spacing of 1 mm, and
crop or pad them to a uniform size of 256 x 256 x 256. For experiments involving lower resolutions,
volumes are downsampled via average pooling, then normalized to [—1, 1]. Rad-ChestCT includes
3,630 chest CT scans from 1,800 adult patients, representing approximately 10% of the full dataset,
which contains 35,747 scans from 19,661 patients. The dataset encompasses a broad spectrum
of thoracic diseases and anatomical variations. We center-crop to a fixed field of view, resize to
256 x 256 % 256, optionally downsample, and normalize to [—1, 1] for consistency with LIDC-IDRL

Baseline Models. We contrast our PRDIiT to three recently published 3D medical image generation
models. WDM-3D (Friedrich et al., [2024)), a diffusion model that decomposes each 3D volume into
multi-resolution subbands via discrete wavelet transforms, denoises each subband with a 3D U-Net,
and then reconstructs the full volume with an inverse wavelet transform. 3D LDM (Khader et al.}
2023)), a latent diffusion model that employs a VQ-GAN encoder to map volumes into a compact
latent space, performs diffusion in that latent space and reconstructs volumes with a matching 3D
convolutional decoder. HA-GAN (Sun et al.,[2022) in contrast uses a hierarchical GAN whose gen-
erator comprises a low-resolution “global” and a high-resolution “local” 3D convolutional network,
each guided by multi-scale discriminators on corresponding sub-volumes.

Evaluation Metrics. We evaluate unconditional generative quality using the 3D Fréchet Inception
Distance (FID), Maximum Mean Discrepancy (MMD) (Gretton et al.,|2012;/Sun et al.,|2022)) and the
pairwise Wasserstein distance using WGAN (Arjovsky et al., [2017; [Zhang et al.| 2025)). Following
common practice, we extract volumetric embeddings from both real and generated CT volumes
using a pretrained Med3D encoder (Chen et al.,[2019)), then quantify their distributional discrepancy
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by fitting multivariate Gaussians and computing the 3D FID as well as by applying an RBF-kernel
MMD (Gretton et all, 2012)) in the same feature space. Lower 3D FID and MMD values indicate
that the generated feature distribution more closely matches the real distribution. The Wasserstein
distance is obtained by comparing the WGAN critic’s scores on generated samples against those on
real data, following the evaluation approach of Zhang et al.| (2025). A lower Wasserstein distance
indicates that the critic assigns similar scores to generated and real volumes, implying the generated
distribution closely matches the true data distribution and thus higher sample fidelity. We perform
pairwise comparisons to one ‘anchor’ model. See Appendix [A.9.3|for additional details.

4.1 CONTRASTING PRDIT TO THE STATE-OF-THE-ART

To demonstrate the performance of our PRDiT, we compare three model variants (4 layers, 8 layers
and 12 layers) against the baselines HA-GAN (Sun et al, [2022), 3D-LDM (Khader et al., 2023)
and WDM-3D on both LIDC-IDRI (Armato IIT et al., 2011) and RAD-
ChestCT (Draelos et al.l 2020) and report the results in Table [Tl Our smallest 4 layer PRDiT-4L
variant already achieves lower 3D FID and MMD scores than its competitors across both datasets,
outperforming them across all metrics despite its shallow depth. Increasing PRDiT’s depth to 8
and 12 layers yields consistent improvements in generative quality and demonstrates the scalability
of our approach; albeit at increased computational cost. Note, however, that all PRDiT variants
reuse the same Local Denoiser module which only has to be trained once, effectively reducing the
computational overhead and training time when scaling our architecture to greater depths.

Following |[Zhang et al.| (2023), we additionally report the pairwise W-Scores with our PRDiT-12L
as the ‘reference’ model. This score effectively quantifies the ratio between the distances of each
model’s distribution of generated samples to that of the real data (see Appendix [A29.3). A score
of ‘1.0” indicates equal generative quality between two models, while values greater than 1 reflect
degraded performance relative to the reference - reaffirming the quality of even our 4-layer model.

4.2 COMPARING PERCEIVED IMAGE QUALITY — SAGITTAL SLICES

Figure 5] shows sagittal slices from each generative method
alongside real CT scans, providing a qualitative com-
parison between our PRDiT model and its competitors.
HA-GAN notably blurs bone contours
and introduces unnatural texture artifacts throughout the
volume. 3D-LDM (Khader et al2023)) in contrast demon-
strates clearer structural details and reduced noise, however
still suffers from insufficient anatomical detail and streak-
like artifacts. WDM-3D (Friedrich et al [2024) further im-
proves clarity and reduces overall artifacts, but continues ; e
to exhibit noticeable blocky noise and unclear bone bound- RealData  4-LayerModel E-LayerModel  12-Layer Model
aries. Our residual DiT model substantially addresses these Figure 4: Variation of image quality
shortcomings by delivering sharper bone edges, smoother . s different depths of PRDIT.

Table 1: Comparison of unconditional 3D generative methods on LIDC-IDRI (Armato III et al.
2011) and RAD-ChestCT (Draelos et al., [2020), evaluated on volumes of size 1283. FID values are

scaled by 10. Reported are mean = std over three seeds. Pairwise W-Score (ratio) is computed
using a trained WGAN-GP critic against PRDiT-12L as reference. See Appendix@ for details.

LIDC-IDRI RAD-ChestCT
Model FID | MMD | W-Score | FID | MMD | W-Score |
HA-GAN 3264027 0.2071+0004 5424146 3.924038 0.1834+0015 2.48+0.14
3D-LDM 7.62+021 0.3458 +£0006 2.62+028 4.144074 0.228+0017 2.87+036
WDM-3D 3.67+038 0.1885+0017 1314026 4.114+058 0.2134+0.039 1.27+0.11

PRDiT-4L (ours) 2.04+018 0.18524+0009 1.23+008 1.92+028 0.169+0010 1.2140.04
PRDIiT-8L (ours) 1.86+0.12 0.1650+0.011 1.144+0.13 1.62+007 0.149+0010 1.0240.02
PRDiT-12L (ours) 1.41+0.17 0.1501+0.010 1.00 1.45+021  0.159 £0.007 1.00
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Figure 5: Qualitative comparison of unconditional 3D generative methods on the LIDC-IDRI @
mato III et al} 2011) and Rad-ChestCT (Draelos et al, 2020). From top to bottom, the
rows correspond to (1) HA-GAN (Sun et al., 2022), (2) 3D-LDM (Khader et al., 2023), (3)
WDM-3D (Friedrich et al [2024), (4) our method, and (5) real medical data. Our approach bet-
ter preserves fine anatomical details such as vertebral bone edges and organ boundaries while sup-
pressing spurious artifacts compared to prior models. Additional examples are provided in Ap-
pendix @ Note: Images are independently generated, and cannot be compared column-wise.

and more consistent organ boundaries, and clearer anatomical details. These improvements high-
light our method’s capability to more accurately reconstruct subtle features present in real medical
scans. In addition, increasing model depth yields progressively sharper cortical bone edges, clearer
bronchial walls and vessel bifurcations, and smoother soft—tissue boundaries (Figure[). These qual-
itative gains align with the results in Table[T] which show a consistent decrease in FID and MMD as
depth increases.

4.3 EFFICIENTLY SCALING UP TO HIGHER RESOLUTIONS

We contrast our efficient high-resolution PRDIiT Table 2: Results on LIDC-IDRI at 256° res-
against its competitors using the LIDC-IDRI (Ar-| olution. GPU-hours reported on an A100.
Imato IIT et al| 2011) dataset at 256° resolution. FID values are scaled by 103 (as is usual).

As the results in Table 2 show, our PRDiT-4L.1256

Model FID MMD Traini
clearly outperforms the other methods on both FID Zd:}A 3 9: o y rla;gl:}g CESt
o . : . HA-GAN . 2237 PUI
and MMD while incurring substantially lower train: AD.LDM 0OM  OOM

ing costs. While training 3D-LDM proved infeasible  wppz.3p 560 02590  120GPUh
in our setup due to memory constraints, WDM-3D
exhibited pronounced sensitivity to random seeds.
While most seeds yield high-quality samples, a small fraction of severely degraded outputs dis-

PRDIiT-4L12%6 228  0.1370 36 GPUh
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proportionately inflates FID/MMD, resulting in high variance and reduced evaluation robustness.
Generated images of all methods are provided in Appendix|A.11.3|for visual inspection.

To efficiently validate the quality our high- Table 3: Comparison of high-resolution training
resolution upsampling strategy against expen-  strategies on LIDC-IDRI. FID scaled by 10°.
sive from-scratch training, we additionally train
a PRDIiT model at 64 and upgrade to 128  Method FID| MMD,  Training Cost
using our proposed high-resolution upsampling ~ prp; gich 204  0.1853 80 GPUh
methodology, and compare its results to the . 128

PRDIT m(;ggel trained gom scratch on 1283, PRDIToa T 289 0189 12 GPUR
While training from scratch does indeed lead
to slightly improved performance across FID and MMD, our efficient variant is more than 6 times
faster in training — providing a convincing tradeoff in terms of quality-to-compute (Table [3).

4.4 ABLATION EXPERIMENTS

Contributions of Individual Table 4: Ablation using our 4-layer variant PRDiT-4L on the LIDC-
Design Choices. We con- IDRI dataset. FID values are scaled by 103. (left) Contribution of
duct ablation experiments on the individual components. (right) Varying the predictor steps k.

the LIDC-IDRI (Armato TIIT

ot all P0TT) dataset us- Model variant FID| MMDJ| k  FID| MMDJ]
ing our PRDiT-4L model to  Full model 2.04 0.1853 1 8.889 0.3490
assess the contributions of  w/o overlap 327  0.2304 2 2173 0.1849
our design choices.  Ta-  w/olocal denoiser 3.10 02174 3 3112 02112
ble [](left) shows that re-  wj/o global DiT 41.92 0.7795 4 4184 0.2425

moving the overlap between
patches significantly worsens 3D FID and MMD scores due to boundary inconsistencies. Training
our model without the Local Denoiser (i.e., DiT-only) also markedly reduces the performance —
whereas using only the local component without any global refinement leads to the worst results.

Hot-vs-Cold Diffusion. We evaluate the effect of varying the predictor step k of our PRDiT-4L
variant model using the LIDC-IDRI (Armato IIT et al., 2011)) dataset. The results in Table f](right)
demonstrate that the transition from ‘cold’ (k = 1) to ‘hot’ (k > 1) significantly enhances generative
output performance, with k& = 2 achieving the best results in this setup. Note that the number of steps
is technically not limited to integers, and future work might explore whether further optimization
along this axis might yield even greater quality improvements.

Inference times. To further assess PRDiT’s suitability for practical, time-sensitive applications,
we compare its inference speed against three competing models. All inference times are measured
with a batch size of 1 on an A100 GPU at resolution 1283, with detailed results presented in Ap-
pendix [A.7] It is worth noting that, due to its GAN-based architecture and non-iterative, single-pass
image generation, HA-GAN (Sun et al.| [2022) is by far the fastest, with an average inference time
of just 0.01s. Among the diffusion-based approaches, all PRDiT variants run markedly faster than
the competitors, with inference times ranging from 11.5s (4L) to 21.9s (12L), compared to 26.1s for
3D-LDM (Khader et al.,[2023)) and 34.6s for WDM-3D (Friedrich et al., [2024]).

5 CONCLUSION

In this paper, we have presented PRDIT — a novel and scalable residual Diffusion Transformer model
which efficiently solves the 3D CT Volume generation task via two dedicated branches and a two-
stage training strategy, consisting of: a Local Denoiser and a Global Residual Transformer. By
decoupling the task of modeling coarse local details and refining high-frequency global residuals,
PRDIT effectively reduces computational overhead. Extensive evaluations on LIDC-IDRI and Rad-
ChestCT datasets demonstrate that our method achieves superior generative performance compared
to state-of-the-art methods such as HA-GAN, 3D LDM and WDM-3D, consistently producing lower
3D FID, MMD, and Wasserstein distances. Our experiments further validate the model’s scalability,
illustrating consistent performance improvements with increasing transformer depth. These results
highlight PRDiT’s potential as a powerful and efficient method for synthesizing high-resolution 3D
medical volumes, with promising applicability to various clinical and diagnostic scenarios.
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6 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. We
explain all datasets, data preprocessing, baseline models, evaluation metrics, and training details
used in our method in experimental section. To support reproducibility, we include detailed archi-
tecture introduction in Figure [TI2]3] which fully describe the design. In addition, the experimental
setup, including training steps, model configurations, and hardware details, is described in detail in
Appendix @} Additionally, 3D medical CT datasets, such as LIDC-IDRI and Rad-ChestCT, are
publicly available, ensuring consistent and reproducible evaluation results. Besides, the code will be
released publicly upon acceptance.
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A APPENDIX

A.1 LLM USAGE

In this paper, Large Language Models (LLMs) were utilized as a general-purpose assist tool to aid
and polish the writing process. We used the LLM to refine language and improve clarity across the
Introduction, Related Work and Conclusion sections.

A.2 HALLUCINATION RISKS AND POTENTIAL MISUSE

In the context of this work, ‘hallucination” would refer to anatomically implausible or extremely
rare structures that lie far outside the training distribution.

From a technical angle, we monitor this risk partly via the W-score metric: if the model frequently
produced unrealistic volumes, the WGAN critic would assign larger distances between real and
generated samples, and the W-score would deteriorate. In practice, our W-scores remain close to
those of real data, which suggests that severe hallucinations are uncommon in our experiments.

That said, we want to emphasize that we do not position PRDIT as a tool for direct clinical decision-
making. Synthetic CT volumes should be used only for research, simulation, or carefully controlled
data augmentation, and always under expert supervision. Any downstream clinical application must
rely on appropriate validation on real patient data and the involvement of qualified radiologists.

A.3 LIMITATIONS AND FUTURE WORK

Our current implementation is constructed upon a simple linear mapping, including patch embed-
dings, which we treat as the base structure. While effective, this design may limit the model’s ability
to capture complex local spatial correlations. A natural extension would be to incorporate convolu-
tional neural networks (CNNGs) for feature extraction, which could enhance representational richness
and further improve generative quality. We leave this direction as an important opportunity for future
exploration.

PRDIT inherits the high training cost of Transformer-based models, especially in handling full-
volume 3D attention. Future work might explore 3D-specific optimizations, such as linear or win-
dowed attention, to reduce computational demands. We also plan to extend PRDIT to conditional
generation tasks, enabling guidance from segmentation masks or sparse inputs for broader clinical
applications.

It is important to point out that there generally exists no voxel-wise ‘ground truth’ for novel
unconditionally-generated volumes. This means that downstream segmentation or detection studies
would require dense, expert annotations for both real and synthetic CT volumes, which are expensive
and therefore unfortunately beyond the scope and resources of this work.

The objective of this paper is to make high-fidelity unconditional 3D CT generation feasible at
scale and to rigorously evaluate distributional fidelity. We therefore (i) do not claim that immediate
clinical deployment of our method or similar methods of this kind are feasible, and (ii) want to point
out that such downstream and clinical evaluations are outside the scope of the present paper, and
we have to leave a systematic study of using our model for downstream segmentation/detection and
assessing its clinical impact as future work.

A.4 CHARACTERISTICS OF THE TRAINING DATASETS

In this section, we explain why some of the generated CT outputs appear to contain black ‘voids’ in
the parts of the images, like the lower-left region within Figure[5} Careful inspection of the original
datasets shows that these dark ‘void’ regions actually correspond to naturally occurring low-density
air cavities that are also present in the real data, rather than artifacts introduced by the hot-diffusion
sampler or hallucination issues, as illustrated in Figure[f] In addition, following standard practice in
prior works, our pre-processing clamps HU values to a fixed window, which further accentuates such
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air regions as dark areas in both real and generated scans. For easier debugging and later verification,
we additionally overlay the case IDs from the LIDC-IDRI dataset onto the images.

Figure 6: Ground truth CT samples from LIDC-IDRI (left) and Rad-ChestCT (right). Red boxes
highlight naturally occurring low-density air cavities, showing that similar dark void regions are
also present in the real data.

A.5 THE LOCAL DENOISER

This section provides additional details for the local denoiser module. When processing high-
resolution 3D medical images, training diffusion models with Transformers to capture both low-
and high-frequency components is prohibitively expensive and time-consuming. As illustrated in
Figure [I] we therefore decompose the learning process into two stages: a local denoiser estimates
the content of each 3D patch locally (see Figure[2), and a diffusion model with Transformers focuses
exclusively correcting these via global residuals.

Concretely, given an input volume
CxHXWxD
X e REXHXWxY

we extract N cubic patches
{wi c RCXpoXp}ﬁil

using a sliding window of size p and stride s < p to allow overlap between neighboring patches,
which ensures that adjacent patches share contextual information at their borders to improve conti-
nuity in the reconstructed volume and mitigate boundary artifacts. Each patch is vectorized as

v; = vec(x;) €RY,  d=C x p°.

To follow the forward diffusion process (Zhang et al.;2023)), we sample a timestep ¢ € {1,...,T}
and compute

tmw tm
t , ; , o
v; = cos( 2)1;z + sm(TQ)eZ, € ~N(0,1I).

Given a diffusion timestep ¢, we first compute a shared base embedding

c = TimeEmbed(t) € R".
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We then project c into a stage-specific time embedding for the local stage
Clocal = We e + bc S Rda

and feed cjocq) into the AdaLLN modulation network to produce the LayerNorm shift/scale parame-
ters
(71: 81,72, B2) = AdaLN(cioca) € R*.

In the global residual stage, we similarly compute
Cfine = ch+bf € Rha

and use cqpe Within each AdaLN layer of the DiT blocks, ensuring consistent temporal conditioning
across both modules.

The signal is then refined via two SwiGLU-MLP blocks
z1 = SwiGLU ('71 ® LayerNorm(vf) + ,81),
2o = SwiGLU (’yz ©® LayerNorm(z1) + ,62),
and added residually as z = 2z + v;. A final linear projection produces
[0i, €] = Whnai(z) € R?*? %, é € RY,
which is reshaped back to €; € RCE*s” Here ¥; is the denoised patch and €; is the predicted noise,

which aligns our MLP’s outputs with the standard diffusion objective of jointly estimating clean
signal and noise.

We train the denoiser by minimizing the per-patch loss
£ =Ei|llg - @il + 1€ - ellF],

ensuring efficient capture of local patche structure and accurate noise estimation. At inference, the
denoised and overlapping patches {%;}*V are passed to the Residual Diffusion Transformer, which
focuses exclusively on correcting the predictions via global residuals {x; — @;}, thereby reducing
overall learning complexity and training time.

A.6 PREDICTOR-CORRECTOR SAMPLING

This section provides more detail on our sampling scheme introduced in Section[3.3] and shows how
it differs from previous standard ancestral or ’'DDIM’ samplers.

A.6.1 ALGORITHMIC DESCRIPTION

Algorithm [T]defines the predictor-corrector sampling method to provide further detailed explanation
of our sampling scheme introduced in Section 3.3}

A.6.2 QUALITATIVE INSIGHTS FOR VARYING k

To provide further insight in addition to the quantitative analysis of varying % in the main paper,
we provide qualitative results across different k values across axial, coronal, and sagittal views in

Figures 73|}

A.6.3 RELATIONSHIP TO CONVENTIONAL 'HOT’ DIFFUSION SAMPLING

In this section, we outline how our sampling procedure differs from standard ancestral or "'DDIM’
samplers: it is tailored to the cosine-sine schedule (Zhang et al.,2023)) and lets us inject a controlled
amount of extra stochasticity per step, which we show empirically improves FID/MMD over both
deterministic sampling (k = 1, Table[d main paper) as well as previous methods (following).

The conventional ancestral "hot’ sampler performs a single stochastic update from z; to z;_; using
only the predicted noise €. Our sampler can be viewed as a predictor-corrector variant of this ances-
tral sampler: instead of one stochastic step, we take k£ deterministic denoising sub—steps followed
by k — 1 stochastic correction steps, which lets us inject a stronger but controllable amount of noise
per outer step.

14
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Algorithm 1: Predictor—Corrector Sampling

Input: Initial sample zp € REXCxDxHxW.

Timestep schedule (t)f_, with0=tq < --- <t =T;

Diffusion model fy with fo(z,t) := (e, 2¢);

Predictor step multiplier p > 1.

Output: Sample sequence X' = (x;,)%_, and predictions Xy = (#£)F_,

Initialize: X' <— {xr}, define angle map 6(t) < 5 . for (=L, L —1,...,1do

tty, tti1, At—t—t,

x; < last element of X

925 < Q(t), Ot/ < Q(t’),

// Model prediction at time t

(6,5, @8) < fg($t7 t),

// Gradient direction in the cosine plane

gt < sin(0;) & — cos(6y) €3

// Predictor: p-step gradient jump in time

tored +— t — D At;

gpred — e(tpred);

A < Oprea — 043

T 4 ¢ — A6 Jt;

// Corrector: exact Gaussian transition from fyreq tO t
cos(fy)
c0S(0prea)’

o +—V1-—a?

Sample z ~ N(0, I') with shape(z) = shape(z);

Ty — T+ oz

Append x4 to X.

return)eo,X.
k=1
k=2
k=3
k=4

Figure 7: Qualitative comparison: axial view of generated chest CT samples for different k values
in LIDC-IDRI dataset.

Settings. Our model in the main paper is trained to jointly predict the clean image xo and the
noise €, whereas the conventional hot sampler only relies on e. For a fair comparison, we therefore
refactor our generation process so that it also depends solely on the predicted noise. In this way, we
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Figure 8: Qualitative comparison: coronal view of generated chest CT samples for different k values
in LIDC-IDRI dataset.

Figure 9: Qualitative comparison: sagittal view of generated chest CT samples for different & values
in LIDC-IDRI dataset.

get the Z( through

R 2 — /1 — aveq(ae,t)
To(we,t) = ;

NG

which exactly follows the method from conventional sampler. The conventional sampling method is

defined as
i1 = /1 20(w,t) + /1 — a1 — o2 ep(z,t) +0v 2 @)

where z ~ N(0,1),0, = \/II_O‘—;:H /1 — 2, ag = cos(By), V1 —ay = sin(B), which is

same sampling method used in DDPM or DDIM (setting n = 1).

Recalling Equations[3]and[6] our sampling method results in

2y =T® (:ct k- v(@afo(xt,t) FVIo ate(;(act,t))) /1= (W) @)

with ng) = \/:V‘;z:;, where k = {1,2, ..}, and k is not restricted to integer values.
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k FID] MMD,|
1 (cold sampling) 7.031 0.7285
2 6.132  0.6023
25 5950 0.5893
3 5736 0.5699
35 5718 0.5682
4 6.960 0.6273

Conventional (hot diffusion) 6.456 0.6100

Table 5: Ablation experiments: quantitative comparison on the number of predictor-corrector sub-
steps k in our modified noise-only sampler on LIDC-IDRI, compared to the conventional hot-
diffusion sampler. FID is reported as 10%.

Experiments. To clearly highlight the differences between our proposed hot-diffusion sampling
method and the conventional sampler, we provide both qualitative (Figure[I0) and quantitative (Ta-
ble [5) comparisons of their respective generation quality. The results show that our hot diffusion
(e.g. k = 3) achieves better FID/MMD than both the deterministic case (k¥ = 1) and the conven-
tional hot-diffusion sampler, indicating that our proposed modified stochastic schedule is genuinely
beneficial rather than just a reparameterization of the standard sampler.

Classic

k=1
k=2
k=25
k=3 1
N
&
- 4
1\; 4 ,4‘ §
k=35 b b
& 4

Fow

=
I
S
—_—
~~eronid 15
L T -

Figure 10: Ablation experiments: qualitative comparison on the number of predictor-corrector
sub-steps K in our modified noise-only sampler on LIDC-IDRI, compared to the conventional hot-
diffusion sampler (classic in row 1).

A.7 INFERENCE TIME

We quantify inference speed in Table [6] by measuring sampling time across three baseline models
and our three variant models. All timings are reported as the mean of 10 runs with a batch size of 1.
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Table 6: Inference sampling time per sample (seconds) with a batch size of 1 on an A100 GPU.
Reported are mean =+ std over 10 runs.

Method Mean (s) Std (s)

HA-GAN (Sun et al., [2022) 0.01020  0.00139
3D-LDM (Khader et al.,[2023) 26.0518  0.1009
WDM-3D (Friedrich et al.,[2024)  34.6328 0.5915

PRDiT-4L (ours) 11.4590  1.1665
PRDiT-8L (ours) 18.3414  0.7329
PRDiT-12L (ours) 21.9311  0.8646

A.8 HIGH RESOLUTION MODELS ARCHITECTURE

The architectural structure of our high-resolution 3D CT image generation approach is provided in
the body of the main paper in Figure [3] In this section, we additionally provide insights on the
difference in image quality between our efficient high-resolution variant and expensive from-scratch
training of PRDIT directly on higher-resolution images. Results are provided in Table[7/and demon-
strate that while training from scratch does indeed lead to slightly improved performance across FID
and MMD, our efficient variant is close to 7 times faster in training, providing a convincing tradeoff
in terms of quality—to—compute.

Table 7: Ablation experiments: Comparison of high-resolution training strategies on LIDC-IDRI.
We report a model trained directly at 1283 (Scratch) versus our progressive strategy that reuses a
pretrained 643 model and extends it to 1283 (Pretrained Low-to-High). FID is reported as 103.

Method FID| MMDJ Training Cost

PRDIiT{&" 204 0.1853 80 GPUh
PRDiTes 2% 2.89  0.1893 12 GPUh

In our high-resolution PRDiT12%% model experiments, we freeze the entire low-resolution back-
bone, which includes both Local Denoiser and the Global Residual DiT modules, and only train a
lightweight high-resolution refinement module. We made this choice on purpose: fine-tuning the
full backbone at 256 would be very memory- and compute-heavy, while the refinement module
can concentrate on adding the missing high-frequency details on top of a already well-trained low-
resolution anatomy.

In practice, PRDiT-4L.12%6 still outperforms all high-resolution baselines on LIDC-IDRI in both
FID and MMD, and it does so with much lower GPU cost (Table [2). This suggests that freezing
the backbone does not noticeably hurt performance at 256%. In addition, our comparison of from-
scratch 1283 training with the progressive 64% — 1282 variant (Table shows only a small drop in
FID/MMD for more than a 6 x reduction in training time, which further supports this design.

To provide further insight into how a frozen backbone compares against a jointly fine-tuned setup,
we performed an ablation at 1283 — 2563, directly comparing a model with a frozen low-resolution
backbone to one where we fine-tune the entire backbone. For the fine-tuned variant, we use a
conservative learning rate of 1 x 1076 for 100 epochs to avoid disrupting the well-trained low-
resolution weights, and evaluate it under exactly the same setup as the frozen-backbone model. As
Table 8] shows, the fine-tuned backbone gives a modest but consistent improvement over the frozen
one (better FID and MMD), indicating that full fine-tuning can help, but the gain is relatively small
compared with the additional computational cost, which supports our choice to freeze the backbone
in the main 256> experiments.

To make these experiments reproducible, we detail below the exact configurations used to train all
high-resolution models.
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A.8.1 TRAINING SETUP FOR HIGH-RESOLUTION MODELS

Frozen-backbone settings. We first freeze the entire low-resolution backbone (both the Local
Denoiser and the Global DiT) and train only the high-resolution refinement module. The refinement
operates on overlapping 3D patches of size (12, 12, 12) with stride 8 and padding 2 voxels, matching
the local denoiser configuration in the low-resolution model. We optimize with AdamW, using a
learning rate of 6 x 10~°, gradient clipping at 1.0, a batch size of 8 per GPU, and train for 2000
epochs.

Full fine-tuning setting. For the fine-tuning ablation, we start from the converged frozen-
backbone high-resolution model and then unfreeze the entire pretrained backbone and high-
resolution module, training all parameters jointly. To avoid disrupting the well-trained low-
resolution weights, we use a much smaller learning rate of 1 x 107, gradient clipping at 0.4, a
batch size of 2 per GPU, and train for 100 epochs under otherwise the same setup.

A.8.2 EXPERIMENTS RESULTS

As Table[§]and Figure[IT]show, the fine-tuned backbone gives a modest but consistent improvement
over the frozen one (better FID and MMD), indicating that full fine-tuning can help, but the gain
is relatively small compared with the additional computational cost, which supports our choice to
freeze the backbone in the main 256% experiments.

Table 8: Ablation experiments: Comparison of high-resolution performance between frozen low-
resolution model and fine-tune entire models. FID is reported as 10°.

Model FID, MMD]

Frozen 1283 2280 0.1370
Fine-tuned 1282 1.702  0.1315

A.9 MODEL CONFIGURATIONS IN DETAIL

In this section, we describe the network architecture, training setup and evaluation protocol to enable
full reproducibility. In addition, we use the FlashAttention-v2 included with Pytorch version 2.2.

A.9.1 NETWORK ARCHITECTURE CONFIGURATIONS

The PRDIT model comprises two primary components: a Local Denoiser (MLP-based) and an
Global Residual DiT models (Transformer-based), enabling a two-stage training process. Stage 1
trains the coarse path (depth=0), while stage 2 freezes the local path and trains the global path
(depth>0). The architecture processes 3D volumes of shape [B, C, D, H, W] into patch sequences
for denoising. Key components are described below, with parameters summarized in Table 9} [10]

A.9.2 TRAINING SETUP

We provide the details of how to train the methods.

¢ Optimization Function: AdamW with 5; = 0.9, 85 = 0.999, and weight decay 0.0. The
objective is mean squared error (MSE) loss.

* Learning Rate:
— Stage 1 (LocalDenoiser): 1074,
— Stage 2 (GlobalResidual DiT):
% 9 x 1075 (depth=4),
x 6 x 1075 (depth=8),
* 4 x 1075 (depth=12)
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Figure 11: Ablation on freezing vs. fine-tuning the low-resolution backbone at 1283 on LIDC-IDRI.
Fine-tuning with a small learning rate yields slightly better FID/MMD, while the frozen backbone

already achieves competitive performance.

Parameter Value

Input Channels (Ci,) 1

Patch Size (P x P x P) 12 x 12 x 12

Stride 8

Padding 2

MLP Structure Two-layer SwiGLU

Hidden Size Cin-P3=1-123 =1728

MLP Ratio (Ryp) 1.0

Output Channels (Cyy) 2

Normalization LayerNorm

Conditioning AdaLLN_modulation with TimeEmbedding
Activation SwiGLU

Dropout 0.0

Weight Initialization Zero-initialized for AdaLLN and final linear layer

Table 9: Configurations of the LocalDenoiser module for PRDiT.

for new parameters; pretrained parameters (Local Denoiser) are frozen during second-

stage training.
* Device: NVIDIA A100 80GB GPUs with BFP16 mixed precision.

* Batch Size: 128 volumes (16 per GPU), 256 volumes (4 per GPU).
* Diffusion Schedule: Linear, 1000 timesteps.

Training Steps: Stage 1: 6,000 epoches; Stage 2: 8,000 epoches.
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Parameter Value

Input Channels (Cj,) 1

Patch Size (P x P x P) 12 x 12 x 12

Stride 8

Padding 2

Depth {4,8,12}

Hidden Size (Dhidden) {768, 1152}

Number of Heads {12, 16}

MLP Ratio (Ryp) 4.0

Output Channels (Coy) 2

Normalization LayerNorm

Positional Embedding 3D sinusoidal, shape [1, N, Dyidden), non-learnable
Conditioning AdalLN-Modulation with TimeEmbedding
Attention Multi-head self-attention with memory-efficient attention
Dropout 0.0

Weight Initialization Zero-initialized for AdaLN-Zero and final linear layer

Table 10: Configurations of the GlobalResidual DiT module (global residual path) for PRDiT,
with depths 4, 8, and 12. All models share the same pretrained LocalDenoiser model from Stage
1 training.

* Gradient Clipping: Maximum norm of 1.0.

» Data Split: Randomly-sampled data split of 90% for actual training and a 10% validation
set for tracking progress (both datasets).

A.9.3 EVALUATION PROTOCOL WITH FOCUS ON THE W-SCORE METRIC

In here, we provide the details about how to measure the performance of the generative models. In
this paper, we use the three evaluation metrics, 3D FID (Friedrich et al.,[2024), 3D MMD (Sun et al.,
2022)), and W-GAN scores (Zhang et al.,[2025). We explain how to use the WGAN-GP Critic scores
to measure the generative quality in our experiments.

The Goal. We use a single 1-Lipschitz critic fy (WGAN-GP) as a measurement to estimate the
Wasserstein-1 distance between the real data distribution P, and a model m’s distribution IP,,,:

/Wl (Preala Pm) = EmN]P’,eal [fG (Z‘)] - EiN]P’m [f@ (j)] . 9)

Lower is better. We compare models m € {HA-GAN, 3D-LDM, WDM-3D, PRDiT-4L (ours),
PRDIT-8L (ours)} against our PRDiT-12L as the best performance standard.

Data Splits & Preprocessing.
1. Real: Split the dataset into Real-Train and Real-Val (no overlap with any generator’s train-
ing data).

2. Fake per model: For each generator m, split its generated volumes into Fake-Train™) and
Fake-Val™ (no overlap).

3. Preprocessing: Apply identical resampling/cropping and intensity normalization (e.g., HU
— [0, 1]) to both real and fake data, during training, it will map [0, 1] — [—1, 1].

4. Mixed Fake for training: Build Fake-Train-Mix by combining the pairs of Fake-Train(™
sets.

Critic & Training Objective. A 3D conv stack with stride-2 downsamples, InstanceNorm3d and
LeakyReLU activations, which is following the 2D WGAN-GP (Gulrajani et al., 2017) define. No
sigmoid at the end. In addition, the objective (maximize)

Ecritic = E;~Real-Train [f@ (JE)] — [E 3~ Fake-Train-Mix [fe (‘%)] - A GP(9)7 (10)
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with gradient penalty GP on random interpolates and setting A = 10. The default configurations is
Adam (Ir = 107°, 31=0.5, 32=0.999). The batch size is 40 real / 40 fake, and the fake samples are
consisting of the generative model and our anchor PRDiT-12L output.

Pair-Comparisons vs. PRDiT-12L (Anchor) Given PRDiT-12L is the anchor (chosen by 3D
FID/MMD), for each competitor c:

W
e = __ Wil (>1 = PRDIT-12L better). (11)
Wi (Ours-12L)

Our experiments report the mean ratio and std over three different random seeds with the trained
critic.

A.10 COMPREHENSIVE PAIRWISE COMPARISONS ACROSS ANCHORS

In this section, we propose to choose the different model as the anchor to compute the WGAN ratio
score, and for better visualization, we use the log of WGAN ratio. Using the log ratio makes results

signed and interpretable (positive = better than the column model; negative = worse). The results
show in Table [T1]

HA- 3D- WDM- PRDiT- PRDiT- PRDiT-
GAN LDM 3D 4L 8L 12
HA-GAN (f@ (-ﬁ(t) 63-‘5()3%) (-i 69-()55(5)) (-ﬂ(:) b?()632) (-jl: 61.()99?) (-i f(?s?)
i | 2,5, 1 o o
WDMID | L305 o o cse shmo (omw
PRDIT-SL ( li 32995) ( 20983’] )« (i) 028380) ( 1.8;013) ( iOO) (-(i) ()()(;71 :l),)
PRDIT-12L | i.;lgg) ( i.g;l;) (1'33419) ((i'g.g;) (1.83131) ( f 0)

Table 11: Pairwise log-WGAN ratio comparisons. For every model pair (3, j), we report p &+ o of
the log ratio between the WGAN critic scores for samples from model ¢ and model j (averaged over
4 evaluations). Values > 0 indicates the row model is judged more realistic than the column model,
< 0 indicates the opposite. The matrix is anti-symmetric (s; ; = —s; ;) with zeros on the diagonal.

A.11 ADDITIONAL QUALITATIVE INSIGHTS
Here we present additional qualitative examples that complement the quantitative results for the

LIDC-IDRI dataset in Figure[I2] and Rad-chestCT dataset in Figure [I3]for our 4-layer, 8-layer and
12-layer models.

A.11.1 LIDC-IDRI

We provide additional generated 3D CT images for our PRDiT models with 4, 8 and 12 layers
trained on LIDC-IDRI dataset in Figure[I2]

A.11.2 RAD-CHESTCT

We provide additional generated 3D CT images for our PRDIiT models with 4, 8 and 12 layers
trained on Rad-ChestCT dataset in Figure

22



Under review as a conference paper at ICLR 2026

4-Layer Model Generative Output

Figure 12: Extended qualitative results for different model within LIDC-IDRI dataset.

A.11.3 COMPARISONS IN 256% DATASET

We provide the additional generated samples across the HA-GAN, WDM-3D, and our PRDiT-4L
with the 256 LIDC-IDRI dataset, in Figure[14]
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4-Layer Model Generative Output
ﬁ" R | o4 ) -~

s
K.

Figure 13: Extended qualitative results for different model within Rad-ChestCT dataset.

A.11.4 EXTENDED QUALITATIVE RESULTS

We present qualitative results comprising the Local Denoiser branch’s coarse reconstructions and
the Global Residual DiT branch’s residual estimates, highlighting the complementary information
each branch captures, in Figure I3}
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HA-GAN Model Generative Output

Vo A

WDM-3D Model Generative Output

Figure 14: Extended qualitative results for different model within 256 LIDC-IDRI dataset.
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