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ABSTRACT

Both Winograd convolution (WC) and pruning can significantly reduce the com-
putation of Convolutional Neural Network (CNN), but applying them simultane-
ously is challenging. For example, applying fine-grained pruning to WC elimi-
nates the computational advantages from sparsity due to Winograd transforma-
tion. Moreover, integrating WC with filter pruning can lead to a reduction in
network accuracy due to the use of large pruning unit size. To address previous
challenges, this paper proposes Adaptive Balanced Winograd Structured Pruning
(ABWSP), a method specifically designed to prune weights in WC networks exe-
cuted on GPUs, which are widely used as computing devices for CNNs. ABWSP
takes into account three crucial factors: pruning unit size, workload balance, and
layer importance. First, ABWSP efficiently utilizes the computing units on GPUs
by pruning grouped weights simultaneously. Considering the computational char-
acteristics of WC on GPU, the group size can be minimized while maintaining
a regular data pattern (i.e., WSP). Secondly, the General Matrix Multiplications
(GEMMs) of a layer are executed concurrently on GPU, and the execution time
of the layer is determined by the longest GEMM operation. To minimize the
execution cycle for WC, ABWSP maintains an equal pruning ratio between ma-
trices of WC (i.e., BWSP). Lastly, applying BWSP to all layers results in a loss
of accuracy. Since the importance varies for each WC layer, the accuracy loss
and performance benefit due to BWSP are different. To maintain accuracy with
high speedup, ABWSP comprehensively evaluates both accuracy and speedup to
determine the appropriate application of BWSP or WSP for each layer, automat-
ically. By considering these factors, ABWSP optimizes the pruning process by
effectively utilizing GPU computing units, minimizing execution cycles of each
layer, and ensuring a balance between accuracy and speedup.

1 INTRODUCTION

Convolutional Neural Networks (CNNs) have emerged as a powerful tool for computer vision
tasks (Krizhevsky et al., 2012; Simonyan & Zisserman, 2015). However, their high computational
demands have hindered their practical application in mobile scenarios (Niu et al., 2020). To over-
come this challenge, researchers have developed optimization techniques such as Winograd convo-
lution (WC) (Winograd, 1980; Lavin & Gray, 2016) and pruning (Han et al., 2015), which have been
widely adopted by industry leaders such as Intel, AMD, and NVIDIA. These techniques have re-
sulted in a more than two-fold increase in the inference speed of CNNs (Yan et al., 2020; Zhu et al.,
2019), prompting significant interest from the research community. This attention has subsequently
fueled ongoing advancements and innovation for diverse applications (Xue et al., 2022; Andri et al.,
2022).

Despite the high effectiveness of WC and pruning techniques in improving the performance of
CNNs, using both techniques together have several challenges. Specifically, pruning is developed
without considering WC, resulting in the removal of sparsity in fine-grained pruning (e.g. weight
pruning (Han et al., 2015) and, balanced pruning (Yao et al., 2019; Mishra et al., 2021)) during
the transformation process of WC (Liu et al., 2018). However, this does not imply that all pruning
techniques are incompatible with WC. For instance, middle-grained pruning (e.g. tile pruning (Lin
et al., 2022), block sparse (Narang et al., 2017)) and FP (Li et al., 2016; He et al., 2018) maintain
such sparsity even if it is used with WC due to the use of larger pruning unit sizes compared to
transformation unit sizes. Despite its potential benefits, the application of WC to middle-grained
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pruning presents a challenge. This is because WC converts structural pruning shapes into irregular
pruning shapes that require specialized hardware for effective computations, thereby limiting the
speed gains achievable on commonly used computing devices such as GPUs (Yu et al., 2017; Kim
et al., 2017) (see Appendix for details). Moreover, FP is a technique that does not consider the GPU
calculation method of WC, resulting in a significant pruning unit size, which in turn leads to a loss
of representation power (Mao et al., 2017) (see section 4.1.(a)).

Prior work (Liu et al., 2018) proposes a novel approach, Winograd Weight Pruning (WWP), to
address the challenge of sparsity removal in WC resulting from the transformation process. WWP
proposes a shift in the pruning timing from before to after the transformation process, effectively
mitigating the issue of sparsity removal. Although WWP has demonstrated promising results in
achieving high pruning ratios, its element-wise computations generate irregular data access patterns
on GPUs, similar to the limitations observed with middle-grained pruning, as a result, speed gains
may be restricted (Yu et al., 2017) (see section 4.1.(b)). As such, improving the performance of
WWP on GPUs remains a significant challenge.

This paper introduces a technique called Adaptive Balanced Winograd Structured Pruning (ABWSP)
for GPUs. ABWSP applies pruning to WC networks while considering three crucial factors: the
optimal pruning unit size, workload balance between matrices, and layer importance.

The optimal pruning unit size: The initial step (WSP) of ABWSP involves determining the prun-
ing unit size, which relies on the size of GPUs’ execution unit. In the transformation of standard
convolution to WC, all convolution computations are converted into element-wise multiplications.
To facilitate efficient computation on GPUs, these element-wise multiplications are further trans-
formed into multiple large-sized general matrix multiplications (GEMMs), referred to as EC2B in
this paper. These transformed matrix multiplications are then scheduled on multiple streaming mul-
tiprocessors (SMs) within the GPUs. The matrix elements are grouped and executed in lock-step,
following the single instruction multiple threads (SIMTs) execution paradigm. To make optimal use
of these computation units, the pruning unit size is determined based on the warp and wavefront size
specific to the proposed pruning.

Workload balance between matrices: Next, ABWSP implements a uniform pruning ratio (BWSP)
for the multiple large-sized matrices. As these matrices are executed simultaneously on SMs, main-
taining a comparable execution time for all GEMMs becomes crucial. In cases where the execution
times differ, SMs that complete their GEMMs earlier are forced to wait for an SMs performing
the longest GEMMs (Park et al., 2023). This waiting time leads to delays in executing subsequent
layers. Thus, equalizing the execution time among the GEMMs helps to prevent such delays and
optimize overall performance.

Layer importance: Finally, when BWSP is applied to all layers, there are situations where the de-
crease in accuracy outweighs the performance improvements. The performance gains due to BWSP
vary from layer to layer. Therefore, in some layers, substituting WSP instead of BWSP does not sig-
nificantly reduce performance benefits. To address this, we propose an algorithm that automatically
selects WSP or BWSP on each layer using the Adaptive BN-based evaluation technique (Li et al.,
2020). Our proposed algorithm simultaneously considers speedup and accuracy drop due to balance.
This strategy aims to minimize the loss of representation power in networks while still achieving a
significant speedup coming from both the WC and pruning techniques.

2 PRELIMINARY: WINOGRAD CONVOLUTION

Prerequisites The n filters of lth convolution layer is as F (l) ∈ Rn×c×kh×kw , where n, c, kh, and
kw are the number of filters, the number of channels, height, and width of the filters, respectively.
The H and W denotes the height and width of the input feature map.

2.1 PROCESS OF WINOGRAD CONVOLUTION

As shown in Figure 1(a) and Equation 1, there are five steps in Winograd convolution (Lavin &
Gray, 2016): 1⃝ Input Transformation (ITrans), 2⃝ Filter Transformation (FTrans), 3⃝ Element-Wise
Matrix Multiplcation (EWMM), 4⃝ Channel-wise Summation (CS), and 5⃝ Output Transformation
(OTrans). The p× p input patch (d), which is the basic block of WC, is extracted with stride of (p -
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Figure 1: Overview of Winograd convolution: Conversion from theoretical computation to GPU
acceleration for inference time reduction.

2) from input feature map. The input feature map has ip number of input patches. The p × p input
patch is convolved with a 3× 3 filter (g) to produce an (p - 2)× (p - 2) output patch (S) (Liu et al.,
2018).

S = AT [(GgGT )⊙ (BT dB)]A (1)

ITrans and FTrans transform spatial-domain input patch (d) and filter (g) to Winograd-domain input
patch (BT dB) and filter (GgGT ) using predefined matrices B and G, respectively (Lavin & Gray,
2016). After ITrans and FTrans, there is EWMM (⊙) between BT dB and GgGT . Channel-wise
summation reduces the channel of EWMM output. OTrans transforms Winograd-domain output
patch to spatial-domain output patch S by using predefined matrix A. The output patches are as-
sembled into an output feature map. The matrices B, G and A used in ITrans, FTrans, and OTrans
are made from Winograd’s minimal algorithm (Winograd, 1980).

2.2 CONVERSION FOR WINOGRAD CONVOLUTION

Inefficient process of Winograd convolution According to ARM (Iodice, 2018; Harris, 2014),
EWMM accounts for most of the inference time of WC, so EWMM is a target for acceleration.
However, since the EWMM results in an inefficient operation on the GPU, the parallel execution
of the WC is not sufficient. GPU consists of dozens of independent functional modules called
Streaming Multiprocessors (SMs) for parallel processing, and during EWMM on GPUs, 3D input
patch (BT dB) and a 3D filter (GgGT ) are loaded and processed in a single SM. As illustrated in
Figure 1(a), to calculate filter GgGT #1 and input BT dB #1, element i of filter GgGT #1 is
calculated only once with element 1 of input patch BT dB #1 and is not used again in the SM #1.
Element i of filter GgGT #1 is not reused within the SM #1, so the required data (element ix of
input patch BT dB #2) is obtained from another SM #2. However, overhead occurs when the SMs
exchange data because the memory of each SM is independent.

Efficient Winograd convolution on parallel processors In order to solve the low computational
intensity and frequent memory access overhead of EWMM, NVIDIA (Jia et al., 2020; Yan et al.,
2020) and ARM (Iodice, 2018) convert and process WC’s EWMM and CS to BGEMM (Batched
General Matrix Multiplication) operations. BGEMM maintains a structured form to maximize
data reuse on the GPU. We call this covert process as EC2B (conversion from EWMM and CS
to BGEMM). As shown in Figure 1(b), BGEMM consists of a total of p2 GEMM operations with
the same shape. A GEMM of BGEMM is a matrix product operation between the weight matrix of
Rn×c shape and the input matrix of Rc×ip shape. For parallelism, one GEMM is assigned to each
SM. In GEMM1, the weight vector (i∼iv) and the input vector (1∼4) generate output element (I)
by performing MAC operations at once. The BGEMM rearranges the input vectors (9∼12) just next
the weight vectors (1∼4) in the same GEMM1 to increase the reuse of the weight vectors (i∼iv).
EC2B can be reused as much as possible within one SM.
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Figure 2: Previous pruning methods for Winograd convolution.

3 RELATED WORK

Winograd convolution (WC) and pruning are challenging to be compatible, but the following two
previous pruning methods are compatible: FP and WWP.

Filter Pruning (FP) on Winograd-domain In standard convolution, structured pruning (Li et al.,
2016; Yu et al., 2018; He et al., 2017; Tanaka et al., 2020) removes rows (filter pruning) or columns
(group pruning) in conversed weight matrices using im2col (Chetlur et al., 2014). According to the
spatial-Winograd pruning (Yu et al., 2019), the pruning unit size is the size of the filter, which is the
entire 3D filter, so the sparsity of FP is not removed by FTrans progressing in 2D units in WC (see
Figure 2(a)). Spatial-Winograd pruning (Yu et al., 2019) reduces retraining time by pruning with
FP and WWP sequentially. Since the pruned model of FP has a structural form in both standard
convolution and WC, FP has no index computation overhead (Wen et al., 2016).

Winograd Weight Pruning (WWP) WWP removes redundant Winograd-domain weight by el-
ement to reduce the parameters of Winograd Convolutional Neural Networks (see Figure 2(b)).
Sparse Winograd CNN (Liu et al., 2017) proposed an approach from the perspective of pruning
and re-training in the Winograd-domain for the first time. Winograd CNN Native Pruning (Li
et al., 2017) presents the 90.0% sparsity for AlexNet’s Winograd parameters with less than 0.1%
accuracy loss in the large dataset. Winograd-ReLU CNN Pruning (Liu et al., 2018) also exploits
dynamic sparsity due to activation function as well as sparsity due to weight pruning in Winograd-
domain. Unfortunately, according to the yu (Yu et al., 2019), Winograd-domain dynamic sparsity of
Winograd-ReLU CNN pruning (Liu et al., 2018) requires additional changes in the network struc-
ture. All the WWP methods are element-level pruning, which creates an irregular data pattern in
Winograd-domain. The irregular data pattern requires significant index computation when access-
ing the pruned weights. Multiple indices cause a low throughput of the GPU owing to the memory
divergence (Kloosterman et al., 2015), which requires a specialized hardware kernel or a dedicated
accelerator for WWP. (Lu & Liang, 2018; Wang et al., 2019; Wu et al., 2021; Yang et al., 2021)
for practical use. Therefore, we apply a hardware efficient sparsity scheme in WC to reduce the
overhead of index computation.

4 PROPOSAL: ADAPTIVE BALANCED WINOGRAD STRUCTURED PRUNING

4.1 WINOGRAD STRUCTURED PRUNING (WSP)

(a) Motivation 1: Large pruning unit size problem of FP As shown in Figure 2(a) and Equa-
tion 2, in FP, the matrix multiplication has remained in the structured form, which minimizes the
index computation overhead (Wen et al., 2016), even after the EC2B conversion is applied.

S = AT [(G(FilterPrune(g))GT )⊙ (BT dB)]A (2)

Such a regular structured form can be incredibly beneficial when general-purpose computing devices
such as GPUs are used for inference. One additional benefit of the structured form is that this can be
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Figure 3: (a) Comparison of pruning unit size of pruned model on ResNet-18. (b) Comparison
of accuracy and PR. Top-1 validation and PR for four model on a variation of ResNet-18 on
ImageNet. The fine-tuning epoch is one. (c) Comparison of speedup of GEMM by pruning: weight
pruning (WP) and filter pruning (FP). The size of GEMM is convolution layer 6∼10 of VGG-16.

easily calculated using the GEMM of existing GPU library (Kerr et al., 2017; Nvidia, 2008), well-
optimized. However, the side-effect of FP has representation loss when the models are aggressively
pruned. As shown in Figure 2(a), the pruning unit size of FP on the Winograd-domain is p2 ×
R1×c, which tends to be too large, so it removes the important weights with non-important weights
together. For example, on ResNet-18, the pruning unit sizes of FP on Winograd-domain are either
1, 024, 2, 048, 4, 096, and 8, 192 parameters depending on the layers as shown in Figure 3(a)). In
Figure 3(b), when evaluating FPs with PRs of 20% and 40% in ResNet-18, the Top-1 accuracy is
reduced by 5% and 10%, respectively. Even though FP keeps the matrices in a structured form to
leverage the full computing capabilities of existing general-purpose computing devices, FP shows
significant accuracy drops in the high PR even with retaining.

(b) Motivation 2: Irregular data pattern problem of WWP As shown in Figure 2(b) and Equa-
tion 3, the WWP pruned model shows irregular data access patterns before and after applying EC2B
conversion since WWP is an element-wise pruning method (R).

S = AT [WeightPrune(GgGT )⊙ (BT dB)]A (3)

The irregular data pattern is not adequate for parallel processors especially on GPUs (Greathouse &
Daga, 2014). The irregular data pattern is calculated by converting weights into a sparse data format
(e.g., CSR) to not calculate the zero values in hardware. Among the various sparse data formats,
the representative CSR data format (Bell & Garland, 2009) consists of two index arrays and one
non-zero value array. When calculating sparse general matrix multiplication (Sparse GEMM) using
CSR, three arrays are used to obtain input data, one array is for the non-zero element row indexes,
another array is for the non-zero element column indexes, and the last array is for the non-zero
data variables. Using the non-zero element indexes, in Sparse GEMM, only non-zero data variables
are actually computed while the operations of zero variables are simply skipped; therefore, the
overall amount of computations for the Sparse GEMM is less than that of dense general matrix
multiplication (GEMM). However, as shown in Figure 3(c), the inference time of pruned model
(relying on the Sparse GEMM) is not faster than the inference time of the unpruned model (relying
on the dense GEMM) due to the considerable amount of index computation (Hill et al., 2017; Yu
et al., 2017). In order to obtain the computational benefits coming from WWP pruned models,
designing specialized hardware such as NPU (Lu & Liang, 2018) is essential.

(c) Method We propose Winograd Structured Pruning (WSP) that satisfies both regularity and
pruning unit size as small as possible for efficient processing on GPUs. We apply structured pruning
in Winograd-domain, as shown in Figure 2(c) and Equation 4. In order to preserve the sparsity by
FTtrans, the WSP applies pruning after FTtrans. As described in Section 2.2, WC is transformed
into BGEMM for efficient processing in GPUs (consists of 16 (p2) large-sized sub-GEMMs.). To
achieve the regular weight structure, our proposed WSP is removed vector by vector from each sub-
GEMM weights (see Figure 4(a)). Therefore, the pruning unit size (R1×c) of the WSP is 16 (p2)
times smaller than that (p2 × R1×c) of the FP. The WSP calculates the threshold (th) by using the
target pruning ratio (PR). The WSP obtains the representative value of the vector using the L2 norm
method (Wen et al., 2016), and if the absolute value of the representative value is less than th, it is set
to 0 to remove the weight vector. WSP can be divided into two approaches, row-wise WSP (WSP-R)

5



Under review as a conference paper at ICLR 2024

Figure 4: Overview of our three proposed methods: (a) WSP, (b) BWSP, and (C) ABWSP.

and column-wise WSP (WSP-C), which remove row and column vectors respectively. This methods
remove the row vector (R1×c) and column vector (Rn×1) of the sub-GEMM, respectively. In the
Section 5.1, we performed an analysis on two techniques (Row type and Column type) and found
that Row type is more effective.

S = AT [StructuredPrune(GgGT )⊙ (BT dB)]A (4)

4.2 BALANCED WINOGRAD STRUCTURED PRUNING (BWSP)

Figure 5: Comparison of speedup (inference time)
of WSP and BWSP on ResNet-18.

(a) Motivation WSP exhibits an imbalanced
characteristic attributed to the different pruning
ratios (PR) in each of the 16 (p2) sub-GEMMs.
This imbalance presents a significant bottle-
neck for parallel processors, such as GPUs, as
each sub-GEMM is assigned to a SM for in-
dependent execution (Li et al., 2019). In par-
ticular, SMs handling sub-GEMMs with larger
PRs tend to complete their computations be-
fore SMs assigned to sub-GEMMs with smaller
PRs, leading to idle periods (see Figure 4(a)). Such an idle period delays the execution of the fol-
lowing layers. In Figure 5, the BWSP has an average speed improvement of 27% on ResNet-18
compared to WSP.

(b) Method In order to address the issue of imbalance, we have enhanced WSP by introducing
a new approach called Balanced WSP (BWSP) (see Figure 4(b)). With BWSP, we ensure that all
sub-GEMMs have an equal PR. To achieve this equal PR across all sub-GEMMs, we employ a
specific order for pruning. When performing the pruning process, we utilize a similar approach
to the one used in WSP, which takes into account small representative values calculated using the
L2 norm. However, in BWSP, these representative values are considered within each sub-GEMM
individually, rather than being assessed across all GEMMs collectively.
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Figure 6: ResNet-18 on ImageNet. (a) Comparison of performance improvements in layers obtained
from applying balancing on WSP. (b) Comparison of Top-1 accuracy between WSP and BWSP. The
fine-tuning epoch is one. (c) Correlation of outlook accuracy and fine-tuning accuracy.

4.3 ADAPTIVE BALANCED WINOGRAD STRUCTURED PRUNING (ABWSP)

(a) Motivation BWSP enhances the load balancing in Batched GEMM operations by emphasizing
regularity in the sparse weights of the WSP concept. Figure 6(a) illustrates the advantages of BWSP,
up to 25% better. A distinctive acceleration is achieved across entire layers by ensuring an evenly
distributed sparsity in the weight matrices involved in Batched GEMM. However, Figure 6(b) reveals
a trade-off: The accuracy of BWSP exhibits a disadvantage compared to relying on WSP alone.
This observation is understandable since significant values need to be unintentionally excluded in
network pruning. To maximize accelerating inference and preserving accuracy, we introduce an
adaptive framework that applies BWSP or WSP selectively, considering evaluation accuracy and
speed-up due to workload balance, simultaneously.

(b) Method We introduce the Adaptive Balanced Winograd Structured Pruning (ABWSP) method
(see Figure 4(c)). ABWSP is an auto algorithm that automatically adjusts the number of layers
applied to BWSP or WSP when the accuracy loss of the BWSP pruned model becomes significant.
ABWSP operates in two main ways: Pre-processing and Evaluation & Pruning.

Pre-processing Looking at Figure 4 (c), first, we measure the speedup of all the layers from BWSP
(called Balanced Speedup (BS)). Second, we search the pruning candidates that may result from
applying either WSP or BWSP to each layer. If the number of pruning candidates is too large, we
use Monte Carlo sampling to reduce the cases.

Evaluation & Pruning Initially, the layer-by-layer BS obtained from pre-processing is used to
calculate the total BS for each case. Next, an adaptive-BN-based evaluation method (Li et al., 2020)
is applied to ABWSP to measure the “outlook accuracy” of each candidate. This evaluation method
uses minimal training iteration and validation data (e.g., 100-iteration). As seen in Figure 6(c),
outlook accuracy and accuracy are highly correlated. Finally, the one with the highest BS and
within the top α% of outlook accuracy is chosen as the winner and undergoes fine-tuning. After
fine-tuning, if the accuracy drop of the winner is negligible, the winner is added to the pruned model
list. After about β-iterations of ABWSP auto algorithm, the best model from the pruned model list
is selected as the final pruned model.

5 EXPERIMENTS

Baseline settings We evaluate ABWSP using NVIDIA RTX 3090 GPUs. We use the pre-trained
CNN models from Pytorch framework (Paszke et al., 2019). We perform fine-tuning with only 40
epochs. We use SGD optimizer with the weight decay, 1 × 10−4 and the momentum as 0.9, for
fine-tuning. We set a batch size of 256. The initial learning rate is set to 0.11 and divide it by 10
every 30 epochs. To accelerate WC, we exploit the GPU kernel based on the API (Guo et al., 2020).

Model and dataset We evaluate the performance of ABWSP using ImageNet dataset (Deng et al.,
2009) and CIFAR-10 (Krizhevsky et al., 2009). CIFAR-10 contains 50K training images and 10K
test images for 10 classes. ImageNet contains 1.28M training images and 50K validation images
for 1000 object classes. For the validation of image classification, we assess our method with CNN
models: VGG-16 (Simonyan & Zisserman, 2015) and ResNet-18, 20, 32, and 56 (He et al., 2016).
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Method PR (%) Top-1 (%) Speedup Method PR (%) Top-1 (%) Speedup
BWSP

Column
[ours]

50 69.9 1.12× BWSP
Row

[ours]

50 69.8 1.49×
60 69.7 1.13× 60 69.6 1.60×
70 69.7 1.15× 70 69.4 1.77×

Table 1: Comparison of accuracy and speedup (inference time) than WC of ResNet-18 on ImageNet.

5.1 BWSP-COLUMN VS. BWSP-ROW

Our proposed methods are classified into two distinct categories based on the vector direction: Col-
umn type (BWSP-C) and Row type (BWSP-R). Two analysis experiments are conducted for com-
parison of BWSP-C and BWSP-R. First, in Table 1, we compare accuracy according to the pruning
ratio (PR) of BWSP-R and BWSP-C. Since the pruning unit size of BWSP-R and BWSP-C is al-
most similar, accuracy according to the PR is also similar. Second, both techniques show speed
improvement as PR increases. However, the speedup achieved by BWSP-R is greater than that of
BWSP-C. Therefore, we use the BWSP-R when comparing with other models.

5.2 ABWSP VS. BWSP VS. WSP

In Figure 7(a), we present a comprehensive comparison of the three proposed models - WSP, BWSP,
and ABWSP, considering multiple metrics such as PR, accuracy, and speed. As depicted in Fig-
ure 7(a), at a PR of 80%, WSP and ABWSP have an accuracy drop of less than -1%, while BWSP
experiences the most significant accuracy drop at -1.27%. Interestingly, at the same 80% PR, AB-
WSP outperforms WSP in terms of speed, being approximately 1.20 times faster. As a result of this
comprehensive comparison, ABWSP is the most effective approach for ResNet18, when compared
with the other our methods.

Figure 7: Comparison of speedup (inference time) and accuracy in various pruning ratio. We set α
and β of ABWSP to 30 and 5, respectively.

5.3 COMPARISON WITH BASELINES: FP AND WWP

We compare our proposed ABWSP with previously proposed pruning methods (i.e., WWP and FP)
in terms of accuracy, PR, and speedup.

Comparison with Filter Pruning (FP) As shown in Figure 7(b) and (c), FP and ABWSP are faster
than a dense model because FP and ABWSP keep a structured form after FTrans. However, the
pruning unit size of FP is too large to avoid accuracy drop because FP creates a structured form
without considering the WC. Since ABWSP is a pruning method considering WC, the pruning unit
size of ABWSP is about p2 times less than that of FP. In ResNet-18, the FP exceeds -2.0% accuracy
drop from 30% PR (see Figure 7(b)). On the other hand, even if ABWSP prunes up to 80% PR, the
accuracy drop of ABWSP does not exceed -0.6% in ResNet-18. In VGG-16 and ResNet-18, within
-2.0% accuracy drop, ABWSP is 1.34× and 1.84× faster than FP, respectively (see Figure 7(a) and
(b)).

Comparison with Winograd Weight Pruning (WWP) Both WWP and ABWSP are pruning tech-
niques considering WC. Since the pruning unit size of ABWSP is about c times larger than that of
WWP, WWP can prune more precisely than ABWSP. As shown in Figure 7(c), when the PR is 70%
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Model Method O-Err. P-Err. Gap PR Speedup

ResNet-20
SCOP (Tang et al., 2020) 7.78% 9.25% -1.47% 56% 1.47×

GCNP (Di Jiang & Yang, 2022) 7.75% 8.42% -0.67% 39% 1.18×
WSP [Ours] 8.27% 8.88% -0.61% 85% 1.57×

ResNet-32

SFP (He et al., 2018) 7.37% 7.92% -0.55% 42% 1.19×
FPGM (He et al., 2019) 7.37% 8.07% -0.70% 53% 1.44×

SCOP (Tang et al., 2020) 7.34% 7.87% -0.53% 56% 1.49×
WSP [Ours] 7.37% 7.74% -0.37% 83% 1.61×

ResNet-56

Hrank (Lin et al., 2020) 6.74% 6.83% -0.09% 42% 1.21×
SCOP (Tang et al., 2020) 6.30% 6.36% -0.06% 56% 1.50×

GCNP (Di Jiang & Yang, 2022) 6.28% 7.25% -0.97% 71% 1.60×
WSP [Ours] 6.99% 7.69% -0.70% 90% 2.04×

Table 2: Comparison of speedup (inference time) on ResNet-20, 32, and 56 with CIFAR-10. O-Err.
denotes errors of the pre-trained model. P-Err. denotes errors of the pruned model. Gap is the
difference in size between O-Err. and P-Err.. PR denotes pruning ratio.

Model Method Top-1
↓(%)

PR
(%)

Inference
time (ms)

Index
ratio

Speedup
than WC↑

ResNet-18
on

ImageNet

WC (Lavin & Gray, 2016) - - 3.73 - 1.00×
TAS (Dong & Yang, 2019) -1.50 33.3 3.21 - 1.16×
LCCL (Dong et al., 2017) -3.65 34.6 3.19 - 1.17×

ABWSP [Ours] 0.19 40.1 3.09 5% 1.20×
SFP (He et al., 2018) -3.18 41.7 3.06 - 1.22×

FPGM (He et al., 2019) -1.87 41.7 3.06 - 1.22×
PFP (Liebenwein et al., 2020) -2.36 43.8 3.03 - 1.23×

ABWSP [Ours] -0.14 60.7 2.33 7.6% 1.60×
ABWSP [Ours] -0.36 70.3 2.11 7.6% 1.77×
ABWSP [Ours] -0.75 84.0 1.86 7.7% 2.01×

Table 3: Comparison of inference time (ms) with FP on WC. Top-1↓ denotes accuracy drop. Index
denotes index computation kernel time. PR denotes pruning ratio.

in VGG-16, WWP has 2.0% higher accuracy than ABWSP, respectively. However, despite pruning
up to 90% PR in VGG-16, WWP is slower than the WC dense model due to the significant index
computation of WWP. Unlike WWP, ABWSP maintains a structural form, so ABWSP is 2.01×
faster than WC when the PR is 84% (see Figure 7(b)).

5.4 COMPARISON WITH STATE-OF-THE-ART FP

CIFAR-10 In Table 2, we evaluate our method using ResNet (20, 32, and 56) on the CIFAR-10. In
ResNet-20, when the PR of SCOP (Tang et al., 2020) is 56%, the accuracy drop is more than 1%.
On the other hand, WSP’s accuracy drop is -0.61% in 85% PR. In ResNet-32, WSP is the highest
PR at 83%, and the accuracy drop is the smallest than other FP. WSP at 90% PR has 1.28× faster
and 0.27% higher accuracy than GCNP (Di Jiang & Yang, 2022) at 71% PR, in ResNet-56.

ImageNet In Table 3, we evaluate our method using ResNet-18 on the ImageNet. When the PR of
LCCL (Dong et al., 2017) and SFP (He et al., 2018) is 34.6% and 41.7%, respectively, the accuracy
drop is more than 3%. On the other hand, ABWSP’s accuracy drop is only less than 2% in 70%
PR. Due to the index computation of ABWSP, FPGM (He et al., 2018) is about 1.01× faster than
ABWSP when ABWSP and FPGM are at almost same 40% PR. ABWSP at 70% PR has 1.33×
faster and 0.79% higher accuracy than PFP (Liebenwein et al., 2020) at 43.8% PR.

6 CONCLUSION

We propose ABWSP that accelerates WC in consideration of WC computational characteristics on
a parallel processor. We perform vector-wise pruning in BGEMM operation, which brings delicate
structured data pattern compared to WWP and FP, for accuracy maintenance and speedup. ABWSP
also makes balanced matrices for computing utilization. ABWSP has realistic CNN representation
power at a high PR by selectively adapting the best algorithm in each layer.
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A APPENDIX: LIMITATION OF MIDDLE-GRAINED PRUNING ON WC

The Winograd transformation process converts sparse matrices into dense matrices thus it is chal-
lenging to apply Winograd convolution (WC) and pruning techniques, simultaneously (Liu et al.,
2018). This is because the Filter Transformation (FTrans) process densely changes the sparsity of
pruned model by pruning. FTrans is performed in units of 2D tensor (Rkh×kw ) out of 4D tensor
(Rn×c×kh×kw ) of the convolution layer. Therefore, pruning with a pruning unit size of 2D tensor
(Rkh×kw ) or larger can be compatible simultaneously with WC. Filter pruning (FP), which is pruned
in units of 3D tensor (Rc×kh×kw ), can be compatible with WC (Yu et al., 2019). Middle-grained
pruning (e.g., 1×n Pruning (Lin et al., 2022) and Block Sparse (Narang et al., 2017)) with a pruning
unit size of more than 2D tensor (Rkh×kw ) can also be compatible with WC. As shown in Fig-
ure 8, the middle-grained pruning prunes in units of vector or block when the convolution layer is
converted to matrix multiplication using im2col (called lowering method) (Chellapilla et al., 2006;
Chetlur et al., 2014). When the middle-level pruned model is converted to col2im, most of them are
pruned in 2D tensor units (Rkh×kw ). Therefore, middle-grained pruning also be compatible with
WC, like FP. However, unlike FP, the middle-grained pruned model have unstructured data pattern
in Winograd-domain. As a result, middle-grained pruning is still difficult to improve performance
like FP or our proposed ABWSP without an appropriate GPU library.
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Figure 8: Overview of middle-grained pruning on WC and standard convolution

B APPENDIX: LARGE PRUNING UNIT SIZE PROBLEM OF FP

B.1 PRUNING UNIT SIZE ON VGG-16

When the size of the pruning unit increases, there is a notable decrease in the representation power
of the network. This is due to the fact that the pruning unit size plays a crucial role in determining the
precision of the pruning process. As shown in Figure 9, in the case of VGG-16, FP (p2 ×R1×c) has
a larger pruning unit size than WSP-R (R1×c) in all layers except for the first convolution layer. For
example, on VGG-16, the pruning unit sizes of FP on Winograd-domain are either 1, 024, 2, 048,
4, 096, and 8, 192 parameters depending on the layers, except the first convolution layer. On the
other hand, the pruning unit size of WSP-R is almost 16 (p2) times smaller than FP’s, because the
pruning unit size of WSP-R are either 64, 128, 256, and 512 parameters depending on the layers.
Therefore, our proposed WSP and ABWSP in VGG-16 are more sophisticated pruning approaches
than FP in terms of accuracy and inference speed.

Figure 9: Comparison of pruning unit size of pruned model on VGG-16.

B.2 APPENDIX: COMPARISON OF ACCURACY AND PRUNING RATIO

ResNet-18 on ImageNet, Fine-tuning epoch is 40 The side-effect of FP has representation loss
when the models are aggressively pruned. As shown in Figure 10, the pruning unit size of FP on the
Winograd-domain is p2 × R1×c, which tends to be too large, so it removes the important weights
with redundant weights together. In Figure 10, when evaluating FPs with PRs of 30% in ResNet-
18, the Top-1 accuracy is reduced by 3%. In 40 fine-tuning epoch, both WWP and WSP have an
Top-1 accuracy drop of less than 3% in 90% PR. In particular, FP has an Top-1 accuracy drop of
more than 3% in most PRs. Even though FP keeps the matrices in a structured form to leverage
the full computing capabilities of existing general-purpose computing devices, FP shows significant
accuracy drops in the high PR even with retaining.

C APPENDIX: EFFECT OF FINE-TUNING

We evaluate the accuracy according to the variation of fine-tuning epoch with four different pruning
on ResNet-20 and VGG-16 in CIFAR-10 (see Figure 11 and 12).
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Figure 10: Comparison of accuracy and PR. Top-1 validation and PR for four model on a variation
of ResNet-18 on ImageNet. The fine-tuning epoch is 40.

ResNet-20 on CIFAR-10 Since WWP is fine-grained pruning, when epoch is 10 and 100, only a
minimum accuracy drop (less than 0.64% and 0.03%) is observed even with 70% of pruning ratio
(PR). In Winograd-domain, FP is a method of removing more than hundreds of elements from
ResNet-20, so even if the PR is 10% when fine-tuning epoch is 1 and 10, significant accuracy
degradation (at least 1.65%) is observed. Even if the FP pruned model is fine-tuned more than 100
epochs, if the PR exceeds 40%, the accuracy drop exceeds 1.72%. Since the pruning unit size of
WSP is p2 times less than FP’s, WSP can prune more sophisticated than FP. With only 10 fine-tuning
epochs, our proposed WSP shows an accuracy drop of less than 1.5% even with a higher than 60%
of PR.

VGG-16 on CIFAR-10 Since WWP is fine-grained pruning, when epoch is 10, only a minimum
accuracy drop (less than 0.6%) is observed even with 70% PR. On the other hand, FP is a method
of removing thousands of elements from VGG-16, so even if the PR is 20% when fine-tuning epoch
is 1 and 10, Significant accuracy degradation (at least 5%) is observed. Even if the FP pruned model
is fine-tuned more than 100 epochs, if the PR exceeds 30%, the accuracy drop exceeds 5%. Since
the pruning unit size of WSP is Rn×1 or R1×c, WSP can prune more sophisticated than FP.

Figure 11: Comparing WSP with WWP and FP of ResNet-20 on CIFAR-10. We experiment with
PR and accuracy using three epochs of fine-tuning: 1, 10, and 100.

D APPENDIX: PRUNED FILTER VISUALIZATION

We use a visualization method to understand that WSP has a regular data pattern and middle pruning
unit size at WC. In Figure 13, we sequentially visualized WWP (Liu et al., 2018), WSP-C, and
WSP-R. The pruned filter visualization is done with the PR of 50% within the 1% variance. For
visualization, we convert the EWMM 4D weight matrix of the WC to BGEMM weight matrix
using EC2B converting method. The weight map of WWP shows irregular data patterns in both
non-converted and converted weight matrices as shown in Figure 13(a) and 13(d). WSP-C has the
same pruning mask between matrices with the same output channel as shown in Figure 13(b). In
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Figure 12: Comparing WSP with WWP and FP of VGG-16 on CIFAR-10. We experiment with PR
and accuracy using three epochs of fine-tuning: 1, 10, and 100.

Figure 13: Pruned filter visualizations in res2a 2a layer of ResNet-18 on ImageNet. Positive, nega-
tive and pruned weights are in blue, yellow and green respectively. Dotted redline denotes a pruning
unit.

Figure 13(e), the WSP-C shows regular data patterns which have column-wise vector pruning unit
at converted weight. In Figure 13(c), WSP-R has the same pruning mask between matrices with the
same input channel. WSP-R has row-wise vector pruned data pattern as shown in Figure 13(f).
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