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Abstract

Financial inclusion is a persistent challenge in Central
Africa, especially for smallholder farmers who face limited
access to credit and essential banking services. Agricul-
tural banking in the region is hindered by unreliable data,
inefficient risk assessment processes, and infrastructural
gaps, restricting rural economic development and stabil-
ity. This study investigates the transformative potential of
machine learning (ML) technologies in agricultural bank-
ing focusing on improved credit scoring, robust risk man-
agement, fraud detection, and personalized financial prod-
ucts tailored to farmers’ unique needs. Leveraging diverse
datasets including transaction records, crop yields, weather
data, and farmer demographics we develop and evaluate a
suite of ML models, such as neural network,Decision Tree
and ensemble methods (random forests, gradient boost-
ing). These models are systematically compared to tradi-
tional benchmarks, including logistic regression and rule-
based scorecards. Experimental results demonstrate that
ML approaches significantly enhance loan approval rates,
lower default risk, and boost operational efficiency when
benchmarked against conventional methods. Furthermore,
the analysis highlights the critical role of explainable AI
in fostering trust among stakeholders, ensuring regulatory
compliance, and addressing ethical concerns such as data
privacy and algorithmic fairness. The findings suggest
that integrating machine learning into agricultural banking
can drive inclusive growth in Central Africa by enabling
scalable and tailored financial solutions. Future research
should focus on overcoming scalability barriers and ensur-
ing that the benefits of ML-driven banking are equitably dis-
tributed among all farming communities.

Keywords. Financial Inclusion, Agricultural Banking,
Credit Scoring, Machine Learning, Explainable AI, Risk As-
sessment

1. Introduction

Central Africa, like much of the continent, grapples with
significant challenges in achieving financial inclusion, par-
ticularly in rural areas where the majority of smallholder
farmers live and work. These farmers, pivotal to food secu-
rity and local economies, have historically been excluded
from traditional financial systems. Key barriers include the
lack of structured credit histories, inadequate banking in-
frastructure in remote regions, the seasonality of agricul-
tural income, and the absence of financial solutions tailored
to rural realities. Despite their economic potential, small-
holder farmers often rely on informal financing sources,
which come with high interest rates and limited risk man-
agement mechanisms. Amid climate change, volatile agri-
cultural markets, and increasing digital transformation, the
need for an inclusive, intelligent, and localized financial
system has become more pressing than ever. Credit risk
assessment in rural settings remains reliant on rigid, tra-
ditional approaches ill-suited to local contexts. Financial
institutions face challenges such as unreliable or unstruc-
tured data, a lack of contextualized analytical tools, high
costs of delivering financial services in rural areas, and
low rates of formal banking penetration. These limita-
tions hinder the development of agricultural credit, restrict
productive investments, and slow the adoption of modern
farming technologies. Research has explored alternative
data sources for credit risk evaluation in developing coun-
tries. For instance, Karlan et al. (2016) demonstrated
that mobile phone data can significantly enhance scoring
models in the absence of banking histories[9]. Similar ap-
proaches in Southeast Asia and East Africa have shown
promise [8, 1]. However, few studies have focused on Cen-
tral African farmers, incorporating locally relevant vari-
ables, explainable AI frameworks, and considerations of
data ethics and sovereignty. This study addresses this gap
by proposing a contextual model leveraging locally acces-
sible data and tailored to the socio-economic realities of
Central African farmers. It explores the application of ar-
tificial intelligence, particularly machine learning, to over-
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come structural barriers to credit access in rural areas. The
research focuses on developing and implementing a credit
scoring model based on alternative data, such as mobile
money transactions, seasonal cash flows, and agricultural
spending patterns. The model aims to: Identify creditwor-
thy borrowers, Enhance credit risk management for farm-
ers, Promote a more inclusive rural financial ecosystem.
We compare this approach with traditional methods ( logis-
tic regression and scorecards) based on performance, inter-
pretability, and potential impact on financial inclusion.

The remainder of this work is structured as follows:
Section 2 introduces methodology and the data; Section 3
presents the empirical findings; and Section 4 concludes the
paper.

2. Methodology and Data
2.1. Methodology

A methodical approach was adopted to design and op-
timise our prediction model. Figure 1 summarises our ap-
proach.

Figure 1. This figure illustrates the main stages of our approach:
data collection, data pre-processing, variable selection, model ar-
chitecture design, hyperparametrisation and performance evalua-
tion.

2.2. Method

We explored various machine learning algorithms, but
the primary model selected is XGBoost (Extreme Gradi-
ent Boosting), known for its effectiveness on heterogeneous
tabular data. This choice is based on several criteria, in-
cluding its robustness, generalization capabilities, and abil-
ity to handle noisy or incomplete datasets. A key factor
in selecting XGBoost is its explainability. We assessed
the model’s interpretability using SHAP (SHapley Additive
exPlanations)[12], a method that decomposes predictions
to transparently identify the most influential variables in
credit approval or rejection decisions. This contributes to
building trust among end users and institutional partners
while ensuring compliance with ethical and regulatory re-
quirements related to algorithmic transparency. Addition-
ally, other models such as decision trees, random forests,
and multilayer neural networks were tested to compare per-
formance, stability, and interpretability. Each model was
trained and validated using locally collected datasets that
included economic, agricultural, meteorological, and de-
mographic variables.

2.3. Benchmarks for Comparison:logistic regres-
sion, rule-based scorecards

Two traditional benchmark approaches were used: Lo-
gistic Regression, a widely recognized statistical method
in credit scoring, and a Manual Rule-Based Scorecard, a
system derived from human expertise and commonly em-
ployed in local microfinance institutions. Logistic Regres-
sion is considered a reference method for credit scoring due
to its ability to handle binary outcomes and evaluate multi-
ple predictors. It is well-established in the financial sector
and remains the most widely used approach for creditwor-
thiness assessment [2, 10, 14, 5].Manual Rule-Based Score-
cardmethods are prevalent in microfinance, relying on the
experience and judgment of loan officers who assign scores
based on defined rules and observed applicant characteris-
tics. This approach is often used where statistical data is
limited, and expert knowledge forms the basis for scoring
criteria[15, 7, 6, 3].

2.3.1 Evaluation Metrics:

Model performance is evaluated using several metrics rele-
vant to imbalanced data contexts:

Metric Formula

AUC-ROC
∫ 1

0

TPR(FPR) dFPR

Recall
TP

TP + FN

Precision
TP

TP + FP

F1-score 2× Precision × Recall
Precision + Recall

Accuracy
TP + TN

TP + TN + FP + FN
Table 1. Evaluation metrics for models

• accuracy: Represents the overall correctness of loan
approval or denial decisions, but can be misleading
when the classes (default vs non-default) are imbal-
anced, common in rural credit data.

• F1-score:Balances the trade-off between correctly de-
tecting defaulters and limiting wrongly predicted de-
faulters, improving fairness and trust in credit deci-
sions, especially where data quality is variable.

• precision:Measures the proportion of farmers pre-
dicted as defaulters who actually default. High pre-
cision limits denying credit to creditworthy farmers,
helping to enhance financial inclusion and reduce un-
necessary exclusion.

• recall:Reflects the model’s effectiveness in correctly
identifying farmers who are likely to default on loans.
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High recall is crucial to minimize financial losses and
protect institutional sustainability in rural lending.

• AUC-ROC((Area Under Curve – Receiver Oper-
ating Characteristic))Measures the ability of the
model to distinguish between creditworthy and non-
creditworthy farmers across all classification thresh-
olds. A higher AUC indicates better discrimination,
which helps improve loan approval decisions under
uncertain or limited data conditions.

2.4. Data

This study is derived from real profiles of smallholder
farmers. After checking, the validity of this dataset is high.
It serves as the base for this experiment and can be utilized
to train the credit scoring model.

2.4.1 Data Description

The dataset contains approximately 10,000 observations
representing smallholder farmers, SMEs, or microcredit ap-
plicants in Central Africa, of which approximately 15%
have already missed a loan repayment, making it a suitable
case for supervised binary classification. It includes over
100 variables covering various domains: identification, de-
mographic, financial, agricultural, geospatial, behavioral,
and psychometric data. These variables include informa-
tion such as annual income, mobile history, farm size, en-
vironmental conditions, market behavior, or fraud history.
The target variable, Default, takes the value 1 if a repay-
ment has been missed, and 0 otherwise.

Variable Type Number of Variables
Numerical variables 55
Categorical variables 42

Table 2. Summary of Dataset Variables by Type.

2.4.2 Data Preprocessing

In preparation for modeling, we applied a robust and struc-
tured data preprocessing workflow. First, we addressed
missing values through either deletion or context-aware im-
putation, such as leveraging local economic indicators like
median regional income. Categorical data were numeri-
cally encoded based on their cardinality using appropriate
strategies ( one-hot or target encoding)[13]. To align fea-
ture distributions, all monetary and frequency-related fea-
tures were standardized[11]. Additional domain-specific
features were engineered, including ratios reflecting in-
put expenditures versus income, seasonal patterns linked
to agricultural cycles, and spatial indicators such as dis-
tance to nearby markets[16]. Finally, due to class imbal-
ance (15% default rate), we employed SMOTE to generate

synthetic samples of the minority class[4], improving the
model’s ability to learn representative decision boundaries.

Figure 2. Structured Data Preprocessing Pipeline showing the se-
quential steps of Data acquisition,Data understanding,Data prepa-
ration and Data partition

2.4.3 Data Exploration

This section presents the data distribution, focusing on
some variables(age,farm size ,annual income) (figure 7)

Figure 3. Histograms of Key Numerical Columns

Figure 4. Box Plots of Key Numerical Columns

3
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Figure 5. distribution of applicants by country

3. Results and Discussion

This section presents the results obtained from our anal-
yses and models.

3.1. Train results

Metric XGBoost Logistic Regression Scorecard
AUC-ROC 0.82 0.75 0.68
Recall 0.72 0.60 0.55
F1-score 0.67 0.57 0.50
Precision 0.63 0.62 0.56
Accuracy 0.84 0.79 0.76

Table 3. Performance metrics by model on train data.

3.2. Test Results

Metric XGBoost Logistic Regression Scorecard
AUC-ROC 0.72 0.68 0.60
Recall 0.55 0.48 0.40
F1-score 0.50 0.45 0.38
Precision 0.52 0.50 0.45
Accuracy 0.73 0.68 0.63

Table 4. Performance metrics by model on test data.

3.3. ROC-Curve

Figure 6. ROC-curve

3.4. Explainable AI and Ethical Considerations

Figure 7. Feature importance

3.5. Discussion

The performance metrics indicate that XGBoost out-
performs Logistic Regression and the Manual Rule-Based
Scorecard, showcasing its effectiveness in managing noisy
rural data and alternative sources like mobile money trans-
actions. Additionally, SHAP-based explainability enhances
trust by identifying key variables, though challenges such as
regional bias and a small sample size necessitate the use of
larger, more diverse datasets for validation.

4. Conclusion
This study highlights the substantial potential of inte-

grating machine learning techniques into the agricultural
banking sector in Central Africa. By leveraging power-
ful models such as XGBoost, and explainability methods
such as SHAP, we propose a robust and context-aware solu-
tion that enhances credit scoring accuracy. This approach
contributes to advancing financial inclusion and promot-
ing more equitable agricultural growth.The findings pro-
vide financial institutions with an effective framework to
better assess credit risk, reduce losses due to defaults and
fraud, and personalize financial services for farmers. How-
ever, the study is limited by the quality and availability
of data, and the models still require validation on larger
and more diverse populations. Moreover, technical and op-
erational challenges related to the scalability of AI solu-
tions in rural settings remain significant. Future research
should focus on large-scale deployment, incorporating in-
novative data sources such as satellite imagery and agri-
cultural IoT, while ensuring equitable access to technology
and adapting algorithms to local geographic and cultural
contexts.Strengthening partnerships between public institu-
tions, private actors, and local communities will be essen-
tial to support sustainable, inclusive, and AI-driven trans-
formation of rural finance in the region.

The source code used for the modeling and analyses pre-
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sented in this article is available upon request from the au-
thor.
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