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Abstract. Despite their widespread success, neural networks are sus-
ceptible to adversarial examples, severely limiting their responsible de-
ployment in safety-critical scenarios. To address this, neural network ver-
ification techniques have been proposed that rigorously prove the robust-
ness of a given network against specific threats. However, the scalabil-
ity of these methods remains a major challenge, with networks trained
for empirical robustness still proving difficult to verify. Thus, certified
training has been proposed to produce networks more amenable to for-
mal robustness verification. However, there is currently no comprehen-
sive framework allowing easy access to these training methods. To ad-
dress this, we introduce CTRAIN, a new Python library built upon the
auto_LiRPA package, which reimplements state-of-the-art certified train-
ing methods in a unified, modular and comprehensive manner, while of-
fering user-friendly interfaces, enhancing accessibility for both researchers
and practitioners. Additionally, CTRAIN integrates SMAC3 for hyperparam-
eter optimisation and a3-CROWN for complete verification, empowering
users to exploit these systems to achieve state-of-the-art certified robust-
ness. We provide code, documentation, examples and usage instructions
at github.com/ada-research/CTRAIN.

1 Introduction

In recent years, neural networks have shown remarkable performance across var-
ious application domains, ranging from computer vision [8] to protein structure
prediction [13]. At the same time, it became evident that neural networks are
typically not robust, as adversarially crafted, yet imperceptible, changes in the
input can lead to to incorrect predictions [35]. This circumstance severely lim-
its the responsible deployment of machine learning models in safety-critical use
cases. To mitigate this issue, neural network verification techniques have been
proposed, which provide provable robustness guarantees using rigorous mathe-
matical frameworks [14,36]. Generally, these can be divided into two families;
cheap incomplete methods attempt to solve the robustness verification problem
by bounding the outputs of a network, but may not be able to prove a property
due to overly loose bounds. Complete methods will, in principle, always return
a result but have to solve an expensive AN'P-complete problem [32,19]. Despite
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several algorithmic advancements, e.g., the inclusion of sophisticated network
over-approximations [5,29, 34, 38, 43] or search techniques [3], the scalability of
complete verification remains a major challenge.

Concurrently, specialised training methods were developed that aim to pro-
duce robust neural networks. While state-of-the-art empirical robustness can be
achieved using adversarial training (see, e.g., [22,41]), the resulting networks re-
main hard to verify. Thus, there has been a surge of training methods that yield
robust neural networks amenable to formal verification, therefore mitigating the
challenge of limited scalability, giving rise to the concept of certified training |26,
11]. These methods employ an over-approximation of the worst case adversarial
loss using cheap incomplete robustness verification methods as the training ob-
jective to be minimised. Several certified loss functions leveraging this concept
have been proposed, gradually advancing the state-of-the-art regarding the num-
ber of input samples for which the resulting networks are provably robust [6, 11,
24,28, 33]. However, the community to date lacks a comprehensive library that
makes these techniques accessible to potentially inexperienced end users.

Therefore, we propose CTRAIN, an extensive Python library for certified train-
ing. We provide, for the first time, implementations of all current state-of-the-art
methods, based on the popular neural network bounding library auto-LiRPA [39],
and make these accessible via a Python package. Further, CTRAIN provides user-
friendly interfaces to certifiably train neural networks based on the PyTorch
framework [30]. Therefore, CTRAIN easily integrates into existing PyTorch train-
ing pipelines, neural network architecture specifications and datasets. Further-
more, we natively support sophisticated hyperparameter optimisation for cer-
tified training via the state-of-the-art optimiser SMAC3 [21]. Last but not least,
CTRAIN includes several possibilities for robustness evaluation using adversarial
attacks, incomplete verification and the state-of-the-art complete neural network
verification system a8-CROWN [38, 40, 44].

2 Related Work

In the following, we provide an overview of work related to CTRAIN, focusing on
tools that provide functionalities for training robust neural networks. To date,
several easy-to-use and performant libraries have been proposed that imple-
ment adversarial training methods. Among these, the Adversarial Robustness
Toolbox (ART) [37] and DeepRobust [20] constitute the most extensive and pop-
ular libraries, having accumulated over five thousand! and one thousand? stars
on GitHub, respectively. These stars allow users to indicate interest in a reposi-
tory and to bookmark it. Both implement multiple adversarial training methods,
e.g., training for robustness on examples created through the Projected Gradient
Descent (PGD) method [22], a strong iterative adversarial attack. However, these
libraries lack proper support for methods that focus on producing easily verifi-
able networks. Specifically, ART only supports early advancements from the field

! github.com/Trusted-AI/adversarial-robustness-toolbox
% github.com/DSE-MSU/DeepRobust
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that do not constitute the state of the art anymore [11,26], while DeepRobust
implements no certified trainings method at all.

Recently, CTBench, a novel and unified library for certified training, has been
proposed [23]. CTBench implements several state-of-the-art protocols, including
SABR [28] and MTL-IBP [6], and the authors reported very strong results us-
ing their implementation. Nonetheless, CTBench cannot be easily integrated into
existing code, since it relies on independent training scripts, and a Python pack-
age providing convenient options for running the CTBench training code does not
exist. In addition, CTBench employs the verification system MN-BaB [10] to eval-
uate the certifiable robustness of trained neural networks, which has been shown
to be consistently outperformed by aS-CROWN [38,40,44]| in recent studies
and competitions [15,27]. While we acknowledge the importance of CTBench, we
believe that researchers as well as end users will profit from easy-to-use alter-
native implementations based on the popular auto_LiRPA library. In addition,
we believe that the use of af-CROWN will lead to more precise assessments of
certified training methods.

3 Overview of CTRAIN

In the following, we describe the key components and features of the CTRAIN li-
brary, including supported certified training methods, affordances for evaluating
the empirical and certified robustness of neural networks, and native support for
hyperparameter optimisation of certified training methods.

3.1 Certified Training with CTRAIN

Selected Certified Training Methods. CTRAIN implements several state-of-
the-art algorithms for certified training. In selecting these, we focused on meth-
ods that provide deterministic robustness guarantees against all possible pertur-
bations included in the /., norm balls with radius € around input images. These
perturbations constitute the properties typically examined in the neural network
verification literature (see, e.g., [2,15]). Furthermore, we excluded methods that
rely on non-standard neural network components not natively supported by the
PyTorch library [30].

The best-peforming losses for deterministic certified training are based on
Interval Bound Propagation (IBP) [11], the conceptually simplest incomplete
verification method. IBP employs interval arithmetic to bound the outputs of a
neural network which, in turn, can be used to calculate a sound upper bound
of the worst-case loss on adversarial examples. The closely related CROWN-
IBP [42] relies on the tighter bounding method CROWN [44] in combination
with IBP to improve on standard IBP-based certified training. Shi et al. [33]
propose further improvements to IBP through an initialisation procedure and
loss regularisers that are specifically crafted to stabilise certified training.

Recently, significant advancements have been made by combining PGD-based
adversarial training with IBP-based certified training. Those methods rely on
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unsound approximations of the worst-case adversarial loss, but yield strongly
improved performance. SABR [28] uses PGD to identify adversarial examples
in the [, norm ball around the training instance, which are in turn used as
the centre of a smaller norm ball. This smaller input region is then employed in
standard IBP bounding to obtain the overall training loss. TAPS [24] combines
adversarial and certified training by first propagating an input region through
the feature extractor of a network using IBP, and by then adversarially training
the classifier using latent adversarial examples that lie in the output region of the
feature extractor. STAPS [24] works similarly to TAPS, but uses SABR instead
of IBP to obtain intermediate bounds. Finally, MTL-IBP [6] is a representative
member of the family of expressive losses, i.e., losses that combine adversarial
and certified losses through convex combinations. The MTL-IBP loss consists of
the weighted sum of the certified loss obtained using IBP and the PGD-based
adversarial loss.

In CTRAIN, we have included all previously mentioned certified training meth-
ods, i.e., IBP, CROWN-IBP, SABR, TAPS, STAPS and MTL-IBP, ensuring
comprehensive coverage of established approaches. This selection provides users
with a diverse and relevant set of techniques, since methods combining adver-
sarial and certified losses have shown the strongest results in recent literature
and thus constitute the state-of-the-art (see, e.g., [6,23,25]). While standard
IBP and CROWN-IBP training was surpassed performance-wise, they remain
the most computationally efficient and, thus, represent viable alternatives when
potent hardware is not available.

Key Features of CTRAIN. In CTRAIN we provide, for the first time, an uni-
fied implementation of the state-of-the-art in certified training based on the
auto_LiRPA [39] library. This package serves as the backbone of the state-of-the-
art verification tool a-CROWN [40, 38], is actively maintained, implements a
variety of incomplete verification techniques and is popular among the neural
network verification community, testified by over 250 GitHub stars®. Further-
more, it provides extensive support for many popular network architectures,
ranging from convolutional networks to transformers.

In CTRAIN, we implemented the previously mentioned certified training meth-
ods closely following the original literature and codebases, but reimplemented all
relevant parts of certified training in a modular and highly configurable fashion.
Furthermore, we unified varying implementations of network bounding, loss cal-
culation and adversarial attacks into one comprehensive code base. Therefore,
CTRAIN enhances comparability between methods by standardising their shared
components, such as IBP bounding or regularisation. Additionally, all compo-
nents of CTRAIN are implemented using PyTorch [30]; thus, the package integrates
well into common machine learning pipelines and PyTorch components such as
optimisers, regularisers, and data augmentations can be seamlessly incorporated.

3 github.com/Verified-Intelligence/auto LiRPA
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3.2 Evaluation

To assess whether the network actually adheres to desired robustness proper-
ties, users require easy and extensive possibilities to evaluate neural networks
regarding their certified and empirical robustness, which CTRAIN provides. No-
tably, CTRAIN can also be used to evaluate models that were trained outside of
its training workflow and, thus, also represents a valuable tool for users that do
only desire to use the evaluation capabilities of CTRAIN.

Empirical Robustness. To evaluate the robustness of a given network against
adversarial attacks, we implemented the PGD attack [22]|, which to date is the
de-facto standard method to assess empirical robustness. For example, state-
of-the-art verification tools such as a3-CROWN [38] or MN-BaB [10] use this
attack to identify counter-examples.

Incomplete Verification To give provable guarantees of the robustness of neu-
ral networks, CTRAIN implements several incomplete verification methods us-
ing auto_LiRPA. More specifically, the incomplete bounding methods IBP [11],
CROWN-IBP [42] and CROWN [43] are included. These methods differ in the
tightness of the network bounds they compute, but also in their computational
complexity. IBP is the cheapest and loosest incomplete method, CROWN-IBP
gives tighter bounds at the cost of increased computational costs, and CROWN
is the tightest and most expensive method. Users can decide whether all inputs
that should be investigated are verified using one method, or whether verfication
is performed in an adaptive fashion. In the latter case, the supported methods
are progressively applied to input samples in increasing order of their computa-
tional costs. Therefore, easy verification problems are solved with cheap methods,
while computationally expensive methods are only applied to problems where
their tightness is required to obtain a solution (see, e.g., [6,23]).

Complete Verification Finally, CTRAIN also provides an interface to the state-
of-the-art complete verification system a8-CROWN. Complete verification pro-
vides the most accurate assessment of the certified robustness of a given network
at the cost of significantly increased computational requirements. Especially, net-
works trained using recent methods based on surrogate losses, require complete
verification to obtain precise robustness measurements |6, 28].

To save computational resources, CTRAIN first attempts to obtain a solution to
the verification query by applying its included incomplete verification techniques
and by running the PGD adversarial attack, before invoking a3-CROWN |6, 23].

3.3 Hyperparameter Optimisation

All certified training methods are parametrised by a extensive and diverse set
of hyperparameters, such as the number of e-annealing epochs or the settings of
the PGD attack. Furthermore, the values chosen for those parameters influence
the training outcome strongly, ranging from training collapse to state-of-the-
art results. Recent works tackle the hyperparameter optimisation problem by
employing manual [6] or grid search [23] over an expert-designed configuration
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space. In any case, these approaches to hyperparameter tuning for certified train-
ing currently require extensive domain knowledge to identify suitable parame-
ter choices. To mitigate this prerequisite and to therefore make hyperparameter
tuning more accessible to potentially inexperienced practitioners , CTRAIN imple-
ments preconfigured hyperparameter optimisation as one of its core components.

We employ the state-of-the-art hyperparameter optimisation system SMAC3
[21] for the tuning task, since it has demonstrated remarkable performance across
various recent benchmarks [9, 31]. For each of the implemented certified training
methods, we provide a configuration space, out of which SMAC3 attempts to
find the best-performing configuration. Thus, when using CTRAIN, users do not
require domain knowledge to achieve state-of-the-art results on novel datasets
for which no well-performing configurations are known.

By default, CTRAIN aims to optimise the sum of natural, certified and ad-
versarial accuracy, since all of these metrics represent desirable properties of a
certifiably trained neural network, i.e. strong performance on natural and adver-
sarial inputs and easy verifiability. Nevertheless, the accuracy values that should
be included in the optimisation objective can be weighted according to user pref-
erences. To keep the evaluation overhead manageable, these values are by default
computed on the first 1000 samples of the validation dataset, using CROWN.

The CTRAIN hyperparameter optimisation procedure begins by exploring the
search space through a random search for the number of iterations determined
by the number of hyperparameters in the configuration space. Compared to
the default of SMAC3, we limit this number, to avoid overspending on random
configurations, since training and evaluation is costly. In addition, CTRAIN allows
users to specify a pre-defined configuration, which is assumed to performing
well. This modification to the SMAC3 optimisation procedure facilitates the
exploitation of expert user knowledge. Subsequently, CTRAIN continues with the
optimisation procedure until the budget is exhausted.

4 Implementation

In the following, we explain the architectural details and implementation of the
CTRAIN library, highlighting its modular and well-structured design as well as its
easy usability.

First and foremost, we designed CTRAIN as a Python library that can easily be
installed and set up using package management tools such as pip. Furthermore,
we made sure that CTRAIN seamlessly integrates into common machine learning
workflows without the need to run separate scripts or to set up different environ-
ments. We implemented CTRAIN in Python 3, currently using torch in version
2.2.2 and auto_LiRPA in version 0.50 as its core libraries. Our implementation
can be accessed at github.com/ada-research/CTRAIN.

CTRAIN.model_wrappers. As a result of our considerations for the design of
CTRAIN, we provide a package implementing model wrappers that can be easily
included into existing code. These wrappers encapsulate predefined or pretrained
neural networks and expose core functionalities in an accessible manner.
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from CTRAIN.model_definitions import CNN7_Shi

2| from CTRAIN.data_loaders import load_cifari0
;| from CTRAIN.model_wrappers import ShiIBPModelWrapper

train_loader, test_loader = load_cifar10(val_split=False)
in_shape = [3, 32, 32]

model = CNN7_Shi(in_shape=in_shape)
wrapped_model = ShiIBPModelWrapper (model=model,
input_shape=in_shape, eps=2/255, num_epochs=160)

wrapped_model.train_model (train_loader)

2| std_acc, cert_acc, adv_acc =

wrapped_model.evaluate (test_loader)

Code Example 4.1. CTRAIN is easy to use for certifiably training and evaluating
neural networks: In twelve lines of code, users can load a dataset, define the standard
CNNT network architecture proposed by Shi et al. [33], certifiably train the network
using IBP and evaluate it, using adversarial attacks and incomplete verification.

We show an example of the usage of the model wrappers provided by CTRAIN
in Code Example 4.1. For each of the supported training methods, there is one
separate wrapper. These objects take the neural network, which must inherit
from the PyTorch nn.Module class, the perturbation magnitude e that defines
the training and verification objectives, and the method-specific training hyper-
parameters as arguments. Since using a higher € during training compared to
evaluation might be beneficial (see, e.g., [6,42]), users can define a multiplier to
scale the training e. Training is invoked via the train_model function, while an
evaluation of natural, robust and certified performance can be carried out using
the evaluate or evaluate_complete functions, respectively. The hyperparam-
eter optimisation procedure is implemented in the hpo function, for which an
optimisation budget should be provided that specifies for how long the optimi-
sation procedure runs. Furthermore, the user may pass a default configuration
to be investigated during the optimisation process.

The model_wrappers package is easily extensible, since all wrappers in-
herit from the common base class CTRAINWrapper, which implements method-
independent functionalities such as evaluation, checkpoint saving and hyperpa-
rameter optimisation. In addition, it was of paramount importance for CTRAIN
to be compatible with common PyTorch operations. Therefore, the base class
inherits from the nn.Module class and, thus, all wrappers can be used in existing
training and evaluation workflows.

CTRAIN.bound. The bound module implements all bounding operations required
during training and incomplete verification, based on the auto_LiRPA package.
More specifically, it implements the sound bounding operations IBP, CROWN-
IBP and CROWN as well as the unsound SABR and TAPS bounds.
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CTRAIN.data. Although CTRAIN is fully compatible with standard PyTorch data
loaders, we provide functions that load the common vision datasets MNIST [1§],
CIFAR-10 [16] and TinyImageNet [17].

CTRAIN.eval. The eval package provides all functions required to evaluate
standard, robust and certified accuracy of neural networks, including functions
to carry out incomplete and complete verification as well as adversarial attacks.
Generally, all evaluation methods require the user to pass the network that
should be evaluated, the perturbation magnitude € and a data loader, which
holds the inputs for which the robustness should be assessed. Since the evaluation
procedure may be costly, especially when employing complete verification, users
may also provide a number of samples for which the evaluation is carried out
in the given order of the evaluation set. To utilise complete verification, users
must pass, in addition to the arguments generally required for evaluation, the
allowed maximum running time per verification query and the number of CPU
cores a3-CROWN may utilise. In addition, a dictionary including configuration
values for a8-CROWN that adhere to its documentation may be provided.

CTRAIN.complete_verification. Since a-CROWN is not intended to be ex-
ecuted directly from external libraries or codebases, CTRAIN implements several
steps to ensure seamless integration in its abCROWN subpackage. First, CTRAIN
exports the network in ONNX format [1] and saves the resulting file to a temporary
folder. Then, it formulates the verification property in the standardised VNN-LIB
format [7] and also saves the resulting file. Thereafter, CTRAIN generates a config-
uration file for a8-CROWN that specifies the cutoff time and further parameters
set by the user as well as the verification property, defined through the previ-
ously generated ONNX and VNN-LIB files. Finally, CTRAIN invokes aS-CROWN
by calling the function that serves as the entry point of the verification system,
passing along the configuration file.

CTRAIN.attacks. CTRAIN currently only implements the PGD adversarial at-
tack, which is used in several training losses as well as in the empirical robust-
ness evaluation. We have made the parameters of the attack, i.e., the number
of restarts, the number of steps and the step size, configurable. Furthermore,
users can define decay milestones at which the step size is reduced by a specified
factor. When PGD attacks are involved in training, we set the network to eval-
uation mode when carrying out the attacks, while the loss computation based
on the obtained adversarial examples is done in training mode. Therefore, the
statistics of batch normalisation layers [12] are not influenced by the forward and
backward passes performed during attacks and employ the mean and variance
computed over both unperturbed and perturbed inputs at evaluation time.

CTRAIN.model_definitions. While CTRAIN is, in principle, compatible with a
broad range of neural network definitions, models proposed by Shi et al. [33]
emerged as the de-facto standard architectures for evaluating certified training
methods on (see, e.g., [6,23,28]). We provide model definitions of these networks
in the model_definitions package.

CTRAIN.train.certified. This package implements all components of certified
training in a functional manner. In the subpackage losses, we provide functions
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for calculating the various supported certified losses. The initialisation and
regularisation packages provide implementations of the procedures proposed
by Shi et al. [33] as well as an implementation of /; regularisation. Finally,
we have implemented each supported certified training method as one separate
function that is utilised in the respective model wrappers.

CTRAIN.util. Finally, we have implemented utility functions, such as seeding
the library or exporting networks to ONNX, in the util package.

5 Conclusions and Future Work

In this work, we presented CTRAIN, a new Python library for certified train-
ing. CTRAIN implements several state-of-the-art certified training protocols and
makes them accessible via model wrappers that integrate well into existing ma-
chine learning workflows based on PyTorch. Furthermore, CTRAIN provides a
broad range of evaluation functions that can assess the robustness of a given
network using adversarial attacks as well as incomplete and complete verifica-
tion. Notably, using CTRAIN, it becomes possible to invoke the state-of-the-art
complete verification system aS-CROWN using only one function call. Last but
not least, CTRAIN has native support for sophisticated hyperparameter optimi-
sation using SMAC3.

In future work, we aim to maintain and further extend the functionalities of
CTRAIN. The modular design of the library allows for easy addition of adversarial
attack mechanisms, such as AutoAttack [4], or of complete verification systems,
e.g., Oval [5]. Furthermore, we intend to implement further enhancements to
certified training, such as ReLU transformer shrinking [28]. In addition, we will
perform an extensive empirical evaluation of CTRAIN, comparing its performance
to reference implementations from the literature and examining potential im-
provements achieved through the use of SMAC3 and afS-CROWN. Finally, we
plan to continuously update CTRAIN with new certified training and verification
methods, maintaining CTRAIN as a state-of-the-art resource for certified training
and its evaluation, valuable to both end-users and researchers.
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