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ABSTRACT

Data engineering pipelines are essential - albeit costly - components of predictive
analytics frameworks requiring significant engineering time and domain expertise
for carrying out tasks such as data ingestion, preprocessing, feature extraction,
and feature engineering. In this paper, we propose ADEPT, an automated data
engineering pipeline via text embeddings. At the core of the ADEPT framework
is a simple yet powerful idea that the entropy of embeddings corresponding to
textually dense raw format representation of time series can be intuitively viewed
as equivalent (or in many cases superior) to that of numerically dense vector
representations obtained by data engineering pipelines. Consequently, ADEPT
uses a two-step approach that (i) leverages text embeddings to represent the diverse
data sources, and (ii) constructs a variational information bottleneck criteria to
mitigate entropy variance in text embeddings of time series data. We further
establish theoretical guarantees showing that our construction maximizes mutual
information while controlling predictive error, ensuring both compression and
preservation of the predictive signal. ADEPT provides an end-to-end automated
implementation of predictive models that offers superior predictive performance
despite issues such as missing data, ill-formed records, improper or corrupted data
formats and irregular timestamps. Through exhaustive experiments, we show that
the ADEPT outperforms the best existing benchmarks in a diverse set of datasets
from large-scale applications across healthcare, finance, science and industrial
internet of things. Our results show that ADEPT can potentially leapfrog many
conventional data pipeline steps thereby paving the way for efficient and scalable
automation pathways for diverse data science applications.

1 INTRODUCTION

Data engineering pipelines are fundamental components for enabling predictive analytics on time
series data in several areas such as energy Rahimilarki et al. (2022), healthcare An et al. (2023)
and finance Dingli & Fournier (2017). These pipelines broadly comprise of seven sequential steps
pertaining to data ingestion; data preprocessing; feature extraction; feature engineering; model
training and testing followed by model deployment Raj et al. (2020). Preprocessing typically involves
data cleaning mechanisms that aim to eliminate ill-formed records Felix & Lee (2019), resolve
irregularities in sampling as well as impute missing values. Feature engineering and extraction steps
deal with identifying features of the input time series encoding the information most relevant to the
predictive analytics task at hand Lin & Tsai (2020). For best efficiency gains, it becomes necessary
to carefully customize methodological frameworks used for data cleaning, feature engineering and
extraction tasks with respect to the application specific domain area and data challenges. As a result,
despite several advances in the field of autoML Salehin et al. (2024), automating the data cleaning,
feature engineering and extraction steps remain one of the most challenging and expensive tasks
across conventional data engineering pipelines due to the need for significant manual intervention and
domain expertise Salehin et al. (2024). In this paper, we present ADEPT, a framework that attempts
to drastically simplify data engineering pipeline complexity by applying LLM-based text embedding
models on raw text representations of input time series as a precursor to the model training step.

Fundamentally, the pattern recognition capability of any predictive model is a direct consequence of
capturing temporal and spatial correlations in the time series input. From an information theoretic
perspective, we argue that the entropy of embeddings corresponding to textually dense raw format
representation (RFR) of time series (such as CSV, HDF5 etc.) can be intuitively viewed as equivalent
to that of numerically dense vector representations obtained by data engineering pipelines. As a result,
LLM-based text embeddings of time series RFRs can also potentially be seen as alternative represen-
tations of spatial and temporal correlations essential for training a predictive model. Consequently,
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ADEPT enables a significantly simpler data representation that can be used for model training while
retaining its spatiotemporal aspects. Also, the ADEPT framework exploits text embeddings of time
series RFRs to effectively leapfrog data cleaning, feature engineering and extraction steps of data
engineering pipelines. In doing so, ADEPT demonstrates significant resiliency with respect to missing
data, ill-formed records, improper or corrupted data formats as well as irregular timestamps.

Figure 1: Comparison of the model and benchmark.

The methodological contri-
bution of ADEPT relies on
exploiting text embedding
models primarily geared for
LLM use cases as the foun-
dational building block to
power time series oriented
predictive analytics tasks.
As a result, the ADEPT
framework leverages text
embedding models as a
black box, eliminating need
for complex fine-tuning and retraining tasks. We introduce a Variational Information Bottleneck
(VIB) criteria as a means to reduce the entropy variance emanating from text embeddings of time
series RFR. Additionally, the VIB criteria is used to train a multi-head attention (MHA) framework
for yielding a high-quality predictive analytics model. The VIB criteria enables ADEPT to apply a
filtering mechanism that relies on generating information-rich text embedding representations that
can be used to boost classification accuracy. Using the VIB criteria, ADEPT can be directly applied
on RFRs of time series inputs without any prior preprocessing. We note that the ADEPT framework
is generally extensible and can be used in conjunction with other learning paradigms such as MLPs
or SVMs. Figure 1 presents an overview of the capabilities of existing time-series classification
frameworks versus the proposed ADEPT framework. Our contributions are as follows:
• We propose ADEPT, the first framework to leverage text embeddings for learning representations

directly from raw time series data, enabling an automated data engineering pipeline process that is
robust to data integrity issues, without finetuning or preprocessing.

• ADEPT further enhances these representations by leveraging the VIB criteria, which filters out
noise and maximizes application-specific information extracted from the embeddings.

• ADEPT framework integrates of text embedding models along with VIB criteria and transformer
based attention models to achieve a fully end-to-end time-series classification pipeline that rivals
the performance of state-of-the-art models across diverse applications.

2 BACKGROUND

In this section, we formalize multivariate, multi-view classification settings that motivate ADEPT
framework design, provide a review of traditional pipeline-based approaches, AutoML strategies,
and recent efforts to apply text embeddings in non-text domains before introducing the information-
theoretic principles for variational information bottleneck to distill noise and redundancy.

2.1 MULTIVARIATE TIME SERIES CLASSIFICATION

We consider a multivariate time series classification problem on a dataset of N samples or events,
where each event i ∈ {1, . . . , N} has an associated class label yi ∈ {1, . . . , C} and can be observed
under up to K temporal views. Each temporal view is representative of a specific historical window
of time series data preceding the occurrence of event i. Additionally, each view k denotes a fixed
window relative to some anchor point (e.g., k = 1 for the earliest window, k = K for the most
recent). Let Si,k ∈ RT×F be the multivariate time series for view k corresponding to event i such
that Si,k consists of T timesteps and F channels. In other words, we can represent the time series
data for T ×K consecutive time steps immediately preceding the occurrence of sample i using Si,
where Si ∈ R(T×K)×F and Si = Concatenate(Si,k)Kk=1. While this formulation unifies diverse
domains, practical pipelines transform Si into features via manual, domain-specific steps.

2.2 CONVENTIONAL TIME SERIES CLASSIFICATION PIPELINE

Conventional pipelines transform each raw series Si,k into features via a chain of operations that are
finetuned in an iterative cycle. This process involves a series of operations, such as:

S̃i,k = fimp(Si,k; θimp), Ŝi,k = fnorm(S̃i,k; θnorm), xi = ϕ({Ŝi,k}Kk=1; θfeat) ∈ RM (1)
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Here fimp denotes missing-value interpolation (e.g. cubic-spline McKinley & Levine (1998) or
Gaussian-process Roberts et al. (2013)), fnorm represents normalization (min–max or z-score), and ϕ
extracts M handcrafted features (often M ≫ TFK; e.g. TSFEL yields M > 9000 Barandas et al.
(2020)). Each operation depends on tuning parameters—outlier-detection thresholds θout Hodge
& Austin (2004); Leys et al. (2013), dimensionality reduction technique like PCA component
counts Keogh et al. (2001), or feature-selection heuristics Li et al. (2017)—leading to iterative cycles
of hypothesis and validation that can occupy analysts for weeks Tawakuli et al. (2024). Inherently,
a successful pre-processing and feature generation are inherently domain-specific and demand
substantial engineering time and effort to tailor methods and validate results Keogh et al. (2001); Leys
et al. (2013); Tawakuli et al. (2024); Li et al. (2017); Leys et al. (2013). Once these preprocessing
and data-engineering steps produce the fixed-length feature vectors {xi}, practitioners then train a
classifier g(xi; θclf) to predict labels yi, further extending the design burden with choices of model
family and hyperparameters. Conventional methods require significant engineering time, produce
highly complex frameworks, do not generalize well across different applications and problem settings,
and often require extensive retraining and parameter re-tuning when deployed in new environments.
2.3 AUTOML-BASED PIPELINE SEARCH FOR TIME SERIES CLASSIFICATION

To alleviate the intensive engineering effort of manual preprocessing and feature engineering, Au-
toML frameworks seek to automate parts of the process by formulating the problem using a joint
optimization formulation over a pipeline search space H:

H∗ = arg min
H∈H

Lval

(
M({Si,k};H)

)
(2)

where M encompasses imputation, normalization, feature extraction, model architecture, and hyper-
parameters. Tools such as auto-sklearn’s Bayesian optimization Feurer et al. (2015), TPOT’s genetic
programming Olson et al. (2016), AutoKeras’s neural architecture search Jin et al. (2023), H2O
AutoML’s stacked ensembles LeDell & Poirier (2020), and AutoLDT’s CMA-ES–driven transformer
search Wang et al. (2024) have demonstrated the feasibility of AutoML methods. However, AutoML
approaches also incur substantial computational overhead due to the combinatorial size of H, often
demanding days of GPU/CPU time; they produce opaque “black-box” pipelines that hinder model in-
terpretability; they typically employ only generic imputation (e.g. mean/median) and scaling routines
rather than domain-specific methods such as Gaussian-process interpolation or seasonality-aware
normalization; they still rely on extensive manual filtering of large feature sets (e.g. pruning TSFEL’s
thousands of extracted features Barandas et al. (2020)); and their domain-agnostic search strategies
frequently overlook temporal inductive biases and multi-view patterns, which can lead to suboptimal
accuracy on complex sequence data. In summary, while AutoML methods improve automation, they
do not necessarily lead to a good representation of data, still require significant engineering time,
and demands access to immense computational resources.

2.4 TEXT EMBEDDING MODELS FOR DOMAIN-SPECIFIC DATA ANALYSIS

Text embedding models—originally grounded in the distributional hypothesis Harris (1954) —treat
any co-occurring entities as “tokens,” unlocking cross-domain applications across spatial semantics
Hu et al. (2020); Niu & Silva (2021), movement dynamics Murray et al. (2023), behavioral inference
Richie et al. (2019), political discourse analysis Rheault & Cochrane (2020), joint video–text em-
beddings for instructional content Sun et al. (2019); Miech et al. (2019) and audio–text alignments
via contrastive pretraining Guzhov et al. (2022); Ilharco et al. (2019). These foundational studies
trained embeddings from scratch on domain-specific data, demonstrating that lightweight embedding
architectures can effectively capture complex, domain-specific structures. Building on this legacy,
modern practitioners can either deploy fully offline, open-source embedders—such as Nomic’s nomic-
embed-text-v1 Nussbaum et al. (2024)—for strict data residency and privacy control, or leverage
API-based services like OpenAI’s text-embedding-3-small OpenAI (2023), which often offer superior
accuracy due to web-scale pretraining but require sending inputs to third-party servers. Because these
large models are pretrained on vast, internet-scale corpora, they provide high-quality semantic vectors
with far less overhead than full LLMs, streamlining experimentation without building custom models
from scratch. Text embedding models demonstrated a significant ability to capture structure across
diverse domains —suggesting that even highly structured, non-linguistic data like time series may
benefit from such pretrained semantic representations.

2.5 INFORMATION BOTTLENECK APPROACHES IN DEEP LEARNING
Variational Information Bottleneck (VIB) techniques emerged as powerful tools in deep learning to
denoise input data and enhance model accuracy. The original formulation by Alemi et al. (2016)
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introduced a stochastic encoder–decoder framework that improved model robustness on MNIST
and ImageNet by compressing task-irrelevant features in the latent space. This was extended
by Achille & Soatto (2018), who proposed Information Dropout—a parameterized log-normal
noise model that promotes invariant, disentangled representations. Foundational insights from
noisy channel theory Dobrushin & Tsybakov (1962) support VIB’s core mechanism of stochastic
compression. In generative modeling, the β-VAE of Higgins et al. (2017) similarly enforces factorized,
expressive latent codes via a constrained variational objective. A comprehensive survey by Goldfeld &
Polyanskiy (2020) synthesizes these developments, framing VIB as a unifying agent. By suppressing
redundancy and irrelevant noise, VIB generates more informative and compact latent representations,
and ultimately improves the performance of the downstream prediction tasks.

3 METHODOLOGY
The methodological core of ADEPT relies purely on a black box text embedding model applied on
decompositions of the RFRs of time series input datasets which is followed by a VIB criterion for
enhancing information gain. ADEPT methodology can be broken down into four distinct steps that
can be implemented in a scalable fashion, and integrated to develop two versions of the framework.
• RFR Processing and Decomposition: RFRs corresponding to multichannel time series input

sequences are decomposed into segments of fixed content sizes and serialized for standardization.
• Temporal Text Embeddings: Serialized RFR temporal decompositions are processed using black-

box, LLM-based language embedding models to obtain text embeddings.
• Variational Information Bottleneck: A variational encoder learns the latent space distribution of

RFR embeddings, resulting in fused sequences to reduce noise & enhance information gain.
• Classifier: A transformer-based classifier captures intra- and inter-view dependencies from the

fused multi-view sequences and performs final prediction.

3.1 RFR PROCESSING AND DECOMPOSITION

We begin by considering the tuple (Ri, yi) for each reported event i ∈ {1, . . . , N}, where Ri =
RFR(Si) where Si ∈ R(T.K)×F denotes the actual time series data forK temporal views immediately
preceding event i. Next, we consider the decomposition of each temporal view Si,k into M equal-
length segments or chunks of length L = T/M , with corresponding RFR R

(j)
i,k = RFR(Sji,k). It is

important to note that the decomposition scheme preserves the temporal order of data pertaining to
individual time steps across as well as within multiple views. Therefore, extracting the RFR for each
segment can be trivially accomplished using a simple count based query or by enforcing a content
size limit (for e.g., in KBs, MBs) on each chunk.

Our approach also balances the extremes of processing the full T × F series at once—which
can dilute important local patterns and incur high computational cost—and treating each timestep
independently—which ignores temporal and cross-channel structure. While temporal chunking
enhances downstream representations by balancing local and global dependencies, selecting the
optimal number of chunks M introduces a trade-off. A smaller M (longer chunks) may overload
downstream encoders or mix heterogeneous patterns, whereas a larger M (shorter chunks) risks
fragmenting temporal dependencies and increasing sequence length. Domain insight or systematic
validation studies can help inform the choice of M for balancing expressivity and computational
tractability. However, validation studies for determining M can be easily automated and implemented
in a scalable fashion on account of the pipeline simplifications afforded by the text embedding models.

3.2 TEMPORAL TEXT EMBEDDINGS

To leverage the powerful, pre-trained semantic priors, we treat each raw time-series chunk as text,
enabling off-the-shelf embedding models to capture both numeric and categorical patterns without
manual intervention. We serialize each RFR chunk R(j)

i,k ∈ RL×F to obtain R(j),ser
i,k ∈ Σ∗ by

concatenating timestamps and channel readings into a token sequence where Σ∗ is the model’s
character set and E its output dimension. We then apply a frozen text-embedding function g:

e
(j)
i,k = g

(
R

(j),ser
i,k

)
∈ RE (3)

Note: Since g natively handles both numeric and textual tokens, categorical channels (e.g., flags or
event types) can be embedded alongside continuous measurements in one unified string.

By applying the pretrained text embedding model on serialized time series chunks, we can derive the
lower bound on the mutual information between original time series sequences and their corresponding
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embeddings. Proposition 1 captures the theoretical lower bound of mutual information I(Sji,k, e
(j)
i,k)

with respect to original time-series chunk Sji,k and serialized time series embeddings e(j)i,k .

Proposition 1. The lower bound on mutual information between the original time-series segment
Sji,k and its corresponding embedding e

(j)
i,k has the following valid lower bound:

I(Sji,k; e
(j)
i,k) ≥

n∑
l=1

[
H(Sjl,k)−Hb(p

(j,l,k)
e )− p(j,l,k)e log(|V| − 1)

]
(4)

where i ∈ {1, N}, j ∈ {1,M}, k ∈ {1,K}, V denotes the set of classes for classification, p(j,i,k)e
represents the token-wise prediction error and H is the binary entropy function.

Proof. Proof provided in Appendix B.1
Proposition 1 provides a theoretical justification of the lower bound that is influenced by the decoder
performance. If the decoder f achieves low token-wise prediction error (i.e., p(j,i,k)e → 0 for all
i, j, k), then both Hb(p

(j,i,k)
e ) and p(j,i,k)e log(|V| − 1) vanish. In this case, the mutual information

between S and E approaches the total entropy of the original sequence: I(S;E) →
∑n
i=1 H(si) =

H(S).

Proposition 1 helps assess the mutual information lower bound with respect to the serialized em-
beddings of raw time series textual information. Proposition 1 shows that given a robust decoder,
embeddings from serialized raw formats—when passed through sufficiently expressive embedding
models—can capture the full entropy of the source signal contained in pure text formats. Moreover,
if a text embedding model is explicitly designed and trained on large-scale time-series datasets, it can
better align the embedding space with temporal patterns and dynamics.

However, pre-trained text embeddings—trained on general LLM corpora—can also introduce noise
when representing precise numerical sequences and often yield very high-dimensional, redundant
vectors. To address this, we design a Variational Information Bottleneck (VIB) criteria as our next
step in distilling more informative, lower-dimensional representations.

3.3 VARIATIONAL INFORMATION BOTTLENECK CRITERIA

To reduce noise variance, redundancy and maximize the extracted information gain from high-
dimensional text embeddings e(j)i,k , we adopt a VIB criterion across each view, producing compact

low-dimensional encoding that retain task-relevant information. To do so, we compress e(j)i,k into

a d-dimensional code z
(j)
i,k by leveraging a VIB encoder Alemi et al. (2016). For each view k, let

ϕk = {W (k)
µ , b

(k)
µ ,W

(k)
logφ, b

(k)
logφ} denote the VIB encoder parameters, and θk = {W (k)

y , b
(k)
y } the

linear classifier parameters. Here d is the bottleneck dimension and β > 0 the VIB trade-off weight.

Stochastic encoder for view k: For each chunk chunk e
(j)
i,k , we derive a low dimensional representa-

tion defined by µk, σk as defined in equation 5.

µk =W (k)
µ e

(j)
i,k + b(k)µ , log σ2

k =W
(k)
logφ e

(j)
i,k + b

(k)
logφ (5)

In equation 5, we clip σk to lie between [−10, 10], and set σk = exp
(
1
2 log σ

2
k

)
. Thus, the encoder

can be used to represent the conditional latent space distribution based on the observed embeddings:

qϕk
(z | e(j)i,k) = N

(
z;µk, diag(σ

2
k)
)

(6)

Reparameterization trick: In order to learn the latent space distribution conditioned on the embed-
dings, we apply a reparameterization trick characterized by equation 7 where ε ∼ N (0, Id).

z
(j)
i,k = µk + σk ⊙ ε (7)

The reparameterization trick ensures that the distribution of latent space can be parametrized by ϕk
which can be learned using gradient descent.

Classification head: We augment the VIB stochastic encoder with a classification head that is
parametrized by θk in order to map z

(j)
i,k to logits represented in equation 8.

ℓ
(j)
i,k =W (k)

y z
(j)
i,k + b(k)y , pθk(yi | z

(j)
i,k) = Softmax(ℓ

(j)
i,k) (8)
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Per-view loss: We use a loss function to jointly train the stochastic encoder and decoder framework:

Lk =
1

NM

N∑
i=1

M∑
j=1

[
− log pθk(yi | z

(j)
i,k)

]
+ β

1

NM

∑
i,j

DKL

[
qϕk

(z | e(j)i,k) ∥ N (0, Id)
]

(9)

where DKL

(
N (µ, σ2)∥N (0, I)

)
= 1

2

∑d
ℓ=1

(
µ2
ℓ + σ2

ℓ − log σ2
ℓ − 1

)
represents the Kullback-Leibler

divergence loss. The cross-entropy term ensures each view’s encoder retains predictive information;
the KL term, enforces compact, robust codes. We optimize each Lk independently via Adam (learning
rate η, batch size B) for E epochs, yielding specialized encoder–classifier parameters (ϕk, θk) for k.
3.4 TRANSFORMER-BASED CLASSIFIER DESIGN

For the final prediction task, we train a classifier on the latent space variates z(j)i,k . While any classifier
(e.g. SVM, random forest, XGBoost) could be used, we adopt a powerful multi-head attention (MHA)
based Transformer to capture both intra- and inter-view dependencies in a unified model. In the step,
we train a single Transformer-based model on the fused embeddings from all k views to perform
final classification. For each sample i, view k, and chunk j ∈ {1, . . . ,M}, let z(j)i,k ∈ RE be the

embedding. We assemble these into a sequence Zi,k =
[
z
(1)
i,k , z

(2)
i,k , . . . , z

(M)
i,k

]T ∈ RM×E . Our goal
is to predict the class label yi ∈ {1, . . . , C} for each sample i, leveraging all k views. Therefore, we
define a Transformer Autoencoder Tψ architecture with parameters ψ on the following components.

Input projection, transformer encoder & decoder and classification head: Each E-dimensional
row ofZi,k is linearly projected to h viaH(0)

i,k = Zi,kWin+bin. Stacked Transformer encoder–decoder

layers map to H(L)
i,k ∈ RM×h and reconstruct Ẑi,k. A pooled representation h̄i,k is then mapped to

logits ℓi,k = h̄i,kWy + by , yielding class probabilities pi,k = Softmax(ℓi,k).

Training procedure: We first pretrain Tψ as a joint autoencoder by minimizing the mean-squared
reconstruction error averaged across the k views as represented in equation 10.

LAE =
1

K.N

N∑
i=1

K∑
k=1

1

2M.E

∥∥Ẑi,k − Zi,k
∥∥2
Z

(10)

This encourages the model to learn a latent representation that reconstructs all fused embeddings,
capturing common structure across views. Next, we fine-tune for classification by computing the
per-view distributions pi,1, pi,2, pi,3 for each sample i, leading to a consensus given by equation 11.

pi =
pi,1 ⊙ pi,2 ⊙ pi,3∑C

c=1

[
pi,1 ⊙ pi,2 ⊙ pi,3

]
c

(11)

and minimize the negative log-likelihood loss LNLL = − 1
N

∑N
i=1 log pi[yi].

We wish to analyze the impact of the VIB criteria on the mutual information lower bound derived in
Proposition 1. To establish a relationship between the original time series chunk Sji,k and the VIB

influenced latent space representation z(j)i,k , we consider Ŝji,k = f(z
(j)
i,k ) and p(j)i,k = P[Ŝji,k ̸= Sji,k] to

be the predicted token for sampled embedding z(j)i,k and the associated token-level prediction error

respectively. Thus, we present Proposition 2 to characterize the relationship between Sji,k and z(j)i,k .

Proposition 2. Given |V| ≥ 2, for p(j,i,k)e ∈
(
0, 1− 1

|V|
]
, the upper bound of token prediction error

p
(j,i,k)
e is inversely related to mutual information between token Sji,k and its latent embedding z(j)i,k .

Proof. Proof provided in Appendix B.2
Proposition 2 shows that as the token-wise error p(j,i,k)e decreases, the mutual information I(Sji,k; z

(j)
i,k )

admits a higher lower bound, suggesting that better token prediction corresponds to more informative
embeddings.

Next, we are interested in characterizing the mutual information between the label yi ∈ {1, . . . C},
and the low dimensional embedding sequence Zi = {Zi,1, Zi,2 . . . Zi,K}, where Zi,k =

{z(1)i,k , z
(2)
i,k , . . . z

(M)
i,k }. Therefore, we provide a lower bound between labels yi and the embedding

sequence Zi in Proposition 3.
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Proposition 3. The lower bound of mutual information between label yi ∈ {1, . . . C} and stochastic
embedding Zi depends on entropy of labels and the negative log likelihood loss, and is given by:

I(yi;Zi) ≥ H(yi)− LNLL.

Proof. Proof provided in Appendix B.3
We observe that the lower bound in Proposition 3 depends solely on the NLL term. However, in VIB
training, the total loss also includes the KL divergence term as in equation 22. The KL component
acts as a secondary objective that encourages compression of Zi. Using Proposition 3, we can
make critical observations regarding the role of β in determining the trade-off between predictive
performance and compression. With a smaller value of β, the loss is dominated by the NLL term,
making the model focus on predictive accuracy and increasing the lower bound on I(yi, Zi). However,
weak regularization can lead to overfitting in such scenarios as well.

On the other hand, with a large β, the KL term dominates leading to a higher emphasis on compression
of embedding Zi leading to discarding input information to enforce a tighter bottleneck. In this
case, excessive compression can reduce the lower bound on I(yi;Zi) if the NLL term rises due to
lost predictive information. Together with Proposition 2, the insights resulting from Proposition 3
highlight that higher mutual information in Z simultaneously suppresses token errors and preserves
label information. We will finalize this section with a discussion on best practices for implementation
based on the structural properties of the bounds.

3.5 THE ADEPT FRAMEWORK

We define two versions of the ADEPT framework. ADEPT v1.0 is the baseline version of our pipeline,
which directly applies pretrained text embeddings to serialized time-series segments, followed by a
multi-head attention classifier. ADEPT v2.0 extends this baseline by incorporating a VIB layer, which
compresses the raw embeddings into compact, task-relevant codes that reduce noise and improve
generalization. While both versions eliminate the need for traditional data engineering steps, ADEPT
v2.0 introduces an additional mechanism to better align learned representations with downstream
prediction objectives. The general pipeline of ADEPT v2.0 is shown in Figure 2 and Algorithm 1.

Figure 2: Illustration of the ADEPT v2.0. Framework
4 EXPERIMENTAL RESULTS

This section evaluates the predictive performance of the proposed ADEPT framework across datasets
drawn from diverse domains, including healthcare, science, finance, and IoT. These datasets introduce
a large variety of challenges such as data integrity, temporal dependencies, and privacy constraints.
The prediction tasks also vary significantly in complexity—from ternary classification of Bitcoin
price direction to multi-class root cause analysis in hydroelectric systems, where each failure mode is
represented by only a handful of observations. To tackle these challenges, existing approaches rely
on heavily customized data engineering pipelines, manually optimized for each dataset and task. In
our experiments, we benchmark ADEPT against these application-specific state-of-the-art models.
Details on datasets, evaluation metrics, and implementation are provided in Appendices D, E, and F.
In addition to the results here, an ablation study is also provided in Appendix C.

4.1 SCIENCE APPLICATION - Predicting the Astrophysical Class of Light Curves

Table 1a compares the results from our two frameworks—ADEPT v1.0 (without VIB) and ADEPT
v2.0 (with VIB)—against three state-of-the-art classifiers that yield the best accuracies in literature:
CATS Fraga et al. (2024), AMPEL Nordin et al. (2025), and ORACLE Shah et al. (2025). The
benchmark models employ conventional time-series pipelines with multiple preprocessing steps; and
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Algorithm 1 ADEPT v2.0
Require: Series Si,k, embedding model g, VIB params ϕk, θk, Transformer-AE params ψ, hyperparams

(β, η, η′, η′′, EVIB, EAE, ECL)
1: Partition Si,k into M segments of length L = T

M
, ∀i ∈ [N ],∀k ∈ [K]. ▷ RFR Decomposition

2: Compute embeddings e(j)
i,k (Eq. 3) using text embedding model g. ▷ Temporal Text Embeddings

3: for k = 1, . . . ,K do ▷ Variational Information Bottleneck
4: for epoch = 1, . . . , EVIB do
5: Compute the per-view VIB loss Lk using (Eqs. 9) and update ϕk, θk via Adam(η).
6: end for
7: Utilize updated ϕk, θk to obtain latent space encodings {z(j)i,k}.
8: end for
9: for epoch = 1, . . . , EAE do ▷ Transformer-AE pretraining

10: Assemble each view’s latent encodings, compute loss LAE (Eq. 10) and update ψ via Adam(η′).
11: end for
12: for epoch = 1, . . . , ECL do ▷ Classification fine-tuning
13: Compute per-view class probabilities pi,k = Softmax

(
Tψ(Zi,k)

)
, ∀k ∈ K.

14: Fuse the per-view probabilities into a final distribution pi (Eq. 11).

15: Compute negative log-likelihood loss LNLL = −1
N

N∑
i=1

log pi[yi] and update ψ via Adam(η′′).

16: end for
17: Use Transformer-AE ψ to obtain fused probabilities pi for predicting ŷi = argmax

c
pi[c] ▷ Inference

leverage specialized architectures like CNN+LSTM hybrids or hierarchical RNNs to extract temporal
features from the multi-band photometric data. Their reported classification accuracies range from
80% to 84%. Unlike these methods — which rely on hand-crafted time and color features followed
by gradient-boosted trees or hierarchical RNNs — our pipelines operate directly on text-serialized
light curves. ADEPT v1.0 achieves 95.98 % accuracy, while incorporation of VIB in ADEPT v2.0
further improves accuracy to 97.83 %, outperforming all benchmarks with an improvement of >10%.

4.2 HEALTHCARE APPLICATION - Predicting Patient Condition using EEG Data

Prediction results are shown in Table 1b. For this dataset, we use three high-performing benchmarks
from recent literature: MiniRocket Keshavarzian et al. (2023), MHCAN Huang et al. (2024), and
TSEM Pham et al. (2023). These methods follow conventional multivariate time-series classification
pipelines, using application-specific preprocessing steps such as wavelet decomposition, temporal
convolutions, and spatiotemporal mapping, coupled with specialized architectures like transformers
and hybrid CNN-RNN models. Their reported classification accuracies range from 59.0% to 75.60%,
which constitutes a significant spread, showcasing that the capability of inherent indicators of mental
state are challenging to discover. Among the proposed models, ADEPT v1.0, despite its simplicity,
achieves a comparable 58.97% accuracy. With the addition of a variational information bottleneck
in ADEPT v2.0, accuracy improves to 73.68%, outperforming two of the three benchmarks and
closely approaching the best-performing method. An interesting observation in this experiment is
the significant accuracy gap between ADEPT v1.0 and v2.0 models. The VIB step in ADEPT v2.0
unlocks a richer representation of data and results in 14.7% improvement in accuracy.

4.3 FINANCE APPLICATION - Predicting Future Bitcoin Price Trend

Table 1c compares our framework, ADEPT v1.0 and ADEPT v2.0, against three baseline methods from
the literature: a Recurrent LSTM Kwon et al. (2019), an Ensemble Deep Learning Rao et al. (2023),
and a BiLSTM Critien et al. (2022). These baselines rely on traditional financial preprocessing steps
including normalization, anomaly removal, and hand-engineered feature selection, with accuracies
ranging from 64% to 77.20%. In this application, ADEPT v1.0 achieves a poor accuracy of 45.40%.
However, incorporating VIB in ADEPT v2.0 significantly boosts performance to 88.49%. This is the
best-performing model across benchmarks that have access to the same data.

4.4 IOT APPLICATION - Predicting the Cause of Hydropower Reliability Issues

The IoT application data is proprietary, thus, there is no prior work on prediction in this dataset. We
take this opportunity to test the performance of the existing AutoML methods, specifically the TSFEL
package Barandas et al. (2020). An additional challenge comes from the privacy and data residency
requirements for this dataset preventing the use of public LLM-based embedding models such as
OpenAI’s text-embedding-3-small. Therefore, we leverage the nomic-embed-text-v1
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Table 1: Benchmarking Results Across a Range of Applications

(a) Science Dataset: PLAsTiCC Classification

Source Preprocessing Steps Classifier Accuracy
Fraga et al. (2024) Clean data, filter, normalize, etc. CNN+LSTM 83%
Nordin et al. (2025) Filter, remove noise, negative-flux, etc. ParSNIP+GBM 80%
Shah et al. (2025) Remove noise, truncate, pad, mask, etc. RNN 84%
ADEPT v1.0 Bypassed via text embedding MHA 95.98%
ADEPT v2.0 Bypassed via text embedding + VIB MHA 97.83%

(b) Healthcare Dataset: SelfRegulationSCP2 Classification

Source Preprocessing Steps Classifier Accuracy
Keshavarzian et al.
(2023)

Augment via random freq. butchering, etc. MiniRocket 59.0%

Huang et al. (2024) 1D-Conv, positional encoding, etc. MHCA 62.20%
Pham et al. (2023) 2D-Conv filters, spatiotemporal maps, etc. Transformer 75.60%
ADEPT v1.0 Bypassed via text embedding MHA 58.97%
ADEPT v2.0 Bypassed via text embedding + VIB MHA 73.68%

(c) Financial Dataset: Bitcoin Price Trend Classification

Source Preprocessing Steps Classifier Accuracy
Kwon et al. (2019) Forward-fill missing data, drop outliers,

etc.
LSTM 66%

Rao et al. (2023) Remove anomaly, sequence structure, etc. CNN–LSTM 64%
Critien et al. (2022) Reduce noise, compute sentiment, etc. BiLSTM 77.20%
ADEPT v1.0 Bypassed via text embedding MHA 45.40%
ADEPT v2.0 Bypassed via text embedding + VIB MHA 88.49%

(d) Internet-of-Things Dataset: Hydropower-Research Institute Fault Classification

Model Preprocessing Steps Accuracy Top-2 Accuracy
TSFEL+MHAN TSFEL features, MI selection, normalize,

etc.
42.80% 57.14%

ADEPT v1.0 Bypassed via text embedding 45.00% 66.67%
ADEPT v2.0 Bypassed via text embedding + VIB 74.35% 97.5%

model (768-dim) hosted on-prem to embed each text segment. Details of the implementation for
this dataset is provided in Appendix F. Table 1d reports overall test accuracy: Feature extraction +
MHAN achieves 42.80%, ADEPT v1.0 45.00%, and ADEPT v2.0 attains 74.35%. This substantial
gain showcases the advantage of combining semantic embeddings with VIB filtering.

In many IoT-enabled asset monitoring applications, analyzing the performance of the model’s second-
best prediction—referred to as Top-2 Accuracy—can be particularly valuable. Top-2 predictions
offer actionable insights by identifying plausible alternative failure modes, which can guide proactive
inspections, and trigger early intervention to prevent failures of heavy assets like turbines or thrust
bearings in hydropower systems, potentially saving millions of dollars per incident. On this metric,
ADEPT v2.0 has an accuracy of 97.5%, which offers a significant improvements over the benchmarks.

5 CONCLUSION

We have shown that general-purpose text embeddings—without any additional feature engineering
or domain-specific data preprocessing—can serve as powerful representations for raw time-series
classification. Across four diverse experiments (Science, Healthcare, Finance and IoT), ADEPT
consistently outperforms application specific engineered predictive models. We demonstrate that off-
the-shelf text embedding models, when paired with a lightweight variational information bottleneck
step, can capture the salient structure of heterogeneous time-series inputs. This paves the way for
fast, turnkey classification solutions in domains where feature engineering is costly or impractical.
Experiments across diverse datasets show that the ADEPT v2.0 model consistently matches or sur-
passes the best-performing benchmarks in all application domains; showcasing that text embeddings
supplemented with VIB can perform the function of cost-effective and capable data engineers.
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A ADEPT V2.0 ALGORITHM

The full pseudoscope of ADEPT v2.0 is discussed in Algorithm 2

Algorithm 2 ADEPT v2.0

Require: Multivariate series Si,k ∈ RT×F , chunks M , frozen text embedder g, VIB params ϕk, θk,
Transformer-AE Tψ , hyperparams (β, η,B,EVIB, EAE, ECL)

Ensure: Predicted label ŷi

1: RFR Processing and Decomposition
2: L← T/M
3: for k = 1, . . . ,K do
4: for j = 1, . . . ,M do
5: S

(j)
i,k ← Si,k[(j − 1)L+ 1 : jL, 1 : F ]

6: end for
7: end for
8: Temporal Text Embeddings
9: for k = 1, . . . ,K do

10: for j = 1, . . . ,M do
11: R

(j)
i,k = serialize(S(j)

i,k )

12: e
(j)
i,k = g

(
R

(j)
i,k

)
∈ RE ▷ (Eq. 3)

13: end for
14: end for
15: Variational Information Bottleneck
16: for k = 1, . . . ,K do
17: for j = 1, . . . ,M do
18: µk =W

(k)
µ e

(j)
i,k + b

(k)
µ , log σ2

k =W
(k)
logφe

(j)
i,k + b

(k)
logφ ▷ (Eq. 5)

19: σk = exp
(
1
2
log σ2

k

)
20: Sample ε ∼ N (0, Id)

21: z
(j)
i,k = µk + σk ⊙ ε ▷ (Eqs. 6, 7)

22: ℓ
(j)
i,k =W

(k)
y z

(j)
i,k + b

(k)
y , pθk (yi |z) = Softmax(ℓ

(j)
i,k) ▷ (Eq. 8)

23: end for
24: Compute per-view loss

Lk =
1

NM

∑
i,j

[
− log pθk (yi | z)

]
+ β

1

NM

∑
i,j

DKL
[
qϕk (·)∥N (0, I)

]
▷ (Eq. 9)

25: Update ϕk, θk via Adam(η) for EVIB epochs
26: end for
27: Transformer-based Classifier Design
28: Assemble each view’s sequence Zi,k = [ z

(1)
i,k , . . . , z

(M)
i,k ]

29: (a) Pre-trained autoencoder:

LAE =
1

KN

∑
i,k

1

M 2E

∥∥Ẑi,k − Zi,k∥∥2

Z
(Eq. 10)

30: Update ψ via Adam(η′) for EAE epochs
31: (b) Fine-tune for classification:
32: for k = 1, . . . ,K do
33: pi,k = Softmax

(
Tψ(Zi,k)

)
34: end for
35: Fuse

pi =
pi,1 ⊙ · · · ⊙ pi,K∑
c[ pi,1 ⊙ · · · ⊙ pi,K ]c

(Eq. 11)

36: Minimize

LNLL = − 1

N

∑
i

log pi[yi]

37: Update ψ via Adam(η′′) for ECL epochs
38: return ŷi = argmaxc pi[c]
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B THEORETICAL PROOFS

B.1 PROOF OF PROPOSITION 1

Proof. Using the chain rule of mutual information as denoted by equation 12 provides a valid lower
bound under the assumption of approximate independence between tokens (commonly assumed in
serialized inputs).

I(Sji,k; e
(j)
i,k) =

n∑
l=1

I(Sjl,k;E | Sj<l,k) ≥
n∑
l=1

I(Sjl,k;E) (12)

Now, we let Ŝji,k = f(E) be a decoder predicting token Sji,k from embedding E, and define the
token-wise prediction error:

p(j,i,k)e = P[Ŝji,k ̸= Sji,k] (13)

Using Fano’s inequality Cover (1999) yields equation 14

H(Sji,k | E) ≤ Hb(p
(j,i,k)
e ) + p(j,i,k)e log(|V| − 1) (14)

In equation 14, Hb(p) = −p log p− (1− p) log(1− p) is the binary entropy function, and |V| is the
number of classes. Next, the definition of mutual information can be provided based on equation 15

I(Sji,k;E) = H(Sji,k)−H(Sji,k | E) (15)

Combining equation 14 and equation 15, we get

I(Sji,k;E) ≥ H(Sji,k)−Hb(p
(j,i,k)
e )− p(j,i,k)e log(|V| − 1) (16)

Summing equation 16 over all tokens and using the relationship in equation 12, we can conclude

I(Sji,k; e
(j)
i,k) ≥

n∑
l=1

I(Sjl,k;E) ≥
n∑
l=1

[
H(Sjl,k)−Hb(p

(j,l,k)
e )− p(j,l,k)e log(|V| − 1)

]
(17)

B.2 PROOF OF PROPOSITION 2

Proof. We know from Proposition equation 1 that

I(Sji,k;Z) ≥ H(Sji,k)−Hb

(
p(j,i,k)e

)
− p(j,i,k)e log

(
|V| − 1

)
, (18)

We consider the function f(p), defined in equation 19 where Hb(p) = −p log p− (1− p) log(1− p)
represents binary cross entropy.

f(p) = Hb(p) + p log(|V| − 1) (19)

We note from equation 19 that f(p) is strictly increasing on the interval p ∈ (0, 1− 1
|V| ] (the regime

of interest where the classifier performs better than random guessing), its inverse f−1 exists and
is strictly increasing on the corresponding range. Therefore rearranging Fano’s bound leads us to
equation 20.

p(j,i,k)e ≤ f−1
(
H(Sji,k)− I(Sji,k;Z)

)
, (20)

Next, we examine the derivative of f(p) as given in equation 21

f ′(p) = log
(1− p)(|V| − 1)

p
. (21)

We can see that f(p) is strictly increasing on (0, 1− 1
|V| ]. Since, we assume that |V| ≥ 2, we can say

that the derivative is positive and as a result f−1 is well-defined and monotonic.

The monotonic, strictly increasing nature of f−1 established in equation 21 and equation 20 imply
that the upper bound of token-prediction error has an inverse relationship with the mutual information
between token Sji,k and the latent embedding Z.
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B.3 PROOF OF PROPOSITION 3

Proof. We know that the VIB training objective is given by equation 22

LVIB = E[− log pθ(yi | Zi)]︸ ︷︷ ︸
LNLL

+β E[DKL[qϕk
(Zi | e(j)i,k∥N (0, Id)]]︸ ︷︷ ︸

LKL

, (22)

In equation 22, LNLL is the negative log-likelihood (cross-entropy loss), LKL is the KL regularization
term and β ≥ 0 controls the prediction vs. compression trade-off.

Further, the mutual information between the label yi and the stochastic embedding Zi is given by
equation 23

I(yi;Zi) = H(yi)−H(yi | Zi). (23)

Using the variational decoder, the conditional entropy is upper-bounded by the NLL:
H(yi | Zi) ≤ E[− log pθ(yi | Zi)] = LNLL. (24)

This gives the lower bound denoted by equation 25
I(yi;Zi) ≥ H(yi)− LNLL. (25)

C ABLATION STUDY: EMBEDDING QUALITY AND VIB SENSITIVITY

To better understand the performance behavior of ADEPT, we conducted an ablation study on the
Healthcare dataset (SelfRegulationSCP2). This study focuses on two aspects: (i) the impact of
embedding model quality, and (ii) the sensitivity of ADEPT to the VIB bottleneck dimension.

We evaluated ADEPT v2.0. using three text embedding models of increasing capacity—nomic
(d = 768), ada (d = 1536), and large (d = 3072)—while varying the VIB bottleneck dimension
(64, 128, 256, 512). For reference, we also report the baseline ADEPT v1.0. without VIB and without
text embedding model (No-TE: just a classification head).
Table 2: Performance of ADEPT Variants with Different VIB Dimensions on the Healthcare Dataset.

Model VIB Dim. No-TE nomic ada-002 3-large
ADEPT v1.0. – 51.32% 58.5% 63.2% 66.7%
ADEPT v2.0. 64 – 73.7% 70.1% 69.8%
ADEPT v2.0. 128 – 81.6% 75.3% 70.6%
ADEPT v2.0. 256 – 73.7% 68.4% 77.9%
ADEPT v2.0. 512 – – – 65.7%

The results in Table 2 provide several key insights (Bold numbers indicate the best performance for
each embedding model.):

1. Impact of embedding quality. Higher-dimensional embeddings (e.g., large, d = 3072) provide
stronger baselines, confirming that embedding richness improves performance even without VIB.

2. Optimal VIB bottleneck. Moderate VIB dimensions (dVIB = 128) consistently yield the best
trade-off between preserving informative features and preventing overfitting. Extremely small or
large bottlenecks reduce accuracy due to either under-representation or excessive compression.

3. Stronger VIB gains in low-dimensional embeddings. The relative improvement from VIB is most
pronounced for the nomic embedding (+23.1% absolute gain from 58.49% to 81.58%). This
occurs because low-dimensional embeddings initially capture fewer task-specific features; the
VIB bottleneck acts as a targeted information filter, forcing the model to retain only the most
predictive signals and discard noisy dimensions.

4. Why nomic achieves a better final accuracy. While all the embedding models showcase compara-
ble accuracy for this particular case, we observe that nomic achieves the highest performance.
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Interestingly, the best overall accuracy is obtained with the nomic embedding (d = 768) com-
bined with VIB (dVIB = 128). Smaller embeddings are inherently less redundant, so the VIB
module primarily performs denoising rather than aggressive compression. In contrast, larger
embeddings encode many irrelevant or domain-misaligned features for this healthcare dataset,
making them more prone to overfitting after bottleneck compression. Consequently, the synergy
between compact embeddings and VIB leads to superior generalization for nomic.

Overall, these results indicate that ADEPT’s improvements arise from a combination of high-quality
embeddings and the VIB-enhanced architecture.

D DATASETS AND PREDICTION TASKS

D.1 SCIENCE APPLICATION - PLAsTiCC Dataset

The science application experiment is from an astrophysics example (PLAsTiCC dataset from the
2018 Kaggle competition) that aims to predict the astrophysical class of light curves. The dataset
consists of approximately 7, 848 simulated LSST light curves in six filters (u, g, r, i, z, y) and labels
for 14 astrophysical classes (e.g., Type Ia/II supernovae, RR Lyrae). Curve lengths vary from 50 to
350 epochs, and because observations only occur when each field is visible (weather, scheduling,
maintenance), roughly 30 % of per-band flux measurements are missing on average.

D.2 HEALTHCARE APPLICATION - SelfRegulationSCP2 Dataset

The healthcare application focuses on classification using the SelfRegulationSCP2 dataset, a mul-
tivariate time-series dataset derived from electroencephalography (EEG) recordings. Each record
comprises eight scalp channels sampled at 250 Hz. During each session, subjects receive a visual cue
and then attempt either to increase (“up”) or decrease (“down”) their brain signal over a 5 s interval,
preceded by a 2 s baseline. There are 200 trials per subject—100 “up” and 100 “down”—resulting
in a balanced, two-class (binary) classification task. This clean, well-labeled dataset is ideal for
evaluating and comparing EEG-based decoding methods.

D.3 FINANCE APPLICATION - Bitcoin Price Trend Dataset

The financial application focuses on next-day trend classification using the Bitcoin Price Trend
Dataset. The task is framed as a 3-class classification problem—predicting whether the price
will rise by more than 1%, fall by more than 1%, or remain stable within 1%. Spanning daily
BTC/USD data from 2015–2023, each record includes OHLCV (open, high, low, close, volume)
plus 14 technical indicators: RSI-7, RSI-14, CCI-7, CCI-14, SMA-50, EMA-50, SMA-100, EMA-
100, MACD, Bollinger Bands, True Range, ATR-7, and ATR-14. Our target is next-day price
movement—classified as positive (> +1 %), negative (< – 1 %), or stable (|%| ≤ 1%). We train and
tune on data through 2015 to 2022, and evaluate on 2023 (365 days), yielding an approximate class
balance of 34 % positive, 27 % negative, and 38 % stable.

D.4 HYDROPOWER RESEARCH INSTITUTE (HRI) DATASET

IoT application focuses on predicting the root cause of reliability issues in hydropower components
using a proprietary commercial dataset shared with the authors through the courtesy of the Hy-
dropower Research Institute. The original dataset encompasses information from 197 hydropower
plants and 844 generating units, which accounts for approximately 42% of U.S. capacity. The data
includes operational metrics, and event logs. We construct the training dataset by aggregating a set of
reliability events into a database that pairs each event’s cause code with multi-stream sensor readings
captured over several days leading up to the event. There are 14 unique cause codes. The objective
is to predict the right cause code subject to the inherent variability of industrial data due to highly
dynamic and heterogeneous conditions, which introduces substantial complexity.

Although the raw feed is nominally logged every 30 s, individual channels (91 channels) report at
irregular intervals (some hourly, others daily or weekly), leaving substantial gaps. Maintenance logs
record the exact timestamp of each failure along with one of 14 high-level cause codes (e.g., Main
transformer, Shaft packing, Transmission line). We therefore set k = 3 views for each event: we
extract three contiguous 6 h windows of sensor readings immediately preceding the failure—covering
0–6 h, 6–12 h, and 12–18 h before the event—and assign the corresponding cause code as the label.
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In total, this yields 390 events (each with 3 windows), which we split chronologically into 80% for
training, 10% for validation, and 10% for testing.

E EVALUATION METRICS

We report overall accuracy, per-class precision, recall, and F1-scores (both micro- and macro-
averaged) to quantify classification performance. To illustrate the impact of applying variational
information bottleneck on representation quality, we visualize raw text embeddings and IB-filtered
embeddings using t-SNE plots, showing improved cluster separation. We also include normalized
confusion matrices to highlight class-wise true and false positive rates. All metrics and visualizations
are computed on held-out test splits for each dataset, ensuring a consistent and robust assessment of
our model.

F IMPLEMENTATION DETAILS

PLAsTiCC: Each light curve is divided into M = 10 equal-duration segments and embedded via
the OpenAI Text Embedding (text-embedding-3-small, 1536 dim) model. VIB filter is trained with
d = 256, epochs = 100, batch size = 4, lr = 1 × 10−4, and β = 1 × 10−4. The Transformer
classifier uses h = 128, nhead = 32, L = 2, and dimff = 128. The Transformer classifier settings
are identical (two layers, nhead = 32, dimff = 128), with autoencoder and clustering pretraining for
100 and 50 epochs, respectively.

SelfRegulationSCP2 : Each EEG trial is divided intoM = 24 equal-duration segments and embedded
via the OpenAI Text Embedding (text-embedding-3-small, 1536-dim) model. VIB filter is trained
with d = 256, epochs = 100, batch size = 4, lr = 1× 10−4, and β = 1× 10−4. The Transformer
classifier uses h = 128, nhead = 32, L = 2, and dimff = 128, with autoencoder and clustering
pretraining for 50 and 50 epochs, respectively.

Bitcoin Price Trend: We take the most recent 15 days of data per sample, segmented into M = 5
non-overlapping 3-day windows, and embed each window using the OpenAI Text Embedding (small,
1536 dim) model. The VIB uses the same hyperparameters as above. The Transformer classifier
employs h = 128, nhead = 16, L = 2, and dimff = 128. Autoencoder pretraining runs for 100
epochs and clustering pretraining for 200 epochs.

HRI: This is a commercial dataset, so we embed using the nomic-embed-text-v1 (765 dim). We
extract three consecutive 6-hour windows immediately preceding each failure k = 3, each split into
M = 24 non-overlapping chunks. The VIB is trained with d = 256, epochs = 100, batch size = 4,
lr = 1 × 10−4, and β = 1 × 10−4. The Transformer classifier uses h = 128, nhead = 32, L = 2,
and dimff = 128. We pretrain the autoencoder for 100 epochs and the clustering head for 50 epochs.

To evaluate the effectiveness of our proposed ADEPT pipeline on the proprietary HRI dataset—and
in the absence of any publicly available benchmark—we instantiate and compare three classification
strategies:

1. Feature extraction + Classifier: We linearly interpolate missing readings onto a uniform 30 s
grid, slide 15 min windows over each event, extract over 9,000 time- and frequency-domain
features per channel via TSFEL, select the top 100 via mutual information, normalize, and
classify with same MHA classifier as the ADEPT framework has.

2. ADEPT v1.0: We serialize each 15 min segment and embed it offline to a 768-dim vector via
the nomic-embed-text-v1 model, then classify directly.

3. ADEPT v2.0: Our full pipeline, where VIB compresses the 768-dim embeddings before
fusion and classification.

G DETAILED RESULTS ON PREDICTING THE ASTROPHYSICAL CLASS OF
LIGHT CURVES

Figure 3 presents a 3D t-SNE projection of 1536-dimensional segment embeddings from the
PLAsTiCC-2018 LSST dataset, colored by transient class (14 astrophysical types). Left: raw
OpenAI text embeddings exhibit overlapping and diffuse clusters. Right: embeddings after Varia-
tional Information Bottleneck (VIB) filtering show tighter, well-separated clusters, demonstrating the
effectiveness of VIB in ADEPT v2.0.
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Figure 3: 3D t-SNE projection of 1536-dim segment embeddings from the PLAsTiCC-2018 LSST
dataset, colored by transient class. Left: raw text embeddings; Right: embeddings after VIB filtering.

Table 3 reports per–class precision, recall, and F1–scores for the 14 astrophysical classes in the
PLAsTiCC-2018 test set, alongside overall accuracy (0.98), macro– and weighted–average metrics.
Nearly perfect scores are achieved on most classes, with minor drops for classes 42 and 67. Figure 4

Table 3: Per–class performance on PLAsTiCC

Class Precision Recall F1–score
6 1.00 1.00 1.00
15 1.00 0.98 0.99
16 1.00 1.00 1.00
42 0.92 0.97 0.94
52 0.85 0.97 0.91
53 1.00 1.00 1.00
62 0.94 0.91 0.92
64 1.00 1.00 1.00
65 1.00 1.00 1.00
67 0.94 0.81 0.87
88 1.00 0.97 0.99
90 1.00 0.99 1.00
92 1.00 1.00 1.00
95 1.00 1.00 1.00

Accuracy — — 0.98
Macro avg 0.98 0.97 0.97
Weighted avg 0.98 0.98 0.98

shows the normalized confusion matrix for our VIB embedding pipeline on PLAsTiCC: rows
correspond to true classes and columns to predicted classes; cell intensity indicates per-class recall.
Misclassifications are rare and primarily occur among classes with similar light-curve signatures.

H DETAILED RESULTS ON PREDICTING PATIENT CONDITION USING EEG
DATA

Figure 5 presents a 3D t-SNE projection of 1536-dimensional segment embeddings for the SelfRegu-
lationSCP2 dataset, colored by class. Left: raw OpenAI text-embedding-3-small embeddings exhibit
diffuse, overlapping clusters. Right: embeddings after Variational Information Bottleneck (VIB)
filtering form tighter, more separable clusters.

Table 4 reports per–class precision, recall, and F1–scores for the two sentiment classes in our
test set, alongside overall accuracy (0.74), macro– and weighted–average metrics. Performance is
balanced across classes, with “negativity” achieving 0.76 on all metrics and “positivity” slightly
lower at 0.71. Figure 8 shows the normalized confusion matrix for the ADEPT v2.0 pipeline on the
SelfRegulationSCP2 dataset. Rows correspond to true movement classes (negativity, positivity) and
columns to predicted classes; cell intensity indicates per–class recall.
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Figure 4: Normalized confusion matrix for the IB-filtered pipeline on the PLAsTiCC-2018 LSST
dataset. Rows correspond to true classes and columns to predicted classes; cell intensity indicates
per-class recall.

Figure 5: 3D t-SNE projection of 1536-dim segment embeddings for SelfRegulationSCP2 dataset,
colored by class. Left: raw OpenAI embeddings; Right: embeddings after VIB filtering.

Table 4: Per–class performance on the sentiment classification task.

Class Precision Recall F1–score
Negativity 0.76 0.76 0.76
Positivity 0.71 0.71 0.71

Accuracy — — 0.74
Macro avg. 0.73 0.73 0.73
Weighted avg. 0.74 0.74 0.74
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Figure 6: Normalized confusion matrix for the ADEPT v2.0 pipeline on the SelfRegulationSCP2
dataset. Rows correspond to true movement classes (negativity, positivity), columns to predicted
classes; cell intensity indicates per–class recall.

I DETAILED RESULTS ON PREDICTING FUTURE BITCOIN PRICE TREND

Figure 7 shows 2D t-SNE visualizations of 1536-dim segment embeddings from the Bitcoin market
dataset, colored by next-day movement class. Left: raw text embeddings form elongated, inter-
twined trajectories with substantial class overlap. Right: VIB filtering embeddings produce more
homogeneous clusters for positive, negative, and stable days, indicating enhanced discriminability.

Figure 7: 2D t-SNE projection of text-serialized Bitcoin segment embeddings (1536 D), colored by
next-day movement class. Left: raw OpenAI embeddings; Right: embeddings after VIB filtering.

Table 5 reports per-class precision, recall, and F1-scores for the three movement classes in the Bitcoin
price trend test set, alongside overall accuracy (0.88), macro- and weighted-average metrics. The
model achieves strong performance across all classes, with highest F1 on the “stable” class.

Table 5: Per-class performance on the Bitcoin market dataset.

Class Precision Recall F1-score
Long 0.87 0.88 0.87
Short 0.82 0.80 0.81
Stable 0.92 0.92 0.92

Accuracy — — 0.88
Macro avg. 0.87 0.87 0.87
Weighted avg. 0.88 0.88 0.88

Figure 8 shows the normalized confusion matrix for our IB-filtered embedding pipeline on the Bitcoin
dataset. Rows correspond to true next-day movement classes (long, short, stable) and columns to
predicted classes; cell intensity indicates per-class recall.
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Figure 8: Normalized confusion matrix for the IB-filtered pipeline on the Bitcoin market dataset.
Rows correspond to true movement classes (long, short, stable), columns to predicted classes; cell
intensity indicates per-class recall.

J DETAILED RESULTS ON PREDICTING THE CAUSE OF HYDROPOWER
RELIABILITY ISSUES

Figure 9 shows 3D t-SNE projections of these 768-dim segment embeddings colored by cause
code: Left: raw nomic-embed-text-v1 embeddings display diffuse, overlapping clusters; Right:
VIB-filtered embeddings form compact, well-separated clusters, indicating improved discriminability
and noise suppression.

Figure 9: 3D t-SNE projection of 15 min segment embeddings from the HRI dataset, colored by
failure cause code (13 classes). Left: raw 768-dim Nomic text embeddings; Right: embeddings after
IB filtering.

Table 6 reports per–cause-code precision, recall, and F1–scores for the 13 failure types in the HRI
test set, alongside overall accuracy (0.74), macro– and weighted–average metrics. Perfect F1–scores
(1.00) are achieved on several well-represented classes (e.g., 7030, 7050), while rare classes (e.g.,
7009) suffer from zero recall.

Figure 10 shows the normalized confusion matrix for our VIB pipeline. Each row is a true cause code
and each column the predicted code; cell intensities indicate per-class recall. Notable misclassifica-
tions occur between codes 3620 and 3710, reflecting similar pre-failure sensor signatures.

Table 7 reports, for each maintenance event, the model’s Top-1 through Top-3 predicted failure-mode
classes and their associated probabilities, alongside the actual observed class. While the Top-1
selection yields only 74.4% accuracy, expanding the recommendation to the Top-2 candidates attains
97.5% coverage of the true class. In a maintenance-industry context—where overlooking the true
failure mode can have costly consequences—providing a short ranked list of likely failure modes is
therefore far more reliable and actionable than a single “best” guess.
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Table 6: Per-class performance on the HRI dataset.

Class Precision Recall F1–score
3620 1.00 0.40 0.57
3710 0.50 0.50 0.50
4560 1.00 0.50 0.67
7009 0.00 0.00 0.00
7030 1.00 1.00 1.00
7050 1.00 1.00 1.00
7099 0.43 1.00 0.60
7110 0.89 0.76 0.82
9696 0.75 1.00 0.86

Accuracy — — 0.74
Macro avg. 0.73 0.68 0.67
Weighted avg. 0.85 0.74 0.76

Figure 10: Normalized confusion matrix for the IB-filtered pipeline on HRI. Rows correspond to true
failure codes, columns to predicted codes, and cell intensity indicates per-class recall.
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Table 7: Predicted class probabilities per event (Top-1 and Top-2 only).

EventID Actual
Top-1
Class

Top-2
Class

Top-1
Prob

Top-2
Prob

6 3620 7110 3620 0.991 0.008
9 3620 3620 7110 0.999 0.001
17 3620 3620 4600 0.851 0.143
39 7030 7030 4560 0.542 0.448
48 4560 4560 7030 0.690 0.269
78 4560 7099 4560 0.999 0.001
85 7050 7050 4600 0.999 0.001
89 7050 7050 7110 0.833 0.164

139 9696 9696 7050 0.999 0.001
140 9696 9696 7050 0.999 0.001
143 9696 9696 7110 0.990 0.006
145 7110 3710 7110 0.673 0.280
152 7110 7110 7050 0.995 0.002
163 7110 7110 3620 0.997 0.001
167 7110 7110 4560 0.999 0.001
192 7110 7110 4560 0.999 0.001
202 7110 7110 3710 0.959 0.037
207 7099 7099 7110 0.999 0.001
209 7110 7099 7110 0.935 0.057
215 7110 7110 7009 0.999 0.001

EventID Actual
Top-1
Class

Top-2
Class

Top-1
Prob

Top-2
Prob

222 7110 7110 7099 0.999 0.001
230 3710 3710 7099 0.999 0.000
233 7110 7110 7050 0.998 0.001
263 7110 7110 9300 0.999 0.001
306 7110 9696 7110 0.523 0.404
347 3620 7099 3620 0.522 0.472
357 7110 7110 7050 0.996 0.002
367 7110 7110 3620 0.999 0.001
402 7110 7110 9696 0.999 0.000
406 7110 7110 4560 0.999 0.000
410 7099 7099 7009 0.999 0.0002
421 7110 7110 4560 0.999 0.000
445 7110 7009 7110 0.821 0.144
478 7110 7110 9696 0.999 0.000
502 3620 7099 3620 0.606 0.371
554 7099 7099 3710 0.999 0.000
560 7110 7009 7110 0.724 0.266
570 3710 7110 3710 0.999 0.000
571 7110 7110 3710 0.879 0.116
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