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ABSTRACT

In this paper, we tackle the problem of Generalized Category Discovery (GCD).
Given a dataset containing both labelled and unlabelled images, the objective is
to categorize all images in the unlabelled subset, irrespective of whether they are
from known or unknown classes. In GCD, an inherent label bias exists between
known and unknown classes due to the lack of ground-truth labels for the latter.
State-of-the-art methods in GCD leverage parametric classifiers trained through
self-distillation with soft labels, leaving the bias issue unattended. Besides, they
treat all unlabelled samples uniformly, neglecting variations in certainty levels and
resulting in suboptimal learning. Moreover, the explicit identification of semantic
distribution shifts between known and unknown classes, a vital aspect for effective
GCD, has been neglected. To address these challenges, we introduce the Debiased
Learning with Distribution Guidance (D2G) framework. Initially, D2G co-trains
an auxiliary debiased classifier in the same feature space as the GCD classifier,
progressively enhancing the GCD features. Moreover, we introduce a semantic
distribution detector in a separate feature space to implicitly boost the learning
efficacy of GCD. Additionally, we employ a curriculum learning strategy based on
semantic distribution certainty to steer the debiased learning at an optimized pace.
Thorough evaluations on GCD benchmarks demonstrate the consistent state-of-
the-art performance of our D2G framework, highlighting its superiority.

1 INTRODUCTION

Over the years, the field of computer vision has witnessed remarkable progress in diverse tasks such
as object detection Girshick (2015); Ren et al. (2015), classification Simonyan & Zisserman (2015);
He et al. (2016), and segmentation He et al. (2017); Wang et al. (2020). These advancements have
predominantly stemmed from the availability of expansive labelled datasets Deng et al. (2009); Lin
et al. (2014). However, the prevalent insufficiency of training data in real-world scenarios is a note-
worthy concern. This has engendered a surge in research on semi-supervised learning Chapelle
et al. (2009) and self-supervised learning Jing & Tian (2020), yielding promising outcomes in com-
parison to supervised learning approaches. Recently, the task of category discovery, which was
initially studied as novel category discovery (NCD) Han et al. (2019) and subsequently extended
to its relaxed variant, generalized category discovery (GCD) Vaze et al. (2022b), has emerged as a
research task attracting increasing attention. GCD considers a partially-labelled dataset, where the
unlabelled subset may contain instances from both labelled and unseen classes. The objective is to
learn to transfer knowledge from labelled data to categorize unlabelled data.

In GCD, there exists an inherent label bias between known and unknown classes due to the ab-
sence of ground-truth labels for the latter. This label bias has the potential to cause the model to
inadvertently develop a decision rule making confident predictions that inclined to known classes.
Similar problem has been identified in the area of long-tailed recognition Tang et al. (2020); Yang
et al. (2022). Besides, in other fields such as object classification Choi et al. (2019); Bahng et al.
(2020); Geirhos et al. (2020), it is widely known that model performance suffers from task-specific
bias. State-of-the-art parametric classifier methods in GCD, such as those proposed by Wen et al.
(2023); Zhao et al. (2023); Vaze et al. (2023), leverage the self-distillation Caron et al. (2021) mech-
anism based on soft labels generated from the model’s predictions of another image view. While
these methods have shown promising results, they still rely on biased labels for training (as shown
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Figure 1: (a) The commonly used parametric GCD classifier Wen et al. (2023) is trained on labelled
and unlabelled images using ground-truth hard labels and soft labels, respectively. (b) The auxiliary
debiased learning: training an debiased classifier using debiased labels. (c) The process of label
debiasing: keep the ground-truth labels unchanged and transform soft labels to one-hot hard labels
using a specified threshold; samples that do not meet the threshold are removed. (d) The illustration
of distribution guidance: if a sample receives a high in-distribution/out-of-distribution score, its
weight in GCD training will be increased accordingly.
in Fig. 1(a)). The issue of label bias remains an unattended problem in the realm of GCD. Addition-
ally, existing approaches uniformly handle all unlabelled samples without explicitly accounting for
their different certainty, which may introduce noise to the model training due to unreliable samples.
Moreover, they do not explicitly address semantic shifts, especially in a scenario like GCD involv-
ing both known and unknown classes within unlabelled data. Notably, these concerns have been
demonstrated to provide significant advantages in related tasks, such as open-world semi-supervised
learning Cao et al. (2022). In this area, OpenCon Sun & Li (2022) has attempted to identify novel
samples based on their proximity to known prototypes. However, its performance is heavily contin-
gent on predefined distance thresholds, ultimately yielding suboptimal accuracy.

To tackle these challenges, we propose a novel framework, called Debiased Learning with
Distribution Guidance (D2G), incorporating several innovative techniques tailored for GCD. Firstly,
we introduce a novel auxiliary debiased learning paradigm for GCD (as shown in Fig. 1(b) and (c)).
This method entails training an auxiliary debiased classifier in the same feature space as the GCD
classifier. Unlike the GCD classifier, both labelled and unlabelled data are trained using one-hot
hard labels to prevent label bias between known and unknown classes. Secondly, to discern the
semantic distribution of unlabelled samples, we propose to learn a semantic distribution detector in
a decoupled normalized feature space, which we empirically find it enhance the learning effect of
GCD implicitly. Furthermore, we propose to measure the certainty of a sample based on its seman-
tic distribution detection score. This certainty score then enables the gradual inclusion of unlabelled
samples from both known and unknown classes during training, allowing the auxiliary debiased
learning to function in a curriculum learning approach (as shown in Fig. 1(d)), thus further enhanc-
ing its performance. We develop our D2G framework upon the strong parametric baseline Wen
et al. (2023). By effectively incorporating these components into a unified framework, D2G can
be trained end-to-end in a single stage while not introducing any additional computational burden
during inference. Despite its simplicity, D2G attains unparalleled performance on the public GCD
datasets, including the generic classification datasets CIFAR-10 Krizhevsky et al. (2009), CIFAR-
100 Krizhevsky et al. (2009), and ImageNet Deng et al. (2009), as well as the fine-grained SSB Vaze
et al. (2022a) benchmark.

We make the following key contributions in this work: (1) We propose D2G, a novel framework
that addresses the challenging GCD task by considering both label bias and semantic shift, marking
the first exploration of these aspects for the challenging GCD task. (2) Within D2G, we propose a
novel auxiliary debiased learning paradigm to optimize the clustering feature space, in conjunction
with the distribution shift detector in a distinct feature space. They work tightly to enhance the
model’s discovery capabilities. (3) We introduce a curriculum learning mechanism that steers the
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debiased learning process using a distribution certainty score, effectively mitigating the negative
impact of uncertain samples. (4) Through extensive experimentation on public GCD benchmarks,
D2G consistently demonstrates its effectiveness and achieves superior performance.

2 RELATED WORK

Category Discovery. This task is initially studied as Novel Category Discovery (NCD) Han et al.
(2019), aiming to discover categories from unlabelled data consisting of samples from novel cate-
gories, by transferring the knowledge from the labelled categories. Many methods have been pro-
posed to tackle NCD, such as Han et al. (2019; 2020; 2021); Fini et al. (2021); Zhao & Han (2021);
Joseph et al. (2022). Vaze et al. (2022b) extends NCD Han et al. (2019) to a more relaxed task,
Generalized Category Discovery (GCD), wherein unlabelled datasets encompass both known and
unknown categories. A baseline method is presented for this task, incorporating self-supervised rep-
resentation learning and semi-supervised k-means clustering, and extending popular NCD methods
such as RankStats Han et al. (2020) and UNO Fini et al. (2021) to GCD. CiPR Hao et al. (2024)
proposes to bootstrap the representation by leveraging cross-instance positive relations in the par-
tially labelled data for contrastive learning. Cao et al. (2022) addresses a similar problem to GCD
from the perspective of semi-supervised learning. SimGCD Wen et al. (2023) introduces a strong
parametric baseline achieving promising performance improvements. In Vaze et al. (2023), a new
dataset is introduced to illustrate the limitations of unsupervised clustering in GCD. To address these
limitations, a method based on the ‘mean-teachers’ approach is proposed. In Rastegar et al. (2023),
a category coding approach is introduced, considering category prediction as the outcome of an opti-
mization problem. Recently, SPTNet Wang et al. (2024) is proposed to consider the spatial property
of images and presents a spatial prompt tuning method for GCD, enabling the model to better focus
on object parts for knowledge transfer.

Debiased Learning. The issue of bias in data and the susceptibility of machine learning algorithms
to such bias have been widely recognized as crucial challenges across diverse tasks. Numerous
methodologies have been developed to address and alleviate biases inherent in training datasets
or tasks. The studies by Ponce (2006); Torralba & Efros (2011) elucidate that many training sets
impose regularity conditions that are impractical in real-world settings, leading to machine learning
models trained on such data failing to generalize in the absence of these conditions. Furthermore,
recent research by Hendrycks et al. (2021); Xiao et al. (2021); Li et al. (2021) demonstrate biases in
state-of-the-art object recognition models towards specific backgrounds or textures associated with
object classes. Additionally, Sagawa et al. (2020) investigate the vulnerability of overparametrized
models to spurious correlations, resulting in elevated test errors for minority groups. Notably, large
language models also exhibit biased predictions towards certain genders or races, as indicated by
Cheng et al. (2021). Furthermore, the severity of biased predictions and fairness concerns related to
deployed models are extensively explored across various tasks Zemel et al. (2013); Noble (2018);
Bolukbasi et al. (2016). In this paper, we examine the inherent label bias in GCD, representing the
initial exploration of this issue.

Out-of-distribution Detection. In the realm of out-of-distribution (OOD) detection, the objective is
to identify samples or data points that originate from a distribution distinct from the one on which the
model was trained, encompassing both semantic and domain distributions Yang et al. (2021). The
simplest method in this area involves utilizing the predicted softmax class probability to detect OOD
samples Hendrycks & Gimpel (2017). ODIN Liang et al. (2018) further enhances this approach by
introducing temperature scaling and input pre-processing. Additionally, Bendale & Boult (2016)
proposes an alternative approach by calculating the score for an unknown class using a weighted
average of all other classes. OOD detection has been applied in various open-set tasks, such as
open-set semi-supervised learning Yu et al. (2020) and universal domain adaptation Saito & Saenko
(2021), where it is utilized to select in-distribution data during training. In contrast, our focus lies
in the exploration of semantic shift detection considering the specific challenges of GCD. Open-
Con Sun & Li (2022) has attempted to explore the semantic shift for open-world semi-supervised
learning. However, its reliance on a predefined distance threshold to rigidly distinguish inliers and
outliers leads to suboptimal accuracy. In contrast, our method takes a distinct approach by avoiding
a rigid separation. We subtly utilize the predicted OOD score by our model as a guiding factor for
debiased learning, further enabling a curriculum learning scheme.
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3 PRELIMINARIES

3.1 PROBLEM STATEMENT

Generalized category discovery (GCD) aims to learn a model that can not only correctly classify
the unlabelled samples of known categories but also cluster those of unknown categories. Given an
unlabelled dataset Du = {(xu

i , y
u
i )} ∈ X × Yu and a labelled dataset Dl = {(xl

i, y
l
i)} ∈ X × Yl,

where Yu and Yl are their label sets respectively. The unlabelled dataset contains samples from both
known and unknown categories, i.e., Yl ⊂ Yu. The number of labelled categories is M = |Yl|. We
assume the number of categories K = |Yl ∪ Yu| to be known following previous works Han et al.
(2021); Wen et al. (2023); Vaze et al. (2023). When it is unknown, methods like Han et al. (2019);
Vaze et al. (2022b) can be applied to provide a reliable estimation.

3.2 BASELINE

Wen et al. (2023) introduces a robust parametric GCD baseline, which has been widely adopted
in the field ever since Vaze et al. (2023); Wang et al. (2024). It employs a parametric classifier,
implemented in a self-distillation manner Caron et al. (2021). The classifier is randomly initialized
with K normalized category prototypes C = {c1, ..., cK}. For the randomly augmented view of an
image xi and its corresponding normalized hidden feature vector hi = ϕ(xi)/||ϕ(xi)||, the output
probability for the kth category is given by:

pi
(k) =

exp(hi · ck/τs)∑K
j=1 exp(hi · cj/τs)

, (1)

where τs is the scaling temperature for this ‘student’ view. The soft label qi is produced by the
‘teacher’ view with a sharper temperature τt using another augmented view in the same fashion.
The self-distillation loss of the two views is then simply calculated following the cross-entropy loss
ℓce(q

′,p) = −
∑K

j=1 q
′(j)log p(j). Given a mini-batch B containing both labelled samples Bl and

unlabelled images Bu, the self-distillation loss is calculated using all the samples in the mini-batch:

Lu
cls =

1

|B|
∑
i∈B

ℓce(q
′
i,pi)− ξH(p), (2)

where p = 1
2|B|

∑
i∈B(pi +p′

i) denotes the mean prediction within a batch and its entropy H(p) =

−
∑K

j=1 p
(j)log p(j) weighted by ξ. For the labelled samples, the supervised classification loss is

written as Ls
cls = 1

|Bl|
∑

i∈Bl
ℓce(pi,yi), where yi represents the one-hot vector corresponding to

the ground-truth label yi. The whole classification objective is Lcls = (1 − λgcdb )Lu
cls + λgcdb Ls

cls.
Combining with the representation learning loss Lrep adopted from Vaze et al. (2022b), the overall
training objective becomes:

Lgcd = Lcls + Lrep. (3)

Through training with Lgcd on both Dl and Du, the classifier can directly predict the labels for
unlabelled samples after training.

4 DEBIASED LEARNING WITH DISTRIBUTION-GUIDANCE FOR GCD

In this section, we present our Debiased Learning with Distribution-Guidance (D2G) framework
for GCD (see Fig. 2). First, in Sec. 4.1, we present the semantic distribution learning on the GCD
task. Next, in Sec. 4.2, we demonstrate the training paradigm of the debiased classifier. Finally, we
describe the joint training and inference process of our full framework in Sec. 4.3.

4.1 LEARNING SEMANTIC DISTRIBUTION

OOD detection methods have been employed in tasks like universal domain adaptation Saito &
Saenko (2021) and open-set semi-supervised learning Yu et al. (2020), obtaining improved perfor-
mance. In these tasks, the identified OOD samples are treated as a single background class to avoid
affecting the recognition of unlabelled samples from the labelled classes, and the distribution shifts
can be of any type. In GCD, we are particularly interested in identifying the semantic shifts. The
instances from the labelled classes are considered in-distribution (ID) samples, while the instances
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Figure 2: Debiased Learning with Distribution-Guidance (D2G) framework. Our model employs
a Siamese architecture to handle samples through two augmented image views. Raw features in
the upper branch undergo nonlinear transformation using a MLP, followed by normalization into
a feature space for semantic distribution learning employing a one-vs-all (OVA) classifier. In the
lower branch, the GCD classifier is trained on normalized features. Predictions from both branches
collectively contribute to the training of the debiased classifier. As D2G aligns with prior work in
the representation learning branch, it’s not explicitly depicted here.

from the novel classes are considered OOD samples. However, the potential of effectively introduc-
ing OOD techniques for GCD remains under-explored. An intuitive approach for OOD detection is
to use the self-entropy of the GCD classifier. In common practice, the maximum score or logit from
a closed-set classifier can serve as a good indicator of OOD Vaze et al. (2022a). However, this is
not suitable for the GCD classifier, which contains an important mean entropy regularization term in
the loss function to prevent biased predictions towards known classes. Nevertheless, we find that it
also results in the classifier’s predictions on known categories being less confident, thereby degrad-
ing the OOD detection performance. Moreover, self-entropy-based OOD methods need to manually
establish a threshold Geng et al. (2020) for rejecting “unknown” samples, which relies on validation
or a pre-defined ratio of “unknown” samples, making them impractical for the GCD task where we
do not have such validation samples. One-vs-all (OVA) classifier Saito & Saenko (2021), which has
consistently shown promise in the literature Saito et al. (2021); Fan et al. (2023); Li et al. (2023),
can be a more suitable option. Moreover, in the context of OOD, the objective is not to differentiate
between multiple distinct unknown categories, as we do in GCD; rather, we aim to distinguish all
unknown samples from the known classes, effectively framing this as a binary classification prob-
lem. This need prompted us to introduce a different feature space that is better suited for this task.
Therefore, as depicted in Fig. 2, we introduce an additional multi-layer perceptron (MLP) projection
network ρs, to project raw features into another embedding space, followed by ℓ2-normalization to
attain the embedding space for distribution discrimination. Different from the prior works applying
OOD in the magnitude-aware feature space for other tasks Yu et al. (2020); Saito et al. (2021); Li
et al. (2023), we empirically found that the ℓ2-normalized feature space aligns more seamlessly with
the DINO pre-trained weights in GCD. Subsequently, we deviseM ℓ2-normalized binary classifiers,
denoted as χ = {χ1, χ2, ..., χM}, for semantic OOD detection in GCD.

Given the augmented view xi of an image, its corresponding ℓ2-normalized feature in the semantic
distribution feature space is denoted as fi = ρs(ϕ(xi))/||ρs(ϕ(xi))||. Subsequently, the output of
the k-th binary classifier is oi,k = softmax(χk(fi)), where oi,k = (o+i,k, o

−
i,k) and o+i,k + o−i,k = 1.

For labelled samples, a multi-binary cross-entropy loss with a hard-negative sampling strategy Saito
et al. (2021) is employed:

Ls
sdl =

1

|Bl|
∑
i∈Bl

(− log(o+i,yi
)− min

k ̸=yi

log(o−i,k)), (4)

where yi represents the ground-truth category label of the sample xi. For unlabelled samples, an en-
tropy minimization technique Saito & Saenko (2021) is applied to improve low-density separation:
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Lu
sdl = − 1

Bu

∑
i∈Bu

M∑
j=1

(o+i,j log(o
+
i,j) + o−i,k log(o

−
i,k)), (5)

where Bu denotes the unlabelled subset in current mini-batch. The loss function for the semantic
distribution learning is defined as:

Lsdl = Ls
sdl + Lu

sdl. (6)

By optimizing Lsdl, our detector distinctly segregates the feature distributions between known and
unknown categories. Additionally, it generates a predicted score based on the maximum output from
all M binary classifiers, denoted as:

si = o−i,yp
, yp = argmax

j
o+i,j . (7)

This score will serve as a crucial cue for the debiased learning to be introduced next.

4.2 AUXILIARY DEBIASED LEARNING

As depicted in Fig. 2, the raw features are normalized to the clustering feature space in the lower
branch, wherein novel categories are discovered. In order to minimize the unintended negative im-
pact of biased labels while maintaining the basic probability constraints Assran et al. (2022) and
consistency regularization Caron et al. (2021) in the GCD classifier, we propose an auxiliary debi-
ased learning mechanism. Specifically, a parallel debiased classifier ψs initialized with K normal-
ized prototypes Ca = {ca1 , ..., caK}, is trained in the same embedding space using debiased labels.
Note that in our experiment, we only finetune the last two transformer blocks of the DINO Caron
et al. (2021) pre-trained ViT backbone. The k-th softmax score of sample xi is given by:

pa
i
(k) =

exp(hi · cak/τa)∑K
j=1 exp(hi · caj /τa)

, (8)

where τa is the scaling temperature. The maximum classification score has demonstrated promising
performance in several semi-supervised learning methods and we find it also a good indicator of
sample quality in the context of GCD task. For an augmented view xi and its GCD classifier
prediction pi, a debiasing threshold τ is set on the max(pi), with only samples surpassing τ being
utilized to train the debiased classifier, expressed as 1(max(pi) > τ). Additionally, given that
the semantic distribution detector and the GCD classifier are learned in different feature spaces and
paradigms, it is essential to ensure the alignment of their predictions. Consequently, we introduce a
function to indicate the task consistency of these two tasks, defined as:

F(ŷi, si) = 1(ŷi ∈ Yu ∧ si > 0.5) ∨ 1(ŷi ∈ Yl ∧ si < 0.5) (9)

where ŷi = argmax(pi) represents the predicted category index by the GCD classifier, and ŷi

denotes its corresponding one-hot vector. This function aims to selectively filter out samples with
identical distribution predictions across the two tasks.

Furthermore, as previously stated, given the inclusion of both known (in-distribution) and unknown
(out-of-distribution) samples in the unlabelled data, it is imperative to devise a learning strategy
based on semantic distribution information. With the training progresses, the semantic OOD scores
gradually approach the two extremes (i.e., 0 and 1). The score of the unknown class sample steadily
increases to 1, while the score of the known class gradually decreases to 0. Prior techniques Saito
et al. (2021); Li et al. (2023) simply employ a threshold to determine whether the sample belongs
to the known or unknown. Such a naı̈ve method is unreliable and may introduce many noises to
the model training for GCD. In our approach, we prioritize samples with distinct distributions for
self-training, aligning with the principles of curriculum learning. To establish a consistent metric for
assessing sample discriminability, we introduce a normalized distribution certainty score:

di = |2× si − 1|, (10)

which approaches the value 0 for ambiguous samples and the value 1 for certain samples. This
score, to a certain extent, indicates the learning status of samples and can serve as a crucial cue
for our debiased classifier. Therefore, the auxiliary debiased learning loss for unlabelled samples is
written as:

Lu
adl =

1

Bu

∑
i∈Bu

1(max(pi) > τ)×F(ŷi, si)× di × ℓce(p
a
i , ŷi). (11)
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Algorithm 1 End-to-end Training Algorithm for D2G.
Input: Set of labelled data Dl = {(xl

i, y
l
i)}, set of unlabelled data Du = {(xu

i , y
u
i )}. Data aug-

mentation function A. Model parameters w, learning rate η, epoch Emax, iteration Imax, trade-off
parameters, λsdl, λadl;
for Epoch = 1 to Emax do

for Iteration = 1 to Imax do
Sample labelled data Bl, unlabelled data Bu; i ∈ Bu

Compute model prediction pi, pa
i , si; loss function Lgcd, Lsdl // Eq.3,6,8

Compute debiased label ŷi; task consistency F(ŷi, si) // Eq.9
Compute loss function Ls

adl, Lu
adl, Ladl // Eq.11,12,13

Compute loss function Lall = Lgcd + λsdlLsdl + λadlLadl

Update model parameters w = w − η▽w Lall

end
end
Output: Model parameter w.

In this manner, the training of the debiased classifier transforms into a curriculum learning process,
where easily identifiable samples that are clearly semantic in-distribution or out-of-distribution are
given higher priority for learning. Moreover, our debiased classifier also retains the prior knowledge
from the labelled data. For the labelled samples, it’s is simply trained with the cross-entropy loss:

Ls
adl =

1

Bl

∑
i∈Bl

ℓce(p
a
i ,yi). (12)

Finally, the overall training loss for the debiased classifier is:

Ladl = Ls
adl + Lu

adl. (13)

In this manner, all the samples are trained using one-hot hard labels, irrespective of their belongings
to known or unknown categories. Operating within the same feature space, our debiased classi-
fier collaborates closely with the GCD classifier, thereby facilitating the joint optimization of the
clustering feature space.

4.3 LEARNING AND INFERENCE FRAMEWORK

Based on the baseline GCD classifier, our framework is designed to be trained in a multi-task
manner. Different from previous approaches in the open-set literature Yu et al. (2020), our D2G
framework employs a one-stage training process, eliminating the necessity for task-specific warm-
up phases. Consequently, the three tasks can be jointly trained end-to-end with the overall loss:

Lall = Lgcd + λsdlLsdl + λadlLadl, (14)
where λsdl and λadl denote the loss weights for the semantic distribution detector and debiased
classifier, respectively. The complete training pipeline of the framework is illustrated in Algorithm 1.

Throughout the joint training process, the three branches are collectively optimized in an end-to-
end manner. During inference, only the GCD classifier is retained. This indicates that our method
does not impose any additional computational overhead compared to the baseline approach during
inference, further emphasizing its simplicity and efficiency.

5 EXPERIMENTS

In this section, we present a comprehensive evaluation of the proposed D2G framework and further
perform meticulous ablation studies to showcase the effectiveness of its individual components.
More results and analysis can be found in the Appendix.

5.1 EXPERIMENTAL SETUP

Datasets. We conduct a comprehensive evaluation of our method across diverse benchmarks, en-
compassing the generic image recognition benchmark (CIFAR-10/100 Krizhevsky et al. (2009),
ImageNet-100 Deng et al. (2009)), the Semantic Shift Benchmark (SSB) Vaze et al. (2022c) com-
prising fine-grained datasets CUB Wah et al. (2011), Stanford Cars Krause et al. (2013), and FGVC-
Aircraft Maji et al. (2013), along with the challenging ImageNet-1K Deng et al. (2009). For each
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Table 2: Comparison of state-of-the-art GCD methods on SSB Vaze et al. (2022c) benchmark.
Results are reported in ACC across the ‘All’, ‘Old’ and ‘New’ categories.

CUB Stanford Cars FGVC-Aircraft Average

Method All Old New All Old New All Old New All
k-means MacQueen et al. (1967) 34.3 38.9 32.1 12.8 10.6 13.8 16.0 14.4 16.8 21.1
RankStats+ Han et al. (2021) 33.3 51.6 24.2 28.3 61.8 12.1 26.9 36.4 22.2 29.5
UNO+ Fini et al. (2021) 35.1 49.0 28.1 35.5 70.5 18.6 40.3 56.4 32.2 37.0
ORCA Cao et al. (2022) 35.3 45.6 30.2 23.5 50.1 10.7 22.0 31.8 17.1 26.9
GCD Vaze et al. (2022b) 51.3 56.6 48.7 39.0 57.6 29.9 45.0 41.1 46.9 45.1
XCon Fei et al. (2022) 52.1 54.3 51.0 40.5 58.8 31.7 47.7 44.4 49.4 46.8
OpenCon Sun & Li (2022) 54.7 63.8 54.7 49.1 78.6 32.7 - - - -
PromptCAL Zhang et al. (2023) 62.9 64.4 62.1 50.2 70.1 40.6 52.2 52.2 52.3 55.1
DCCL Pu et al. (2023) 63.5 60.8 64.9 43.1 55.7 36.2 - - - -
GPC Zhao et al. (2023) 52.0 55.5 47.5 38.2 58.9 27.4 43.3 40.7 44.8 44.5
SimGCD Wen et al. (2023) 60.3 65.6 57.7 53.8 71.9 45.0 54.2 59.1 51.8 56.1
µGCD Vaze et al. (2023) 65.7 68.0 64.6 56.5 68.1 50.9 53.8 55.4 53.0 58.7
InfoSieve Rastegar et al. (2023) 69.4 77.9 65.2 55.7 74.8 46.4 56.3 63.7 52.5 60.5
CiPR Hao et al. (2024) 57.1 58.7 55.6 47.0 61.5 40.1 - - - -
SPTNet Wang et al. (2024) 65.8 68.8 65.1 59.0 79.2 49.3 59.3 61.8 58.1 61.4
D2G(ours) 66.3 71.8 63.5 65.3 81.6 57.4 61.7 63.9 60.6 64.4

dataset, we adhere to the data split scheme detailed in Vaze et al. (2022b). The method involves
sampling a subset of all classes as the known (‘Old’) classes Yl. Subsequently, 50% of the images
from these known classes are utilized to construct Dl, while the remaining images are designated as
the unlabelled data Du. The statistics can be seen in Tab. 1.

Table 1: Overview of dataset, including the classes in the la-
belled and unlabelled sets (|Yl|, |Yu|) and counts of images
(|Dl|, |Du|). ‘FG’ denotes fine-grained.

Dataset FG |Dl| |Yl| |Du| |Yu|
CIFAR-10 Krizhevsky et al. (2009) ✗ 12.5K 5 37.5K 10
CIFAR-100 Krizhevsky et al. (2009) ✗ 20.0K 80 30.0K 100
ImageNet-100 Deng et al. (2009) ✗ 31.9K 50 95.3K 100
CUB Wah et al. (2011) ✓ 1.5K 100 4.5K 200
Stanford Cars Krause et al. (2013) ✓ 2.0K 98 6.1K 196
FGVC-Aircraft Maji et al. (2013) ✓ 1.7K 50 5.0K 100
ImageNet-1K Deng et al. (2009) ✗ 321K 500 960K 1000

Evaluation metrics. We assess the
GCD performance using the cluster-
ing accuracy (ACC) in accordance
with established conventions Vaze
et al. (2022b). For evaluation, the
ACC on Dl is computed as follows,
given the ground truth yi and the pre-
dicted labels ŷi:

ACC =
1

|Du|

|Du|∑
i=1

1(yi = h(ŷi)), (15)

where h represents the optimal per-
mutation that aligns the predicted
cluster assignments with the ground-truth class labels. ACC for ‘All’ classes, ‘Old’ classes and
‘New’ classes are reported for comprehensive assessment.

Implementation details. Following previous attempts in GCD Vaze et al. (2022b); Wen et al.
(2023), our model is structured with a ViT-B/16 Dosovitskiy et al. (2021) backbone pre-trained using
DINO Caron et al. (2021), and the feature space centers around the 768-dimensional classification
token. The projection networks for representation learning and semantic distribution detection com-
prise three-layer and five-layer MLPs, respectively. The model is trained with a batch size of 128,
initiating with an initial learning rate of 10−1 which decays to 10−4 using a cosine schedule over
200 epochs. Notably, the loss weights λsdl and λadl are set to 0.01 and 1.0, while the loss balancing
weight λgcdb is assigned to 0.35 following Wen et al. (2023). Regarding the temperature parameters,
the initial temperature τt is established at 0.07, subsequently warmed up to 0.04 employing a cosine
schedule during the first 30 epochs, whereas the other temperatures are set to 0.1.

5.2 BENCHMARK RESULTS

We present benchmark results of our method and compare it with state-of-the-art techniques in gen-
eralized category discovery (including ORCA Cao et al. (2022), GCD Vaze et al. (2022b), XCon Fei
et al. (2022), OpenCon Sun & Li (2022), PromptCAL Zhang et al. (2023), DCCL Pu et al. (2023),
GPC Zhao et al. (2023), CiPR Hao et al. (2024), SimGCD Wen et al. (2023), µGCD Vaze et al.
(2023), InfoSieve Rastegar et al. (2023), and SPTNet Wang et al. (2024)), as well as robust base-
lines derived from novel category discovery (RankStats+Han et al. (2021), UNO+Fini et al. (2021),
and k-means MacQueen et al. (1967)). All methods are based on the DINO Caron et al. (2021) pre-
trained backbone. This comparative evaluation encompasses performance on the fine-grained SSB

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Comparison of state-of-the-art GCD methods on generic datasets. It includes CIFAR-
10 Krizhevsky et al. (2009), CIFAR-100 Krizhevsky et al. (2009), ImageNet-100 Deng et al. (2009),
and ImageNet-1K Deng et al. (2009) dataset.

CIFAR-10 CIFAR-100 ImageNet-100 ImageNet-1K

Method All Old New All Old New All Old New All Old New
k-means MacQueen et al. (1967) 83.6 85.7 82.5 52.0 52.2 50.8 72.7 75.5 71.3 - - -
RankStats+ Han et al. (2021) 46.8 19.2 60.5 58.2 77.6 19.3 37.1 61.6 24.8 - - -
UNO+ Fini et al. (2021) 68.6 98.3 53.8 69.5 80.6 47.2 70.3 95.0 57.9 - - -
ORCA Cao et al. (2022) 69.0 77.4 52.0 73.5 92.6 63.9 81.8 86.2 79.6 - - -
GCD Vaze et al. (2022b) 91.5 97.9 88.2 73.0 76.2 66.5 74.1 89.8 66.3 52.5 72.5 42.2
XCon Fei et al. (2022) 96.0 97.3 95.4 74.2 81.2 60.3 77.6 93.5 69.7 - - -
OpenCon Sun & Li (2022) - - - - - - 84.0 93.8 81.2 - - -
PromptCAL Zhang et al. (2023) 97.9 96.6 98.5 81.2 84.2 75.3 83.1 92.7 78.3 - - -
DCCL Pu et al. (2023) 96.3 96.5 96.9 75.3 76.8 70.2 80.5 90.5 76.2 - - -
GPC Zhao et al. (2023) 90.6 97.6 87.0 75.4 84.6 60.1 75.3 93.4 66.7 - - -
SimGCD Wen et al. (2023) 97.1 95.1 98.1 80.1 81.2 77.8 83.0 93.1 77.9 57.1 77.3 46.9
InfoSieve Rastegar et al. (2023) 94.8 97.7 93.4 78.3 82.2 70.5 80.5 93.8 73.8 - - -
CiPR Hao et al. (2024) 97.7 97.5 97.7 81.5 82.4 79.7 80.5 84.9 78.3 - - -
SPTNet Wang et al. (2024) 97.3 95.0 98.6 81.3 84.3 75.6 85.4 93.2 81.4 - - -
D2G(ours) 97.2 94.8 98.4 83.0 84.6 79.9 85.9 94.3 81.6 65.0 82.0 56.5

Table 4: Ablations. The results regarding the different components in our framework on Stanford
Cars Krause et al. (2013). ACC of ‘All’, ‘Old’ and ‘New’ categories are listed.

Debiased
Learning

Auxiliary
Classifier

Semantic Dist.
Learning

Dist.
Guidance

Stanford Cars

All Old New

(1) ✗ ✗ ✗ ✗ 53.8 71.9 45.0
(2) ✓ ✗ ✗ ✗ 51.3 72.8 40.9
(3) ✓ ✓ ✗ ✗ 58.5 78.7 48.8
(4) ✗ ✗ ✓ ✗ 56.5 73.3 48.3
(5) ✓ ✓ ✓ ✗ 60.7 78.1 52.3
(6) ✓ ✓ ✓ ✓ 65.3 81.6 57.4

benchmark Vaze et al. (2022c) and generic image recognition datasets Krizhevsky et al. (2009);
Deng et al. (2009), as shown in Tab. 2 and Tab. 9.

Results on SSB. As shown in Tab. 2, D2G demonstrates superior performance across all datasets,
achieving an average ACC of 64.4 on ‘All’ categories, surpassing the second-best by 3%. It main-
tains the best on both Stanford Cars and FGVC-Aircraft, while ranking second on CUB, where it
is outperformed only by InfoSieve Rastegar et al. (2023), a hierarchical encoding method specifi-
cally designed for fine-grained GCD. In contrast, D2G aims for broader improvements across both
generic and fine-grained datasets. These results reveal D2G’s exceptional ability to uncover new
categories, while also showcasing remarkable performance in recognizing known categories.

Results on generic datasets. In Tab. 9, we report results on three widely used generic datasets
(CIFAR-10, CIFAR-100 and ImageNet-100) in GCD, as well as the challenging ImageNet-1K. Our
method attains superior performance in terms of ACC across ‘All’ categories, establishing the new
state-of-the-art, except CIFAR-10, on which the performance is nearly saturated (over 97% ACC)
for our method and other most competitive methods. On the challenging ImageNet-1K, containing
1, 000 classes with diverse images, D2G also establishes the new state-of-the-art, surpassing the
previous best-performing method by 7.9%. These results validate the effectiveness and robustness
of our method for generalized category discovery on generic datasets.

5.3 ANALYSIS

In this section, we provide ablations regarding the key components within our framework. Besides,
we study the impact of the debiasing threshold τ and labelled data.

Framework components. Starting with the baseline method trained using Lgcd (Row (1)), we
gradually incorporate our proposed techniques on the Stanford Cars dataset, as depicted in Tab. 4.
An intuitive approach is to apply debiased learning to the original classifier as in Row (2). However,
this still produces a biased supervision signal because it relies on the original GCD loss for that
classifier. It turns out that such a naı̈ve approach may even hurt the performance. Rows (1) and
(2) indicate that directly applying debiased learning to the GCD classifier can lead to a decrease in
performance, particularly affecting novel categories. The introduction of an auxiliary classifier in

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Row (3) demonstrates significant performance enhancements. Similarly, our semantic distribution
learning alone results in a 2.7% improvement across all categories in Row (4). Row (5) highlights
that co-training the debiased classifier and semantic distribution detector further boosts performance.
Notably, guiding the debiased learning with semantic distribution certainty and task consistency
function yields a notable 4.6% performance increase in Row (6).

Table 5: Experimental results on
distillation data by using different
loss functions.

Ls
adl Lu

adl
FGVC-Aircraft

All Old New

54.2 59.1 51.8
✓ 53.1 60.5 49.4

✓ 57.9 60.1 56.9
✓ ✓ 61.7 63.9 60.6

Loss function. In addition, we explore the impact of the data
and the respective loss functions employed during the training
of debiased classifier, denoted as Ls

adl and Lu
adl, targeting the

labelled and unlabelled datasets, respectively. These experi-
ments are undertaken on the FGVC-Aircraft Maji et al. (2013)
using various subset combinations. Solely training with Ls

adl
introduces bias towards known categories, leading to a notable
performance decline. Conversely, exclusive training with Lu

adl
fails to reach optimal performance levels, underscoring the es-
sential role of knowledge derived from labelled data. These
outcomes demonstrate the vital significance of both Ls

adl and
Lu
adl in optimizing the debiased classifier.

Table 6: Experimental results regarding thresh-
old τ on the unlabelled set and validation set of
FGVC-Aircraft Maji et al. (2013) dataset.

Unlabelled Set Validation Set

τ All Old New All Old New

0.9 59.4 64.7 56.7 58.9 61.1 56.8
0.85 61.7 63.9 60.6 61.1 62.0 60.3
0.8 60.7 61.5 60.3 60.6 61.6 59.6

Debiasing threshold τ . Similar to self-training
approaches Sohn et al. (2020); Zhang et al.
(2021), the selection of the threshold for gen-
erating pseudo-labels also plays a crucial role
in our approach. Consistent with the methods
outlined in Wen et al. (2023) and Vaze et al.
(2022b), we calibrate the threshold based on its
performance on a separate validation set of the
labelled data. Detailed results regarding differ-
ent thresholds on the FGVC-Aircraft Wah et al.
(2011) dataset, covering performance on both the unlabelled training dataset and the validation set,
are presented. As shown in Tab. 6, the threshold is incrementally adjusted in intervals of 0.05. No-
tably, the performance trends for both datasets align, with optimal performance achieved when the
threshold is set to 0.85.

5.4 VISUALIZATION RESULTS

Baseline Ours

Figure 3: T-SNE Van der Maaten & Hinton (2008)
visualization on the category discovery features of
20 classes randomly sampled from the CIFAR-
100 Krizhevsky et al. (2009) dataset.

Additionally, we explore the visual repre-
sentation of the baseline and our method
using t-SNE Van der Maaten & Hinton
(2008). Specifically, we randomly select
a set of 20 classes, including 10 from the
‘Old’ categories and 10 from the ‘New’
categories. The clearly distinguishable
clusters depicted in Fig. 3 indicate that the
features obtained within our framework
form notably cohesive groupings com-
pared to those of the baseline. This effec-
tively demonstrates the optimization im-
pacts induced by our method on the clus-
tering feature space.

6 CONCLUSION

This paper presents D2G, a distribution-guided debiased learning framework for GCD, comprising
three primary components. Firstly, we introduce an auxiliary debiased learning mechanism by con-
currently training a parallel classifier with the GCD classifier, thereby facilitating optimization in the
GCD feature space. Secondly, a semantic distribution detector is introduced to explicitly identify
semantic shifts and implicitly enhance performance. Lastly, we propose a semantic distribution cer-
tainty score that enables a curriculum-based learning approach, promoting effective learning for both
seen and unseen classes. Despite its simplicity, D2G showcases superior performance, as evidenced
by comprehensive evaluation on seven public benchmarks.
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A IMPLEMENTATION DETAILS

We adopt the class splits of labelled (‘Old’) and unlabelled (‘New’) categories in Vaze et al. (2022b)
for generic object recognition datasets (including CIFAR-10 Krizhevsky et al. (2009) and CIFAR-
100 Krizhevsky et al. (2009)) and the fine-grained Semantic Shift Benchmark Vaze et al. (2022c)
(comprising CUB Wah et al. (2011), Stanford Cars Krause et al. (2013), and FGVC-Aircraft Maji
et al. (2013)). Specifically, for all these datasets except CIFAR-100, 50% of all classes are selected
as ‘Old’ classes (Yl), while the remaining classes are treated as ‘New’ classes (Yu\Yl). For CIFAR-
100, 80% of the classes are designated as ‘Old’ classes, while the remaining 20% as ‘New’ classes.
Furthermore, for ImageNet-1K Deng et al. (2009), which is not covered in Vaze et al. (2022b), we
follow Wen et al. (2023) to select the first 500 classes sorted by class ID as the labelled classes.
For all the datasets, 50% of the images from the labelled classes are randomly sampled to form the
labelled dataset Dl, and all remaining images are regarded as the unlabelled dataset Du. Moreover,
following Vaze et al. (2022b) and Wen et al. (2023), the model’s hyperparameters are chosen based
on its performance on a hold-out validation set, formed by the original test splits of labelled classes
in each dataset. All experiments utilize the PyTorch framework on a workstation with an Intel i7
CPU and eight Nvidia Tesla V100 GPUs. The models are trained with a batch size of 128 on a single
GPU, except for the the model on ImageNet-1K dataset, for which the training is performed with
eight GPUs.
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B RESULTS ON ADDITIONAL DATASETS

To assess the performance of the proposed method comprehensively, we conducted evaluations on
two more fine-grained datasets: Oxford-Pet Parkhi et al. (2012) and Herbarium 19 Tan et al. (2019).
Oxford-Pet is a challenging dataset featuring various species of cats and dogs with limited data.
Herbarium19, on the other hand, is a botanical research dataset encompassing diverse plant types,
known for its long-tailed distribution and fine-grained categorization. The outcomes of our experi-
ments on these datasets are detailed in Tab. 7. The results of SimGCD Wen et al. (2023) on Oxford-
Pet are obtained through the execution of the officially released code. Our D2G model consistently
demonstrates superior performance on both datasets.

Table 7: Comparison with state-of-the-art GCD methods on Herbarium19 Tan et al. (2019) and
Oxford-Pet Parkhi et al. (2012).

Oxford-Pet Herbarium19

Method All Old New All Old New
k-means MacQueen et al. (1967) 77.1 70.1 80.7 13.0 12.2 13.4
RankStats+ Han et al. (2021) - - - 27.9 55.8 12.8
UNO+ Fini et al. (2021) - - - 28.3 53.7 14.7
ORCA Cao et al. (2022) - - - 24.6 26.5 23.7
GCD Vaze et al. (2022b) 80.2 85.1 77.6 35.4 51.0 27.0
XCon Fei et al. (2022) 86.7 91.5 84.1 - - -
OpenCon Sun & Li (2022) - - - 39.3 58.9 28.6
DCCL Pu et al. (2023) 88.1 88.2 88.0 - - -
SimGCD Wen et al. (2023) 91.7 83.6 96.0 44.0 58.0 36.4
µGCD Vaze et al. (2023) - - - 45.8 61.9 37.2
InfoSieve Rastegar et al. (2023) 90.7 95.2 88.4 40.3 59.0 30.2
D2G(ours) 93.0 86.4 96.5 44.7 59.4 36.8
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C EXPERIMENTS WITH THE STRONGER DINOV2 REPRESENTATIONS

To further evaluate the robustness of the proposed method, we also evaluate the performance of D2G
utilizing the stronger DINOv2 Oquab et al. (2023) pre-trained weights. Like in Vaze et al. (2023),
in Tab. 8, we also compare our method with the k-means MacQueen et al. (1967) baseline, and
SimGCD Wen et al. (2023), µGCD Vaze et al. (2023). Our method outperforms other methods on
CUB Wah et al. (2011) and FGVC-Aircraft Maji et al. (2013) on ‘All’, ‘Old’ and ‘New’ classes con-
sistently. On Stanford Cars Krause et al. (2013), our method outperforms other methods on ‘New’
classes, while performing the second-best on ‘All’ and ‘Old’ classes. Moreover, for the average
performance of ‘All’ classes across the three datasets, D2G outperforms the SimGCD baseline by
about 6% and µGCD by about 3%. Additionally, we also evaluate our model on generic datasets
and compare it with the SimGCD baseline in Tab. 9, demonstrating consistent improvement. The
results on both fine-grained and generic datasets validate the robustness of our proposed method on
the stronger DINOv2 representations, further showcasing its effectiveness.

Table 8: Comparison with state-of-the-art GCD methods on SSB leveraging DINOv2 Oquab et al.
(2023) pre-trained weights.

CUB Stanford Cars FGVC-Aircraft Average

Method All Old New All Old New All Old New All
k-means MacQueen et al. (1967) 67.6 60.6 71.1 29.4 24.5 31.8 18.9 16.9 19.9 38.6
GCD Vaze et al. (2022b) 71.9 71.2 72.3 65.7 67.8 64.7 55.4 47.9 59.2 64.3
CiPR Hao et al. (2024) 78.3 73.4 80.8 66.7 77.0 61.8 59.2 65.0 56.3 68.1
SimGCD Wen et al. (2023) 71.5 78.1 68.3 71.5 81.9 66.6 63.9 69.9 60.9 69.0
µGCD Vaze et al. (2023) 74.0 75.9 73.1 76.1 91.0 68.9 66.3 68.7 65.1 72.1
SPTNet Wang et al. (2024) 76.3 79.5 74.6 - - - - - - -
D2G(ours) 77.5 80.8 75.8 75.4 87.7 69.5 71.9 76.0 69.8 74.9

Table 9: Comparison with state-of-the-art GCD methods on generic datasets leveraging DI-
NOv2 Oquab et al. (2023) pre-trained weights.

CIFAR-10 CIFAR-100 ImageNet-100 ImageNet-1K

Method All Old New All Old New All Old New All Old New
GCD Vaze et al. (2022b) 97.8 99.0 97.1 79.6 84.5 69.9 78.5 89.5 73.0 - - -
CiPR Hao et al. (2024) 99.0 98.7 99.2 90.3 89.0 93.1 88.2 87.6 88.5 - - -
SimGCD Wen et al. (2023) 98.7 96.7 99.7 88.5 89.2 87.2 89.9 95.5 87.1 58.0 66.9 53.2
SPTNet Wang et al. (2024) - - - - - - 90.1 96.1 87.1 - - -
D2G(ours) 98.9 97.5 99.6 90.1 90.9 88.6 93.2 97.0 91.2 71.7 86.2 64.5
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D CATEGORY DISCOVERY WITH ESTIMATED CATEGORY NUMBERS

Following the majority of the literature, we experiment mainly using the ground-truth category num-
bers. In this section, we report the results of D2G using the number of categories estimated utilizing
an off-the-shelf method Vaze et al. (2022b), to showcase the performance with the ground-truth cat-
egory numbers are not available. Tab. 10 reports the estimated numbers. We compare D2G with
SimGCD Wen et al. (2023), µGCD Vaze et al. (2023), and GCD Vaze et al. (2022b) in Tab. 11. For
both CUB Wah et al. (2011) and Stanford Cars Krause et al. (2013), despite a discrepancy of ap-
proximately 15% between the ground-truth and estimated category numbers, our method exhibits a
smaller decline in performance compared to GCD and SimGCD. The same trend is also observed on
Imagenet-100 Deng et al. (2009). D2G remains the most competitive method on ‘All’ classes using
the same estimated category numbers on all four datasets, which clearly demonstrates the robustness
and effectiveness of our proposed method.

Table 10: Estimated class numbers in the unlabelled data using method proposed in Vaze et al.
(2022b).

CUB Stanford Cars CIFAR-100 ImageNet-100

Ground-truth K 200 196 100 100
Estimated K 231 230 100 109

Table 11: Results with the estimated number of categories. The estimated class numbers in Tab. 10
are adopted for all methods.

CUB Stanford Cars CIFAR-100 ImageNet-100

Method All Old New All Old New All Old New All Old New
GCD Vaze et al. (2022b) 47.1 55.1 44.8 35.0 56.0 24.8 73.0 76.2 66.5 72.7 91.8 63.8
SimGCD Wen et al. (2023) 61.5 66.4 59.1 49.1 65.1 41.3 80.1 81.2 77.8 81.7 91.2 76.8
µGCD Vaze et al. (2023) 62.0 60.3 62.8 56.3 66.8 51.1 - - - - - -
D2G (ours) 64.5 68.5 62.5 63.3 78.6 55.8 83.0 84.6 79.9 84.9 93.3 80.7
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E EXTENSION TO INCREMENTAL GENERALIZED CATEGORY DISCOVERY

To further assess the effectiveness of D2G, we extend it to the more challenging task of Incremental
Generalized Category Discovery (IGCD) Zhao & Mac Aodha (2023). This presents a challenging
category-incremental learning scenario, wherein the objective is to construct models capable of ac-
curately classifying images from previously encountered categories while also identifying new ones.
Learning takes place over a sequence of time steps during which the model acquires new labelled and
unlabelled data, and discards old data at each iteration. Both D2G and the baseline SimGCD Wen
et al. (2023) can be expanded to this incremental learning setup by integrating them with iCaRL Re-
buffi et al. (2017). We compare these two extended methods with approaches specifically created for
IGCD, including GM Zhang et al. (2022) and the method proposed in Zhao & Mac Aodha (2023),
on the fine-grained dataset CUBWah et al. (2011) and the generic dataset CIFAR-100 Krizhevsky
et al. (2009). It can be observed from Tab. 12 that our method yields the best performance on Md

while maintaining comparable Mf with the state-of-the-art methods. Across both generic and fine-
grained datasets, D2G achieves an improvement of 2.2% to 4.8% in terms of Md and Mf . The
results demonstrate the adaptability of D2G in more challenging settings such as IGCD, thereby
further underscoring its advantages.

Table 12: Results on mixed incremental setting of IGCD Zhao & Mac Aodha (2023).
CUB CIFAR-100

Method Mf ↓ Md ↑ Mf ↓ Md ↑
GM Zhang et al. (2022) 3.6 30.6 6.8 26.7
IGCD Zhao & Mac Aodha (2023) 4.0 31.2 6.7 29.4
SimGCD Wen et al. (2023)+iCaRL 9.4 29.4 10.7 28.3
D2G+iCaRL 6.0-3.4 34.2+4.8 8.1-2.6 30.5+2.2
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F UTILIZATION RATIO OF UNLABELLED DATA

The data utilization ratio is a notable index for pseudo-labeling methods, offering clear insights into
the data efficiency. Our examination encompasses the utilization ratio of unlabelled data from both
the ‘Old’ and ‘New’ classes during the training of the debiased classifier on FGVC-Aircraft Maji
et al. (2013) and Stanford Cars Krause et al. (2013), as depicted in Fig. 4. Initially, the major-
ity of data from the unknown categories remains untapped. Subsequently, after approximately 20
epochs, samples from unknown categories start to be incorporated. The utilization ratio keeps grow-
ing, reaching a ratio of around 40% at the 100th epoch. Ultimately, more than 60% of the known
categories’ samples and nearly half of the unknown categories’ samples are utilized.
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Figure 4: Unlabelled data utilization ratios for ‘Old’ and ‘New’ classes during training on FGVC-
Aircraft Maji et al. (2013) (left) and Stanford Cars Krause et al. (2013) (right) datasets.
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G GCD CLASSIFIER vs. DEBIASED CLASSIFER

We compare the performance between the two classifiers, the GCD Classifier and the debiased clas-
sifier, in our framework. We report the ACC results across different epochs in Fig. 5 when training
on Stanford Cars Krause et al. (2013), including unlabelled data from both training and the valida-
tion splits of the original dataset. Initially, the debiased classifier exhibits bias towards the ‘Old’
classes, given that the training data primarily comprises labelled data from known categories. How-
ever, as predicted scores of the unlabelled samples, particularly those from the unknown categories,
progressively surpass the debiasing threshold, the performance on the unknown categories gradu-
ally improves and eventually matches with the labelled categories. Ultimately, upon convergence of
the model, the performance on both known and unknown categories converges to that of the GCD
classifier.

Figure 5: ACC evolution on both the ‘Old’ and ‘New’ classes of GCD Classifier and debiased
classifier during training on Stanford Cars dataset Krause et al. (2013). The top two figures depict
ACC on the unlabelled training set, while the bottom two illustrate ACC on the validation set.
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H PERFORMANCE OF THE SEMANTIC DISTRIBUTION DETECTOR

We evaluate the OOD detection performance of our semantic distribution detector in D2G, using the
threshold-free Area Under the Receiver-Operator curve (AUROC) as the evaluation metric, which
is widely used in the OOD detection literature. A comparison of the OOD performance between
training the entire framework and training solely the distribution detector is presented in Tab. 13.
A significant improvement in OOD performance is obtained by training jointly the GCD classifier
and debiased classifier. This aligns with the results presented in Tab. 4 of the main paper, which
demonstrate the mutual benefits among the three branches (tasks) in our framework. Additionally,
we visualize the distribution of the score si on the challenging SSB datasets in Fig. 6 which shows
that our method can successfully distinguish samples from ‘Old’ and ‘New’ classes in the unlabelled
data of both the training and validation splits of the original dataset.

Figure 6: Histograms of the distribution scores si for datasets in SSB Vaze et al. (2022c).

Table 13: OOD performance in terms of AUROC on unlabelled data, including CIFAR-
10 Krizhevsky et al. (2009), CIFAR-100 Krizhevsky et al. (2009), ImageNet-100 Deng et al. (2009),
CUB Wah et al. (2011), Stanford Cars Krause et al. (2013), and FGVC-Aircraft Maji et al. (2013).

CIFAR-10 CIFAR-100 ImageNet-100 CUB Stanford Cars FGVC-Aircraft

Lsdl 66.1 90.8 96.5 77.5 78.6 76.2
Lsdl+Lgcd+Ladl 97.5 94.8 99.5 86.8 89.6 86.3
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I ANALYSIS OF ATTENTION MAPS

In our D2G framework, both the backbone embedding space and the GCD classifier are optimized.
Thus, the CLS token is indirectly optimized. We can glean insights from its attention with the patch
embeddings. In Fig. 7, we visualize the attention maps from the final transformer block in the
DINO backbone Caron et al. (2021) on the three fine-grained datasets in SSB benchmark Vaze et al.
(2022c). Within this final block, a multi-head self-attention layer with 12 attention heads attends
to the input features, producing 12 attention maps between the CLS token and patch embeddings
at a resolution of 14 × 14. Following Caron et al. (2021), we compute the mean value of these
attention maps and upsample them to the image size to visualize the most prominent regions. The
visualization demonstrates that the attention maps generated by our model predominantly focus on
the object of interest, effectively ignoring spurious factors and background clutter, while those of
the DINO baseline are more scattered over the entire image.
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Figure 7: Visualization of attention maps. Our method successfully directs its attention towards
foreground objects, irrespective of whether they belong to the ‘Old’ or ‘New’ classes. The baseline
denotes the pre-trained DINO.
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J ABLATION STUDIES ON MORE DATASETS

In addition to the Stanford Cars dataset, we present ablation results on additional datasets to validate
the effectiveness of the proposed components. These include the other two datasets from the SSB
benchmark: CUB Wah et al. (2011) and FGVC-Aircraft Maji et al. (2013), as well as the generic
dataset ImageNet-100 Deng et al. (2009), detailed in Tab. 14. The results indicate that directly ap-
plying debiased learning to the original GCD classifier results in a performance decline across all
three datasets (Row (1) vs. Row (2)). In contrast, utilizing an auxiliary classifier leads to perfor-
mance improvements of 3.3%, 3.5%, and 1.7% on the three datasets, respectively, as observed in
Row (1) vs. Row (3). This underscores the importance of the auxiliary classifier in achieving effec-
tive debiased learning. Moreover, the joint training of the debiased classifier and the OOD detector
provides further enhancements (Row (3) vs. Row (5)). Lastly, the incorporation of distribution guid-
ance results in additional performance improvements. These findings align with those observed on
the Stanford Cars dataset, as demonstrated in Tab. 4.

Table 14: Ablations on more datasets, including CUB Wah et al. (2011), FGVC-Aircraft Maji et al.
(2013) and ImageNet-100 Deng et al. (2009). ACC of ‘All’, ‘Old’ and ‘New’ categories are listed.

Debiased
Learning

Auxiliary
Classifier

Semantic Dist.
Learning

Dist.
Guidance

CUB FGVC-Aircraft ImageNet-100

All Old New All Old New All Old New

(1) ✗ ✗ ✗ ✗ 60.3 65.6 57.7 54.2 59.1 51.8 83.0 93.1 77.9
(2) ✓ ✗ ✗ ✗ 58.6 72.3 51.7 53.7 62.9 49.1 82.8 94.1 77.2
(3) ✓ ✓ ✗ ✗ 63.8 69.3 61.1 57.7 59.8 56.5 84.7 94.0 80.0
(4) ✗ ✗ ✓ ✗ 61.3 69.4 57.3 56.6 64.8 52.5 83.5 92.4 78.9
(5) ✓ ✓ ✓ ✗ 64.9 70.9 61.9 59.4 64.4 56.9 85.0 93.8 80.3
(6) ✓ ✓ ✓ ✓ 66.3 71.8 63.5 61.7 63.9 60.6 85.9 94.3 81.6
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K IMPACT OF HYPERPARAMETERS

In this section, we analyze the impact of hyperparameters in our D2G framework, including the
depth of the projection network ρs, loss weights, and the number of tuned blocks.

Depth of projection network ρs. As discussed in the paper, it is essential to disentangle the OOD
and GCD feature spaces due to the differing learning objectives of these two tasks. To assess the
impact of the depth of the projection network ρs, we conduct an experiment on the SSB benchmark,
focusing on the number of layers in this MLP network. Here, a depth of 0 denotes the absence of
a projection network, meaning that the two tasks are optimized within the same feature space. As
shown in Tab. 19, incorporating a one-layer ρs results in performance improvements by 1.3%, 1.6%
and 1.1% on CUB, Stanford Cars, and FGVC-Aircraft, respectively. The average GCD performance
across all categories of D2G gradually improves as the number of MLP layers increases from 0 to
5. However, extending the MLP to 7 layers yields little to no further improvement in performance.
In our implementation, we therefore adopt a 5-layer MLP for ρs in our framework.

Loss weights λsdl and λadl. For these two loss weights, we first intuitively set the default value
based on existing literature and our hypothesis. Our rationale for selecting values for the loss weights
is as follows: For λsdl, we take inspiration from the previous literature using OVA classifier Saito
& Saenko (2021). In the paper, the model is fine-tuned with a learning rate of 10−3 , while the
learning rate in the SimGCD baseline is 0.1 (which is 100 times larger than 10−3). To achieve a
similar learning effect, as validated in Saito & Saenko (2021), we scale our λsdl value from 1.0
down to 1/100. Therefore, we set λsdl = 0.01 by default. For λadl, the weight of the debiased
classifier, we expect it to play an important role similar to that of the original GCD classifier (where
the loss weight is set to 1.0). Thus, we have defaulted this value to 1.0. After determining the
default values, we conducted experiments on the SSB benchmark regarding the two loss weights by
exploring values around the defaults. For λsdl, the range was (0.005, 0.01, 0.02). As for λadl, the
range was (0.5, 1.0, 2.0). The impact of λsdl is detailed below in Tab. 16, with λadl set to 1.0. The
impact of λadl is illustrated below in Tab. 17, with λsdl set to 0.01. The results are in line with our
hypothesis, indicating that our selected hyperparameters are indeed reasonable.

Table 15: GCD performance on SSB Vaze et al. (2022c) using different number of layers in ρs.
CUB Stanford Cars FGVC-Aircraft Average

MLP layer All Old New All Old New All Old New All
0 63.6 75.2 57.8 62.3 76.2 54.1 59.6 62.2 58.3 61.8
1 64.9 71.6 61.6 63.9 80.2 56.0 60.7 63.7 59.2 63.1
3 66.0 73.5 62.3 64.7 82.2 56.2 61.1 64.2 59.5 63.9
5 66.3 71.8 63.5 65.3 81.6 57.4 61.7 63.9 60.6 64.4
7 65.8 72.0 62.7 64.8 80.5 57.3 61.9 65.2 60.3 64.1

Table 16: GCD performance on SSB Vaze et al. (2022c) using different values of λsdl.
CUB Stanford Cars FGVC-Aircraft Average

λsdl All Old New All Old New All Old New All
0.02 65.5 73.2 61.6 64.3 79.2 57.1 60.6 63.5 59.1 63.5
0.01 66.3 71.8 63.5 65.3 81.6 57.4 61.7 63.9 60.6 64.4

0.005 65.8 72.4 62.5 64.9 81.2 57.0 62.1 65.4 60.3 64.3

Table 17: GCD performance on SSB Vaze et al. (2022c) using different values of λadl.
CUB Stanford Cars FGVC-Aircraft Average

λadl All Old New All Old New All Old New All
0.5 64.3 72.2 60.3 63.6 79.3 56.1 60.2 63.5 58.6 62.7
1.0 66.3 71.8 63.5 65.3 81.6 57.4 61.7 63.9 60.6 64.4
2.0 65.5 70.8 62.8 64.1 83.0 55.0 60.4 63.5 58.8 63.3
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Number of tuned blocks. In the baseline configuration Wen et al. (2023), only the last transformer
block of the ViT-B/16 backbone is fine-tuned during training. In contrast, our framework incorpo-
rates additional tasks, including OOD detection and debiased learning, which would require differ-
ent embedding spaces, thus calling for the need of more trainable parameters. In our experiments
on both fine-grained and generic datasets, we explore tuning the last two blocks, and we note that
tuning more than two blocks may lead to instability during training. Furthermore, we observe that
increasing the number of tuned blocks can improve performance on specific datasets, particularly
those that are fine-grained. As shown in Table 18, tuning one additional transformer block leads to
a performance improvement of over 1% on the fine-grained datasets. In contrast, the performance
enhancement on the generic datasets is more modest, at no more than 0.6%. Similar strategies have
also been employed in previous methods, such as Infosieve Rastegar et al. (2023).

Table 18: GCD performance of SimGCD and D2G by tuning different numbers of transformer
blocks.

CUB Stanford Cars FGVC-Aircraft ImageNet-100 CIFAR100

Method tuned blocks All Old New All Old New All Old New All Old New All Old New
SimGCD 1 60.3 65.6 57.7 53.8 71.9 45.0 54.2 59.1 51.8 83.0 93.1 77.9 80.1 81.2 77.8
SimGCD 2 60.8 65.8 58.4 53.6 67.6 49.8 52.8 56.8 50.8 83.2 92.9 78.3 79.4 80.1 77.3
D2G 1 65.1 70.9 62.2 63.0 80.2 54.7 60.4 65.0 58.1 85.7 94.0 81.5 82.4 83.6 79.5
D2G 2 66.3 71.8 63.5 65.3 81.6 57.4 61.7 63.9 60.6 85.9 94.3 81.6 83.0 84.6 79.9
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L STABILITY ANALYSIS

Following the baseline established in Wen et al. (2023), we also assess the stability of the proposed
method across all datasets utilized in our experiments. Tab. ?? reports the average results over three
independent runs together with the standard deviations. Compared to the baseline results reported
in Wen et al. (2023), we observe that the variance is even smaller, despite achieving significantly
higher performance.

Table 19: Complete results of D2G and SimGCD over three independent runs.
SimGCD D2G

Dataset All Old New All Old New
CUB 60.3±0.1 65.6±0.9 57.7±0.4 66.4±0.4 72.9±0.6 63.2±0.4
Stanford Cars 53.8±2.2 71.9±1.7 45.0±2.4 65.2±0.7 81.7±1.2 57.3±0.6
FGVC-Aircraft 54.2±1.9 59.1±1.2 51.8±2.3 61.7±0.5 65.9±1.2 59.5±1.1
CIFAR-10 97.1±0.0 95.1±0.1 98.1±0.1 97.3±0.1 95.0±0.2 98.4±0.1
CIFAR-100 80.1±0.9 81.2±0.4 77.8±2.0 83.1±0.7 84.7±0.7 80.0±0.9
ImageNet-100 83.0±1.2 93.1±0.2 77.9±1.9 86.1±0.6 94.5±0.5 81.8±0.6
ImageNet-1K 57.1±0.1 77.3±0.1 46.9±0.2 64.9±0.3 82.1±0.2 56.4±0.4
Oxford-Pet - - - 93.2±0.2 86.3±0.1 96.8±0.3
Herbarium19 44.0±0.4 58.0±0.4 36.4±0.8 44.9±0.3 59.3±0.3 37.1±0.5
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M PREDICTION ERROR ANALYSIS

In this section, we provide quantitative analysis on the improvements brought by our method from
the perspective of prediction errors. Particularly, we examine the baseline model’s prediction by
categorizing the errors into four types based on the relationship between the predicted and ground-
truth classes: ‘True Old’, ‘False New’, ‘False Old’, and ‘True New’. For example, ‘True New’
refers to incorrectly predicting a ‘New’ class sample to another ‘New’ class, while ‘False Old’
indicates incorrectly predicting a ‘New’ class sample as some ‘Old’ class. From this perspective, our
debiased learning method primarily aims to mitigate the label bias between ‘Old’ and ‘New’ classes,
thereby reducing the likelihood of ‘New’ class samples being predicted as ‘Old’. Consequently, this
reduction in bias leads to a decrease in ‘False Old’ predictions while reducing the errors of all the
other three types.

In Fig. 8, we present the ratios of the four types of prediction errors as a proportion of the total num-
ber of samples in the new or old categories across three datasets in the SSB benchmark. As shown
in Fig. 8(a), the error distributions vary significantly across datasets. Notably, the Stanford Cars
dataset exhibits the highest number (16.5%) of ‘False Old’ samples, explaining why our method
demonstrates the most substantial performance improvement on this dataset. In contrast, the CUB
dataset shows the fewest (8.0%) ‘False Old’ samples, indicating relatively limited potential for per-
formance enhancement. Comparing Fig. 8(a) and Fig. 8(b), we can see a significant reduction on
the ratio of ‘False Old’ as well as other three types of errors on all the three datasets.
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Figure 8: Ratios of the four types of prediction errors in GCD on SSB benchmark using SimGCD
and D2G with DINO Caron et al. (2021) pretrained backbone. ‘Pred’ and ‘GT’ refer to the predicted
and ground-truth results, respectively.
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