
Citation: Murtaza, G.; Jain, A.;

Hughes, M.; Wagner, J.; Singh, R. A

Comprehensive Evaluation of

Generalizability of Deep

Learning-Based Hi-C Resolution

Improvement Methods. Genes 2024, 1,

0. https://doi.org/

Academic Editors: Zhiping Liu, Han

Zhang, Junwei Han

Received: 4 December 2023

Revised: 24 December 2023

Accepted: 26 December 2023

Published:

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

genes
G C A T

T A C G

G C A T

Article

A Comprehensive Evaluation of Generalizability of Deep
Learning-Based Hi-C Resolution Improvement Methods
Ghulam Murtaza 1, Atishay Jain 1, Madeline Hughes 1, Justin Wagner 2 and Ritambhara Singh 1,3,*

1 Department of Computer Science, Brown University, Providence, RI 02912, USA;
ghulam_murtaza@brown.edu (G.M.); atishay_jain@brown.edu (A.J.); madeline_hughes@brown.edu (M.H.)

2 Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899,
USA; justin.wagner@nist.gov

3 Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
* Correspondence: ritambhara@brown.edu

Abstract: Hi-C is a widely used technique to study the 3D organization of the genome. Due to
its high sequencing cost, most of the generated datasets are of a coarse resolution, which makes it
impractical to study finer chromatin features such as Topologically Associating Domains (TADs) and
chromatin loops. Multiple deep learning-based methods have recently been proposed to increase the
resolution of these datasets by imputing Hi-C reads (typically called upscaling). However, the existing
works evaluate these methods on either synthetically downsampled datasets, or a small subset of
experimentally generated sparse Hi-C datasets, making it hard to establish their generalizability in
the real-world use case. We present our framework—Hi-CY—that compares existing Hi-C resolution
upscaling methods on seven experimentally generated low-resolution Hi-C datasets belonging to
various levels of read sparsities originating from three cell lines on a comprehensive set of evaluation
metrics. Hi-CY also includes four downstream analysis tasks, such as TAD and chromatin loops
recall, to provide a thorough report on the generalizability of these methods. We observe that existing
deep learning methods fail to generalize to experimentally generated sparse Hi-C datasets, showing
a performance reduction of up to 57%. As a potential solution, we find that retraining deep learning-
based methods with experimentally generated Hi-C datasets improves performance by up to 31%.
More importantly, Hi-CY shows that even with retraining, the existing deep learning-based methods
struggle to recover biological features such as chromatin loops and TADs when provided with sparse
Hi-C datasets. Our study, through the Hi-CY framework, highlights the need for rigorous evaluation
in the future. We identify specific avenues for improvements in the current deep learning-based Hi-C
upscaling methods, including but not limited to using experimentally generated datasets for training.

Keywords: chromosome conformation capture; Hi-C; resolution improvement; generalizability

1. Introduction

The 3D organization of the genome plays a vital role in cell fate and disease onset. A
high-throughput chromosome conformation capture experiment, or Hi-C, is a genome-wide
sequencing technique that allows researchers to understand and study the 3D organization
of the genome [1]. The sequencing results from Hi-C correspond to observed molecular
contacts between two genomic loci. This contact information captures local and global
interactions of the DNA molecule. In the past decade, analysis of Hi-C data facilitated
the discovery of important genomic structural features, including but not limited to A/B
compartments [1] that denote active and inactive genomic regions, topologically associated
domains (TADs) [2] that represent highly interactive genomic regions, and enhancer–
promoter interactions [3] that are involved in the regulation of genes. Therefore, Hi-C
experiments are crucial in advancing our understanding of the spatial structure of the
genome and its relationship with gene regulation machinery.
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When studying the spatial structure of DNA, the quality of the downstream analysis
is highly dependent on the resolution of its Hi-C contact map. For example, having
precise locations of chromatin loops in a RAD-21 knock-out experiment [4] is crucial
in understanding its impact on the chromatin structure. Data from a Hi-C experiment
coalesce into a matrix (or contact map as shown in Figure 1A) in which rows and columns
correspond to fixed-width windows (“bins”) tiled along the genomic axis, and values in the
matrix are counts of read pairs that fall into the corresponding bins. The bin size typically
ranges from 1 kilobase pair (kbp) to 1 megabase pair (mbp), where the choice of the bin
size depends on the number of paired end reads from the experiment. Lower read count
experiments result in sparser contact matrices that require large bin sizes, resulting in a
“low-resolution” contact map. Consequently, the downstream analysis of the contact map
cannot yield genomic features, such as enhancer–promoter interactions that typically occur
in the 5 kbp to 10 kbp range [5]. Similarly, the output of a Hi-C experiment with a high
number of read counts results in a “high-resolution” contact map with small bin sizes. A
contact map of this resolution enables identifying fine-grained genomic features. However,
due to the quadratic scaling of the sequencing cost, most tissue and cell line samples do
not have any Hi-C data available. For example, on the ENCODE portal, there are only 92
samples that have a Hi-C experiment available across a collection of 450 cell lines and tissue
samples. For cell and tissue samples that have a Hi-C experiment available, they have
relatively low read counts (typically ≤100 Million reads) and, consequently, low-resolution
(≥40 kbp bin size) contact maps [6]. Constructing Hi-C matrices with high resolution (≤10
kbp bin size) requires billions of Hi-C reads [5], which can be prohibitively expensive to
obtain for many experiments. Thus, the absence of such matrices makes the comprehensive
analysis of the spatial structure of DNA difficult. This limitation is even more apparent in
single-cell variants of the Hi-C protocol [7], where the reads are even more sparse, and it is
a complicated experimental challenge to acquire high-resolution contact matrices.

Recently, researchers developed several computational methods to upscale (synony-
mous with increasing the Hi-C resolution) Hi-C matrices by imputing Hi-C reads. Deep
learning-based methods [6,8–11] have shown remarkable success in upscaling Hi-C matri-
ces when trained and tested on simulated datasets. These datasets are typically constructed
by uniformly removing a fixed fraction of reads from an experimentally generated high-
resolution Hi-C contact map to simulate a low-resolution (downsampled) Hi-C contact
map. This downsampling method tends to miss out on experimental artifacts, such as the
diagonal effect [12], and produces a Hi-C contact map that has substantially different distri-
bution from an experimentally generated sparse Hi-C contact map. Moreover, the existing
methods report their performance on correlation-based metrics that ignore the genome’s
multi-scale hierarchical organization. VeHiCle is an exception [13] that utilizes experi-
mentally generated Hi-C datasets and state-of-the-art Hi-C-specific similarity metrics [14].
VeHiCle restricts its analysis to only four datasets with low-sparsity (high number of reads)
Hi-C datasets. Therefore, it does not provide a comprehensive report on the utility of the
method for its intended use case, where Hi-C matrices tend to be more sparse.
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Figure 1. Overview of our benchmarking framework Hi-CY: (A) Data pre-processing pipeline. We
(1) filtered the Hi-C matrices with the same MAPQ value (≥30), (2) normalized them with the same
KR normalization algorithm to ensure a fair comparison, (3) removed inter-chromosomal contacts
because of their extremely sparse nature, (4) performed a 0–1 normalization on the intra-chromosomal
matrices to reduce the impact of extreme values; and (5) cropped appropriately sized sub-matrices to
ensure that the input is in the correct format for each upscaling algorithm. (B) We upscaled the sub-
matrices using a wide variety of deep learning-based upscaling models (and Gaussian Smoothing)
and then recombined them to form upscaled intra-chromosomal Hi-C matrices. (C) We combined
multiple Hi-C similarity metrics, correlation-based metrics and downstream analyses, like chromatin
loops and TAD recovery analysis, to provide a comprehensive report that we can use to analyze the
performance of each upscaling model.

We investigate how existing deep learning-based methods generalize their upscaling
performance to experimentally generated sparse Hi-C datasets. Given the rising popularity
of single-cell chromatin capture protocols such as scHi-C [7] that are even sparser than
their bulk sequencing counterparts, it is imperative to test how these methods perform for
sparse Hi-C datasets for future methods development. To accomplish this, we developed
a framework to pre-process, upscale, and evaluate methods on multiple Hi-C contact
maps with varying levels of read counts originating from different cell lines. We present
our framework Hi-CY in Figure 1. Hi-CY supports the investigation of Hi-C resolution
upscaling efforts by providing access to a comprehensive set of Hi-C datasets and evaluation
metrics. We contribute towards the recent efforts to standardize evaluation protocols and
develop reproducible benchmarks, such as those for epigenome imputation [15], protein–
drug interaction prediction [16], and Hi-C feature extraction [17]. These projects perform
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a comprehensive evaluation of existing methods and provide robust and reproducible
frameworks to make them accessible and to accelerate research.

Hi-CY includes seven sparse experimentally generated datasets from three cell lines
(GM12878, K562, and IMR90) with sparsity ranging from 1

9 to 1
100 of the reads in comparison

to the appropriate high-resolution Hi-C contact map. We also package six Hi-C upscaling
methods (Gaussian Smoothing, HiCPlus, HiCNN, HiCNN2, DeepHiC, and VeHiCLe),
which we evaluate on three correlation-based metrics; four Hi-C similarity metrics; and
four downstream analysis tasks. Our metrics capture the bin-wise similarity (through
correlation-based metrics), genome structural similarity, and biological information content
to provide a comprehensive report on the utility of these generated Hi-C contact maps. Our
results show:

• The existing deep learning-based methods struggle to generalize to sparse, experi-
mentally generated Hi-C inputs. These methods show a reduction of up to 57% in
performance when upscaling a Hi-C contact map with 1

100 of the reads (compared to
the high-resolution Hi-C contact map) in comparison to upscaling a Hi-C contact map
with 1

9 of the reads.
• Our results show that retraining existing deep learning-based models with experi-

mentally generated Hi-C datasets improves performance by 31% on experimentally
generated Hi-C contact maps.

• We further find that deep learning-based methods still struggle to recover biologi-
cally meaningful features in the upscaled Hi-C contact maps, even when retrained,
particularly on chromatin loop and DNA hairpin recovery tasks.

2. Hi-Cy: A Comprehensive Evaluation Framework

We developed Hi-CY to facilitate the development and evaluation of Hi-C upscaling
methods in a robust and reproducible setup. As shown in Figure 1, Hi-CY packages (1)
a Hi-C pre-processing pipeline, (2) a Hi-C upscaling pipeline with five deep learning-
based methods, and (3) a comprehensive evaluation pipeline under a unified framework.
Our code is available publicly on GitHub at https://github.com/rsinghlab/Hi-CY (28th
December 2023).

2.1. Hi-C Pre-Processing

After reviewing existing deep learning-based upscaling methods [6,8–11,13], we use
Hi-C experiments from GEO Accession GSE63525 for GM12878, IMR90, and K562 as our
primary high resolution that we refer to as High Read Count (HRC; synonymous with
high-resolution Hi-C contact map) datasets [5]. Similar to previous evaluation [6,8,10,11],
we generate 12 downsampled datasets by uniformly downsampling primary GM12878,
IMR90, and K562 datasets by factors of 16, 25, 50, and 100. We collect an additional seven
experimentally generated Low Read Count (LRC; synonymous with low-resolution Hi-
C contact map) Hi-C datasets to evaluate performance in real-world settings on sparse
matrices. Five of these LRC datasets are for the GM12878 cell line and have sparsity ranging
from 1

9 to 1
100 reads compared to the HRC dataset. The remaining two LRC datasets are for

IMR90 and K562 cell lines with 1
10 and 1

14 reads, respectively. We also include a GM12878
HRC biological replicate cell line [5] in our analysis to calculate the “upper-bound” on the
metric performance, which we show as a black dotted line wherever appropriate. We show
the absolute read counts, sparsity, and the source experiment of all datasets in Table 1.

For these Hi-C contact maps, we pre-processed them by filtering reads using a MAPQ
value of >=30 and performed KR normalization to remove reads with low statistical
confidence as well as accounting for the experimental artifacts. We sampled both LRC and
HRC datasets at 10Kbp resolution and only kept the intra-chromosomal contacts to generate
twenty-two dense contact matrices. We performed 99.95th percentile normalization to scale
all observed contacts between 0 and 1, which has been shown to improve the predictive
capabilities of deep learning-based models [10]. Additionally, we cropped out sub-matrices
(size depending on each model’s input parameters) across a 2 Mbp range of the diagonal,

https://github.com/rsinghlab/Hi-CY
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as this is shown to contain contacts with the highest biological information content [6].
Finally, we divided the data for 22 chromosomes into training (chr1-chr7 and chr12-chr18),
validation (chr8-chr11), and test (chr19-chr22) sets. We exclusively used GM12878 datasets
to train our models as is the standard for all methods we compare.

Table 1. Summary of the datasets and their sources. All experiments used the Mbol enzyme and
filtered fragments to be in the size range of 300–500 using SPRI beads. HRC refers to high-read-count,
and LRC refers to low-read-count Hi-C contact matrices. Sparsity represents the fraction of reads in
comparison to the relevant HRC Hi-C contact map.

Dataset Absolute Read Counts Sparsity Source

GM12878-HRC-1 1,844,107,778 1 GEO (GSE63525)
GM12878-HRC-replicate 1,564,534,654 1 GEO (GSE63525)

GM12878-LRC-1 42,453,795 1/44 ENCODE (ENCSR382RFU)
GM12878-LRC-2 37,079,587 1/50 ENCODE (ENCSR382RFU)
GM12878-LRC-3 70,138,184 1/25 ENCODE (ENCSR968KAY)
GM12878-LRC-4 202,380,884 1/9 GEO (GSM1551575)
GM12878-LRC-5 18,696,952 1/100 GEO (GSM1551582)

IMR90-HRC-1 735,043,093 1 GEO (GSE63525)
IMR90-LRC-1 75,193,876 1/10 GEO (GSM1551606)
K562-HRC-1 641,402,880 1 GEO (GSE63525)
K562-LRC-1 44,882,605 1/14 GEO (GSM1551622)

2.2. Deep Learning-Based Hi-C Upscaling Models

We set up five state-of-the-art deep learning-based Hi-C upscaling methods divided
into two broad categories—those that employ an adversarial loss to optimize weights and
those that do not. HiCPlus [6] uses a three-layer convolutional network to optimize with
Mean Squared Error (MSE) loss. HiCNN [8] extends the HiCPlus approach to a 54-layer
architecture that uses residual connections between the CNN layers [18], improving the
performance, training times, and stability. HiCNN2 [9] combines HiCNN and HiCPlus
with a VDSR (Very Deep Super Resolution) model to generate an output that is a linear
combination, with learned weighted contribution, of all the networks. HiCGAN [11],
DeepHiC [10], and VeHiCLe [13] employ Generative Adversarial Networks. GANs [19]
jointly optimize two models—a generator that produces samples and a discriminator
that tells fake samples apart from real ones—to learn to create increasingly more realistic
outputs. HiCGAN uses an MSE loss and cross entropy (computed through discriminator
output) to optimize the weights. DeepHiC extends HiCGAN to introduce a perceptual
and total variation loss to generate Hi-C contact maps with sharper and more realistic
features. Lastly, VeHiCle makes two modifications to the DeepHiC approach: (1) it replaces
the perceptual loss with a domain-specific Hi-C loss using an unsupervised model trained
to generate the Hi-C input, and (2) it adds insulation loss, forcing the model to learn
the underlying biological structure (specifically topologically associated domains) and
generate more informative Hi-C matrices. We picked these models because they capture
a representative set of methods that capture the overall evolution of deep learning-based
Hi-C resolution enhancement methods. To the best of our knowledge, none of the existing
methods are explicitly designed to upscale experimentally generated LRC Hi-C contact
matrices.

For our evaluations, we retrain HiCPlus, HiCNN, and HiCNN2 to ensure these models
generate an output of value between [0, 1]. These three methods predict raw contact counts,
making the generated Hi-C matrices incomparable with GAN-style methods and putting
these models at a disadvantage against other methods as shown by DeepHiC [10]. Similar
to DeepHiC, we train four different versions, each on 1

16 , 1
25 , 1

50 , and 1
100 downsampled

datasets to provide a range of Hi-C input sparsities [10]. When upscaling, we utilize
the version with the smallest difference between the sparsity of input Hi-C data and the
downsampled Hi-C data we used to train the method. We show the training curves in
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Supplementary Figures S1–S3. Note that we exclude HiCGAN [11] from our comparisons,
as we could not set up the provided code base, as it depended on depreciated Python
packages. For DeepHiC and VeHiCle, we used the provided weights. As a baseline
upscaling algorithm, we added Gaussian smoothing with a kernel size of n = 17 and
2D Gaussian distribution with σx = σy = 7. We found these parameters to provide best
performance. We keep the architecture the same for all the retrained methods. We do not
tune layer parameters to ensure that we compare the off-shelf versions of these methods to
test their real-world applicability. Lastly, we use the same merging algorithms provided by
these methods to combine the predicted samples into full chromosome contact maps.

2.3. Evaluation Metrics

Recent work has shown that correlation metrics, such as Pearson’s Correlation Co-
efficient (PCC) and Spearman’s Correlation Coefficient (SCC), fail to assign an accurate
reproducibility score for Hi-C experiments due to a limitation in accounting for the under-
lying data distributions (e.g., distance effect in Hi-C matrices) [14]. Unfortunately, most
of the current Hi-C upscaling studies have used PCC and SCC along with the Structural
Similarity Index Metric (SSIM), which calculates similarity using the two images’ lumi-
nance, contrast, and structure to evaluate their performance. Due to the limitations of these
correlation-based metrics, we include the Hi-C similarity metrics [14]—GenomeDISCO,
HiCRep, Hi-C-Spector, and QuASAR-Rep—in our evaluation pipeline. We show the results
for GenomeDISCO as our main metric, which uses random graph walks for smoothing
out the contact matrices at varying scales to compute the concordance scores between the
two input maps. Similarity across these smoothed contacts corresponds to similarity at
various genomic organizational scales [20]. We show the results for the rest of the metrics
(and explain their mechanisms to compute similarity) in Supplementary Section S3. For all
of the reported metrics, a higher score (closer to 1) is better.

2.4. Downstream Analyses for Biological Validation

For a biologically informed evaluation, we perform four additional downstream
analyses to assess the utility of information recovered from the upscaled Hi-C matrices.
While Hi-C similarity scores produced by GenomeDISCO, QuASAR-Rep, HiC-Rep, and
HiC-Spector are developed to compare the higher-order structure of the chromatin that
can be recovered through Hi-C contact maps, they do not compare biological features such
as TADs and chromatin loops. Therefore, we evaluate the quality of 3D reconstruction,
recovered chromatin loops, TADs, and DNA hairpins from upscaled Hi-C maps to provide
a thorough analysis of the utility of the predicted Hi-C contact maps in their real-world
downstream use case.

2.4.1. Quality of Chromatin Reconstruction from Upscaled Hi-C Maps

We use 3DMax [21] to generate a 3D model of chromatin from both the HRC and
the upscaled Hi-C matrices. 3DMax uses iterative correction with eigen-decomposition
to denoise and normalize the Hi-C contact map before constructing the 3D model. We
use default 3DMax parameters and compare the 3D models using the Template Modeling
score (TM-score), which is typically used in protein–structure comparison, to estimate the
reconstruction accuracy. A score closer to 1 indicates a more similar 3D structure, which
in our case corresponds to having similar genome organization and function. Typically, a
score greater than 0.5 suggests that 3D models have similar underlying structures [22].

2.4.2. Quality of Recovered Chromatin Loops, TADs, and DNA Hairpins from the
Upscaled Hi-C Maps

To analyze the structural features of the genome, we used Chromosight [23] on Hi-
C contact matrices to call chromatin loops, TADs, and DNA hairpins. Recent works
have shown these features to be crucial in understanding gene regulation, disease, and
genome organization [3,5,24]. We recovered these features from the Hi-C matrices using
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Chromosight [23] with its default parameters and detection kernels. Given Chromosight’s
ability to recover an extensive set of biologically informative features [23], we consider
the chromatin features retrieved from the HRC matrices to be a “ground truth” feature set
and compare the derived features from the upscaled matrices against them. We count the
following: (1) True Positives (TP) that overlap (we consider an overlap if the position of both
features are within n bins of each other; we tune the value of n for all features individually
as summarized in Supplementary Figure S4) in both matrices; (2) False Positives (FP),
features that are called on the imputed matrices but are not present in the HRC matrices;
and (3) False Negatives (FN), features in HRC matrices that were absent in the imputed
matrices. Then, we compute the F1 score using:

F1 score =
2 · TP

2 · TP + FP + FN

3. Results

In this section, we detail the results of the following experimental steps: (1) reproduce
previous results using our Hi-CY framework, (2) use Hi-CY to show that deep learning-
based methods’ performance does not generalize to experimentally generated LRC datasets,
(3) characterize the potential issues leading to poor generalization, and (4) present potential
strategies to improve the generalization of these methods on experimentally generated
LRC datasets. For all presented results, we show region chr22:41-43Mbp to qualitatively
visualize the feature recovery performance. We pick this region because it contains a high
density of chromatin features, including TADs, chromatin loops, and DNA hairpins. The
quantitative evaluations show averaged cross-chromosome scores on all four (chr19-chr22)
test chromosomes for all metrics and downstream analyses.

3.1. Hi-Cy Framework Reproduces Similar Performance of Deep Learning-Based Models on
Downsampled Datasets

All existing deep learning-based Hi-C resolution upscaling models [6,8–11] show that
they can achieve correlation and reproducibility scores comparable to or better than a
biological replicate when upscaling a downsampled Hi-C contact map. These methods
show their performance on Hi-C contact maps with a downsampling ratio of up to 1

100
reads compared to the output HRC contact map [10]. We reproduce performance trends
using Hi-CY to establish the reproducibility and accuracy of our approach. We generate 12
Hi-C datasets for three cell lines—GM12878, IMR90, and K562—downsampled by factors
of 1

16 , 1
25 , 1

50 and 1
100 of the reads in the corresponding HRC matrix. We evaluate the

performance by comparing the generated Hi-C contact maps against the HRC contact maps.
In Figure 2A, we visualize the predicted Hi-C contact maps when using an input GM12878
contact map downsampled by a factor of 1

50 and compare them against the target HRC
GM12878 dataset. All methods, excluding the baseline Gaussian Smoothing, can recover
the finer features, including the sub-TAD structures highlighted by a blue dotted rectangle,
with DeepHiC generating the most visually similar Hi-C matrices compared to the target
HRC contact map.

We quantify the performance in Figure 2B,C by comparing SSIM and GenomeDISCO
scores (on the y-axis) across all three cell lines and four different downsampling ratios
(on the x-axis). Our results demonstrate that DeepHiC, HiCNN, HiCNN2, and HiCPlus
perform better than or comparable to the biological replicate (shown as a dotted black
line) on SSIM and GenomeDISCO metrics. Moreover, these methods generalize to both
the downsampling ratios and cross-cell type inputs. We show the results on the rest of
the metrics in Supplementary Figure S5, which further support the insights we gathered
from the SSIM and GenomeDISCO metrics. In contrast, VeHiCLe offers consistent but
lower performance than other methods on both metrics. We expected this result given
that VeHiCle was trained and evaluated on a experimentally generated LRC Hi-C dataset
(GSE63525 HIC0001) [13]. These results indicate that Hi-CY can train and evaluate the
existing methods in a unified pipeline and reproduce results from the previous studies.
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B

A

C

Figure 2. Hi-CY can reproduce the performance of deep learning-based methods on upscaling
downsampled input Hi-C datasets. (A) Deep learning-based methods’ output for chr22:41-43Mbp
with input reads downsampled to 1/50 counts of the original HRC Hi-C matrix. (B,C) On the x-axis,
we present the downsampling ratio in increasing order, and on the y-axis, we report SSIM (panel B)
and GenomeDISCO (panel C). As the downsampling ratio increases, HiCPlus, DeepHiC, HiCNN,
and HiCNN2 show similar or comparable performance compared to the biological replicate shown
as a dotted black line. VeHiCle and Gaussian Smoothing baseline give a lower performance on these
datasets.

3.2. Testing Generalization of Deep Learning-Based Models on Experimentally Generated Hi-C
Datasets

We use the Hi-CY framework to evaluate the performance of existing models on
experimentally generated LRC Hi-C datasets and contrast it with their performance on the
downsampled Hi-C datasets we used in the previous experiment. We test generalizability
on five datasets from the GM12878 cell line, with the read count sparsity ranging from
1
9 to 1

100 of the total reads of the GM12878 HRC Hi-C matrix. We further test one dataset
each from K562 and IMR90 with a sparsity of 1

14 and 1
10 , respectively, to evaluate the

cross-cell-type generalization. First, we compare the output produced by the models when
provided with the GM12878-LRC-4 dataset with 1

50 of the reads of the GM12878 HRC
Hi-C contact map. As shown in Figure 3A all methods, including VeHiCLe, struggle to
recover chromatin features, particularly the sub-TAD features highlighted with a dotted
blue rectangle, which they could recover when provided with a downsampled contact
map with a similar number of reads. Next, as shown in Figure 3B, we observe that none of
the methods can achieve scores similar to the biological replicate (shown with the dotted
black line). Moreover, except VeHiCLe, all methods show a decrease in performance as the
sparsity increases. For example, comparing the HiCNN results on the GM12878 datasets
with 1

9 to 1
100 of the reads, SSIM goes from 0.77 to 0.45 while GenomeDISCO goes from 0.94

to 0.4. Although VeHiCLe shows stable scores, they are lower than other methods for SSIM
and GenomeDISCO, suggesting that it may have overfit to the dataset that it was trained
with (GSE63525 HIC0001).
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Figure 3. Performance comparison for upscaling experimentally generated LRC Hi-C datasets. (A) We
visualize the outputs of our methods on the GM12878-LRC-2 dataset with a read count of 1

50 of the
total reads of GM12878 HRC Hi-C map for chr22:41-43 Mbp. We find that all methods struggle to
recover the finer chromatin features in comparison to when provided with a downsampled Hi-C
contact map. (B) We quantify the decrease in performance of the upscaling methods as we increase the
sparsity (on the x-axis) of the GM12878 LRC datasets on the SSIM and GenomeDISCO metrics (on the
y-axis). We observe that all methods show a substantial drop in performance as we increase sparsity,
with HiCNN showing better robustness to the sparsity of data in comparison to other methods.
(C) We show a drop in the performance of these methods on the IMR90 and K562 LRC datasets by
comparing them against a biological replicate score shown with a dotted black line. We observe a
substantial drop in performance in both cell lines on the GenomeDISCO metrics. Our results (B,C)
show that all methods fail to generalize to sparse, experimentally generated Hi-C datasets.

Lastly, we test how these deep learning-based models generalize to experimentally
generated cross-cell type sparse Hi-C contact maps. Figure 3C shows the SSIM and
GenomeDISCO scores on the upscaled matrices when provided with the IMR90-LRC-
1 and K562-LRC-1 datasets as inputs. Across the IMR90 and K562 cell lines, both HiCNN
and HiCPlus achieve SSIM scores similar to the biological replicate. However, for the
GenomeDISCO metric, all methods show a substantial reduction in performance across
both cell lines. Our results show that all methods strongly favor downsampled datasets and
perform significantly worse on experimentally generated sparse LRC Hi-C datasets. Our
results for the rest of the metrics are presented in Supplementary Figure S9, adding further
support for our findings. Overall, among the available Hi-C upscaling methods, HiCNN
shows the best generalizability to its real-world out-of-the-box use cases with a competitive
performance on the GM12878 datasets (particularly highly sparse 1

100 dataset) and the
best performance on IMR90 and K562 datasets. Furthermore, we believe that GAN-based
models such as DeepHiC and VeHiCle are not ideal candidates for retraining given the
tendency of GANs to overfit to the training data [25–27], and their unstable training process
[27,28] posing a technical challenge outside the scope of this work.
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3.3. A Significant Distributional Shift between Downsampled Datasets and Experimentally
Generated LRC Datasets Hurts the Generalizability of Deep Learning Models

Lack of generalizability in deep learning models is typically attributed to distributional
differences [29]. We compare the distribution of reads in LRC and downsampled Hi-C
datasets and the impact of that difference on the underlying chromatin structure. First, we
compare the observed reads between an experimentally generated LRC Hi-C contact map
and a downsampled contact map with similar reads. In Figure 4A, we plot the log (base
10) difference of region chr22:41-43Mbp between the experimentally generated GM12878
LRC dataset and downsampled datasets with 1

50 of the reads of the HRC Hi-C contact
map as a heat map. The heatmap highlights the region with higher log differences in
yellow compared to regions with smaller differences in purple. We observe bins with
a higher difference on the heatmap as we move further away from the diagonal. To
establish this trend across all the chromosomes (test, train, and validation), we plot PCC
between observed reads in experimentally generated or downsampled and HRC datasets at
increasing genomic distances. HiCNN, HiCPlus, and DeepHiC [6,8–10] used this analysis
to compare the similarity and distribution of Hi-C samples across each genomic distance.
In this curve, a higher correlation on all genomic distances suggests a higher read count
distribution similarity between the two samples. Figure 4B shows that across all genomic
distances, the experimentally generated LRC Hi-C dataset has a lower correlation than the
downsampled datasets, with the difference between those two increasing as the distance
increases. We observe the same trend, shown in Supplementary Figure S6, across all the
experimentally generated LRC datasets we gathered. These observations suggest that
experimentally generated LRC Hi-C contact maps have a higher distributional difference
with HRC Hi-C contact maps than with downsampled Hi-C contact maps with a similar
number of reads. This difference arises because uniformly removing reads to downsample
Hi-C contact matrices fails to account for the distance effect [12], suggesting that Hi-C reads
are more likely to be observed on genomic bins closer to the diagonal.

We further investigate the impact of this distributional shift by comparing the content
and biological information of downsampled datasets against experimentally generated
LRC datasets. Figure 4C shows a steeper degradation in GenomeDISCO scores in LRC
matrices compared to the downsampled matrices. Given that GenomeDISCO compares
the underlying structural topology rather than bin-wise similarity, our results in Figure 4C
show that there is a steeper loss in structural information in LRC Hi-C datasets compared to
downsampled datasets. Lastly, we quantify the impact of this loss of structural information
by comparing the chromatin loop F1 scores between the downsampled and experimentally
generated LRC Hi-C contact maps. Unsurprisingly, Figure 4D shows that chromatin loop
F1 scores decay more sharply for LRC datasets, while F1 scores approach 0 for both datasets.
Our findings across all datasets, as shown in the Supplementary Figures S7 and S8 on
other metrics and biological features, further support a more significant information loss
in experimentally generated LRC datasets that scales with the sparseness of data. In the
cross-cell-type setting, we find an interesting trend that suggests that IMR90-LRC-1 has
more loss in structure information than K562-LRC-1, even though it has higher sparsity,
suggesting the existence of cell-specific experimental artifacts. Our analysis identifies the
distributional shift between the downsampled and LRC datasets as a crucial component
that leads to the poor generalizability of deep learning-based models. We further show that
upscaling LRC datasets is substantially more complicated due to a lack of structure in the
LRC Hi-C matrices and their lower similarity to the target HRC Hi-C matrices.
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GM12878-LRC-2 (1/50)GM12878-Downsampled (1/50) DifferenceA

B C D

Figure 4. Comparing the distributions of downsampled Hi-C datasets with the experimentally
generated LRC datasets. (A) Shows a pixel-wise comparison of 1

50 experimentally generated LRC
dataset with a similarly downsampled dataset for GM12878 chromosome 22 region 41-43 Mbp. As
we move further from the diagonal, the difference amplifies (signified by yellow). (B) We compare
Pearson’s Correlation (on the y-axis) of the LRC dataset (beige) and the downsampled dataset (red)
with 1

50 sparsity against the HRC dataset for strata with increasing genomic distances (on the x-axis).
The correlation is always smaller for experimentally generated LRC datasets across all genomic
distances, and the difference increases as we move further away from the diagonal. (C) Compares
GenomeDISCO score of experimentally generated LRC datasets against a similarly sparse downsam-
pled dataset. Our results show that the GenomeDISCO score is lower for experimentally generated
LRC datasets compared to an equally sparse downsampled dataset. (D) We compare the Biological
Features recovery F1 score against the HRC feature set for LRC and Downsampled datasets on the
GM12878 cell line. The F1 scores decay more steeply for experimentally generated LRC datasets.

3.4. Retraining Deep Learning Models with Experimentally Generated Datasets Improves
Performance

Our results in the previous sections show that the distribution of experimentally
generated LRC Hi-C data differs from the downsampled Hi-C datasets. Given this insight,
we pick the best model—HiCNN—and retrain it with experimentally generated GM12878
LRC datasets. The core idea behind retraining is to expose the deep learning model to
a more realistic data distribution during the training phase to improve generalizability
in the testing phase. We retrain the HiCNN model on each LRC dataset individually
(LRC-1— 1

44 reads of HRC data; LRC-3— 1
25 reads of HRC data; and LRC-4— 1

9 reads of HRC
data). We also train on an ensemble of aforementioned LRC datasets (Ensemble-LRC) as
a means to expose the model to a range of realistic distribution of Hi-C datasets during
the training phase. Figure 5A shows that even with retraining, HiCNN is still unable to
recover the sub-TADs in the TAD cluster highlighted with a dotted blue square, even when
retrained with an experimentally generated LRC dataset. Figure 5B shows the SSIM and
GenomeDISCO scores of three versions of HiCNN trained with LRC-1, LRC-3, or LRC-4
GM12878 datasets and two versions of HiCNN trained either with an ensemble of LRC
datasets or an ensemble of downsampled datasets. We evaluate the performance of these
models on five GM12878 datasets with varying levels of read count sparsity. We find
that the versions of HiCNN retrained with LRC datasets with high sparsity (LRC-1 and
LRC-3 and Ensemble-LRC) improve the deep learning model performance on average by
11%, 10%, and 10% on SSIM and 18%, 31%, and 16% on GenomeDISCO in comparison
to HiCNN trained with downsampled datasets. Conversely, we observe a reduction in
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performance when retrained with a low sparsity (LRC-4), on average of 6% on SSIM and
8% on GenomeDISCO, compared to when trained with downsampled datasets. However,
we observe the best performance improvements of 16%, 16%, 14% for LRC-1, LRC-3 and
Ensemble-LRC, respectively, on SSIM. We also see improvements of 75%, 68%, 48% for
LRC-1, LRC-3, LRC-4 and Ensemble-LRC, respectively, on the GenomeDISCO metric when
upscaling GM12878-LRC-5, which is the sparsest dataset, having 1

100 reads.

A

B C K562IMR90

HiCNN-
Downsampled

HiCNN-
LRC-1

HiCNN-
LRC-3

HiCNN-
LRC-4

HiCNN-
LRC-

Ensemble
Target

Figure 5. Retraining HICNN with experimentally generated LRC datasets. (A) We visualize the
outputs of our methods on GM12878-LRC-2 with 1

50 on region chr22:41-43Mbp, and we show that
all methods struggle to recover finer architectural features, such as TADs. (B) We quantify the
decrease in performance of upscaling methods as we increase the sparsity (on the x-axis) of GM12878
LRC datasets on the SSIM and GenomeDISCO metrics (on the y-axis). We observe that retraining
with LRC datasets or an ensemble of LRC datasets improves performance, with LRC-3 showing the
most improvement in the GenomeDISCO metric, and retraining with LRC-1 providing the most
improvement for the SSIM score. All versions struggle to achieve scores similar to the biological
replicate, shown as the dotted black line. (C) We compare the performance of these methods for
both the IMR90 and K562 LRC datasets. All methods perform similarly, with HiCNN trained with
downsampled datasets performing better on the IMR90 dataset.

Next, we use the IMR90-LRC-1 and K562-LRC-1 datasets to compare the performance
of HiCNN retrained with experimentally generated LRC datasets against HiCNN trained
with downsampled datasets in the cross-cell-type setting. Figure 5C shows that when
evaluated on the K562-LRC-1 dataset, the retrained versions of HiCNN performed similarly
to the original HiCNN on both SSIM and GenomeDISCO. However, we observe reductions
of 8%, 9%, and 7% when trained with LRC-1, LRC-3, and Ensemble-LRC, and conversely,
increases of 7% when trained with LRC-4 on the SSIM scores, respectively. We observe
similar GenomeDISCO scores across all variants of HiCNN when evaluated on the IMR90-
LRC-1 dataset. Retrained HiCNN does not generalize to unseen cell types. We hypothesize
that this happens because distributional differences across cell-type are independent of
the read counts. Overall, we demonstrate that retraining HiCNN using LRC datasets
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is a promising approach towards improving the generalizability of deep learning-based
models because it exposes them to a more realistic Hi-C contact map distribution during
the training phase.

3.5. Downstream Analysis to Quantify the Utility of Upsampled Hi-C Contact Maps

To determine whether the upscaled Hi-C matrices retain the necessary biological
signals, we analyze the 3D structure of chromatin and the biological features. HiCNN, HiC-
Plus, and DeepHiC [6,8,10,11] present these results for upscaled outputs from synthetically
downsampled Hi-C maps. We perform this downstream analysis on upscaled experi-
mentally generated LRC datasets to provide insights into the performance for real-world
applications.

A
Low Read Count Smoothing HiCPlus HiCNN HiCNN2 VeHiCle HiCNN-LRC-3 High Read CountDeepHiC

B GM12878 IMR90 K562

Figure 6. 3D reconstruction of Chromosome 22:41-43Mbp region (A) Most models, including HiCNN-
LRC-3, produce highly similar 3D structures of the chromatin. (B) Our quantitative analysis on 3D
reconstruction score comparison suggests that retraining improves performance in certain cases while
performing similarly to HiCNN on average.

3.5.1. Retrained Deep Learning Models Generate Highly Accurate 3D Structure of
Chromatin

For 3D chromatin reconstruction analysis, we use the upscaled Hi-C maps produced
by the methods from all seven experimentally generated LRC input matrices on GM12878,
IMR90, and K562. For this, we incorporate 3DMax [21] into the Hi-CY framework, which
generates the 3D structure for the 200 × 200 Hi-C sub-matrices for all of the sub-matrices in
the test chromosomes. Next, we compare the spatial conformation of the chromatin using
the TM-score, where a higher TM-score is proportional to a higher structural similarity
of the chromatin. Our analysis follows the VeHiCle paper [13], where the recovered 3D
structure from HRC Hi-C contact map is compared with the 3D structure recovered from
the upscaled Hi-C matrices to show that the upscaled matrices have the same structure. We
also visualize 3D models of the region chr22:41-43Mbp for upscaled GM12878 in Figure 6A,
which shows that the models, except for HiCNN2 and VeHiCle, are similar in their overall
3D topology compared to the 3D model generated with the HRC Hi-C contact map.

We summarize the TM-scores in Figure 6B. We observe that, on average, both the
HiCNN-Baseline and HiCNN-LRC-3 show similar performance in the 3D reconstruction
analysis with scores within 1% of each other. However, although the gains are marginal,
we observe that HiCNN-LRC-3 outperforms all methods on both the K562 and IMR90
cell lines. Our results suggest that retraining improves 3D reconstruction performance or
results in similar performance to the baseline version of HiCNN, highlighting the value of
retraining for recovering biologically informative Hi-C matrices.
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3.5.2. Deep Learning Models Have Similar Performance for Recovering Biological Features

We incorporate Chromosight [23] into the Hi-CY evaluation pipeline to recover and
compare biological features, including chromatin loops, TADs, and DNA hairpins. To
compare the utility of the upscaled Hi-C matrices in recovering biological features, we
detect features on all seven experimentally generated LRC datasets upscaled from the
complete set of models, including HiCNN retrained with the LRC-3 dataset. In Figure 7,
we compare the F1 scores across all seven datasets for all three features we recover. For all
models, we observe a trend similar to GenomeDISCO and SSIM, that F1 decreases as we
increase the sparsity of the LRC dataset. Retraining with the LRC-3 dataset helps recover
features far from the diagonal, such as chromatin loops and TADs, particularly in IMR90,
K562, and lower-sparsity GM12878 cases. Regardless, the performance improvements, as
observed earlier, are marginal. Surprisingly, HiCNN2 outperforms other methods in the
loops and DNA hairpin case in feature recovery analysis on the GM12878 LRC datasets.
This provides evidence of the need for multifaceted research that explores results across
multiple scenarios and metrics to develop a holistic understanding of the costs as well as
the benefits of using deep learning-based models. Currently, all existing methods struggle
to recover biological features accurately, particularly in a cross-cell-type setting and on
sparse Hi-C datasets, as we see a steep degradation in the F1 score in both scenarios. We
observe similar scores or negligible improvements even when we retrain HiCNN with an
experimentally generated LRC dataset. This suggests a need to revisit the architectural
assumptions as well, including formulating Hi-C as a 2D image when the underlying
measurement data correspond to a 3D structure.

GM12878 IMR90 K562

Figure 7. Biological feature comparison. Our quantitative analysis, by comparing the F1 scores,
computed by comparing the recovered feature set with the HRC feature set, suggests that across
chromatin loops, TADs, and DNA hairpins across all three cell lines, all of the methods, including
retrained HiCNN, struggle to recover meaningful biological features in highly sparse settings. While
retraining improves performance, the improvements are marginal, similar to the previous analysis.
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4. Conclusions

We developed the Hi-CY framework that explores how deep learning-based Hi-C
upscaling methods perform in their intended scenarios, which is to upscale experimentally
generated sparse Hi-C datasets. Our results strongly suggest that existing deep learning-
based methods do not generalize to their real-world use case. To provide potential solutions
to improve generalizability, we explore retraining with dataset augmentations (such as
adding Gaussian noise to the training datasets shown in Supplementary Figure S10), the
ensembling of multiple downsampled datasets, and training with experimentally generated
Hi-C datasets. Our analysis found that retraining with experimentally generated sparse
datasets was the most promising approach to improving generalizability. Although we
did not observe a significant improvement in the 3D structure generation or recovering
chromatin loops, TADs, and DNA hairpin analysis tasks, we still recommend retraining
with experimentally generated Hi-C datasets to improve their generalizability beyond the
training datasets. Our Hi-CY framework provides a simple yet robust pipeline to streamline
the training and evaluation of Hi-C upscaling methods with real-world Hi-C datasets on
correlation, HiC similarity, and downstream analysis-based metrics.

Another trend we observe in our evaluation is that among the currently available
techniques, HiCNN, which uses a non-adversarial model, outperforms the GAN-based
models in generalizing to sparse experimentally generated Hi-C datasets. Interestingly,
we observe that an even simpler method, HiCPlus (3-layer CNN), performs comparably
to HiCNN (a 54-layer CNN) on most metrics across most datasets. In future work, we
plan to investigate if this similar performance stems from formulating Hi-C data as an
image and the upscaling as a super-resolution task. We plan to explore performance gains
from using graph-based architectures to capture the underlying geometry of the DNA
molecule more accurately. In conclusion, we present the Hi-CY framework, which provides
a comprehensive evaluation toolkit coupled with real-world datasets that support the
development of future models by investigating their performance on intended use cases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes1010000/s1, Figure S1: This figure shows the loss curves
for HiCPlus models on four version we trained with each downsampling ratio. We use the version of
model (across all the epochs) that minimizes the validation loss. Figure S2: This figure shows the loss
curves for HiCNN models on four version we trained with each downsampling ratio. We use the
version of model (across all the epochs) that minimizes the validation loss. Figure S3: This figure
shows the loss curves for HiCNN2 models on four version we trained with each downsampling ratio.
We use the version of model (across all the epochs) that minimizes the validation loss. Figure S4:
Overview of our Biological Feature Analysis Pipeline: A We define True Positives as features that we
find to be overlapping between the upscaled Hi-C matrix and the HRC matrix. Similarly, we define
features that are present in the HRC matrix and not in the upscaled Hi-C matrix as False Negatives.
Conversely, features we find in upscaled matrix and not in the HRC matrix as the false postives. We
compute F1 scores using these definitions. B We optimize the parameter "r" (relaxation paramter)
for each feature, chromatin loops, TADs and DNA-hairpins. This relaxation parameter defines the
overlapping radius between the position of features between the upsampled and HRC features.
We tune this paramter by comparing features between the GM12878 HRC and GM12878 biological
replicate cell lines and find the value of r that maximizes the F1 score while keeping the value of r small.
We found a value of 3 for chromatin loops, 5 for TADs and 2 for DNA-hairpins. C We summarize
our biological feature analysis pipeline, we first extract biological features using Chromosight and
then compute F1 scores. Figure S5: This figure shows the performance of deep-learning based Hi-C
upscaling methods on computationally downsampled methods on four downsampling ratios (shown
on x-axis), three cell-lines five metrics. All methods except VeHiCLe show performance very similar
to the replicate shown as black dotted bold line. Figure S6: Our results on comparing the PCC (y-axis)
across various genomic distances (x-axis) suggest that LRC datasets show a smaller similarity with
HRC Hi-C dataset in both increasing levels of read sparsity and in cross-cell-type cases. Figure S7:
Our results on comparing the PCC (y-axis) across various genomic distances (x-axis) suggest that
LRC datasets show a smaller similarity with HRC Hi-C dataset in both increasing levels of read

https://www.mdpi.com/article/10.3390/genes1010000/s1
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Genes 2024, 1, 0 16 of 30

sparsity and in cross-cell-type cases. Figure S8: We show the impact of the distributional difference
in the structural information contained in downsampled and experimentally generated LRC Hi-C
contact maps by comparing scores across both correlation and Hi-C similarity metrics. Figure S9: This
figure shows performance on rest of the metrics, and our results highlight that there is a reduction in
performance as the sparsity increases in GM12878 datasets. Figure S10: We show results of retraining
across five additional metrics and also across additional retraining variants, such as downsampled
datasets augmented with noise
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Investigating the performance of deep learning methods for Hi-C resolution
improvement
Supplementary Material
S1. Retraining of HiCNN, HiCNN2 and HiCPlus

We retained the original implementation of these methods wherever we could. We
changed the output objective from predicting raw counts to predicting a matrix with values
between 0-1, similar to DeepHiC, and for these three, we replaced the SGD optimizer with
the Adam optimizer to stabilize the training process and improve the performance. In
the figures ?? we show the training curve for these methods for all the four version we
retrained.
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Figure S1. This figure shows the loss curves for HiCPlus models on four version we trained with
each downsampling ratio. We use the version of model (across all the epochs) that minimizes the
validation loss.
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Figure S2. This figure shows the loss curves for HiCNN models on four version we trained with
each downsampling ratio. We use the version of model (across all the epochs) that minimizes the
validation loss.
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Figure S3. This figure shows the loss curves for HiCNN2 models on four version we trained with
each downsampling ratio. We use the version of model (across all the epochs) that minimizes the
validation loss.



S2. Details of the evaluated methods

• Gaussian Smoothing We applied the Gaussian Smoothing filter, commonly used as
a baseline [6], to establish emphasize the performance benefits of the deep-learning-
based methods. This method uses a 2D kernel of shape n × n where n is a hyper-
parameter. Each kernel value follows a 2D Gaussian distribution with hyperparam-
eters σx and σy that represent the relative importance of neighboring features in
prediction. The smoothing operation convolves this kernel on each pixel of a 2D
image, or in our case, a HiC matrix read count, to update its value. This updated value
contains the average of the neighboring values weighted by 2D Gaussian distribution
in the kernel. This smoothing operation removes noise in the input matrix and im-
proves the peak signal to noise ratio (PSNR) at the cost of blurring the features. For
our experiments, we performed a grid search and found the kernel size of n = 17 and
σx = σy = 7 to give the best reproducibility score on the validation set of LRC HiC
matrices.

• HiCPlus [6] HiCPlus is the first application of deep learning to improve HiC resolution.
It utilizes a standard three-layer convolutional neural network (CNN) architecture to
upscale a low-resolution HiC matrix by mapping it to the target high-resolution matrix.
To optimize its parameters, HiCPlus uses a mean squared error (MSE) loss. HiCPlus
inputs HiC matrices as sub-matrices of size 40 × 40 binned at 10Kbp resolution and
taken from 2 Mbp distance from the diagonal. All the following deep learning-
based models follow the same input formulation. For this study, we make certain
modifications to the original code to make HiCPlus comparable to the more recent
implementations. For example, the original HiCPlus was trained to generate raw
read counts rather than normalized HiC matrices. Therefore, we retrain the model to
work with normalized high-resolution and low-resolution pairs of HiC sub-matrices.
Moreover, the original implementation was trained to upscale only the matrices that
had been downsampled to 1

16 of the read counts of a high-resolution HiC map. We
retrain the HiCPlus with three additional input HiC datasets with 1

25 , 1
50 , and 1

100
downsampling ratios to explore the performance on matrices beyond the original
downsampled version.

• HiCNN [8] HiCNN model also uses a CNN architecture like HiCPlus, except that
it consists of a much deeper 54-layer neural network with ResNet layers [18]. The
choice of ResNet layers provides two key benefits - (1) it provides additional architec-
tural complexity to learn relevant non-linear relationships between the inputs and the
outputs, and (2) they train significantly faster than regular CNN layers saving substan-
tial time during training. In addition, the skip connections in ResNet layers further
avoid model overfitting on the data. HiCNN, similar to HiCPlus, uses an MSE loss
to optimize its parameters and learn the mapping between the input low-resolution
matrix and the high-resolution target matrix. It also produces raw read counts and is
trained with downsampling ratios of 1

8 and 1
16 and 1

25 . Therefore, for consistency, we
retrain the model with additional datasets with downsampling rations of 1

50 and 1
100

and standardized values.
• HiCNN2 [9] HiCNN2 extends the architecture of HiCNN by ensembling multiple

methods to achieve better resolution. There are three different ConvNets in HiCNN2;
the first ConvNet is similar to HiCNN in terms of how it uses global and local residual
learning; it also concatenates features across residual blocks to improve performance.
The second ConvNet is a modified version of VDSR which only uses the global
residual learning. The third ConvNet is the HiCPlus model. Each model produces a
28x28 output matrix that is then combined through weights tuned during the training
process. This method, similar to HiCPlus and HiCNN, also predicts raw read counts
and is only trained with 1

8 and 1
16 and 1

25 downsampling ratios. Similar to both HiCNN
and HiCPlus, we retrain HiCNN2 to predict normalized read counts across all four
downsampling ratios.



• HiCGAN [11] HiCGAN paper argues that the Mean Squared Loss function used in
both HiCNN and HiCPlus causes these models to generate over-smooth matrices.
Therefore, it proposes using a Generative Adversarial Network (GAN) model for the
HiC resolution improvement task. A GAN architecture consists of (1) a generator
and (2) a discriminator. The generator’s objective is to produce data that increasingly
resembles the original distribution, and the goal of the discriminator is to identify fake
(generated) data from the original data. This coupled training causes both models to
get iteratively better at their tasks. HiCGAN uses a specialized form of GAN, which
is called the conditional GAN (cGAN). In cGANs the generator produces an output
conditional on the provided input instead of a random noise input. To optimize the
parameters in the model, HiCGAN uses the discriminator loss and the MSE loss to
generate matrices that are highly similar to the target HiC matrices. The HiCGAN
paper shows that this method produces better-quality HiC matrices with sharper and
more prominent features than the previous method.

• DeepHiC [10] DeepHiC paper, like HiCGAN [11], argues that the Mean Squared
Loss function used in both HiCNN and HiCPlus causes these models to generate
over-smooth matrices. Therefore, it uses Generative Adversarial Network (GAN)
model for the HiC resolution improvement task. A GAN architecture consists of (1) a
generator and (2) a discriminator. The generator’s objective is to produce data that
increasingly resembles the original distribution, and the goal of the discriminator is
to identify fake (generated) data from the original data. This coupled training causes
both models to get iteratively better at their tasks. DeepHiC substantially revises the
previously proposed loss functions to contain additional functions that include Total
Variation Loss and Perceptual Loss. These loss function along side Mean Squared
Error Loss and Discriminator Loss causes the model to generate matrices with sharper
features that are more biologically informative [10]. The paper also shows that training
the deep learning models on standardized HiC matrices improves their performance
further. Moreover, the paper trains the DeepHiC model with a downsampling ratio
of up to 1

100 to have model weights available for even the sparsest real-world HiC
matrices.

• VeHiCLE [13] VeHiCLE is another GAN-based model like HiCGAN and DeepHiC.
However, it makes additions to both the model architecture and loss functions used
while training. Apart from using a GAN architecture, it also trains a variational
auto-encoder (VAE). The output obtained by passing the HiC matrices through the
trained VAE is used in a loss function to train the GAN. This loss obtained from the
VAE is called the variation loss. VeHiCLE also uses the adversarial and MSE losses
seen in previous methods. However, it introduces yet another loss called insulation
loss. The insulation loss is a biologically inspired loss that utilizes insulation scores
used to identify TADs in a HiC contact matrix. VeHiCLE is trained on input and target
matrices of sizes 269× 269, unlike the previous methods that used 40× 40 sub-matrices
as inputs. The paper shows that this increased matrix size improves performance,
thus hypothesizing that the 40 × 40 matrices are too small to adequately capture
information about large-scale HiC features (such as TADs). We created new datasets
for VeHiCle that had HiC sub-matrices of size 269x269 to ensure a fair comparison of
VeHiCle with other deep learning based methods.

S3. Details of the evaluation metrics

• Structural Similarity Index Measure (SSIM) Structural Similarity Index Measure
(SSIM) is a metric that measures the perceived perceptual quality of an image against
an original undistorted and higher quality image. SSIM measures this perceptual
quality by comparing the luminance, contrast, and structural properties in small local
regions of the images. A weighted sum of these properties allows SSIM to assign a
similarity score that closely mimics the way humans perceive differences in images.
However, we postulate that the HiC contact maps should be compared based on



their underlying biological properties instead of their visual similarities. Therefore,
assigning a similarity score based on SSIM score may hold little biological relevance
and might lead to misleading conclusions about the quality of the generated datasets.

• Pearson Correlation Coefficient (PCC) Pearsons Correlation Coefficient (PCC) is a
linear measure of the correlation between two sets of data distribution. PCC is a ratio
of covariance between two variables and its product with their standard distribution.
This metric essentially measures covariance between the two datasets, normalized
to have a value between -1 and 1. Here, -1 or 1 values imply highly negatively or
positively correlated, respectively, and a 0 value implies no correlation between the
two datasets.

• Spearman’s rank Correlation Coefficient (SCC) Spearman’s rank Correlation Coeffi-
cient (SCC) measures the statistical dependence between the rank of two variables.
This measure essentially captures how well two variables can be described using a
monotonic function. SCC between two variables is equal to the PCC of the rank of
variables. Thus, SCC has a value of +1 or -1 when either of the variables is a perfect
monotone of the other. It has a value of 0 when they do not correlate monotonically.

• Hi-C-Rep [? ] Hi-C-Rep measures the reproducibility between two Hi-C datasets
based on spatial features such as distance dependence and domain structure. To
enhance the domain structure in the Hi-C matrices, Hi-C-Rep applies a mean filter,
which filters out the stochastic noise that can potentially arise from the experimental
protocols and possibly also through low read counts in the dataset. Hi-C-Rep then
stratifies the read counts in the matrix based on their distance and measures the
correlation between each stratum. The correlations between each stratum are then
combined using a weighted average of each stratum, where the weighting coefficients
are calculated using the Cochran-Mantel-Haenszel (CMH) statistic. Hi-C-Rep reports
a score between -1 and 1, similar to Pearsons’s Correlation and Spearman’s, with
scores close to 1 representing high similarities between the Hi-C matrices.

• GenomeDISCO [20] The GenomeDISCO method focuses its correlation analysis on
the property that high-level order structures (loops and compartments) at multiple
scales between two Hi-C contact maps are similar if they are highly correlated. To
leverage that, GenomeDISCO measures the correlation over a range of genomic scales
by smoothing the Hi-C matrices at different intensities. GenomeDISCO uses Random
Graph walks to smooth out the matrices by formulating the Hi-C data as a Graph. In
this contact matrix graph, each node represents a genomic region and, edge weights
represent the contact value between these regions. Random Graph walk measures
the probability of finding a path between any given node pair i and j given we can
only take t steps, where for each step t, the edge chosen for the walk is dependent on
edge weight. GenomeDISCO then raises the power of each value in the random walk
network by power of t to construct a smoothed contact map. The higher the value of t,
the higher dimensional genomic features(such as A/B compartments) the smoothed
contact map summarizes. Finally, to obtain the reproducibility score, GenomeDISCO
computes the area under the curve of the t against the L1 distances between the
smoothed contact maps. Since maximum L1 distance between contact maps can be 2,
the reproducibility is calculated by score = 1 − combined − distance which gives the
score in range [−1, 1]. Where value of 1 represents a high similarity between the input
contact maps.

• Hi-C-Spector[? ] Hi-C-Spector computes the correlation by performing a spectral
analysis of the input Hi-C matrices. Hi-C-Spector’s analysis is centered around the
observation that the first two eigenvectors of the Hi-C matrix correspond to the higher
dimensional structures such as A/B compartments. Given that observation, two Hi-C
matrices that are similar should have eigenvectors that are also similar. To compute
the similarity between those eigenvectors, Hi-C-Spector does the following operations:
First of all, it constructs a Laplacian Matrix L by subtracting the Diagonal of the
contact matrix D from the input contact matrix W. In the second step, it normalizes



the contact map by applying a transformation D−1/2LD−1/2. In the third step, Hi-
C-Spector decomposes the normalized matrix into its eigenvectors. It keeps the first
two eigenvectors and discards the rest because those vectors represent the noise in
the data. In the last step, Hi-C-Spector computes a summation of pair-wise distances
of the Eigenvectors of the input Hi-C contact map against the reference Hi-C map
and normalizes it in the range 0-1 to assign a similarity score, where the score of 1
represents the high similarity between two contact maps.

• QuASAR-Rep [? ] QuASAR-Rep bases its correlation analysis on the observation
that in a distance matrix, as the distance between two features approaches zero, the
correlation between rows of these features approaches one. QuASAR-Rep utilizes this
property to compute the correlation between two Hi-C samples. It first filters out all
the intra-chromosomal contacts from the input Hi-C samples and then all the rows that
do not contain a non-zero contact bin within a 100 bin range of the diagonal. Next, it
computes the background signal-to-distance ratio by taking the average reads of each
inter-bin distance. Next, it sets up the interaction correlation matrix. The interaction
correlation matrix is constructed based on all the pairwise sets of rows and columns
(within a range of 100 bins of each other) in the log-transformed enrichment matrix.
The values in the enrichment matrix are non-filtered counts divided by background
signal to distance values. Finally, to compute the correlation between a given set of
rows A and B, correlation is calculated between all the columns in a 100 bin range of
both rows (excluding the filtered rows). QuASAR-Rep adds 1 to all the valid entries
and takes a square root to construct the interaction matrix. The weighted interaction
matrix is just an element-wise product of the correlation matrix and the interaction
matrix divided by the sum of all valid interaction matrix entries. It calculates the final
reproducibility score by computing the correlation between the weighted correlation
matrices of the input samples. This score is 0 to 1, where one represents that Hi-C
inputs are highly similar and zero represents that they are highly dissimilar.
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Figure S4. Overview of our Biological Feature Analysis Pipeline: A We define True Positives as
features that we find to be overlapping between the upscaled Hi-C matrix and the HRC matrix.
Similarly, we define features that are present in the HRC matrix and not in the upscaled Hi-C matrix
as False Negatives. Conversely, features we find in upscaled matrix and not in the HRC matrix as
the false postives. We compute F1 scores using these definitions. B We optimize the parameter "r"
(relaxation paramter) for each feature, chromatin loops, TADs and DNA-hairpins. This relaxation
parameter defines the overlapping radius between the position of features between the upsampled
and HRC features. We tune this paramter by comparing features between the GM12878 HRC and
GM12878 biological replicate cell lines and find the value of r that maximizes the F1 score while
keeping the value of r small. We found a value of 3 for chromatin loops, 5 for TADs and 2 for
DNA-hairpins. C We summarize our biological feature analysis pipeline, we first extract biological
features using Chromosight and then compute F1 scores.
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Figure S5. This figure shows the performance of deep-learning based Hi-C upscaling methods
on computationally downsampled methods on four downsampling ratios (shown on x-axis), three
cell-lines five metrics. All methods except VeHiCLe show performance very similar to the replicate
shown as black dotted bold line.
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Figure S6. Our results on comparing the PCC (y-axis) across various genomic distances (x-axis)
suggest that LRC datasets show a smaller similarity with HRC Hi-C dataset in both increasing levels
of read sparsity and in cross-cell-type cases.
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Figure S7. Our results on comparing the PCC (y-axis) across various genomic distances (x-axis)
suggest that LRC datasets show a smaller similarity with HRC Hi-C dataset in both increasing levels
of read sparsity and in cross-cell-type cases
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Figure S8. We show the impact of the distributional difference in the structural information contained
in downsampled and experimentally generated LRC Hi-C contact maps by comparing scores across
both correlation and Hi-C similarity metrics
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Figure S9. This figure shows performance on rest of the metrics, and our results highlight that there
is a reduction in performance as the sparsity increases in GM12878 datasets and also the results in a
cross-cell-type (IMR90 and K562) setting.
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Figure S10. We show results of retraining across five additional metrics and also across additional
retraining variants, such as downsampled datasets augmented with noise
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