Under review as a conference paper at ICLR 2025

UNDERSTANDING NEURAL TANGENT KERNEL DYNAM-
ICS THROUGH ITS TRACE EVOLUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

The Neural Tangent Kernel (NTK) has emerged as a valuable tool for analyzing the
training and generalization properties of neural networks. While the behavior of the
NTK in the infinite-width limit is well understood, a comprehensive investigation is
still required to comprehend its dynamics during training in the finite-width regime.
In this paper, we present a detailed exploration of the NTK’s behavior through the
examination of its trace during training.

By conducting experiments on standard supervised classification tasks, we observe
that the NTK trace typically exhibits an increasing trend and stabilizes when
the network achieves its highest accuracy on the training data. Additionally, we
investigate the phenomenon of “grokking”, which has recently garnered attention,
as it involves an intriguing scenario where the test accuracy suddenly improves long
after the training accuracy plateaus. To shed light on this phenomenon, we employ
the NTK trace to monitor the training dynamics during grokking. Furthermore,
we utilize the NTK trace to gain insights into the training dynamics of semi-
supervised learning approaches, including the employment of exponential moving
average mechanisms. Through these investigations, we demonstrate that the NTK,
particularly its trace, remains a powerful and valuable tool for comprehending the
training dynamics of modern finite-width neural networks.

1 INTRODUCTION

Deep neural networks have proven to be highly successful in a wide range of machine learning
tasks, particularly in the domain of image classification. Understanding the dynamics of these
networks during training and their generalization capabilities is of paramount importance to further
advance their performance and interpretability. In recent years, the field of deep learning has seen
the rise of a crucial analytical tool known as the Neural Tangent Kernel (NTK) (Jacot et al., 2018),
primarily in the infinite-width limit under suitable initialization scales and infinitesimal learning rate.
Empirically, researchers adopt neural networks of finite-width, therefore the behavior of the NTK in
the finite-width regime necessitates a more comprehensive investigation.

Notably, in the infinite width limit, Jacot et al. (2018) show that when the network depth is fixed
the NTK is determined by the initialization and is fixed throughout the whole training process.
Theoretically, Hanin & Nica (2019); Littwin et al. (2021) show that the NTK at initialization is also
influenced by the network depth even in the infinite width limit. Recently, Fort et al. (2020); Loo et al.
(2022) empirically study the NTK of finite width neural network during the whole training process.
By defining a “kernel distance” function, they show that after a rather quick chaotic data-dependent
kernel learning process, the network learns a kernel that has the linearized training accuracy that
matches the performance of the neural network. However, the defined “kernel distance” S(K7, K>)
(Fort et al., 2020; Loo et al., 2022) is not a distance function in mathematics as S(K71, K3) = 0 does
not imply K; = K. But interestingly, one can show that if in addition Tr(K;) = Tr(K3) then
K, = K. Moreover, the NTK trace has an efficient approximation method, making it a feasible and
orthogonal approach to prior works (Fort et al., 2020; Loo et al., 2022).

To understand the behavior of the NTK in finite-width neural networks, we conduct experiments that
evaluate the NTK trace along the training process on 3 settings: standard supervised classification
tasks, grokking, and semi-supervised learning. The latter 2 settings grokking and semi-supervised
learning are closely related to standard supervised classification, which we will briefly discuss as

Under review as a conference paper at ICLR 2025

follows. Grokking is first observed in (Power et al., 2022), where a supervised classification task
is trained to perform arithmetic tasks. It refers to a sudden and unexpected great improvement in
test accuracy long after the training accuracy has reached a plateau. Semi-supervised learning uses
a small amount of labeled data and a large amount of unlabeled data in training. It usually adopts
the pseudo-labeling strategy, where during training the network will assign pseudo labels to some
unlabeled data and thus transform it into a supervised learning problem.

Our contributions can be summarized as follows:

1. We present an efficient approximation for NTK trace and link it to the margin of a kernel
SVM problem.

2. On standard supervised classification tasks, we find the NTK trace usually rises and stabilizes
when top training accuracy is met. We also observe that in the grokking settings, when the
NTK trace is stabilized the test accuracy attains its maximum.

3. The NTK trace also helps us understand training dynamics in semi-supervised learning
approaches, including the use of the exponential moving average (EMA) mechanism.

2 RELATED WORK

Neural Tangent Kernel. Jacot et al. (2018) provide neural tangent kernel (NTK) as a tool to
understand the dynamics of neural networks training under suitable initialization and small learning
rates by considering the infinite-width limit. In this limiting regime, the NTK becomes deterministic
and fixed during training when the width is taken to infinity (Zou & Gu, 2019; Ji & Telgarsky, 2019;
Chen et al., 2019). As modern neural networks are in the finite-width regime, researchers have
gained more and more interest in the behavior of NTK in modern finite-width architectures (Shan &
Bordelon, 2021; Atanasov et al., 2021; Seleznova et al., 2024; Hanin & Nica, 2019; Littwin et al.,
2021; Fort et al., 2020; Loo et al., 2022). For example, Hanin & Nica (2019); Littwin et al. (2021)
have given finite-width (and depth) correction of neural network’s NTK at initialization. And Fort
et al. (2020); Loo et al. (2022) study the evolution of NTK during modern finite-width neural network
training using a “kernel distance”. In this paper, we study dynamics of NTK using its trace.

Neural network training dynamics. Researchers have found that there has usually been some
implicit optimization process during the supervised training dynamics of neural networks (Nacson
etal., 2019; Xu et al., 2021; Soudry et al., 2018; Banburski et al., 2019; Lyu & Li, 2019; Blanc et al.,
2020). For example, Lyu & Li (2019) show the network implicitly maximizes the margin during
the training using sgd under loss like cross-entropy loss and Blanc et al. (2020) study the implicit
regularization of the network under MSE loss using sgd. Very recently, Power et al. (2022) find cases
in supervised learning that the network generalizes long after it overfits the training data, which they
termed the phenomenon grokking. There have been attempts to understand the training dynamics
of grokking: Liu et al. (2022a) study the dynamics using physics-inspired effective theory, Nanda
et al. (2023) study the process using trigonometric series, and Tan & Huang (2023) study the process
using the network’s robustness. In this paper, we study the dynamics of neural networks and their
associated NTK using the trace of NTK.

3 PRELIMINARY

We will first introduce some basic knowledge to better understand NTK. Suppose the training dataset
as X = {(x;,y;)} Y, with scalar labels {y; };—1 n C Rand aloss function [: R x R — R. Then
the empirical training loss, defined on functions f : R™ — R, is given by

N
I(f) = Zl(f (), i) -

When the network f(-;w) : R™ — R is trained by minimizing the loss I(f) via gradient flow,
then the network parameters (w(t));>o will change according to the following ordinary differential
equation:

Opw(t) = =Vul(f (5 w(t))). M

Under review as a conference paper at ICLR 2025

Therefore during training, the output function of the neural network for any x € R™* follows another
differential equation given in terms of the Neural Tangent Kernel (NTK) (Lee et al., 2019):

N
i=1 z=f(ziw(t))

where K (-, -; w) is the Neural Tangent Kernel defined as follows:
d
K(w,y;w) =) O f (250)D0 f (y;0) = (Vf (230), V f (y;0)).
k=1

The above equation shows that the NTK determines the training dynamics of f(-; w(t)) in the function
spaces R — R during gradient flow training.

For a neural network f(x;w) € RX with vector outputs (logits) with parameter w € RY, we
will define the NTK as follows. Its Jacobian matrix can be computed as J(z,w) € RE*?, Sup-
pose the dataset as X = {(=;,)}, and denote J(X,w) = [J " (z1,w), - ,J " (zn,w)]" €
RNE>d Then the empirical neural tangent kernel on X can be computed as K(X,X;w) =
J(X,w)J T (X, w). All the proofs of this paper’s theorems can be found in Appendix A.

4 EVOLUTION OF NTK (TRACE)

We are interested in evaluating the dynamics of NTK during network training, as the NTK is a matrix,

we intend to evaluate its trace (a scalar) %ﬁflﬂ)) during training to reflects its dynamic.

Jacot et al. (2018) show that NTK is constant along training in the infinite-width limit. As we are
interested in the dynamics of finite-width NTK, we will abbreviate each time-step’s K (X', X'; w(t))
as K¢(X, X). Note that directly calculating the NTK matrix for the whole dataset is computational
and memory inefficient, we will provide the following theorem 4.1 that can efficiently approximate
the tendency of the trace of NTK.

Theorem 4.1. Ex (0,1, |f(Xiw+ &) — f(Xi0)[% ~ & Te(K (X, X5 w)).

We can immediately obtain an approximate calculation of Tr(K (X, X'; w)) as Tr(K (X, X;w)) ~
LIf(X;w+ A) — f(X;w)|%, where A ~ eN(0, 1,). We plot the evolution of NTK traces on 3
widely adopted benchmarks in Figure 1 with the backbone ResNet18 and sgd with momentum. More
training details and effect of different learning rate, momentum, and initialization can be found in
Appendix B. We can see that the trend of NTK trace is similar among datasets as the trace continues to
increase until the training accuracy reaches its maximum. This shows that the NTK matrix stabilizes
until training reaches the optimal point.

1.50 1.50 10°

Train Acc Train NTK | 105 Train Acc Train NTK 100 Train Acc Train NTK
125 Test Acc Test NTK 125 Test Acc Test NTK [10° : Test Acc Test NTK
>
3 1.00 . 3100 3075
® 10'5 3 100> @ >
5075 = 5075 = S 107+
o} ~ 0 A Doso A
S O 102]
< 0.50 10 < 0.50 <
0.25
0.25 0.25 10
10? 10*
0.00 - T T T T 0.00 -7 T T T T 0.00 - T T T
0 50 100 150 200 0 50 100 150 200 0 100 200 300
(a) CIFAR10 (b) CIFAR100 (c) ImageNet

Figure 1: Evolution of NTK trace on different datasets using ResNet18.

In this paper, we mainly consider using cross-entropy loss to train a classification problem, it may
have different outcomes when facing other settings. When given a dataset X' = {(z;, v;)} Y, the loss
is & sz\; H(onehot(y;), prob(x;)), where we use H(p, ¢) = —plog ¢ to denote the cross-entropy
loss between two probability distributions p and ¢, and the generated probability of a sample x under

Under review as a conference paper at ICLR 2025

ef1(@sw) el K (@w)]

T .
A — which we usuall
Z;K:l oTj (@w))) Zf:l o7 (@w) 5 y

model f(x;w) is defined as prob(z; w) == |
abbreviate it as prob(x).

Another question remains, what property of the neural network does the NTK trace value
Tr(K¢(X,X))) reflect during training? We will use the setting in (Lyu & Li, 2019) to gain some
insights into the above question. We will summarize the key technical assumptions in (Lyu & Li,

2019) that will be useful in this paper, for more detailed discussions of other assumptions, please
refer to the initial paper (Lyu & Li, 2019).

1. The problem is a binary classification problem, i.e. y; € {+1, —1}.

2. For each sample (z;,y;), the loss is the logistic loss (binary cross-entropy loss), i.e.
(i, 1)) = log(1+ e iw),
Then we have the following theorem which connects the dynamics of the neural network to the
solution of an NTK kernel SVM.

Theorem 4.2 ((Lyu & Li, 2019)). Under some technical assumptions and assuming the network is
trained by gradient flow, then any limit point W of { — HW(t)H |t > 0} is along the max-margin direction
for a hard-margin SVM with kernel K (x,y) = (V f(z;w), V f(y; 0)).

This means that for some 3 > 0, B is the optimal solution to the following optimization problem:

1
min §||w|\2
st yi(w,Vf(z;;w)>1 i=1,2,--- | N 2)

Considering the dual of optimization problem (2), we will obtain an optimization problem as follows:

Zaz_fzaz 7%% m’wx]7)
s.t. aZO 3

Motivated by (Seleznova et al., 2024), we will make the following simplification assumptions:

1. If y; = yj, then K (z;,z;;0) = .
2. If y; # y;, then K (x;, z;;w) = 0.

Collect the dual variables in o which corresponds to y; = +1 as o' and y; = —1 as a?. The
optimization problem (3) simplifies as follows:

5 el + (X ah) + =5l + (X ad)
s.t. ozl,oz2 >0 4

It is easy to see the optimal objective value for the optimization problem (4) is % By noticing
that Under the assumption “If y; = y;, then K(z;,z;;w) = z”, we can deduce that Nz =
Tr(K (X, X;w)). Therefore, we find that 1/ w is a good approximate optimal objective
value for (2) by utilizing the duality of (2) and (3). Therefore the results in Figure 1 show that the
network is implicitly maximizing the margin of kernel SVM during training.

Notably, (Fort et al., 2020; Loo et al., 2022) also study the dynamics of NTK in the finite-width
neural network through the following “kernel distance” between two kernel matrices: S(K;, K2) =
1— Tr(K, Ko)

Kl el Kl

(Fort et al, 2020; Loo et al, 2022) define the kernel velocity as ov(t) =
S(K (X, X5w(t)), K (X, Xw(t-+dt)))
dat :

If the total training time is 77, (Fort et al., 2020; Loo et al., 2022) find the following facts:

Under review as a conference paper at ICLR 2025

1. There exists a time Tp, where v(t) = 0 (V¢ > Tp).
2. S(K(X, X;w(Ty)), K(X, X;w(Ty))) = 0.

From the above facts, one may find that S(K; 1 (X, X), K;(X,X))) = 0 (t > Tp). However, the
defined “kernel distance” is not a distance function in mathematics as S(K, K2) = 0 does not imply
K7 = K». Note we are interested in the dynamics of K;(X, X)), the following theorem 4.3 shows
that Tr(K (X, X))) together with the “kernel distance” can characterize whether the NTK stabilize
or not. Figure 2 together with Figure 1 further validates that the “kernel distance” and NTK trace
give complementary characterizations of the dynamics of NTK.

Theorem 4.3. Suppose S(Ki11(X,X), Ky (X, X)) = 0(t > Tp). Suppose T > Ty, then

Ki(X,X) = K;(X,X) (i,j > T) iff Te(K; (X, X)) = Te(K;(X, X)) (i,j > T).
1.50 1.50
Train Acc Adjacent 1o Train Acc Last 10
1.259 Test Acc U= 1.259 Test Acc T =
3> 1.00+ ros ; 3 1.00 Fo.8 ;
© - v © F v
5 0.75 0.6 = 5 0.75 06 =
v [v} -+
F0.4 Q 0.4 ©
£ 0.50 5 & os50q 2
Lo2 Q Lo2 §
0.25 0.25
0.0 ~0.0
0.00 - : : : : 0.00 - T T T T
0 50 100 150 200 0 50 100 150 200
(a) “Distance” between adjacent epoch kernels (b) “Distance” to the last epoch kernel

Figure 2: Accuracy and NTK “kernel distance”.

5 UNDERSTANDING DYNAMICS OF OTHER TRAINING SCENARIOS USING NTK
TRACE

5.1 LAYERWISE DYNAMICS DURING TRAINING

After investigating the behavior of the NTK trace in the previous section, we now focus on under-
standing the behavior of inner layers in the neural network. To do this, we depict the architecture of
the network in Figure 3. We specifically examine the outputs of three layers: the front layer (Layer 1
in Figure 3), which is close to the input picture, the middle layer (Layer 3 in Figure 3), and the final
layer, whose output is the logit. For simplicity, we denote these layers as f1, fo, and f3, respectively.

In addition to calculating the NTK trace for the logits, as described in theorem 4.1, we also compute
Eamen'(0,1y) | F(X5w+A)— f(X;w) |7
e?|X|K;

the results in Figure 4.

(z = 1, 2), where K is the dimension of the layer output. We present

From Figure 4, we observe that each layer exhibits a distinct evaluation pattern. The last layer
stabilizes the latest, while the middle layer stabilizes the fastest. This discrepancy suggests that
different layers play different roles in the neural network. As the last layer stabilizes slowly, it is
crucial to track the NTK trace of the logits to gain a comprehensive understanding of the entire
training dynamics.

5.2 THE DYNAMICS OF GROKKING

In this section, we consider a special setting in supervised classification, called grokking (Liu et al.,
2022b; Nanda et al., 2023). It refers to a strange phenomenon that the test accuracy suddenly increases
long after training accuracy reaches 100%, Figures 5 and 6 depict two scenarios for this phenomenon.
To conduct our experiments, we consider two canonical grokking settings. The first setting focuses
on the MNIST image classification task (Liu et al., 2022b). For this task, we adopt a ReLU MLP
architecture with a width of 200 and a depth of 3. The loss function used is mean squared error
(MSE) loss. To optimize the network, we employ the AdamW optimizer with a learning rate of

Under review as a conference paper at ICLR 2025

C
< —
z 5 5 P s p g |
o g & =y = & S
E 4 4 4 4 3
z
Figure 3: The architecture of ResNet18.
1.5+ 10’ 1.5 10’
’ Front Layer Acc ’ Front Layer Acc
> Middle Layer > Middle Layer
® Final Layer L0’ @ Final Layer -10° o
5 1.0- 4 3 51.04 Y o
Q = Q —
[&] [&] =
< zZ < 5
3 R F10° A
2 054 10X 8o 10
=0 =0
T T T T T 10’ T T T T T 10
0 50 100 150 200 0 50 100 150 200
(a) Training Dataset (b) Testing Dataset

Figure 4: The evolution of NTK trace among different layers, on both training and testing datasets.

0.001, and we use a batch size of 200 during the training process. In the second setting, we explore
the modulo addition dataset (Nanda et al., 2023). Here, we train transformers to perform addition
modulo P = 113. The input format follows the pattern of a + b =, where a and b are encoded as
P-dimensional one-hot vectors. The output c is extracted from the special token =. Our model for
this task consists of a one-layer ReLU transformer. The token embeddings have hidden dimension
d = 128, and we incorporate learned positional embeddings. The model comprises 4 attention heads
with a dimension of % = 32, and an MLP with 512 hidden units. We use a training dataset containing
30% of all possible input pairs, and the loss function employed is cross-entropy loss.

In our analysis, we observe that the estimated NTK trace, given by %|f(X;w + A) — f(X;w)|%,
bears a resemblance to the robustness metric (Tan & Huang, 2023). Specifically, we can define the
logit perturb distance on the training data as %|f(X + A;w) — f(X;w)|%, where A represents a
Gaussian perturbation applied to the input data. We consider both the NTK trace and the logit perturb
distance and present them in Figures 5 and 6.

Our analysis reveals that the NTK traces on both the train and test datasets stabilize only when the
test accuracy approaches its maximum value. This finding aligns with the observations made in
standard supervised classification, as discussed in section 4, indicating that the underlying dynamics
of the network still changes when the training accuracy reaches 100% and stabilizes only after the
test accuracy saturates. Note the experiments in Figure 5 utilizes cross-entropy loss and the NTK
trace continuous to increase before the test accuracy first reaches 100%, making it similar to the
observation in section 4. Interestingly, we also observe that the trend of the NTK trace and the logit
perturb distance exhibits several similarities, which could be attributed to the similarities in their
respective defining formulas.

5.3 SEMI-SUPERVISED LEARNING DYNAMICS

We will first present a simple review of a canonical semi-supervised learning method FixMatch.
Given a batch of B labelled samples X; = {(z},y})}2 ,, there will also be ;B unlabelled samples

Under review as a conference paper at ICLR 2025

1.5 Train Acc Logit Perturb 1.5 Train Acc Logit Perturb
Test Acc Train NTK L 105 Test Acc Test NTK 10
> >
0 1.0 0 1.0
5 § 5
c c
3 _103ﬂ> 3 _103CD
< 0.5 < 0.5
1 1
0.0 S 10 0.0 S 10
10 10 10 10 10 10
(a) Train NTK trace (b) Test NTK trace

Figure 5: The evolution of NTK trace and logit perturbation distance on Modular Addition dataset.

1.50 1.50
Train Acc Logit Perturb s Train Acc Logit Perturb s
1.257 Test Acc Train NTK [10 1.257 Test Acc Test NTK 10
3 1.00 3 1.00
[} <)
g TS H10° &
3 0.75 g 3 0.75 %
< 0.50 _101 < 0.50 _101
0.25 0.25
T T T T T T 1071 T T T T T — 10
0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000
(a) Train NTK trace (b) Test NTK trace

Figure 6: The evolution of NTK trace and logit perturbation distance on MNIST dataset.

X, = (mf)}ffl involved in the training. FixMatch loss utilizes two types of augmentations: weak
and strong, defined by w(-) and Q(+). The loss consists of two parts: the supervised loss /; and the
unsupervised loss /5.

B
I, = ;Zz_;H(onehot(yil),prOb(w(l‘zl)))- ®)
1 nB 9 ~2 2
Iy = B > I(max(prob(w(z7))) > ¢) H(onehot(57), prob(Q(z7))), (6)
=1

where §? = arg max prob(w(z?)).

5.3.1 EVALUATING THE DYNAMICS ON LABELED AND UNLABELLED DATA

Semi-supervised learning involves both labeled and unlabeled samples, the key difference is that
compared to the supervised case where the model is only trained on labeled samples, the training

— 5 10
@ Test Acc Sup g Test Acc Sup 8 Test Acc Sup
8 154 Unsup Weak [7 © 1.5 Unsup Weak | 7 S 45 Unsup Weak [
= Unsup Strong F 10 o Unsup Strong | f 10 o Unsup Strong £ 10
o Ire) o
< Pseudo ~ Pseudo o Pseudo
> 107 Fi'd S 107 Fio'd ¥ 107 F10°-d
[$) %) >
© 8]
e s ®© 5 © 5
3 057 10 5 05 10 5 05 F 10
< S 3 i

001 ” ” w0 oo — ” " 10' oo » n 10*

10 10 10 10 10 10 10 10 10
(a) 40 labeled samples (b) 250 labeled samples (c) 4000 labeled samples

Figure 7: The evolution of NTK trace estimations of (weakly-augmented) labeled, (weakly and
strongly augmented) unlabeled, and pseudo-labeled samples during training. We consider three
configurations with different numbers of labeled samples.

Under review as a conference paper at ICLR 2025

s

..0.8- 103

(3}

o

506

3 x

< Z 10'4

7 047 7=0.99 T=0.99

QO

= 024 7=0.999 7=0.999

! 7=0.9999 10°4 T=0.9999
IO |1 HI2 ' 7”'0 |1 |2
10 10 10 10 10 10
(a) Test accuracy (b) Test NTK

Figure 8: The evolution of test accuracy and NTK trace under different EMA coefficient 7.

process of semi-supervised learning is much more complex. Specifically, it involves both the (weakly
augmented-)labeled and strongly augmented (unlabeled-)samples that are pseudo-labeled in the
training. Motivated by the discussions in the supervised learning settings, we are interested in the
dynamics of NTK trace of the following samples: 1) All the weakly augmented-labeled samples. 2)
All The weakly augmented-unlabeled samples. 3) All the strongly augmented-unlabeled samples.

4) All the strongly augmented-unlabeled samples that are pseudo-labeled. Denote X, as the set of

samples that are pseudo-labeled, i.e. those 27 which satisfies max(prob(w(z?))) > 7. Then we are
Tr (K (w(X),w(X1)))
5 .

interested in the following 4 quantities: 1) Supervised (labeled) samples (Sup) %
Tr(Ko (w(Xu).w(Xu))) 3)

2) Unsupervised (unlabeled) weakly augmented-samples (Unsup Weak) B
Unsupervised (unlabeled) strongly augmented-samples (Unsup Strong) Tr(Kf(QELA];“I)(’Q(X“))). 4)

Pseudo-labeled samples (Pseudo) TT(Kt(QLA];‘})(’Q(X“))) .

In our experimental setup, we have closely followed the configuration used in FixMatch (Sohn et al.,
2020). Our approach involves the utilization of a sgd optimizer with a momentum of 0.9. Additionally,
we have employed a cosine learning rate scheduler, initialized at 0.03, to dynamically adjust the
learning rate during training. The total number of training steps is set to 220, with evaluations
conducted at every 5000 steps and makes the total number of evaluation steps to be 210. For the
labeled samples, we have chosen a batch size of 64, while maintaining a ratio y of 7 between the
unlabeled and labeled samples. Furthermore, we have set the threshold value ¢ to 0.95 to guide
the decision-making process. The weak and strong augmentation functions are used following the
RandAugment approach (Cubuk et al., 2020). Lastly, we have employed the WideResNet-28-2
architecture as the underlying backbone model for our experimental investigations.

Figure 7 demonstrates the NTK trace for varying label quantities, with a range of 40, 250, and
4000 labeled samples in total. Notably, the changing patterns of each quantity exhibit remarkable
similarities across the different label quantities. To enhance clarity, a logarithmic scale is employed for
the evaluation steps. The figure reveals that the accuracy undergoes slow changes after approximately
20 steps, which corresponds to around 10% of the total training steps. Simultaneously, all NTK
traces experience a significant decrease, with distinct values for each of the four traces. Subsequently,
throughout the remaining training process, all NTK traces exhibit an increasing trend and converge
towards similar values. This phenomenon can be attributed to the scarcity of labeled data in the
early stages of training, which leads to a less stable training process. Furthermore, it indicates
that the weakly augmented labeled and unlabeled data share similar NTK traces, implying that the
predicted pseudo-labels may have similar distributions to the labeled ones. Additionally, the NTK
traces of weakly and strongly augmented samples are similar, suggesting that the network generalizes
well on strongly augmented samples. Finally, the NTK traces of strongly augmented samples and
pseudo-labeled samples exhibit resemblances, indicating a high efficiency of pseudo-labeling.

5.3.2 INVESTIGATING THE DYNAMICS OF EXPONENTIAL MOVING AVERAGE MECHANISM

To enhance the prediction accuracy, in semi-supervised learning an exponential moving average
(EMA) technique is usually employed. Specifically, at each step n, denote the EMA model as

22 and the initial model as z., the update rule for the EMA model with momentum 7 is 22, =

TZ,QH_l +(1—7)zl.

Under review as a conference paper at ICLR 2025

1e-5
® 254 T=0.99 8- Tig‘ggg
e T=0.999 =0
% 20+ T=0.9999 6 7=0.9999
~ o
2 15 5
g0 o 4
© 10
g
5 57 7
o
T — T T T T 0H|0 T T T T
10° 10" 10? 10 10 10

(a) Distance between initial and EMA model (b) 1‘% parameter distance//NTK trace

Figure 9: Parameter distance and NTK ratio.

We plot the accuracy and NTK trace of EMA model 22 on the test dataset under different 7 in Figure 8
using FixMatch on CIFAR-10 with 40 labels. The best accuracy for different 7 is listed as: 7 = 0.99,
accuracy= 94.73. 7 = 0.999, accuracy= 94.97. 7 = 0.9999, accuracy= 95.13. The evolution of
test NTK is similar to the observation in section 5.3.1 with a first chaotic phase and quickly turns into
an increasing phase.

For the behavior of accuracy under different momentum parameters 7 in EMA, we will present an
intuitive theoretical understanding of the phenomenon as follows using the gradient flow.

Theorem 5.1. Denote the parameter for the initial model along traznzng as z*(t) and the parameter
for the EMA updated model with momentum 7 as z2(t). Assume 2%(t) also satisfies the gradient
Sflow equation (1) and the training loss is a cross-entropy loss for input pair (z;,y;), where y; is a
ground-truth label or pseudo-label. Then we have the following bound on the average error:

LTty - 2 < SEX L \/Zl wlenchortyn) Zprobtas O,)

N

We therefore plot the I distance between initial model and EMA model parameters ||z () — 22(t)]

in Figure 9 (a) and the ratio =7 (|21 (t) — 22(t)||/ w in Figure 9 (b). Recall that the

test accuracy corresponds to 7=0.99,0.999,0.9999 is 94.737 94.97,95.13. From Figure 9 (b), we
can see the ratio decreases after the initial unstable training phase. The ratio has a decreasing order
with the size of 7 and is getting close at the end of training, this matches the fact that test accuracy is
close but with decreasing order with the size of 7. These observations show that the inequality (7)
offers valuable insight into the dynamic of the EMA model.

6 CONCLUSION

Through the analysis of the NTK trace, we gained valuable insights into the network’s training
progress and its correlation with accuracy. Our findings in standard supervised image classification
settings demonstrated that the NTK trace typically exhibited an increasing trend, eventually stabilizing
when the network achieved its highest accuracy on the training data. This observation underscores the
intrinsic connection between the NTK dynamics and the network’s training performance. Furthermore,
our exploration of the phenomenon referred to as “grokking” yielded further insights. Through the
utilization of the NTK trace, we closely monitored the training dynamics in grokking scenarios and
made a noteworthy observation: the test accuracy reaches its peak when the NTK trace stabilizes.
In the final phase of our study, we investigated the training dynamics of semi-supervised learning,
with a particular emphasis on examining the effectiveness of exponential moving average (EMA)
mechanisms. By leveraging the NTK trace, we gained a deeper and more accurate understanding
of the intricate behavior displayed in semi-supervised learning scenarios, as well as the influence
of EMA on the training process. This analysis provided valuable insights into the dynamics of
semi-supervised learning and shed light on the role of EMA in enhancing training performance. One
limitation of our work is not analyzing the whole property of NTK, just its trace.

Under review as a conference paper at ICLR 2025

REFERENCES

Alexander Atanasov, Blake Bordelon, and Cengiz Pehlevan. Neural networks as kernel learners: The
silent alignment effect. arXiv preprint arXiv:2111.00034,2021. 2

Andrzej Banburski, Qianli Liao, Brando Miranda, Lorenzo Rosasco, Fernanda De La Torre, Jack
Hidary, and Tomaso Poggio. Theory iii: Dynamics and generalization in deep networks. arXiv
preprint arXiv:1903.04991, 2019. 2

Guy Blanc, Neha Gupta, Gregory Valiant, and Paul Valiant. Implicit regularization for deep neural
networks driven by an ornstein-uhlenbeck like process. In Conference on learning theory, pp.
483-513. PMLR, 2020. 2

Zixiang Chen, Yuan Cao, Difan Zou, and Quanquan Gu. How much over-parameterization is
sufficient to learn deep relu networks? arXiv preprint arXiv:1911.12360, 2019. 2

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition workshops, pp. 702-703, 2020. 8

Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M Roy,
and Surya Ganguli. Deep learning versus kernel learning: an empirical study of loss landscape
geometry and the time evolution of the neural tangent kernel. Advances in Neural Information
Processing Systems, 33:5850-5861, 2020. 1, 2, 4

Boris Hanin and Mihai Nica. Finite depth and width corrections to the neural tangent kernel. arXiv
preprint arXiv:1909.05989, 2019. 1, 2

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31, 2018.
1,2,3

Ziwei Ji and Matus Telgarsky. Polylogarithmic width suffices for gradient descent to achieve
arbitrarily small test error with shallow relu networks. arXiv preprint arXiv:1909.12292, 2019. 2

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Advances in neural information processing systems, 32,2019. 3

Etai Littwin, Tomer Galanti, and Lior Wolf. On random kernels of residual architectures. In
Uncertainty in Artificial Intelligence, pp. 897-907. PMLR, 2021. 1, 2

Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, and Mike Williams.
Towards understanding grokking: An effective theory of representation learning. Advances in
Neural Information Processing Systems, 35:34651-34663, 2022a. 2

Ziming Liu, Eric J Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic data.
arXiv preprint arXiv:2210.01117, 2022b. 5

Noel Loo, Ramin Hasani, Alexander Amini, and Daniela Rus. Evolution of neural tangent kernels
under benign and adversarial training. Advances in Neural Information Processing Systems, 35:
11642-11657,2022. 1,2, 4

Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks.
arXiv preprint arXiv:1906.05890, 2019. 2, 4

Mor Shpigel Nacson, Suriya Gunasekar, Jason Lee, Nathan Srebro, and Daniel Soudry. Lexicographic
and depth-sensitive margins in homogeneous and non-homogeneous deep models. In International
Conference on Machine Learning, pp. 4683-4692. PMLR, 2019. 2

Neel Nanda, Lawrence Chan, Tom Liberum, Jess Smith, and Jacob Steinhardt. Progress measures for
grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023. 2,5, 6

10

Under review as a conference paper at ICLR 2025

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: General-
ization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177, 2022.
2

Mariia Seleznova, Dana Weitzner, Raja Giryes, Gitta Kutyniok, and Hung-Hsu Chou. Neural (tangent
kernel) collapse. Advances in Neural Information Processing Systems, 36,2024. 2, 4

Haozhe Shan and Blake Bordelon. A theory of neural tangent kernel alignment and its influence on
training. arXiv preprint arXiv:2105.14301, 2021. 2

Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel, Ekin Do-
gus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised learning
with consistency and confidence. Advances in neural information processing systems, 33:596-608,
2020. 8

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit
bias of gradient descent on separable data. Journal of Machine Learning Research, 19(70):1-57,
2018. 2

Zhiquan Tan and Weiran Huang. Understanding grokking through a robustness viewpoint. arXiv
preprint arXiv:2311.06597,2023. 2, 6

Tengyu Xu, Yi Zhou, Kaiyi Ji, and Yingbin Liang. When will gradient methods converge to max-
margin classifier under relu models? Stat, 10(1):e354, 2021. 2

Difan Zou and Quanquan Gu. An improved analysis of training over-parameterized deep neural
networks. Advances in neural information processing systems, 32, 2019. 2

11

Under review as a conference paper at ICLR 2025

A PROOFS OF THEOREMS
Theorem A.1. Ex cn0,1,) | f(X5w + A) = f(X;w)][% ~ 2 Tr(K(X, X;w)).

Proof. From Taylor expansion,

Eacenvo,i)lf(X;w + A) = f(X;w)||F = S VEamen o1 1 f (zisw + A) — fziw)||F ~
N N

Zfé\?l Eaneno, 1l (@i w)AllF = 300, EANeN(o L) TF(J(% w)AATT T (z,w)) =

Zi:l TI‘(EANGN(O,M)J(J"“)AAT JT (l‘“)) = e Ez 1 TI‘((xw)JT (xi’ w)) =

ETr(J(X,w)J T (X, w)) = Tr(K(X,X;w)). O

Theorem A.2. Suppose S(Kt+1(X,X),Kf(X X)) = 0(t > Tp). Suppose T > Ty, then
Ki(X, X) = K;(X,X) (i, 5 = T) iff Te(K3 (X, X)) = Tr(K;(X, X)) (4,5 > T).

Proof. Define a; = vec(K(X,X)). Denote M; = Tr(K;(X,X)) and B = Ko (X, 1)

. T Ky (XX
K (X,X) mm L
the assumption, we know that Ha ”2 ”at ” (t > tg). Thus m = B,,m. Then M; =

2o K (X, X = 3, 1 KG(X, X)”FBmm = |K;(X, X)[|p Te(B). Then K;(X,X)m, =
1K (X, X) | Bun = 5k Bmn- Thus K;(X, X) = x5k B. Thus the conclusion follows. [
Theorem A.3. Denote the parameter for the initial model along training as z*(t) and the parameter
for the EMA updated model with momentum 7 as z2(t). Assume 22(t) also satisfies the gradient
Sflow equation (1) and the training loss is a cross-entropy loss for input pair (x;,y;), where y; is a
ground-truth label or pseudo-label. Then we have the following bound

L=y — o < EECEEEOD, [l enchoty) probtes 2O

From

8
¥ ®)
Proof. The update formula for EMA model is as follows:
22(t+dt) = 722(t) + (1 — 1)z (t).
Then we can obtain the following ordinary differential equation
1—71
Q27 (t) = ——(='(t) — 27(¢))- ©
Assume z2(t) satisfies equation (1), then equation (9) simplifies to the following
1—7
~Vaul(f(X;27() = ——(2'(t) = 22(1)). (10)
Using the expression of [, one may derive the following
1Y 1—7
& 27 (i 22(1)(onehot(y,) — prob(e 22(8) =~ (M(1) (1), (1)
h bl 22(1)) — ef1 (@32 (1) K (@iz2() T
where pro (in, ZT()) - [ZKzl ol (@iiz2() e, S efj(;zj;zg_(t))]

Then by the triangular inequality for norm and Cauchy—Schwarz inequality, we can obtain the
following bound

1—7
I21(t) = 22 < ZHJT a5, 22(t)) | r[lonehot(y;) — prob(z;; 22(t))]|

N
R X 20N, [T lonchotty) —probas 201

- N N '
Remark: Similar arguments also hold for MSE loss. [

12

Under review as a conference paper at ICLR 2025

B MORE EMPIRICAL RESULTS ON STANDARD SUPERVISED CLASSIFICATION

The default settings for the experiment are as follows: the dataset used is CIFAR10, and the model
employed is ResNet18. The parameter € for NTK trace calculation is set to 0.01. The learning rate is
initialized to 0.1, and momentum is set to 0.9. Weight decay is set to 5 * 10~%. The batch size for
training is set to 128, and the total number of training epochs is 200. Additionally, a cosine learning
rate decay strategy is employed during training. For CIFAR100 dataset, the settings are the same
as CIFAR10. For ImageNet dataset, the parameter ¢ for NTK trace calculation is set to 0.001, the
learning rate is initialized to 0.01 and weight decay is set to 10~# with 300 epochs training. All
experiments can be performed under 8 GeForce RTX 4090 in less than 1 day.

B.1 DIFFERENT LEARNING RATES AND MOMENTUMS

In this section, we conduct two sets of experiments. We first vary the learning rate (Ir) from 1 to
10~* while keeping the momentum (mt) fixed at 0.9, and we also conduct experiments by fixing
the learning rate at 0.1 and vary the momentum from 0.1 to 0.9. We plot the NTK (Neural Tangent
Kernel) trace as a function of training epochs and we record the best test accuracy in the captions
after Ir or mt.

Recall that sgd with momentum has update rule: w(t 4+ 1) = w(t) — lr xv(t + 1), where v(t + 1) =
Vi(w(t)) + mt * v(t). When the learning rate or momentum is very small, the network will be hard
to jump out of the local minima. This explains the phenomenon in Figures 10 and 11 where the NTK
trace will first undergo a certain phase of decreasing and test accuracy will be smaller in the low Ir or
mt regime due to this optimization insufficiency.

o 150
Train Acc Train NTK. [107 Train Acc Train NTK |10 ain Acc| — Train NTK L 106 Train Acc Train NTK [0 Train Acc| — Train NTK 10
fest st Test Acc TeStNTK | 406

test acc =0.9004 | 1g:
f105
b
f10t
f10
Laoe

MIN
Accuracy

NIN
Accuracy

MIN
Accuracy

Accuracy
MINT
Accuracy

025 . 025 025 025 025
000

(@)Ir=10"*(85.9) (b)Ir=10"3(91.6) (c)Ir=0.01(94.5) (d)Ir=0.1(953) (e)Ir=1.0(90.0)

Figure 10: NTK trace under different learning rates.

1 5
Train Acc Train NTK Train Acc Train NTK Train Acc Train NTK Train Acc Train NTK [10° Train Acc Train NTK [105
Test NTK t £ NTK

3
4
3
=
3
=
=

MIN
Accuracy

Accuracy
Accuracy
MIN
Accuracy
MIN
Accuracy

000 ’ r . 000 ’ : . 0004+ 000
L o s 0

nnnnnnnnn

(@mt=0.1(945) (b)mt=0.3(94.8) (c)mt=0.5(950) (d)mt=0.7(955) (e)mt=0.9(95.3)

Figure 11: NTK trace under different momentum values.

B.2 DIFFERENT ARCHITECTURES IN A MODEL FAMILY

In the following experiment, we test the dynamic behavior of the NTK trace on a family of different
models, namely ResNet18, ResNet34, ResNet50 and ResNet101. We fix the learning rate at 0.1 and
momentum at 0.9, and plot the NTK trace as a function of training epochs for each model. From
Figure 12, we can see the trend of NTK is similar among models.

B.3 DIFFERENT INITIALIZATION STRATEGIES

In the following experiment, we test the influence of different initialization methods (Kaiming,
Orthogonal, Xavier, Standard) on the NTK trace dynamics. We fix the learning rate at 0.1 and
momentum at 0.9, and plot the NTK trace as a function of training epochs for models initialized
with different methods. From Figure 13, we can see the trend of NTK is similar among different
initializations.

13

Under review as a conference paper at ICLR 2025

3
4
o
El
Fd
4
-
3
4
3
3
4
3

Accuracy
SN

Accuracy
LN

Accuracy
AN

Accuracy
L

: 107
0.00 . : : 0.0 . ' ' 000 . : : 0004
o so 10 150 200 0 so 10 150 200 0 so a0 130 200 3

(a) ResNet18 (b) ResNet34 (c) ResNet50 (d) ResNet101

Figure 12: NTK trace of different ResNet models.

150 , 150 150 107
Train Acc Train NTK 107 Train Acc Train NTK |10 Train Acc Train NTK. 10 Train Acc Train NTK
Test Acc TestNTK | 125 Test Acc TestNTK |00 125 Test Acc TestNTK |, 125 TestAcc | — Test NTK 200

Accuracy
a
N
a
N
ccuracy
N

0 s 100 130 200 0 s 10 130 200 0 s 10 10 200 0 so 10 130 200

(a) Kaiming (b) Orthogonal (c) Xavier (d) Standard

Figure 13: NTK trace under different initialization methods.

B.4 DIFFERENT SEEDS

In this experiment, we investigate the influence of different random seeds on model training and the
NTK trace. We plot both the test accuracy and train accuracy, as well as the logarithmic scale of the
test NTK and train NTK trace. The left subfigures depict test accuracy and train accuracy, while the
right subfigures depict the logarithmic scale of the test NTK and train NTK trace. From Figure 14,
we can see the trend of NTK is similar among different seeds.

Ies:jgufacy -
‘galﬂ /;'\:(UYBCY z
Test:NTK
gé ijim;m

3 %0 10 180 200 o %0 0 150 200 0 %0 w0 ko 200 3 % w0 %0 200

(a) Test Accuracy (b) Train Accuracy (c) Test NTK (d) Train NTK

Figure 14: Effect of different seeds.

B.5 DIFFERENT SAMPLINGS

Recall that from theorem 4.1, we have the equation Tr(K (X, X;w)) = SEAen0, 1) | f(X;w +
A) — f(X;w)|%. Now, we investigate the impact of different sampled perturbations A; on the
approximation of the expectation. We sample 4 different perturbations and calculate the quantities
== | f(X;w+ A;) — f(X;w)[%. In Figure 15, we plot these quantities on the training and testing
datasets. From the figure, we observe that different samplings have minimal effect on the pattern of
NTK trace estimation. The overall trend remains consistent regardless of the specific perturbations

sampled.

B.6 DIFFERENT OPTIMIZER AND ARCHITECTURE

In our main experiments in section 4, we use the ResNet architecture and the sgd optimizer. However,
to understand the behavior of the NTK trace under different optimizers or architectures, we consider
the popular Adam optimizer and the ViT (base) architecture. We plot the NTK trace under these
different scenarios in Figure 16. We observe that the NTK trace generally exhibits an increasing
trend until it stabilizes, regardless of the optimizer or architecture used. Although the optimization
speed may vary, the overall trend remains consistent. These findings provide further insights into the
behavior of the network and its relationship with different optimizers and architectures.

14

Under review as a conference paper at ICLR 2025

756

757

758

759

760

761

762

763

764 10°
765
766
767
768
769
770 103
771

772 T T T | T T T |
773 0 50 100 150 200 0 50 100 150 200
774

775

Sampling 1
Sampling 2
Sampling 3 10°
Sampling 4

Sampling 1
Sampling 2
Sampling 3
Sampling 4

Train NTK
Ll
Test NTK
Ll

(a) Training Dataset (b) Testing Dataset

776 Figure 15: The evolution of NTK trace estimations under different sampling of Gaussian perturbation
77 of parameters, on both training and testing datasets.

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793 150 10

794 1.254 Train Acc —— Train NTK 10 ——— TrainAcc —— Train NTK ~—— TrainAcc ——— Train NTK

1.254 L. n6 - 6
—— TestAcc —— TestNTK o —— TestAcc —— TestNTK [10 087 —— TestAcc —— TestNTK [10

1.004 +
hy 10

795 g0

>
8 z
® .75 z z
5078 FioP S 5 0754 5 § =
796 8 0.50- x 8 L'~ 8 o4 L 1o
2 Lo o050+ 2
797 0.25- 0.25-] 021
798 0.00- T T T T 0.00- . T | —-10” 0.0 T T T 10
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
799

800 (a) ResNet Adam (b) ViT Adam (c) ViT sgd

801
802
803
804
805
806
807
808
809

Figure 16: The evolution of NTK trace estimations under different optimizers and architectures, on
both training and testing datasets.

15

