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Abstract001

Existing supervised fine-tuning (SFT) ap-002
proaches to enhance the mathematical reason-003
ing of large language models (LLMs) rely ei-004
ther on Chain-of-Thought (CoT) for generaliz-005
ability or Tool-Integrated Reasoning (TIR) for006
precise computation. While efforts have been007
made to combine these methods, they primarily008
rely on post-selection or predefined strategies,009
leaving an open question: Could we endow010
LLMs with the ability to adaptively determine011
whether to use CoT or TIR based on the math012
problems at hand? In this work, we propose013
TATA (Teaching LLMs According to Their014
Aptitude), an adaptive framework that enables015
LLMs to personalize their reasoning strategy016
for different problems spontaneously, aligning017
it with their intrinsic aptitude. TATA incor-018
porates base-LLM-aware data selection during019
SFT to tailor training data to the model’s unique020
abilities, which equips LLMs to autonomously021
determine and apply the effective reasoning022
strategy at test time. Empirical results demon-023
strate that TATA effectively combines the com-024
plementary strengths of CoT and TIR, achiev-025
ing superior or comparable performance with026
improved inference efficiency compared to ex-027
isting methods. Further analysis underscores028
the critical role of aptitude-aware data selection029
in enabling LLMs to make effective and adap-030
tive reasoning decisions and align reasoning031
strategies with model capabilities.032

1 Introduction033

Previous SFT methods for mathematical reason-034

ing (Tong et al., 2024; Shao et al., 2024; Yan et al.,035

2024; Gou et al., 2023; Wang et al., 2023; Lu036

et al., 2024) predominantly adopt one of the fol-037

lowing two distinct reasoning paradigms: Chain-of-038

Thought (CoT) reasoning (Wei et al., 2022) or Tool-039

Integrated Reasoning (TIR) (Chen et al., 2022; Gao040

et al., 2023). CoT employs natural language (NL)041

to articulate intermediate reasoning steps, whereas042

TIR integrates NL with Python code blocks in an043
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Figure 1: Illustration of our research question. (a) Zhao
et al. (2023) post-select between CoT and TIR by an-
other LLM. (b) Yue et al. (2023) choose CoT if TIR fails
due to syntax error or execution timeout. (c) Yang et al.
(2024a) controls the selection between CoT and TIR
by predefined inference prompts. (d) We aim to teach
LLMs to choose the appropriate one spontaneously ac-
cording to their aptitude.

interleaved manner (see Section 3.2). While CoT 044

offers computational efficiency, it may compromise 045

the numerical accuracy of complex calculations. In 046

contrast, TIR’s structured execution of code en- 047

sures precise computation but incurs significant 048

computational overhead. Notably, recent studies 049

(Zhao et al., 2023; Yang et al., 2024b) have em- 050

pirically demonstrated that CoT and TIR exhibit 051

complementary strengths: CoT demonstrates supe- 052

rior performance on problems demanding sophis- 053

ticated logical deduction with minimal numerical 054

computation, whereas TIR excels in scenarios re- 055

quiring intensive numerical calculations with rela- 056

tively simpler logical flow. 057

This complementary nature suggests potential 058
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benefits to integrate these two reasoning patterns.059

Zhao et al. (2023) proposes an auxiliary LLM-060

based selector to dynamically choose between061

paradigms via prompt-based routing (Figure 1 (a)).062

MAmmoTH (Yue et al., 2023) switches to CoT rea-063

soning if TIR encounters execution errors or time-064

outs (Figure 1 (b)). Yang et al. (2024b) employs065

different inference prompts to elicit respective rea-066

soning capabilities (Figure 1 (c)). Despite these067

advancements, existing approaches predominantly068

rely on either explicit external selectors (as in Zhao069

et al. (2023)) or predefined heuristics (as in MAm-070

moTH and Qwen-2.5-Math) rather than endowing071

LLMs with the intrinsic capability to autonomously072

recognize and apply appropriate reasoning strate-073

gies. However, the potential for LLMs themselves074

to dynamically adapt reasoning paradigms (CoT or075

TIR) remains underexplored.076

To bridge this gap, we propose Teaching LLMs077

According to Their Aptitude (TATA), an adaptive078

framework that enables LLMs to spontaneously079

select between CoT and TIR for math problem080

solving. Instead of adopting a fixed strategy for081

all training queries, TATA adaptively tailors the082

training data selection process by considering both083

the query characteristics and the base LLM’s ap-084

titude. This ensures that the resulting model is085

equipped to select a suitable reasoning strategy086

(CoT or TIR) for different queries at test time, fa-087

cilitating aptitude-driven reasoning. As a result,088

TATA preserves and enhances the generalizability089

of the model, particularly for out-of-domain tasks.090

Concretely, we begin with a dataset D, which091

consists of N triplets, each containing a query, a092

CoT solution, and a TIR solution. We then con-093

struct an anchor set, Danchor, to evaluate the model’s094

performance. For each training query in D, we as-095

sess the LLM’s accuracy on Danchor by providing096

either the CoT or TIR solution of the query as a097

one-shot example. Based on the model’s perfor-098

mance on the Danchor in each setting, we select099

the most effective reasoning paradigm for train-100

ing queries and use it to construct the SFT data,101

DSFT. We endow the base LLMs with the ability to102

adaptively switch between CoT and TIR by train-103

ing of personalized training set DSFT. To assess104

TATA’s effectiveness, we conduct extensive evalu-105

ations across six math reasoning benchmarks, uti-106

lizing both general-purpose LLMs (e.g. Llama-3-107

8B (AI@Meta, 2024)) and math-specialized LLMs108

(e.g. Qwen2.5-Math-7B (Yang et al., 2024b)) as109

base models. Experimental results show that TATA110

successfully leads to better performance across dif- 111

ferent models and benchmarks. 112

To summarize, our contributions are as follows: 113

1. We propose TATA, an adaptive framework 114

that enables LLMs to spontaneously select between 115

CoT and TIR for adaptive mathematical reasoning 116

based on their inherent aptitudes. 2. Extensive ex- 117

periments demonstrate that TATA effectively com- 118

bines the strengths of both CoT and TIR, achieving 119

comparable or even superior performance while of- 120

fering higher inference efficiency compared to TIR. 121

3. Comprehensive analyses highlight the critical 122

role of base-LLM-aware data selection for CoT and 123

TIR, which is the core of our TATA framework. 124

2 Related Work 125

Math Reasoning with CoT and TIR CoT and 126

TIR are two widely recognized approaches for rea- 127

soning with LLMs. CoT offers interpretability and 128

generalizability, while TIR can provide precise cal- 129

culation results. Previous work on mathematical 130

SFT has primarily focused on either CoT (Yu et al., 131

2023; Tong et al., 2024; Shao et al., 2024; Yan 132

et al., 2024) or TIR (Yue et al., 2023; Gou et al., 133

2023; Wang et al., 2023; Yin et al., 2024), with 134

a few efforts to integrate both (Yue et al., 2023; 135

Beeching et al., 2024; Yang et al., 2024b). For 136

instance, MAmmoTH (Yue et al., 2023) mainly 137

adopts TIR but switches to CoT when code exe- 138

cution fails due to errors or timeouts. However, it 139

relies on separate prompts and manual inference 140

controls to switch between them. Recent work 141

has explored automatic selection between CoT and 142

TIR (Zhao et al., 2023; Yue et al., 2024; Yu et al., 143

2024), such as using an auxiliary LLM to determine 144

CoT/TIR (Zhao et al., 2023). However, these meth- 145

ods rely on external planners to select CoT/TIR, 146

not by LLMs themselves. In contrast, our work 147

seeks to enable LLMs to spontaneously select the 148

appropriate reasoning strategy without relying on 149

external planners or manual interventions. 150

Data Selection Data selection plays a crucial role 151

in training LLMs (Albalak et al., 2024). Various 152

methods have been developed to optimize data us- 153

age at different stages of model training, ranging 154

from pretraining (Brown et al., 2020; Wettig et al., 155

2024; Lin et al., 2025) to supervised fine-tuning 156

(SFT) (Li et al., 2023; Pan et al., 2024; Xia et al., 157

2024; Zhou et al., 2023b). Our work focuses specif- 158

ically on data selection between CoT and TIR given 159

a math problem and a base LLM. 160
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Test-Time Scaling Recent efforts in scaling test-161

time computation have explored refinement strate-162

gies (Snell et al., 2024; Xu et al., 2024b; Hou et al.,163

2025; Lee et al., 2025), which iteratively build164

on previous outputs, and MCTS-based approaches165

(Zhou et al., 2023a; Liu et al., 2024; Wu et al.,166

2024). The roles of SFT and RL have also been167

actively discussed (Chu et al., 2025). For exam-168

ple, OpenAI (2024); DeepSeek-AI et al. (2025) use169

RL to train LLMs for generating longer CoT rea-170

soning, while Muennighoff et al. (2025); Ye et al.171

(2025) leverage SFT for scaling test-time computa-172

tion. This work focuses on enabling adaptive math-173

ematical reasoning in LLMs primarily through data174

selection during the SFT stage, with discussions on175

the potential use of RL in Section 6.3. While ex-176

isting test-time scaling methods mainly target CoT,177

exploring adaptive selection between CoT and TIR178

could be an orthogonal direction.179

3 Background180

3.1 Rejection Fine-Tuning181

Rejection fine-tuning (RFT) is a widely-adopted182

approach to enhance math reasoning abilities by183

augmenting the original training set using rejection184

sampling (Yuan et al., 2023). Suppose that the185

original training set Dorig = {(xi, yi)}Ni=1 consists186

of N pairs of data points (xi, yi). For each query xi,187

M responses are generated by a teacher model (e.g.,188

GPT-4): {xi, yji }Mj=1. If yji ̸= yi, then the response189

yji is discarded, leading to the augmented training190

set Daug = {(xi, yji )}Ni=1

Mi

j=1, where Mi ≤ M is191

the number of correct responses for query xi. More192

details are given in Appendix A.1.193

3.2 TIR Inference Pipeline194

Tool-Integrated Reasoning (TIR) (Gou et al., 2023)195

combines natural language reasoning with Python196

code execution in an interleaved manner. When a197

Python code block is encountered, it is executed198

using a Python interpreter, and the resulting out-199

put, along with the previous context, is fed back200

into the LLM to facilitate further reasoning (see201

Algorithm 1). Solving math problems with TIR202

often requires multiple iterations of these interac-203

tions, which typically results in higher computa-204

tional costs compared to CoT. However, TIR offers205

more reliable results by leveraging external tools206

for computation. The whole inference pipeline of207

TIR is provided in Appendix A.2.208

3.3 Implicit Instruction Tuning 209

In-Context Learning (ICL) can be viewed as im- 210
plicit instruction tuning (IIT), i.e., “fine-tune” the 211
demonstration implicitly (Li et al., 2023). Let 212

Xins,Xtest ∈ Rdin be the few-shot demonstration 213
inputs and the test input, respectively. Suppose 214

WK ,WV ,WQ ∈ Rdout×din are projection matri- 215
ces to compute the attention queries, keys, and 216
values. The self-attention is formulated as follows: 217

WV [Xins∥Xtest]Softmax
(
WK [Xins∥Xtest]

⊤Q√
din

)
218

≈ [WV Xtest(WKXtest)
⊤︸ ︷︷ ︸

Only test input.

+WV Xins(WKXins)
⊤︸ ︷︷ ︸

Only instruction sample.

]Q, 219

where ∥ denotes concatenation. The first term only 220

involves the test input Xtest, and the second term is 221

related to few-shot exemplars, which can be inter- 222

preted as an IIT to the model parameters (Dai et al., 223

2022; Yang et al., 2023) (see Appendix A.3). 224

4 The TATA Framework 225

4.1 Problem Setting 226

In this section, we formally formulate our problem 227

setting, including our data structure and objective. 228

Data Structure Suppose we have a candidate 229

dataset D = {(xi, yji , z
j
i )}Ni=1

Mi

j=1 consisting of 230

triplets in the form (xi, y
j
i , z

j
i ) for the i-th training 231

example, where 1 ≤ j ≤ Mi. Here, xi represents 232

the i-th training problem, while yji and zji denote 233

the j-th CoT solution and TIR solution to this prob- 234

lem, respectively. Notably, the TIR solution zji is 235

adapted from yji , meaning both solutions follow 236

the same steps to solve the mathematical problem 237

xi, but differ in their reasoning formats: yji relies 238

exclusively on natural language reasoning, whereas 239

zji incorporates Python code blocks to perform cal- 240

culations for certain reasoning steps. 241

Objective Our objective is to construct an 242

SFT dataset from the candidate dataset D = 243

{(xi, yji , z
j
i )}Ni=1

Mi

j=1 by incorporating suitable rea- 244

soning patterns for different training queries. 245

Specifically, for each problem xi in D = 246

{(xi, yji , z
j
i )}Ni=1

Mi

j=1, we need to decide whether 247

to include its CoT solutions or TIR solutions 248

in the SFT dataset. Formally, this involves 249

determining whether {(xi, yji )}
Mi
j=1 ⊆ DSFT or 250

{(xi, zji )}
Mi
j=1 ⊆ DSFT.1 For example, CoT-only 251

SFT (Xu et al., 2024c) constructs the dataset 252

1We also consider scenarios where both CoT and TIR
solutions for a query are included in the SFT dataset.
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such that {(xi, yji )}
Mi
j=1 ⊆ DSFT,∀i. In con-253

trast, TIR-only SFT (Gou et al., 2023) selects254

{(xi, zji )}
Mi
j=1 ⊆ DSFT,∀i. Unlike these static se-255

lection approaches, TATA aims to dynamically tai-256

lor the most suitable reasoning paradigm for differ-257

ent training queries and base LLMs.258

4.2 TATA Overview259

“Teach according to students’ aptitude.”260

261 — Confucius262

Motivation Intuitively, if an LLM demonstrates263

improved performance on certain queries when264

fine-tuned with CoT solutions instead of TIR solu-265

tions, it suggests its inclination toward CoT reason-266

ing in those cases. This preference can be extrap-267

olated to new cases, where the model is expected268

to favor CoT for similar problems during testing.269

The same principle applies to TIR-based reasoning.270

Inspired by IIT theory (see Section 3.3), LLMs can271

be indirectly “fine-tuned” with CoT or TIR exam-272

ples through one-shot learning, thereby replacing273

the need for actual SFT.274

Overview As depicted in Figure 2, our proposed275

framework, TATA, comprises four main steps:276

data construction, anchor construction, contribu-277

tion quantification, and data selection. In the data278

construction stage, we adapt an original training279

set, Dorig, containing CoT solutions, to form the280

candidate set D = {(xi, yji , z
j
i )}Ni=1

Mi

j=1. This can-281

didate set includes triplets of queries, a CoT solu-282

tion, and corresponding TIR solution. Next, dur-283

ing the anchor construction stage, a representative284

anchor set of size A is generated from the origi-285

nal training set by clustering. In the contribution286

quantification stage, we compute two scores, Sk
CoT287

and Sk
TIR, for each query qk in the candidate set288

D = {(xi, yji , z
j
i )}Ni=1

Mi

j=1. These scores indicate289

the impact of CoT and TIR solutions on the perfor-290

mance of LLMs using IIT (see Section 3.3). The291

data selection step formulates a decision based on292

Sk
CoT and Sk

TIR, determining whether to include293

CoT or TIR solutions for queries in D. Finally,294

SFT is performed on this curated training set.295

4.3 TATA Details296

Data Construction We start with an origi-297

nal math training set (e.g., MATH (Hendrycks298

et al., 2021) training set), denoted as Dorig =299

{(xi, yi)}Ni=1, which consists of N training exam-300

ples, where the i-th problem is represented as xi301

with its corresponding golden answer yi. To fur- 302

ther enhance the training set, we apply RFT (see 303

Section 3.1), resulting in an augmented dataset, 304

Daug = {(xi, yji )}Ni=1

Mi

j=1, where yji denotes the j- 305

th augmented CoT solution for the i-th training 306

problem xi. Next, we convert each CoT solution 307

yji into the TIR format zji by prompting a strong 308

LLM (e.g., GPT-4o). During this process, the orig- 309

inal logic in yji is preserved, while Python blocks 310

are introduced to handle necessary computations. 311

This transformation produces a candidate dataset 312

D = {(xi, yji , z
j
i )}Ni=1

Mi

j=1, which is required for 313

our problem setting (see Section 4.1). 314

Anchor Construction To evaluate the impact of 315

specific CoT or TIR solutions on the performance 316

of LLMs, we construct an anchor set, denoted by 317

Danchor = {(qi, ai)}Ai=1, where A is the size of 318

the anchor set, qi, ai is the i-th question and cor- 319

responding ground-truth answer in Danchor. We 320

expect Danchor to be diverse, ensuring that accuracy 321

on this set fairly reflects the LLMs’ overall perfor- 322

mance. To achieve this, we first encode all queries 323

from Dorig into vector representations using an em- 324

bedding model (e.g., text-embedding-ada-002) 325

and then cluster them into A distinct groups. The 326

center of each cluster is selected to Danchor. This 327

approach takes the semantic diversity of questions 328

into account, making Danchor a reliable indicator of 329

LLMs’ performance. To put it simple, one can treat 330

this Danchor as a validation set. 331

Contribution Quantification To quantify the 332
contribution of CoT and TIR for each triplet 333

(xk, y
j
k, z

j
k) in D to the LLMs’ math reasoning abil- 334

ities, we implicitly "fine-tune" the LLMs using CoT 335
and TIR formats separately through one-shot learn- 336
ing (see Section 3.3). For the k-th query xk and its 337

corresponding CoT solutions yjk (1 ≤ j ≤ Mk), we 338

compute a CoT score, denoted as Sk
CoT, as follows: 339

Sk
CoT =

1

Mk

Mk∑
j=1

1

A

A∑
i=1

I
(
ai,G(· | xk, y

j
k︸ ︷︷ ︸

1-shot prompt

, qi)
)
, 340

where xk and yjk serve as the one-shot prompt for 341
the LLM G to generate a response for the question 342
qi in the anchor set, and I is an indicator func- 343
tion that returns 1 if the model’s generated answer 344
matches the ground-truth answer ai of question qi, 345

and 0 otherwise. Sk
CoT represents the average ac- 346

curacy on the anchor set Danchor when using CoT 347
format as the one-shot prompt, averaged over all 348

CoT solutions yjk (1 ≤ j ≤ Mk) for query xk. 349
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1. Data Construction

Rejection Sampling rewriting CoT -> TIR SFT data selection

2. Anchor Construction

clustering

Anchor Set Question 1: 𝑞1

Anchor Set Question 2: 𝑞2

Anchor Set Question 3: 𝑞3

Anchor Set Question A: 𝑞𝐴

Answer 1: 𝑎1

Answer 2: 𝑎2

Answer 3: 𝑎3

Answer A: 𝑎𝐴

4. Data Selection

The anchor set 

of size A.

3. Contribution Quantification

𝑞1

𝑞2

𝑞3

𝑞𝐴

Figure 2: Overview of our Teaching LLMs According to Their Aptitude (TATA) framework. Here, Dorig denotes
the original training set, Daug represents the augmented training set obtained through rejection sampling with CoT
only, and D refers to the candidate set consisting of (query, CoT, TIR) triplets. Danchor is the anchor set of size A.
Sk

CoT and Sk
TIR are scores calculated based on the LLMs’ aptitude on the anchor set, elicited using 1-shot prompts.

Finally, H represents the SFT data selection process. Fine-tuning on the resulting SFT data enables LLMs to
spontaneously select between CoT and TIR at test time according to their aptitude.

Similarly, the TIR score, Sk
TIR, is defined as:350

Sk
TIR =

1

Mk

Mk∑
j=1

1

A

A∑
i=1

I
(
ai,G(· | xk, z

j
k︸ ︷︷ ︸

1-shot prompt

, qi)
)
.351

The only difference is that the TIR format zjk is352

used as the one-shot example instead of CoT.353

Data Selection Currently, two scores, Sk
CoT and354

Sk
TIR, are associated with the k-th query qk in the355

candidate set D. The next step is to determine356

whether to include the CoT or the TIR solutions357

for this specific query qk in D. Specifically, the358

goal is to decide between {(xk, yjk)}
Mk
j=1 ⊆ DSFT359

or {(xk, zjk)}
Mk
j=1 ⊆ DSFT. We formalize this de-360

cision process with a decision function Hk =361

(Sk
CoT, S

k
TIR), where the final decision is repre-362

sented as a series of decisions H = {Hk}Nk=1,363

where N is the number of queries in candidate364

set D. For instance, a simple decision function Hk365

could involve consistently choosing CoT solutions,366

i.e., {(xk, yjk)}
Mk
j=1 ⊆ DSFT for all k. This corre-367

sponds to performing SFT exclusively on CoT data.368

369

5 Experimental Results 370

5.1 Experimental Setup 371

TATA Implementation We select the training 372

sets from GSM8K (Cobbe et al., 2021) and Math 373

(Hendrycks et al., 2021) as Dorig. For Daug, we use 374

the DART-Math-Hard dataset (Tong et al., 2024). 375

We employ GPT-4o to rewrite CoT solutions into 376

TIR format using carefully curated prompts and 377

filter out triplets with anomalous TIR responses 378

(e.g., those that lack a definitive conclusion re- 379

garding the final answer). For embedding, we use 380

text-embedding-ada-002 to encode all queries 381

in D into 1,536-dimensional vectors. We set the 382

size of Danchor to 100 for both the GSM8K and 383

Math. To save computational cost, we randomly 384

sample one pair of CoT and TIR solutions per 385

candidate query, leading to a new candidate set, 386

D∗ = {(xi, y∗i , z∗i )}Ni=1. For the decision function 387

H, we determine selection criteria based on two 388

quantiles of the distribution of (SCoT−STIR). More 389

details are provided in Appendix B.1. 390

Evaluation Benchmarks We evaluate our ap- 391

proach using six benchmarks for both in-domain 392

and out-of-domain (OOD) assessment. Specifi- 393

cally, we use the GSM8K and MATH test sets for 394

5



Model Method In-Domain Out-of-Domain AVG
GSM8K MATH ID AVG MAWPS SVAMP College Olympiad OOD AVG

Qwen2.5-0.5B

hybrid 49.3 37.7 43.5 84.5 55.0 27.5 7.9 43.7 43.6
ensemble 47.1 34.8 41.0 83.4 53.8 25.6 7.7 42.6 42.1
GPT-Select 45.6 31.6 38.6 80.4 52.6 24.4 7.1 41.1 40.3
TATA 52.8 36.6 44.7 85.9 59.4 26.9 8.6 45.2 45.0

Qwen2.5-1.5B

hybrid 71.3 54.7 63.0 91.8 80.4 36.8 19.7 57.2 59.1
ensemble 71.1 54.3 62.7 91.5 79.6 36.6 18.8 56.6 58.7
GPT-Select 72.5 47.3 59.9 91.8 81.8 35.0 14.8 55.8 57.2
TATA 77.6 53.8 65.7 94.2 80.7 37.0 18.8 57.7 60.4

Qwen2.5-3B

hybrid 80.9 61.9 71.4 90.2 79.8 41.6 24.4 59.0 63.1
ensemble 81.3 60.3 70.8 95.3 86.2 42.9 23.1 61.9 64.8
GPT-Select 81.4 53.6 67.5 86.2 79.0 38.9 17.3 33.8 45.0
TATA 84.0 61.3 72.6 94.7 85.3 41.6 24.9 61.6 65.3

Qwen2.5-7B

hybrid 87.0 67.5 77.3 92.1 84.3 44.2 31.7 63.1 67.8
ensemble 87.1 63.0 75.0 91.5 82.0 43.0 30.2 61.7 66.1
GPT-Select 88.3 59.0 73.7 91.4 83.4 42.7 23.3 60.2 64.7
TATA 89.5 66.8 78.2 94.2 86.2 43.4 31.1 63.7 68.5

Qwen2.5-14B

hybrid 91.4 71.7 81.5 93.8 84.5 45.8 35.3 64.8 70.4
ensemble 90.1 66.9 78.5 92.2 82.8 46.1 32.3 63.3 68.4
GPT-Select 90.7 61.5 76.1 86.2 79.1 44.1 23.0 58.1 64.1
TATA 92.1 71.7 81.9 96.5 88.4 46.4 35.3 66.7 71.7

LLaMA-3-8B

hybrid 82.0 56.1 69.1 88.0 78.0 30.8 21.3 54.5 59.4
ensemble 84.0 46.9 65.4 88.6 79.3 29.6 15.3 53.2 57.3
GPT-Select 83.2 47.2 65.2 85.3 77.5 30.6 13.9 51.8 56.3
TATA 84.0 55.1 69.6 91.8 82.7 34.2 21.5 57.6 61.5

Qwen2.5Math-1.5B

hybrid 82.6 66.3 74.4 92.7 83.6 43.1 26.2 61.4 65.7
ensemble 81.5 64.7 73.1 91.8 83.9 44.1 27.4 61.8 65.6
GPT-Select 79.4 56.9 68.1 92.7 83.7 41.8 20.6 59.7 62.5
TATA 83.2 62.8 73.0 94.0 85.6 43.9 26.8 62.6 66.0

Qwen2.5Math-7B

hybrid 89.2 73.4 81.3 95.4 89.5 47.1 34.4 66.6 71.5
ensemble 89.1 67.7 78.4 93.4 84.5 46.7 30.8 63.9 68.8
GPT-Select 89.8 63.0 76.4 89.4 85.1 44.4 24.6 60.7 65.9
TATA 89.8 73.0 81.4 95.2 88.1 48.3 35.9 66.9 71.7

Table 1: The accuracies (%) of our TATA framework, comparing with various baselines. The best accuracies within
each group are shown in bold. “ID AVG”, “OOD AVG”, and “AVG” denote the averages of these metrics across
in-domain, out-of-domain, and all six benchmarks.

Model Method Acc↑ Token↓ # Code↓

Qwen2.5-3B
TATA 65.3 383.4 1.43
CoT 62.9−2.4 385.2+1.8 0−1.43

TIR 62.9−2.4 411.3+27.9 2.8+1.37

Qwen2.5-7B
TATA 68.5 369.1 1.4
CoT 66.2−2.3 378.2+9.1 0−1.40

TIR 67.8−0.7 393.2+24.1 2.63+1.23

LLaMA-3-8B
TATA 61.5 371.7 1.32
CoT 58−3.5 386+14.3 0−1.32

TIR 59.3−2.2 392.5+20.8 2.66+1.34

Qwen2.5Math-1.5B
TATA 66.0 405.4 1.08
CoT 63.4−2.6 388.5+16.9 0−1.08

TIR 64.8−1.2 460.1+54.7 3.23+2.15

Qwen2.5Math-7B
TATA 71.7 393.8 1.26
CoT 67.5−4.2 379.9+13.9 0−1.26

TIR 71.6−0.1 417.8+24.0 2.68+1.42

Table 2: Results of inference costs. The three metrics,
“Acc”, “Token”, and “# Code” represent the average
accuracy (%), total tokens per generation, and number
of code executions.

in-domain evaluation. For OOD evaluation, we in-395

clude the SVAMP (Patel et al., 2021), MAWPS396

(Koncel-Kedziorski et al., 2016), CollegeMath397

(Tang et al., 2024), and OlympiadBench-Math (He 398

et al., 2024) (details in Appendix B.2) 399

Evaluation Metrics In addition to measuring ac- 400

curacy on various benchmarks, we evaluate the 401

generation time cost using the average number of 402

total tokens per generation and quantify the cost of 403

invoking Python interpreters by the average number 404

of code executions (see Appendix B.3). 405

Baselines We include the following methods as 406

our baselines: 1) Hybrid (Yue et al., 2023): Pri- 407

marily uses TIR but falls back to CoT upon code 408

execution errors or timeouts (Figure 1 (b)). 2) En- 409

semble (Zhao et al., 2023): Post-selects between 410

TIR and CoT outputs using an additional LLM (Fig- 411

ure 1 (a)). In our implementation, we use the same 412

8-shot prompt as Zhao et al. (2023) with the base 413

LLM as the selector for consistency. 3) GPT-Select: 414

Uses GPT-4o during data selection to choose CoT 415

or TIR per query, testing whether a strong external 416

LLM can effectively select reasoning paradigms 417
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Model Method In-Domain Out-of-Domain AVG
GSM8K MATH ID AVG MAWPS SVAMP College Olympiad OOD AVG

Qwen2.5-0.5B

hybrid 49.3 37.7 43.5 84.5 55.0 27.5 7.9 43.7 43.6
ensemble 47.1 34.8 41.0 83.4 53.8 25.6 7.7 42.6 42.1
GPT-Select 45.6 31.6 38.6 80.4 52.6 24.4 7.1 41.1 40.3
CoT+TIR 51.5 33.5 42.5 85.8 58.6 25.7 7.9 44.4 43.8
TATA - random 100 50.6 34.6 42.6 85.7 57.6 26.2 6.2 43.9 43.5
TATA - A 200 52.6 36.8 44.7 85.1 59.6 27.4 8.4 45.1 45.0
TATA 52.8 36.6 44.7 85.9 59.4 26.9 8.6 45.2 45.0

Table 3: Ablation of Contribution Quantification.

regardless of the base LLM’s aptitude.418

Additional details, including the SFT setup and419

evaluation setup, are provided in Appendix B.4.420

5.2 Main Results421

Effectiveness of TATA Results presented in Ta-422

ble 1 demonstrate the effectiveness of our proposed423

TATA framework. Across various base models,424

model sizes, and benchmarks, TATA consistently425

achieves competitive or superior performance com-426

pared to all the other baselines, highlighting its427

ability to leverage the complementary advantages428

of both methods. Additionally, TATA achieves sig-429

nificantly better performance than the “GPT-Select”430

baseline. While “GPT-Select” leverages a much431

stronger LLM to select between CoT and TIR for432

different queries, it demonstrates that this approach433

may not be suitable for all base LLMs. This high-434

lights the critical importance of base-LLM-aware435

selection in optimizing performance.436

Inference efficiency The results in Table 2437

demonstrate that our TATA not only improves ac-438

curacy but also enhances inference efficiency com-439

pared to standalone CoT and TIR methods. Across440

all model sizes, TATA achieves higher accuracy441

while maintaining lower token usage and fewer442

code executions than TIR, and it significantly re-443

duces computational overhead compared to TIR444

without sacrificing the benefits of tool integration.445

For instance, with Qwen2.5-7B, TATA achieves a446

2.3% accuracy improvement over CoT while us-447

ing 9.1 fewer tokens per generation and only 1.4448

code executions, compared to TIR’s 2.63 code ex-449

ecutions. This balance between accuracy and ef-450

ficiency highlights TATA’s ability to streamline451

reasoning processes, making it a computationally452

effective solution for mathematical reasoning tasks.453

The “hybrid” and “ensemble” approaches incur454

even higher inference costs compared to our pro-455

posed TATA. Specifically, "hybrid" requires decod-456

ing via TIR and selectively switching to CoT ex-457

ecution for specific cases; “ensemble” generates 458

both CoT and TIR outputs during testing and incurs 459

additional costs for selection between the two. 460

5.3 Ablation 461

Quantiles 50, 60 40, 60 30, 60 30, 65∗ 30, 70

AVG 44.8 44.8 44.9 45.0 44.8

Table 4: TATA is not sensitive to quantiles. * denotes
the quantiles we choose for Qwen2.5Math-0.5B.

Quantile selection As mentioned in Section 5.1, 462

the data selection function H is determined using 463

two quantiles of the distribution (Sk
CoT −Sk

TIR) (see 464

Appendix B). These quantiles are selected through 465

the grid search. As shown in Table 4, the perfor- 466

mance of TATA is not very sensitive to the choice 467

of these quantiles (see Appendix B). 468

Anchor set & Others Table 3 includes results 469

for several other ablation studies: 1) “CoT + TIR”: 470

This method includes all CoT and TIR solutions for 471

each query without any data selection. 2) Anchor 472

set construction with random sampling ("TATA - 473

random 100"): Replacing k-means clustering with 474

random selection while keeping the anchor set 475

size constant. 3) Larger anchor set size ("TATA 476

- A=200"): Increasing the anchor set size to 200. 477

From Table 3, we observe that TATA achieves the 478

highest overall accuracy. Naively including all CoT 479

and TIR solutions (i.e., “CoT + TIR”) results in 480

a noticeable decline in performance, despite the 481

larger size of the DSFT dataset. Random anchor 482

set selection ("TATA - random 100") critically de- 483

grades performance, highlighting the importance of 484

a representative anchor set over size alone. Increas- 485

ing the anchor set size shows diminishing returns, 486

indicating that A = 100 is enough for model eval- 487

uation in our SFT data curation. 488
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6 Analysis and Discussion489

6.1 Analysis of CoT scores and TIR scores490

To further investigate how different LLMs exhibit491

varying reasoning patterns, we analyze the distri-492

bution of Sk
CoT and Sk

TIR. As illustrated in Figure 3493

(see also Appendix C.2), different base LLMs dis-494

play distinct distributions of (Sk
CoT − Sk

TIR), indi-495

cating varying inclinations towards CoT and TIR496

reasoning for queries in the candidate set D∗ =497

{(xi, y∗i , z∗i )}Ni=1. Interestingly, even base LLMs498

from the same family can demonstrate different ten-499

dencies towards CoT and TIR (e.g., Qwen2.5-0.5B500

vs. Qwen2.5-7B). Notably, Qwen2.5-7B exhibits501

a stronger preference for CoT on GSM8K and for502

TIR on MATH, compared to Qwen2.5-0.5B.503

6.2 Transferability of Data Selection between504

Different LLMs505

To evaluate whether data selected by one LLM506

can benefit another LLM, we conducted additional507

experiments using Qwen2.5-0.5B to assess this508

type of transferability. Specifically, we fine-tuned509

Qwen2.5-0.5B on data selected by Qwen2.5-7B510

and LLaMA-3-8B, with the results in Table 5. As511

expected, compared to fine-tuning Qwen2.5-0.5B512

on its own selected data, fine-tuning on data se-513

lected by another LLM leads to a decline in TATA514

performance. This finding suggests that our TATA515

approach is base model-aware, emphasizing the516

principle of "teaching LLMs according to their ap-517

titude." Interestingly, using data selected by LLMs518

within the same family (e.g., Qwen2.5-7B) yields519

more consistent performance compared to data se-520

lected by LLMs from a different family (LLaMA-521

3-8B). Complete results are in Appendix C.3.522

Selected by ID AVG OOD AVG AVG

TATA 44.7 45.2 45.0
LLaMA-3-8B 43.8 44.2 44.1
Qwen2.5-7B 44.5 44.6 44.6

Table 5: The best results (in %) are highlighted in bold,
while the second-best results are underlined.

6.3 Exploring Reinforcement Learning523

Recent advancements in RL (OpenAI, 2024;524

DeepSeek-AI et al., 2025) have demonstrated525

promising results in enhancing long CoT reason-526

ing. To explore the role of RL in the spontaneous527

selection between CoT and TIR, we employ Di-528

rect Preference Optimization (DPO) to LLMs fine-529

tuned with our TATA framework (Rafailov et al., 530

2023) by constructing preference pairs based on 531

the CoT and TIR scores of queries in the new can- 532

didate set D∗ = {(xi, y∗i , z∗i )}Ni=1. Detailed exper- 533

imental setup and methodologies are provided in 534

Appendix C.4. As shown in Table 6, DPO achieves 535

results comparable to those of TATA. The complete 536

results are provided in Table C.4. This suggests 537

that the original data has already been effectively 538

learned by the base LLM during the SFT stage, 539

and applying additional DPO on the same dataset 540

yields minor improvement. This observation aligns 541

with LIMO (Ye et al., 2025), which argues that 542

the capabilities of pretrained LLMs are latent, with 543

both SFT and RL serving as different methods to 544

elicit these inherent abilities. 545

Model Method Acc Token # Code

LLaMA-3-8B TATA 61.5 371.7 1.32
+DPO 61.6 365.4 1.34

Qwen2.5Math-7B TATA 71.7 393.8 1.26
+DPO 71.7 395.2 1.32

Table 6: DPO Results. The best results are in bold.

7 Conclusion 546

We propose TATA, a novel and effective framework 547

for mathematical reasoning with LLMs that enables 548

models to dynamically align their reasoning strate- 549

gies, CoT or TIR, with their intrinsic strengths. By 550

incorporating base-LLM-aware data selection dur- 551

ing SFT, TATA tailors reasoning strategies to each 552

model, empowering them to select an appropri- 553

ate paradigm for inference autonomously. Exten- 554

sive experiments demonstrate that TATA achieves 555

superior or comparable performance across both 556

in-domain and OOD benchmarks while signifi- 557

cantly improving inference efficiency compared 558

to method based on TIR alone. Moreover, our anal- 559

ysis underscores the importance of aptitude-aware 560

data selection in unlocking the potential of LLMs 561

to make autonomous and effective reasoning deci- 562

sions, paving the way for further advancements in 563

reasoning capabilities of LLMs. 564

Limitation 565

This study primarily focuses on the domain of 566

mathematical reasoning. Extending the concept 567

of adaptive tool use to more generalized reasoning 568

scenarios represents a promising avenue for future 569

research. The proposed approach concentrates on 570

instance-level spontaneous selection between CoT 571
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and TIR. Investigating a more fine-grained, step-572

level selection strategy could be an interesting di-573

rection for future work. Our method mainly relies574

on the SFT stage, with the training data sourced575

from the GSM8K and MATH datasets. Further re-576

search incorporating reinforcement learning (e.g.,577

(DeepSeek-AI et al., 2025)) or leveraging a more di-578

verse set of training data (e.g., (Muennighoff et al.,579

2025; Ye et al., 2025)) could be interesting direc-580

tions to explore.581
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A Preliminaries910

A.1 Rejection Fine-Tuning911

For training LLMs, the original training datasets912

are often insufficient. To mitigate this issue, many913

studies adopt Rejection Fine-Tuning (RFT) (Yuan914

et al., 2023; Yu et al., 2023; Tong et al., 2024) to915

augment the original dataset, thereby increasing916

the training data size and improving model perfor-917

mance. RFT is a fine-tuning approach that uses918

synthesized data generated via rejection sampling919

(Yuan et al., 2023).920

Suppose the original training set is Dorig =921

{xi, yi}Ni=1, consisting of N data pairs (xi, yi).922

The rejection sampling process works as follows:923

for each query xi, a teacher model (e.g., GPT-4)924

generates M responses, resulting in {xi, yji }Mj=1,925

where M is a predefined number (e.g., M = 10 in926

Yu et al. (2023)). This yields N ·M response ex-927

amples in total. A filtering process is then applied:928

if a response yji ̸= yi, it is discarded. T he result is929

the augmented training set Daug = {xi, yi}Ni=1
Mi

j=1,930

where Mi ≤ M represents the number of correct931

responses for query xi. Notably, Mi is often larger932

for simpler queries xi, as these are more likely to933

produce correct responses.934

RFT is widely employed for improving mathe-935

matical reasoning in LLMs (Yu et al., 2023; Tong936

et al., 2024; Xu et al., 2024c). Typically, the queries937

remain unchanged (Tong et al., 2024) or are altered938

in a controlled way (Yu et al., 2023). This is be-939

cause the filtering stage of the rejection sampling940

process relies on the availability of ground-truth941

outputs.942

A.2 TIR Inference Pipeline943

Tool-Integrated Reasoning (TIR) addresses mathe-944

matical problems by intertwining natural language945

reasoning with the execution of Python code. The946

process is initiated with gernerating a natural lan-947

guage reasoning step, denoted as r1. When it is948

more advantageous to utilize programmatic tools,949

such as complex calculations, a Python code block,950

a1, is created as guided by r1. This code block951

is then run, and its result, o1, is fed back into952

the model for further generation. This cycle is953

repeated until the maximal number of code blocks954

is reached or until the model concludes its answer955

within “\boxed{}.” The entire reasoning path un-956

folds as τ = r1a1o1 . . . rn−1an−1on−1rn, where957

ri is the i-th natural language reasoning step, ai de-958

notes the corresponding Python code block, and oi959

represents the output from executing the code. The 960

complete inference workflow is detailed in Algo- 961

rithm 1 (from Gou et al. (2023)). From Algorithm 962

1, TIR usually requires multiple generations based 963

on previous reasoning paths and outputs returned 964

by Python interpreter, which is more computation- 965

ally expensive than CoT. However, TIR can provide 966

more precise calculation results than CoT. 967

Algorithm 1 Inference of TIR
Require: problem q, model G, prompt p, external tools E ,

stop condition Stop(·), maximum iteration rounds n
1: τ0 ← "" ▷ Trajectory Initialization
2: for i← 1 to n do
3: ri ∼ PG(·|p⊕ q ⊕ τi−1) ▷ Rationale Generation
4: if Stop(ri) then ▷ Stopping Criteria
5: return τi−1 ⊕ ri
6: end if
7: ai ∼ PG(·|p⊕ q ⊕ τi−1 ⊕ ri) ▷ Program Generation
8: oi ← E(ai) ▷ Tool Execution
9: τi ← τi−1 ⊕ ri ⊕ ai ⊕ oi ▷ Trajectory Update

10: end for
11: return τn

A.3 Implicit Instruction Tuning 968

In-Context Learning (ICL) can be interpreted as 969
a form of implicit instruction tuning, where the 970
model is effectively "fine-tuned" using the given 971
demonstrations in an implicit manner (Dai et al., 972
2022; Yang et al., 2023; Irie et al., 2022; Li et al., 973

2023). Let Xins,Xtest ∈ Rdin represent the few- 974
shot demonstration inputs and the test input, re- 975
spectively. We define the attention query vector as 976

Q = WQX
⊤
test, while the attention key and value 977

vectors are given by K = WK [Xins∥Xtest] and 978
V = WV [Xins∥Xtest], where ∥ denotes concatena- 979
tion. The projection matrices WK ,WV ,WQ ∈ 980

Rdout×din are used to compute the attention queries, 981
keys, and values. The self-attention mechanism 982
for a single attention head in any given layer is 983
formulated as follows: 984

Attention(K,V,Q) = 985

WV [Xins∥Xtest]Softmax
(
WK [Xins∥Xtest]

⊤Q√
din

)
. 986

Applying an approximation, this can be rewritten 987
as: 988

WV [Xins∥Xtest] (WK [Xins∥Xtest])
⊤ Q. 989

By expanding this expression, we obtain: 990

WV Xtest(WKXtest)
⊤︸ ︷︷ ︸

Only test input.

Q +WV Xins(WKXins)
⊤︸ ︷︷ ︸

Only demonstration samples.

Q. 991
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The whole approximation process can be given as992
follows:993

Attention(K,V,Q)994

= WV [Xins∥Xtest]Softmax
(
WK [Xins∥Xtest]

⊤Q√
din

)
995

≈WV [Xins∥Xtest] (WK [Xins∥Xtest])
⊤ Q996

= WV Xtest(WKXtest)
⊤︸ ︷︷ ︸

Only test input.

Q +WV Xins(WKXins)
⊤︸ ︷︷ ︸

Only instruction sample.

Q997

= [WV Xtest(WKXtest)
⊤︸ ︷︷ ︸

Only test input.

+WV Xins(WKXins)
⊤︸ ︷︷ ︸

Only instruction sample.

]Q,998

where the constant
√
din acts as a scaling factor.999

The first term, WV Xtest(WKXtest)
⊤, corresponds1000

to a zero-shot learning scenario where no demon-1001

stration samples are involved, and only the test1002

input is considered. Meanwhile, the second term,1003

WV Xins(WKXins)
⊤, can be interpreted as an im-1004

plicit adjustment to the model parameters. This1005

adjustment is achieved through the meta-gradient1006

mechanism (Dai et al., 2022; Yang et al., 2023; Irie1007

et al., 2022), meaning the few-shot examples influ-1008

ence the model as if performing implicit instruction1009

tuning.1010

B Experimental Setup1011

B.1 TATA Implementation Details1012

In this appendix, we give the implementation de-1013

tails of our TATA framework.1014

Data Construction For the original training set,1015

denoted as Dorig = {(xi, yi)}Ni=1, we utilize the1016

training sets of GSM8K (Cobbe et al., 2021) and1017

MATH (Hendrycks et al., 2021). The GSM8K1018

training set comprises 7,473 examples, while the1019

MATH training set includes 7,500 examples. For1020

simplicity, we directly adopt the DART-MATH-1021

Hard dataset (Tong et al., 2024) as our Daug. DART-1022

MATH-Hard, which is an augmented dataset de-1023

rived from the GSM8K and MATH training sets1024

through rejection sampling, contains approximately1025

0.6M examples in total. Notably, the number of1026

responses varies across different training queries.1027

To convert CoT solutions into TIR format, we1028

use GPT-4o-2024-08-06 with a carefully designed1029

prompt, as described in Table 7. While most CoT1030

solutions are successfully transformed into TIR for-1031

mat, we observe some anomalies. For instance,1032

some rewritten TIRs fail to conclude with a final1033

answer, while some TIRs produce code with syn-1034

tax errors. To address these issues, we filter out1035

ill-formed TIRs using rule-based matching. After1036

filtering, we obtain a candidate dataset containing 1037

approximately 483K examples. 1038

Anchor Construction For the embedding, we 1039

use text-embedding-ada-002 to encode all 1040

queries in our candidate set D into 1,536- 1041

dimensional vectors. We then cluster these rep- 1042

resentations by K-means algorithm. We set the 1043

number of clusters to be 100 for both GSM8K and 1044

MATH (cluster separately). That is to say, the size 1045

of the anchor set is A = 100. 1046

Contribution Quantification To compute the 1047
CoT and TIR scores, we use a new candidate set, 1048
denoted as D∗ = {(xi, y∗i , z∗i )}Ni=1. This new can- 1049
didate set is constructed by randomly selecting one 1050
pair of CoT and TIR solutions for each training 1051
query from the original candidate set, thereby re- 1052
ducing computational costs. The CoT score is then 1053
simplified to: 1054

Sk
CoT =

1

A

A∑
i=1

I
(
ai,G(· | xk, y

∗︸ ︷︷ ︸
1-shot prompt

, qi)
)
, 1055

A similar formulation is used for the TIR score. 1056

Data Selection The distributions of (Sk
CoT−Sk

TIR)
on GSM8K and MATH reveal distinct patterns (see
Section 6.1 and Appendix C.2): all base LLMs
demonstrate a tendency to rely more on CoT for
GSM8K queries, while preferring TIR for MATH
queries. As a result, it is reasonable to select differ-
ent decision functions, H, for GSM8K and MATH.
Specifically, for GSM8K, the dataset for supervised
fine-tuning (DSFT) is defined as:

DSFT =

N⋃
k=1

{(xk, yjk)}
Mk
j=1 ∪

⋃
k∈A

{(xk, zjk)}
Mk
j=1,

where the index set A = {k : Sk
CoT − Sk

TIR < 1057

quantile1}. 1058

For MATH, DSFT is defined as:

DSFT =
N⋃
k=1

{(xk, zjk)}
Mk
j=1 ∪

⋃
k∈B

{(xk, yjk)}
Mk
j=1,

where the index set B = {k : Sk
CoT − Sk

TIR > 1059

quantile2}. 1060

The thresholds quantile1 and quantile2 are de- 1061

termined through grid search. Notably, the perfor- 1062

mance of TATA is not sensitive to these quantiles 1063

(see Section 5.3 and Table 10). Additionally, we 1064

explored alternative decision functions H in our 1065

ablation study, with further details provided in Sec- 1066

tion 5.3 and Appendix C.1. 1067
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Rewriting Prompt Template
You are a helpful mathematical assistant. A problem will be presented after “Problem:”, followed by a reference solution
after “Original Solution:”. Your task is to rewrite the original solution. During rewriting, you tend to leverage Python (sympy
is preferred) to facilitate solving the problem with step-by-step reasoning, especially for calculation and simplification. The
specific requirements are as follows:

1. Analyze the problem and write functions to solve it, ensuring that the functions do not require any arguments.
2. Present the final result in LATEX using a ANS without any units.
3. Utilize the ‘pi’ symbol and ‘Rational’ from Sympy for π and fractions, and simplify all fractions and square roots without
converting them to decimal values.
4. Avoid using sentences like “Reasoning step in natural language:”, “Reasoning in Python codes:”, and other similar phrases.
5. Combine multiple calculation steps with Python code blocks where appropriate, avoiding unnecessary separate blocks.
Limit the number of Python code blocks to fewer than 5 and use them wisely.
6. The new solution format should be as follows:

“Reasoning step 1 in natural language without specific calculations
“‘python
Python code block 1 for calculation and simplification, please print out the final output using print
“‘
“‘output
The output for code block 1
“‘
......
Reasoning step N in natural language without specific calculations
“‘python
Python code block N for calculation and simplification, please print out the final output using print
“‘
“‘output
The output for code block N
“‘
Conclude the final answer.”

Problem: {problem}

Original Solution: {raw_answer}

New Solution:

Table 7: The prompt for transforming CoT to TIR.

Model Quantiles Metric In-Domain Out-of-Domain AVG
GSM8K MATH ID AVG MAWPS SVAMP College Olympiad OOD AVG

Qwen2.5-0.5B

50, 60
Acc 52.2 37.2 44.7 86.4 55.7 27.5 9.9 44.9 44.8
Token 313.5 503.1 408.3 224.3 304.7 496.1 748.2 443.3 431.7
# Code 0.2 2.62 1.41 0.63 0.32 2.85 3.03 1.71 1.61

40, 60
Acc 53.5 36.4 45.0 85.9 57.9 26.4 8.4 44.7 44.8
Token 307.2 504.2 405.7 217.7 290.6 486.8 715.2 427.6 420.3
# Code 0.24 2.5 1.37 0.56 0.3 2.7 2.84 1.6 1.52

30, 60
Acc 53.1 37.0 45.0 86.2 56.3 26.7 10.2 44.8 44.9
Token 312.7 507.5 410.1 218.6 298.1 482.4 720.6 429.9 423.3
# Code 0.21 2.49 1.35 0.49 0.29 2.73 2.81 1.58 1.50

30, 65∗
Acc 52.8 36.6 44.7 85.9 59.4 26.9 8.6 45.2 45.0
Token 309.7 508.7 409.2 217.3 292.9 500.9 743.0 438.5 428.8
# Code 0.19 2.63 1.41 0.52 0.33 2.82 3.06 1.68 1.59

30, 70
Acc 52.2 37.1 44.7 86.4 55.7 27.6 9.9 44.9 44.8
Token 313.5 503.1 408.3 224.3 304.7 496.1 748.2 443.3 431.7
# Code 0.2 2.62 1.41 0.63 0.32 2.85 3.03 1.71 1.61

Table 8: Performance across different quantiles using Qwen2.5-0.5B. The best accuracies within each group are
shown in bold. The three metrics, “Acc”, “Token”, and “# Code” represent the average accuracy, total tokens per
generation, and number of code executions. “Acc” is reported in %. “ID AVG”, “OOD AVG”, and “AVG” denote
the averages of these metrics across in-domain, out-of-domain, and all six benchmarks. The two numbers in the
“Quantiles” are the quantile of GSM8K and MATH, respectively. * denote our chosen quantiles.
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B.2 Evaluation Benchmarks1068

We give a brief introduction of evaluated bench-1069

marks mentioned in Section 5.1.1070

• GSM8K (Cobbe et al., 2021) is a grade-school1071

math benchmark, consisting of 7,473 training1072

examples and 1,319 test examples. It is avail-1073

able at this link, and under MIT License.1074

• MATH (Hendrycks et al., 2021) is a1075

competition-level math dataset, including1076

5,000 test examples and 7,500 training exam-1077

ples. It is available at this link, and under MIT1078

License.1079

• MAWPS (Koncel-Kedziorski et al., 2016)1080

is a benchmark of math word problems1081

(MWPs), incorporating 238 test examples. It1082

is under MIT License and can be found at1083

https://github.com/LYH-YF/MWPToolkit.1084

• SVAMP (Patel et al., 2021) includes 1,0001085

simple MWPs, which is available at1086

https://github.com/LYH-YF/MWPToolkit. It1087

is under MIT License.1088

• CollegeMath (Tang et al., 2024): This dataset1089

comprises 2818 college-grade mathematical1090

questions sourced from 9 different textbooks,1091

covering 7 fields including linear algebra and1092

differential equations. It is designed to eval-1093

uate generalization in intricate mathematical1094

reasoning across various domains. It is avail-1095

able at this link.1096

• OlympiadBench-Math (He et al., 2024): This1097

collection comprises 675 high-level Olympiad1098

mathematical problems selected from various1099

competitions and represents a text-only En-1100

glish fraction of OlympiadBench. It is avail-1101

able at this link.1102

B.3 Evaluation Metrics1103

In addition to evaluating accuracy across the six1104

benchmarks mentioned in Section 5.1, we also as-1105

sess the computational costs associated with inter-1106

acting with external Python interpreters. As de-1107

scribed in Algorithm 1, TIR involves multiple in-1108

teractions with Python interpreters. The associated1109

time costs can be divided into two categories: the1110

time required to execute Python code blocks and1111

the increased generation costs caused by progres-1112

sively longer input sequences. The first type of1113

time cost is reflected in the number of interactions1114

with Python interpreters, i.e., the number of code 1115

executions. The second type can be approximated 1116

by the number of generated tokens, which includes 1117

both input and output tokens. Since the number 1118

of generations is equivalent to the number of code 1119

executions, we use the average total tokens per gen- 1120

eration to evaluate this cost. Naturally, TIR incurs a 1121

higher number of generated tokens due to multiple 1122

generations with progressively longer contexts. 1123

B.4 SFT and Evaluation Setup 1124

SFT Setup In our experiments, we utilize vari- 1125

ous base LLMs, including general-purpose models 1126

(e.g., LLaMA-3-8B (AI@Meta, 2024)) and math- 1127

specialized models (e.g., Qwen2.5-Math (Yang 1128

et al., 2024b)). The details of these base LLMs 1129

are outlined below: 1130

• Llama-3 (AI@Meta, 2024): LLaMA 3 Com- 1131

munity License. We use Llama-3-8B as the 1132

base LLM in our experiments. 1133

• Qwen2.5 (Yang et al., 2024a): Qwen2.5 series 1134

are developed with dedication to math and 1135

coding. We used 0.5B, 1.5B, 3B, and, 7B 1136

models. They are licensed under Apache 2.0. 1137

• Qwen2.5-Math (Yang et al., 2024b): 1138

Qwen2.5-Math is a series of specialized math 1139

language models built upon the Qwen2.5 1140

LLMs. We use 3B and 7B variants. They are 1141

under the same license as the Qwen2.5 series. 1142

We set the maximum input length for all base mod- 1143

els to be 4,096. During SFT, we employ the Adam 1144

optimizer with a learning rate of 2× 10−5 and set 1145

batch size to 64, conducting training over three 1146

epochs. Unlike Beeching et al. (2024); Yang et al. 1147

(2024b), we use the same training prompt for both 1148

CoT and TIR. The prompt is provided in Table 9. 1149

We utilize 8 A100 GPUs to do SFT, and training a 1150

7B model for 3 epochs with exclusively CoT data 1151

spends approximately 12 hours. 1152

Evaluation Setup For evaluation, we adopt the 1153

same prompt used during SFT, as recommended 1154

by Tong et al. (2024). For TIR inference, please 1155

refer to Algorithm 1, where the maximum number 1156

of interactions is set to n = 6. CoT inference can 1157

be viewed as a special case of Algorithm 1 with 1158

n = 1. 1159
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Training and Inference Prompt Template
Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Response:

Table 9: Training prompt for base LLMs.

C More Fine-grained Results1160

C.1 Ablation Study1161

As detailed in Appendix B, we use different deci-
sion function H for GSM8K and MATH. Specifi-
cally, for GSM8K, the dataset for supervised fine-
tuning (DSFT) is defined as:

DSFT =

N⋃
k=1

{(xk, yjk)}
Mk
j=1 ∪

⋃
k∈A

{(xk, zjk)}
Mk
j=1,

where the index set A = {k : Sk
CoT − Sk

TIR <1162

quantile1}.1163

For MATH, DSFT is defined as:

DSFT =

N⋃
k=1

{(xk, zjk)}
Mk
j=1 ∪

⋃
k∈B

{(xk, yjk)}
Mk
j=1,

where the index set B = {k : Sk
CoT − Sk

TIR >1164

quantile2}. We consider this as the default choice1165

of our TATA (i.e., TATA in Table 10).1166

We present the results of the H ablation study in1167

Table 10. The variants of H evaluated are described1168

as follows:1169

Random The key difference between “Random”1170

and “TATA” lies in the selection of the index sets A1171

and B. In the “Random” variant, we randomly se-1172

lect the index sets A and B while ensuring that |A|1173

and |B| match those in the default TATA configura-1174

tion. It is important to note that this is not purely a1175

random selection, the number of queries using TIR1176

or CoT is still determined by the default settings of1177

TATA, making “Random” a strong baseline.1178

CoT + TIR In this variant, we include all CoT
and TIR solutions in DSFT, doubling the number of
training examples compared to using only CoT or
TIR individually. Formally, the dataset is defined
as:

DSFT =

N⋃
k=1

{(xk, yjk)}
Mk
j=1 ∪

N⋃
k=1

{(xk, zjk)}
Mk
j=1.

TATA− The TATA− variant differs from the orig-
inal TATA in that it uses a single quantile for selec-
tion. The dataset is formally defined as:

DSFT =
⋃
k∈A

{(xk, yjk)}
Mk
j=1 ∪

⋃
k∈B

{(xk, zjk)}
Mk
j=1,

where the index set A = {k : Sk
CoT − Sk

TIR > 1179

quantile}, and B = Ac. In this setup, each query in 1180

the candidate set D∗ = {(xi, y∗i , z∗i )}Ni=1 includes 1181

either CoT or TIR solutions but not both. 1182

From Table 10, the selection function H in our 1183

TATA gains the best results. 1184

C.2 Analysis of CoT scores and TIR scores 1185

In Section 6.1, we presented representative re- 1186

sults analyzing CoT and TIR scores. Here, we 1187

further provide the distributions of Sk
CoT, Sk

TIR, 1188

and (Sk
CoT − Sk

TIR) for various base LLMs in Fig- 1189

ures 4, 5, 6, 7, 8, 9, and 10. From these fig- 1190

ures, we have the following observations: 1. Dif- 1191

ferent base LLMs exhibit varying tendencies to- 1192

wards CoT or TIR responding to the same candi- 1193

date set queries. 2. Math-specialized LLMs (e.g., 1194

Qwen2.5Math) demonstrate higher CoT and TIR 1195

scores compared to their general-purpose counter- 1196

parts (e.g., Qwen2.5). This may be attributed to 1197

the inclusion of similar CoT and TIR data in their 1198

pretraining process. 3. Notably, Qwen2.5Math-7B 1199

achieves TIR scores approaching 0.8 accuracy on 1200

the MATH anchor set using only a 1-shot prompt 1201

from the candidate set, as shown in Figure 10 (mid- 1202

dle). This suggests the potential for anchor set 1203

contamination (Xu et al., 2024a). 1204

C.3 Transferability Results 1205

The complete results of transferability results are 1206

given in Table 11. 1207

C.4 DPO Results 1208

The detailed settings of DPO are as follows: 1209

Preference Data Construction The construction
of the preference dataset used in DPO is guided by
CoT and TIR scores, following a similar approach
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Model Method Metric In-Domain Out-of-Domain AVG
GSM8K MATH ID AVG MAWPS SVAMP College Olympiad OOD AVG

LLaMA-3-8B

CoT
Acc 84.7 46.5 65.6 91.6 81.6 30.2 13.3 54.2 58.0
Token 246.4 471.0 358.7 173.3 236.8 511.7 676.7 399.6 386.0
# Code 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TIR
Acc 81.7 56.2 69.0 87.8 77.8 30.5 21.9 54.5 59.3
Token 299.0 457.5 378.2 240.9 269.1 437.9 650.8 399.7 392.5
# Code 2.96 2.51 2.74 2.42 2.64 2.69 2.76 2.63 2.66

Random
Acc 83.1 56.4 69.8 91.8 81.3 31.3 21.8 56.6 61.0
Token 271.6 472.0 371.8 203.7 251.0 453.4 695.5 400.9 391.2
# Code 0.21 2.35 1.28 0.36 0.33 2.44 2.83 1.49 1.42

CoT + TIR
Acc 83.1 48.4 65.8 91.2 78.7 30.8 16.7 54.4 58.2
Token 278.0 497.4 387.7 208.6 281.2 507.3 707.3 421.1 410.0
# Code 0.83 0.51 0.67 0.68 0.95 0.51 1.09 0.81 0.76

TATA−
Acc 83.1 54.7 68.9 91.2 80.6 31.9 19.6 55.8 60.2
Token 285.4 472.1 378.8 226.7 253.9 474.3 692.2 411.8 400.8
# Code 1.4 2.31 1.86 1.23 1.2 2.34 2.49 1.81 1.83

TATA
Acc 84.0 55.1 69.6 91.8 82.7 34.2 21.5 57.6 61.5
Token 248.2 461.1 354.6 191.1 222.5 449.5 657.7 380.2 371.7
# Code 0.12 2.33 1.23 0.27 0.21 2.39 2.6 1.37 1.32

Table 10: Ablation Study using LLaMA-3-8B. The best accuracies within each group are shown in bold. The three
metrics, “Acc”, “Token”, and “# Code” represent the average accuracy, total tokens per generation, and number of
code executions. “Acc” is reported in %. “ID AVG”, “OOD AVG”, and “AVG” denote the averages of these metrics
across in-domain, out-of-domain, and all six benchmarks.
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Figure 3: The distribution of (Sk
CoT − Sk

TIR): Qwen2.5-0.5B (left), Qwen2.5-7B (middle), LLaMA-3-8B (right).
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Figure 4: The distribution of Sk
CoT (left), Sk

TIR (middle), and (Sk
CoT − Sk

TIR) (right) for LLaMA-3-8B.
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Figure 5: The distribution of Sk
CoT (left), Sk

TIR (middle), and (Sk
CoT − Sk

TIR) (right) for Qwen2.5-0.5B.
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Figure 6: The distribution of Sk
CoT (left), Sk

TIR (middle), and (Sk
CoT − Sk

TIR) (right) for Qwen2.5-1.5B.
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Figure 7: The distribution of Sk
CoT (left), Sk

TIR (middle), and (Sk
CoT − Sk

TIR) (right) for Qwen2.5-3B.
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Figure 8: The distribution of Sk
CoT (left), Sk

TIR (middle), and (Sk
CoT − Sk

TIR) (right) for Qwen2.5-7B.
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Figure 9: The distribution of Sk
CoT (left), Sk

TIR (middle), and (Sk
CoT − Sk

TIR) (right) for Qwen2.5Math-1.5B.
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Figure 10: The distribution of Sk
CoT (left), Sk

TIR (middle), and (Sk
CoT − Sk

TIR) (right) for Qwen2.5Math-7B.
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Model Select By Metric In-Domain Out-of-Domain AVG
GSM8K MATH ID AVG MAWPS SVAMP College Olympiad OOD AVG

Qwen2.5-0.5B

Qwen2.5-0.5B
Acc 52.8 36.6 44.7 85.9 59.4 26.9 8.6 45.2 45.0
Token 309.7 508.7 409.2 217.3 292.9 500.9 743.0 438.5 428.8
# Code 0.19 2.63 1.41 0.52 0.33 2.82 3.06 1.68 1.59

LLaMA-3-8B
Acc 51.3 36.3 43.8 86.2 55.9 26.5 8.1 44.2 44.1
Token 318.2 507.7 413.0 216.9 298.9 485.4 732.8 433.5 426.6
# Code 0.28 2.49 1.39 0.52 0.52 2.45 2.73 1.56 1.5

Qwen2.5-7B
Acc 52.2 36.8 44.5 86.7 57.6 26.7 7.4 44.6 44.6
Token 312.5 499.4 406.0 228.6 308.2 489.3 744.5 442.6 430.4
# Code 0.4 2.53 1.46 0.85 0.68 2.75 2.94 1.81 1.69

Table 11: Detailed results of transferability experiments using Qwen2.5-0.5B. The best accuracies within each
group are shown in bold. The three metrics, “Acc”, “Token”, and “# Code” represent the average accuracy, total
tokens per generation, and number of code executions. “Acc” is reported in %. “ID AVG”, “OOD AVG”, and “AVG”
denote the averages of these metrics across in-domain, out-of-domain, and all six benchmarks.

to the construction of DSFT. Specifically, two sepa-
rate quantiles are used to select preference pairs for
the GSM8K and MATH datasets. The preference
dataset, Dpre, is selected from the newly defined
candidate set, D∗ = {(xi, y∗i , z∗i )}Ni=1, and is for-
mally defined as:

Dpre = {(xk, ck, rk)}k∈A,

where ck is the chosen (preferred) response for the1210

query xk, and rk is the rejected response.1211

The index set A is defined as:1212

A = {k : Sk
TIR − Sk

CoT < quantile
′
1 or1213

Sk
CoT − Sk

TIR > quantile
′
2},1214

where quantile
′
1 and quantile

′
2 are two quantiles1215

optimized via grid search.1216

The rules for determining ck (chosen response)
and rk (rejected response) are as follows:

ck =

{
yk if Sk

CoT − Sk
TIR > quantile

′
2,

zk if Sk
TIR − Sk

CoT < quantile
′
1,

and

rk =

{
yk if Sk

TIR − Sk
CoT < quantile

′
1,

zk if Sk
CoT − Sk

TIR > quantile
′
2.

This preference selection process ensures that the1217

dataset Dpre contains meaningful comparisons be-1218

tween CoT and TIR responses based on their rela-1219

tive scores.1220

DPO Hyperparameters We utilize OpenRLHF1221

(Hu et al., 2024) to implement DPO. The maximum1222

token length is set to 4,096, consistent with the SFT1223

stage. The training process adopts a learning rate1224

of 5× 10−7, a batch size of 256, and runs for one1225

epoch. We use LLaMA-3-8B and Qwen2.5Math- 1226

7B, fine-tuned with TATA, as the starting point for 1227

DPO. 1228

The complete results are presented in Table 12. 1229

As shown, DPO achieves comparable results with 1230

LLMs fine-tuned with TATA. 1231

19
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Model Method Metric In-Domain Out-of-Domain AVG
GSM8K MATH ID AVG MAWPS SVAMP College Olympiad OOD AVG

LLaMA-3-8B

CoT
Acc 84.7 46.5 65.6 91.6 81.6 30.2 13.3 54.2 58.0
Token 246.4 471.0 358.7 173.3 236.8 511.7 676.7 399.6 386.0
# Code 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TIR
Acc 81.7 56.2 69.0 87.8 77.8 30.5 21.9 54.5 59.3
Token 299.0 457.5 378.2 240.9 269.1 437.9 650.8 399.7 392.5
# Code 2.96 2.51 2.74 2.42 2.64 2.69 2.76 2.63 2.66

TATA
Acc 84.0 55.1 69.6 91.8 82.7 34.2 21.5 57.6 61.5
Token 248.2 461.1 354.6 191.1 222.5 449.5 657.7 380.2 371.7
# Code 0.12 2.33 1.23 0.27 0.21 2.39 2.6 1.37 1.32

+DPO
Acc 84.0 55.2 69.6 91.8 82.7 34.0 21.8 57.6 61.6
Token 250.8 453.6 352.2 185.0 219.1 435.9 647.9 372.0 365.4
# Code 0.14 2.38 1.26 0.25 0.17 2.42 2.7 1.38 1.34

Qwen2.5Math-7B

CoT
Acc 91.0 61.5 76.2 94.8 87.9 45.7 23.9 63.1 67.5
Token 254.7 470.6 362.6 177.0 223.5 484.1 669.2 388.5 379.9
# Code 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0

TIR
Acc 88.9 73.6 81.2 95.4 89.4 47.1 35.3 66.8 71.6
Token 311.8 490.9 401.4 261.2 272.2 456.8 713.7 426.0 417.8
# Code 3.04 2.56 2.8 2.58 2.51 2.65 2.75 2.62 2.68

TATA
Acc 89.8 73.0 81.4 95.2 88.1 48.3 35.9 66.9 71.7
Token 264.7 487.2 376.0 193.7 229.7 476.9 710.6 402.7 393.8
# Code 0.25 2.14 1.2 0.33 0.24 2.02 2.59 1.3 1.26

+DPO
Acc 89.8 73.1 81.4 95.2 88.1 48.4 35.4 66.8 71.7
Token 267.0 487.2 377.1 193.8 229.4 474.8 718.9 404.2 395.2
# Code 0.3 2.18 1.24 0.39 0.27 2.08 2.67 1.35 1.32

Table 12: Detailed DPO results. The best accuracies within each group are shown in bold. The three metrics, “Acc”,
“Token”, and “# Code” represent the average accuracy, total tokens per generation, and number of code executions.
“Acc” is reported in %. “ID AVG”, “OOD AVG”, and “AVG” denote the averages of these metrics across in-domain,
out-of-domain, and all six benchmarks.
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