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Abstract

We introduce a Bayesian estimator for maximum mean discrepancy (MMD), en-
abling a novel approach to measure-based data generation. To demonstrate the
adaptability of our method, we embed this estimator within a generative adversarial
network (GAN) framework. This integration offers a powerful avenue for Bayesian
nonparametric (BNP) learning, showcasing the estimator’s broad applicability. Our
BNP-driven GAN not only enhances sample diversity but also improves inferential
accuracy, surpassing the performance of traditional methods. Further theoretical
properties, proofs, and experiments are given by the Appendix.

1 Introduction

Data augmentation is the technique of generating synthetic data, often to train machine learning
models when the data are scarce or the model is non-robust to perturbations in the data. When the
likelihood is intractable to compute, evaluating the model’s fit can be difficult. Maximum mean
discrepancy (MMD) addresses this problem by enabling comparisons between distributions without
explicit likelihoods through its feature matching properties. This property ensures that generated
data matches the features of real data, making MMD an effective tool for evaluating and developing
deep generative models. Bayesian nonparametric methods are a powerful tool with strong theoretical
justifications but they have seen limited applications in MMD estimation. A key advantage of the
Bayesian approach is that it incorporates expert knowledge through a prior distribution, offering
regularization by introducing uncertainty in the sampling distribution via the Dirichlet process
(DP). The absence of such methods in MMD estimation restricts statisticians who prefer Bayesian
frameworks without making strong assumptions. This paper addresses this gap.

We propose a BNP estimator to accurately estimate the MMD between a parametric model and an
unknown distribution by placing a DP prior on the unknown distribution. We extend the bootstrap
method from [1] beyond posterior parameter inference, applying our estimator to training a generative
adversarial network (GAN). Our approach uses the MMD estimator as a robust discriminator,
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combining MMD measurement with BNP inference to enhance GAN training, reduce mode collapse,
and improve generator performance compared to frequentist (FNP) methods.

2 Previous work

Previous work on simulation-based inference has mainly used discrepancy measures from a fre-
quentist nonparametric (FNP) perspective. Notably, GANs have been extensively explored in data
augmentation and medical data synthesis where the fake images created by the GAN are used to
supplement the training data [2–6]. A standard GAN features two neural networks: the generator
{Gω}ω∈W and the discriminator {Dθ}θ∈Θ [7]. The generator tries to fool the discriminator into
misidentifying generated samples as real. However, these models are expanded beyond the classic
loss function, which could potentially introduce challenges such as mode collapse–memorizing
certain modes of data distribution while overlooking other diversities–and training instability.

A Bayesian approach, known as approximate Bayesian computation (ABC), estimates model pa-
rameters through simulation by comparing summary statistics of simulated and observed data [8].
ABC faces challenges in selecting informative summary statistics, which affects the accuracy of
posterior inference [9, 10]. One particularly attractive choice of statistic is to use the MMD [11]. As
the threshold decreases, ABC converges to the standard Bayesian posterior, which can be sensitive to
model misspecification and lacks robustness [1].

To improve robustness, generalized Bayesian inference (GBI) replaces the likelihood with a robust loss
function [12]. Example applications of GBI include using MMD in pseudo-likelihood approaches [13]
or stochastic gradient MCMC for posterior inference [14]. Despite these advancements, GBI’s
sensitivity to hyperparameters and the computational demands of MCMC remain challenges [1].
To address these issues, an MMD posterior bootstrap method has been developed, offering a more
efficient alternative [1, 15–17].

3 Dirichlet process

To perform Bayesian nonparametric learning (BNPL), we first must take samples from the Dirichlet
process. The DP is an infinite generalization of the Dirichlet distribution that is considered on the
sample space denoted as X, which possesses a σ-algebra A comprising subsets of X [18]. F follows
a DP with parameters (a,H) with the notation F Pri := (F ∼ DP (a,H)), if for any measurable
partition A1, . . . , Ak of X with k ≥ 2, the joint distribution of the vector (F (A1), . . . , F (Ak))
follows a Dirichlet distribution characterized by parameters (aH(A1), . . . , aH(Ak)). Moreover, it is
assumed that H(Aj) = 0 implies F (Aj) = 0 with probability one. The base measure H captures
the prior knowledge regarding the data distribution, while a signifies the strength or intensity of this
knowledge.

As a conjugate prior, the posterior distribution of F also follows a DP, denoted by F Pos := (F |X1:n ∼
DP(a+ n,H∗)), for n independent and identically distributed (IID) draws,

(
X1:n ∈ Rd

)
, from the

random probability measure F where H∗ = a(a+n)−1H+n(a+n)−1FX1:n , and FX1:n represents
the empirical cumulative distribution function of the sample X1:n.

To sample from the DP posterior, we use a finite approximation devised by Ishwaran and Zarepour
[19], which allows for convenient simulation. In the context of posterior inference, this approximation
is given by

F Pos
N :=

N∑
i=1

JPos
i,NδVPos

i
, (1)

where
(
JPos
1:N,N

)
∼ Dirichlet((a + n)/N, . . . , (a + n)/N),

(
VPos

1:N

) IID∼ H∗, and δVPos is the Dirac

delta measure. In this study, the variables JPos
i,N and VPos

i represent the DP’s weight and location,
respectively. The sequence (F Pos

N )N≥1 converges in distribution to F Pos, where F Pos
N and F Pos are

random values in M1(Rd), the space of probability measures on Rd endowed with the topology of
weak convergence [19]. Although the stick-breaking representation is a commonly employed series
representation for DP inference [20], it lacks the necessary normalization terms to convert it into a
probability measure [21]. Additionally, simulating from an infinite series is only feasible through
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using a random truncation approach to handle the terms within the series. In the subsequent sections,
we investigate the efficacy of this approximation within a regularization method in a BNP generative
model.

4 DPMMD-GAN: A Bayesian Nonparametric Learning in Data Generation

In our BNPL method, we define a DP prior on F , leading to a DP posterior on F given the data. The
key idea is that any posterior on the generator’s parameter spaceW can be derived by mapping F pos

approximately through the push-forward measure

ω∗(F pos) := arg min
ω∈W

MMDBNP(F
pos
N , FGω ), (2)

where for a given sample Y1:m ∼ FGω the posterior-based MMD estimator is defined by

MMD2
BNP(F

pos
1,N , F2,m) =

N∑
ℓ,t=1

J∗
ℓ,NJ∗

t,Nk(V∗
ℓ ,V

∗
t )−

2

m

N∑
ℓ=1

m∑
t=1

J∗
ℓ,Nk(V∗

ℓ ,Yt) +
1

m2

m∑
ℓ,t=1

k(Yℓ,Yt).

(3)

In this context, the discriminator D can be viewed as a black box that uses the MMD estimator
to differentiate between the real and fake data, reducing the computational cost compared to a
neural network-based discriminator. We discuss some of the properties of estimator (3) in the
Appendix. Let ω∗ be the optimal parameter of Gω that minimizes MMDBNP(F

pos
N , FGω,m). Since

MMDBNP(F
pos
N , FGω,m) serves as a BNP estimation of (5), it is crucial to evaluate this estimation’s

accuracy, focusing on the GAN’s ability to generate realistic samples (generalization error) and handle
outliers (robustness). Lemma 2 in the appendix addresses these aspects. While the previous statements
provide upper bounds for the MMD estimator’s expectation, the next lemma offers stochastic bounds
on the estimation error to assess posterior consistency.

Lemma 1 Building upon the general assumptions stated in Lemma 2, for a given sample
X1, . . . ,Xn from distribution F in the probability space (X,A,Pr) and any ϵ > 0,
i. Pr

(
|MMD(F pos

N , FGω∗ ,m)−MMD(F, FGω′ )| ≥ h(n,m,K, ϵ) + |∆1|+ |∆2|
)

≤
2 exp −ϵ2nm

2K(n+m) ,

ii. Pr (MMD(F, FGω∗ ) > ϵ) ≤ 1

ϵ

(
MMD(F, FGω′ ) +

2K√
n
+

4aK

a+ n
+ 2

√
(a+ n+N)K

(a+ n+ 1)N
.

)
,

where, h(n,m,K, ϵ) = 2
√
K(
√
n +

√
m)/
√
nm + ϵ, ∆1 = MMD(F pos

N , FGω∗ ) −
MMD(Fn, FGω′,m), and ∆2 = MMD(F, FGω∗ )−MMD(F, FGω′ ).

A direct consequence of Lemma 1(ii) is that for a fixed value of a, Pr(MMD(F, FGω∗ ) ≥ ϵ)→ 0, as
n→∞ and N →∞, for any ϵ > 0, when MMD(F, FGω′ ) = 0 (well-specified case). This implies
FGω∗ converges in probability to the data distribution F as the sample size increases in well-specified
cases. A detailed guide on choosing DP hyperparameters and kernel settings is provided in the
Appendix.

5 Experimental results

We consider the MNIST dataset including handwritten digits with 10 modes, bone marrow biopsy
(BMB) histopathology, Labeled Faces in the Wild (LFW) Dataset, and brain MRI images to analyze
the model performance. All data description are given by the Appendix. Following the design choices
of [22], we use the Gaussian neural network for the generator with four hidden layers each having
rectified linear units activation function and a sigmoid function for the output layer. We also set
mini-batch sizes to be nmb = 1, 000 and use a mixture of six Gaussian kernels corresponding to the
bandwidth parameters 2, 5, 10, 20, 40, and 80 to train networks in 40, 000 iterations. We generate
samples from the trained BNP GAN using Algorithm 2 from the Appendix, as depicted in Figure
1-Row 2. The results of [22] are also presented by Figure 1-Row 3, as the frequentist counterpart of
our BNP procedure. Based on these preliminary results, we can see that our generated images can, at
least, replicate the results of [22] and in some cases produce sharper images. This result can also
be deduced from the presented scores of MMD, Kernel Inception Distance (KID) [23] and Frechet
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Inception Distance (FID) [24] in Table 1. The low scores suggest better performance, as smaller
values indicate closer similarity to real images.

Conversely, our results show that the BNP GAN with a mixture of Gaussian kernels outperforms the
single Gaussian kernel approach. To explore this further, Figure 2 in the Appendix presents samples
from the trained generator using various σ values and the median heuristic σMH . Note that σMH

is updated in each iteration, so no specific value is reported. Although higher σ increases image
diversity, the resolution remains below that achieved with the mixture kernel.

To assess whether the proposed discriminator used in the BNP GAN leads to faster or better conver-
gence of the generated samples compared to the baseline proposed by [22], we consider the synthetic
distribution 1

2N(−1d, Id)+
1
2N(1d, Id) as the true distribution and provide the corresponding MMD

values for both models over 20,000 iterations in the data generation process, as shown in Figure 3 of
Appendix. Our proposed GAN clearly displays a higher speed of convergence for the corresponding
cost function to zero, and thus better performance compared to the baseline.

(a) MNIST (b) BMB (c) LFW (d) MRI

Figure 1: Generated samples from training dataset (Row 1), BNP model (Row 2), and FNP model
(Row 3).

Table 1: The values of MMD, KID, and FID scores for four groups of datasets.

Scores Dataset

MNIST BMB LFW MRI

BNP FNP BNP FNP BNP FNP BNP FNP
MMD 0.0384 0.0404 0.0285 0.0315 0.0281 0.0302 0.2059 0.2231
KID 0.0034 0.0046 0.0030 0.0036 0.0019 0.0026 0.0260 0.0264
FID 35.560 37.934 17.006 17.264 14.010 14.473 87.975 87.831
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6 Concluding remarks

Our BNP approach effectively estimates the MMD between an unknown and an intractable para-
metric distribution, showing promise in training GANs by using the estimator as a discriminator to
induce a posterior on the generator’s parameters. The stick-breaking representation, however, lacks
normalization and shows stochastic decrease, making it inefficient for simulating from a DP [21].
Exploring alternative DP approximations for MMD estimation is a promising direction for future
research. Future work will also focus on generating 3D medical images to further improve results.
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Appendix

A Maximum mean discrepancy distance

For a given data space X, consider the random variables X and Y, drawn from distributions F1

and F2 respectively. Here, F1 and F2 belong to B(X), which represents the set of Borel probability
distributions on X. We consider the discrepancy d : B(X) × B(X) → [0,∞) through the integral
pseudo-probability metric (IPM) [25], defined as shown in (4). The class of functions F is designed
to be rich enough to distinguish between F1 and F2, and restrictive enough to provide accurate
estimates based on a finite sample.

dIPM(F1, F2) = sup
h∈F
|EF1(h(X))− EF2(h(Y)))|. (4)

The MMD is then defined by considering F = {h ∈ Hk| ||h||Hk
≤ 1}, which represents a unit ball

in a reproducing kernel Hilbert space (RKHS) Hk with associated kernel k : X × X → R. In this
context, || · ||Hk

denotes the norm function in the RKHS. The function k(·, ·) is positive definite, such
that for any function h ∈ Hk and any X ∈ X, h(X) = ⟨h, k(X, ·)⟩Hk

, where ⟨·, ·⟩Hk
represents the

inner product inHk. Consider function µF1
(·) = EF1

[k(X, ·)] ∈ Hk, which is defined as the kernel
mean embedding of the distribution F1 in [26]. Then, for given X,X′ i.i.d.∼ F1,Y,Y′ i.i.d.∼ F2, if
EF (

√
k(X,X)) <∞ for all F ∈ B(X), the MMD is given by

MMD2(F1, F2) = ||µF1
−µF2

||2Hk
= EF1

[k(X,X′)]− 2EF1,F2
[k(X,Y)] +EF2

[k(Y,Y′)]. (5)

Note that MMD2(F1, F2) = 0 if and only if F1 = F2, whenHk is a universal RKHS defined on a
compact metric space X and k(·, ·) is continuous [26, Theorem 5]. In practice, distributions F1 and
F2 are not accessible, and then the biased, empirical estimator of (5) (V-statistic) is calculated using
empirical distributions F1,n and F2,m as

MMD2(F1,n, F2,m) =
1

n2

n∑
i,j=1

k(Xi,Xj)−
2

mn

n∑
i=1

m∑
j=1

k(Xi,Yj) +
1

m2

m∑
i,j=1

k(Yi,Yj), (6)

where X1, . . . ,Xn is a sample from F1 and Y1, . . . ,Ym is a sample generated from F2.

B Choosing DP hyperparameters

In the context of approximating the posterior on the parameter space, the prior choice for F and
determining the strength of belief becomes challenging. We consider a small value for a as a
non-informative prior, following the suggestion by [1], thanks to its broad ability to characterize
uncertainty [27]. However, it’s important to note that setting a = 0 as done by [1] is not always
well-defined mathematically, as the DP is only defined for a > 0. Therefore, we opt for a = 10−6.
In this case, the DP posterior remains invariant to the choice of H .

C Kernel Settings

In our method, we choose to use the standard radial basis function (RBF) kernel as its feature space
corresponds to a universal RKHS. [22,28] and [29] used the Gaussian kernel in training MMD-GANs
because of its simplicity and good performance. [28] also evaluated some other RBF kernels such as
the Laplacian and rational quadratic kernels to compare the results of the MMD-GANs with those
obtained based on using Gaussian kernels. They found the best performance by applying the Gaussian
kernel in the MMD cost function.

Hence, we consider the Gaussian kernel function in our proposed procedure. To choose the bandwidth
parameter σ, we follow the idea of considering a set of fixed values of σ’s such as {σ1, . . . , σT }, then
compute the mixture of Gaussian kernels k(·, ·) =

∑T
t=1 kGσt

(·, ·), to consider in (3). For each σ(t),
0 ≤ kGσt

(·, ·) ≤ 1; hence, 0 ≤ k(·, ·) ≤ T , which satisfies the theoretical results presented in the
paper. As it is mentioned in [22], this choice reflects a good performance in training MMD-GANs.
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C.1 Radial Basis Function Kernels Family

The construction of MMD-based procedures is proposed based on considering a kernel function with
feature space corresponding to a universal RKHS. The radial basis function (RBF) kernel is the most
well-known kernel family satisfying the above situation. For two vectors X,Y ∈ Rd, the RBF kernel
is represented by

k(X,Y) = h(||X−Y||/σ),
where, h is a function from the positive real numbers R+ to R+, || · || represents the L2-norm, and σ
is the bandwidth parameter that indicates the kernel size. There are many functions assigned to h, for
example, the Gaussian, exponential, rational quadratic kernels, and Matern, represented by

h1(x) = exp (−x2

2
), h2(x) = exp (−x), h3(x) =

(
1 +

x2

2α

)−α

, h4(x) = (1 +
√
2νx)e−

√
2νx,

respectively; where, α in h3 is a positive-valued scale-mixture parameter, and the ν in h4 is a
parameter that controls the smoothness of the kernel results [30, 31].

One of the simplest kernel functions above is the Gaussian kernel, which is mostly used in machine
learning problems and only depends on bandwidth parameter σ. The Gaussian kernel tends to 0 and
1 when σ → 0 and σ → ∞, respectively. Both situations lead to MMD2 being zero. Hence, the
choice of the parameter σ has a crucial effect on the performance of this kernel. Numerous methods
are proposed to choose the value of σ, however, there is no definitive optimization method for this
problem. The median heuristic is one of the first methods used in choosing σ empirically and will be
denoted in our experimental results by σMH . More precisely, for two samples {Xi}ni=1 and {Yi}mi=1,
the σMH is considered as the median of {||Xi −Yj ||2 : 1 ≤ i ≤ n, 1 ≤ j ≤ m}, which is mostly
used in kernel-based tests [32]. Selecting σ based on maximizing the power of two-sample problems
is another strategy considered by [33]. The selection of the MMD bandwidth on held-out data to
maximize power was first proposed by [34] for linear-time estimates and by [35] for quadratic-time
estimates. Recently, bandwidth selection without data splitting has been proposed for quadratic [36]
and linear [37] MMD estimates. Regarding the choice of σ in kernel-based GANs, a common idea is
assigning several fixed values to σ and then considering the mixture of their corresponding Gaussian
kernel. This strategy has received much attention and shown an acceptable performance in training
GANs2.

D Computational Algorithm

D.1 Training the BNP GAN

Algorithm 1 Pseudocode of training a GAN using the BNP approach

1: Set a = 10−6 to employ a non-informative prior leading DP posterior DP (n, Fn).
2: Initialize N .
3: rmn ← Number of training iteration, nmb ← Mini-batch size
4: ω0 ← An initial parameter for generator Gω , {xℓ}nℓ=1 ← real dataset
5: for i← 0 to rmb do
6: Generate a random sample {xmb

ℓ }
nmb

ℓ=1 from real dataset {xℓ}nℓ=1
7: Generate a sample of noise vector {uℓ}nmb

ℓ=1 from uniform distribution U(−1, 1)
8: Generate a sample from FGωi

, distribution of Gωi , as {yℓ = Gωi(uℓ)}nmb

ℓ=1

9: Generate a sample of size N from F pos = F |{xmb
ℓ }

nmb

ℓ=1 using
∑N

i=1 J
∗
i,Nδv∗

i
.

10: Use generated samples in steps 9 and 10 to compute MMD2
BNP(F

pos
N , FGωi

,N ).
11: Compute the gradient:

∂MMDBNP(Fpos
N , FGωi

,m)

∂ωi

=
1

2
√

MMD2
BNP(Fpos

N , FGω,m)

∂MMD2
BNP(Fpos

N , FGω,m)

∂ω
.

12: Use backpropagation for calculating partial derivatives ∂Gωi
(uℓ)

∂ωi
in the previous step to

update parameter ωi.
13: end for
14: return ω∗ ▷ An optimized parameter for Gω that minimizes the cost function.

2For further details, see [22] and [29].
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E Theoretical proofs

Proposition 1 For a non-negative real value a and fixed probability distribution H , let
F pri
1 := F1 ∼ DP (a,H) and (J1,N , . . . , JN,N ) ∼ Dirichlet( a

N , . . . , a
N ) be the weights in the

approximation of F pri, given by [19]. Then, as a→∞,
i. Jℓ,N

a.s.−−→ 1
N , for any ℓ ∈ {1, . . . , N},

ii. Jℓ,NJt,N
a.s.−−→ 1

N2 , for any ℓ, t ∈ {1, . . . , N}, where ℓ ̸= t.

Proof of Proposition 1 Recall

F pri
N =

N∑
i=1

Ji,NδYi . (7)

Since EFpri
1

(Jℓ,N ) = 1
N , for any ℓ ∈ {1, . . . , N} and ϵ > 0, Chebyshev’s inequality implies

Pr {|Jℓ,N − 1/N | ≥ ϵ} ≤ V ar(Jℓ,N )

ϵ2
,

where, V arFpri
1

(Jℓ,N ) = N−1
N2(a+1) . Assuming a = κ2c for κ ∈ N and a fixed positive number c,

gives

Pr {|Jℓ,N − 1/N | ≥ ϵ} ≤ 1

κ2cϵ2
.

The convergence of series
∑∞

κ=0 κ
−2 implies

∑∞
κ=0 Pr {|Jℓ,N − 1/N | ≥ ϵ} <∞. By letting a→

∞, the first Borel Cantelli lemma concludes |Jℓ,N − 1/N | a.s.−−→ 0 and the result of (i) follows. To
prove (ii), it is enough to show Pr

{
lima→∞(Jℓ,NJt,N ) ̸= 1

N2

}
= 0. To prove this for the probability

space (Ω,F ,Pr), let

A =

{
ω ∈ Ω : lim

a→∞
(Jℓ,N (ω)Jt,N (ω)) ̸= 1

N2

}
, B =

{
ω ∈ Ω : lim

a→∞
(Jℓ,N (ω)) ̸= 1

N

}
,

C =

{
ω ∈ Ω : lim

a→∞
(Jt,N (ω)) ̸= 1

N

}
,

where, Pr(B) and Pr(C) are zero by (i). Since A ⊆ B ∪ C, then,

1− Pr

{
ω ∈ Ω : lim

a→∞
(Jℓ,N (ω)Jt,N (ω)) =

1

N2

}
= Pr(A) ≤ Pr(B) + Pr(C) = 0,

which concludes the result.

Theorem 1 For a non-negative real value a and fixed probability distribution H , let F pri
1 :=

(F1 ∼ DP (a,H)) and k(·, ·) be any continuous kernel function with feature space corresponding
to a universal RKHS defined on a compact metric space X. Assume that |k(z, z′)| < K, for any
z, z′ ∈ Rd. Then, for a given sample X1, . . . ,Xn from distribution F1,
i. as a→∞ (informative prior),

a. MMD2
BNP(F

pos
1,N , F2,m)

a.s.−−→ MMD2(HN , F2,m),

b. E(MMD2
BNP(F

pos
1,N , F2,m))→ MMD2(H,F2), N →∞, and m→∞,

ii. as n→∞ (consistency),

a. MMD2
BNP(F

pos
1,N , F2,m)

a.s.−−→ MMD2(F1,N , F2,m),

b. E(MMD2
BNP(F

pos
1,N , F2,m))→ MMD2(F1, F2), as N →∞, n→∞, and m→∞.

10



Proof of Theorem 1 For samples {Vℓ}Nℓ=1 and {Yℓ}mℓ=1, respectively, from H and F2, the triangle
inequality implies∣∣∣MMD2

BNP(F
pri
1,N , F2,m)−MMD2(HN , F2,m)

∣∣∣ ≤ K

{
N∑

ℓ,t=1

∣∣∣∣Jℓ,NJt,N −
1

N2

∣∣∣∣
+

2

m

N∑
ℓ=1

m∑
t=1

∣∣∣∣Jℓ,N − 1

N

∣∣∣∣
}
.

By Proposition 1, which provides some theoretical properties of the DP approximation given in (7),
the right-hand side of the above inequality converges almost surely to 0 as a → ∞ for fixed N .
This convergence immediately concludes the proof of (i). To prove (ii), since (J1,N , . . . , JN,N ) ∼
Dirichlet( a

N , . . . , a
N ), EFpri

1
(Jℓ,N ) = 1

N and

EFpri
1

(Jℓ,NJt,N ) =


a

(a+ 1)N2
if ℓ ̸= t,

a+N

(a+ 1)N2
if ℓ = t.

Applying these properties in definition of MMD2
BNP(F

pri
1,N , F2,m) results in

EFpri
1

(MMD2
BNP(F

pri
1,N , F2,m)|V1:N ) =

N∑
ℓ=1

N∑
t̸=ℓ

ak(Vℓ,Vt)

(a+ 1)N2
+

N∑
ℓ=1

N∑
t=ℓ

(a+N)k(Vℓ,Vt)

(a+ 1)N2

− 2

Nm

N∑
ℓ=1

m∑
t=1

k(Vℓ,Yt) +
1

m2

m∑
ℓ,t=1

k(Yℓ,Yt). (8)

Now, it is sufficient to compute the following conditional expectation,

E(MMD2
BNP(F

pri
1,N , F2,m)) = EH,F2

(EFpri
1

(MMD2
BNP(F

pri
1,N , F2,m)|V1:N )). (9)

Since sets {Vi}Ni=1 and {Yi}mi=1 include i.i.d. random variables, separately, replacing (8) in expecta-
tion (9) implies:

(9) =
a(N − 1)

(a+ 1)N
EH [k(V1,V2)] +

a+N

(a+ 1)N
EH [k(V1,V1)]− 2EH,F2

[k(V1,Y1)]

+
m− 1

m
EF2

[k(Y1,Y2)] +
1

m
EF2

[k(Y1,Y1)]. (10)

The proof of (ii) is concluded by letting a→∞, N →∞, and m→∞ in the above equation. Lastly,
since 1

m < 1, m−1
m < 1, a(N−1)

(a+1)N < 1, and a+N
(a+1)N < 2, then, for any N,m ∈ N and a ∈ R+,

(10) < EH [k(V1,V2)]− 2EH,F2
[k(V1,Y1)] + EF2

[k(Y1,Y2)] + 3K,

which concludes the proof of (iii).

Lemma 2 Let W be the parameter space for Gω and ω∗ ∈ W be the value that optimizes the
objective function (2) and ω′ be the true value that minimizes MMD(F, FGω ). Assume that F ∼
DP (a,H) and let k(·, ·) be any continuous kernel function with feature space corresponding to a
universal RKHS defined on a compact metric space X such that |k(z, z′)| < K, for any z, z′ ∈ Rd.
For a given sample X1, . . . ,Xn from distribution F :
i. Generalization error:

E (MMD(F, FGω∗ )) ≤ MMD(F, FGω′ ) +
2K√
n
+

4aK

a+ n
+ 2

√
(a+ n+N)K

(a+ n+ 1)N
.

ii. Robustness: Suppose there exist outliers in the sample data, which arise from a noise distribution
Q. Consider the Hüber’s contamination model [38, 39], given by F = (1 − ϵ)F0 + ϵQ, where

ϵ ∈ (0, 1
2 ) is the contamination rate, and the latent variables Z1, . . . , Zn

i.i.d.∼ Bernoulli(ϵ) are such

that Xi
i.i.d.∼ F0 (cleaned data) if Zi = 0; otherwise, Xi

i.i.d.∼ Q. Then,

E (MMD(F0, FGω∗ )) ≤ min
ω∈W

MMD(F0, FGω ) + 4ϵ+
2K√
n
+

4aK

a+ n
+ 2

√
(a+ n+N)K

(a+ n+ 1)N
.

11



Proof of Lemma 2

The proof of Lemma 2(i) relies on the proof given in [1, Theorem 9] which is expanded for infinite
stick-breaking representation, while we consider the finite DP approximation given in (7). By
employing a similar technique as in the previously mentioned theorem, we have

E (MMD(F, FGω∗ )) = EF (EFposMMD(F, FGω∗ )|X1:n)

≤ min
ω∈W

MMD(F, FGω ) + 2EF (MMD(Fn, F )) + 2EFpos (MMD(F pos
N , H∗))

+ 2EF (EH(MMD(Fn, H
∗)|X1:n)) .

Building on the results of [1, Lemma 7], we can establish that

EFpos

(
MMD2(F pos

N , H∗)
)
≤

N∑
ℓ=1

EFpos [J∗2

ℓ,N ]EH∗ [k(V∗
ℓ ,V

∗
ℓ )] ≤

(a+ n+N)K

(a+ n+ 1)N
,

where the right-hand side of the above inequality follows from the fact that k(·, ·) ≤ K and
EFpos [J∗2

ℓ,N ] = a+n+N
(a+n+1)N2 . Now, the Jensen’s inequality implies

EFpos (MMD(F pos
N , H∗)) ≤

√
(a+ n+N)K

(a+ n+ 1)N
.

On the other hand, [39, Lemma 7.1] and [1, Lemma 8], respectively, imply that

EF (MMD(Fn, F )) ≤ K√
n
,EF (EH(MMD(Fn, H

∗)|X1:n)) ≤
2aK

a+ n
,

which concludes the proof of (i). To establish (ii), we adopt the approach used in the proof of [1, Corol-
lary 5]. Initially, we employ [39, Lemma 3.3] to bound MMD(F0, FGω∗ ) by 2ϵ+MMD(F, FGω∗ ),
resulting in:

E (MMD(F0, FGω∗ )) ≤ 2ϵ+ E (MMD(F, FGω∗ )) .

Applying the result in (i) to the right-hand side of the above inequality implies:

E (MMD(F0, FGω∗ )) ≤ 2ϵ+ min
ω∈W

MMD(F, FGω ) +
2K√
n
+

4aK

a+ n
+ 2

√
(a+ n+N)K

(a+ n+ 1)N
.

Finally, we employ [39, Lemma 3.3] once again, but this time to bound MMD(F, FGω ) by 2ϵ +
MMD(F0, FGω ) for any ω ∈ W , thereby completing the proof of (ii).

Proof of Lemma 1

Let LBNP(ω) = MMD(F pos
N , FGω ), Ln,m(ω) = MMD(Fn, FGω,m), and L(ω) =

MMD(F, FGω ). Then, for ω∗ ∈ W , [26, Theorem 7] implies

Pr (|Ln,m(ω∗)− L(ω∗)| > h(n,m,K, ϵ)) < 2 exp
−ϵ2nm

2K(n+m)
. (11)

Hence, with a probability at least 1− 2 exp −ϵ2nm
2K(n+m) ,

|Ln,m(ω∗)− L(ω∗)| ≤ h(n,m,K, ϵ). (12)

On the other hand, the triangle inequality implies

|LBNP(ω
∗)− L(ω′)| ≤ |Ln,m(ω∗)− L(ω∗)|+ |LBNP(ω

∗)− Ln,m(ω∗)|+ |L(ω∗)− L(ω′)|.
(13)

Finally, the proof of (i) is concluded by considering inequality (12) in (13). To prove (ii), Markov’s
inequality implies

Pr (MMD(F, FGω∗ ) ≥ ϵ) ≤ E (MMD(F, FGω∗ ))

ϵ
.

The result follows by substituting the bounds from Lemma 4(i) into the right-hand side of the above
inequality.
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F Additional results and Date description

F.1 Date description

F.1.1 MNIST

The MNIST dataset includes 60,000 handwritten digits of 10 numbers from 0 to 9 each having 784
(28× 28) dimensions. This dataset is split into 50000 training and 10000 testing images and is a good
example to demonstrate the performance of the method in dealing with the mode collapse problem.
We use the training set to train the network.

F.1.2 BMB [40]:

The bone marrow biopsy (BMB) dataset is a collection of histopathology of BMB images correspond-
ing to 16 patients with some types of blood cancer and anemia: 10 patients for training, 3 for testing,
and 3 for validation. This dataset contains 10,800 images in the size of 28×28 pixels, 6,800 of which
are considered for the training set. The rest of the images have been divided into two sets of equal size
for testing and validation. The whole dataset can be found at https://github.com/jmtomczak/
vae_householder_flow/tree/master/datasets/histopathologyGray. The results based
on 6800 training images are presented.

F.1.3 LFD [41]:

The labeled faces in the wild dataset (LFD) include 13,000 facial image samples with 1,024 (32× 32)
dimensions. The dataset is available at https://conradsanderson.id.au/lfwcrop/.

F.2

The sensitivity to the bandwidth parameter of the Gaussian kernel is given by Figure 2.

(a) σ = 2 (b) σ = 5 (c) σ = 10 (d) σ = 20

(e) σ = 40 (f) σ = 80 (g) σMH

Figure 2: Generated samples from BNPMMD GAN for the MNIST dataset using a single Gaussian
kernel with various values of bandwidth parameter σ in 40,000 iterations.

F.3

The learning rate of BNPMMD GAN versus FNP Counterpart is given by Figure 3.
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Figure 3: Learning rate: Values of the cost function in the proposed GAN and its frequentist
counterpart [22] over 20, 000 iterations.
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