
Under review as a conference paper at ICLR 2024

DORAEMONGPT : TOWARD UNDERSTANDING DY-
NAMIC SCENES WITH LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The field of AI agents is advancing at an unprecedented rate due to the capa-
bilities of large language models (LLMs). However, LLM-driven visual agents
mainly focus on solving tasks for the image modality, which limits their ability to
understand the dynamic nature of the real world, making it still far from real-life
applications, e.g., guiding students in laboratory experiments and identifying their
mistakes. Considering the video modality better reflects the ever-changing and
perceptually intensive nature of real-world scenarios, we devise DoraemonGPT,
a comprehensive and conceptually elegant system driven by LLMs to handle dy-
namic video tasks. Given a video with a question/task, DoraemonGPT begins
by converting the input video with massive content into a symbolic memory that
stores task-related attributes. This structured representation allows for spatial-
temporal querying and reasoning by sub-task tools, resulting in concise and rele-
vant intermediate results. Recognizing that LLMs have limited internal knowledge
when it comes to specialized domains (e.g., analyzing the scientific principles
underlying experiments), we incorporate plug-and-play tools to assess external
knowledge and address tasks across different domains. Moreover, we introduce
a novel LLM-driven planner based on Monte Carlo Tree Search to efficiently ex-
plore the large planning space for scheduling various tools. The planner iteratively
finds feasible solutions by backpropagating the result’s reward, and multiple solu-
tions can be summarized into an improved final answer. We extensively evaluate
DoraemonGPT in dynamic scenes and provide in-the-wild showcases demonstrat-
ing its ability to handle more complex questions than previous studies.

1 INTRODUCTION

Based on the advancements in large language models (LLMs) [1–8], recent LLM-driven agents [9–
11] have demonstrated promise in planning the decomposition of complex image tasks into manage-
able subtask sequences and solving them step-by-step. While static images have been extensively
studied, real-world environments are inherently dynamic [12] and ever-changing [13]. Commonly,
capturing real-life scenes is a data-intensive procedure, usually processed by streaming static im-
ages into dynamic videos. In turn, the spatial-temporal reasoning of videos is critical in real-life
recognition, semantic description, causal reasoning, etc.

Toward understanding dynamic scenes, developing an LLM-driven agent to handle dynamic videos
is of great significance yet involves several grand challenges: i) Spatial-temporal Reasoning. The
ability to reason about the relationships between instances and actions is crucial for intelligent action
planning and decision making. Such relationships may be relevant to space [14], time [15], or their
spatial-temporal combination. i) Larger Planning Space. Compared to static images, high-level
semantics about actions and their intentions can typically only be inferred from temporal visual
observations [16]. In other words, the inference of temporal semantics is necessary and will enlarge
the search space of planning dynamic video tasks by the agent. iii) Limited Internal Knowledge.
It’s clear that LLMs can not encode all the knowledge required for understanding every video due
to the ever-changing nature of the real world and/or the lack of training on proprietary datasets [17].

In light of the foregoing discussions, we present DoraemonGPT, an intuitive yet versatile system
driven by LLMs that is compatible with various foundation models and video applications. Dorae-
monGPT has three desirable abilities: First, collecting information regarding the given task before

1

Under review as a conference paper at ICLR 2024

reasoning. In DoraemonGPT, the decomposition of the given dynamic task is decided by the agent-
based reasoning of spatial-temporal relations, which are inferred from informative attributes, such
as instance locations, actions, scene changes, etc. However, it is important to note that only task-
solving related information is critical, as gathering excessive context tends to hinder the LLMs’
capability [18]. Second, exploring better solutions before making decisions. LLM-driven plan-
ning [19–23] decomposes high-level tasks into sub-tasks or action sequences. Considering an action
sequence as a root-to-leaf path in a tree containing all possible sequences, the planning can be
viewed as finding optimal decisions from a tree-like search space [24]. Regarding the large planning
space for solving tasks in dynamic scenes, prompting LLMs with tree-like search methods [25–27]
offers opportunities for better solutions and even the possibility of considering tasks from differ-
ent perspectives. Third, supporting knowledge extension. Just as humans consult reference books
to tackle domain-specific issues, DoraemonGPT is designed to select the most relevant knowledge
source from a series of given external knowledge sources (e.g., search engines, textbooks, databases,
etc.) and then query the information from it during the planning.

More specifically, DoraemonGPT is structured in a form of ⟨memory, tool, planner⟩ (Fig. 1c): i)
Task-related Symbolic Memory (§3.1). To collect information related to the given video and task,
we consider decoupling spatial-temporal attributes into two memories: space-dominant and time-
dominant. Before constructing these memories, LLMs are used to determine their relevance to the
given task and keep only the useful one(s). Foundation models are then employed to extract space-
dominant attributes (e.g., instance detection, trajectory, description, action, etc.) or time-dominant
attributes (e.g., frame captions, video descriptions, audio speech, etc.) and integrate them into a
compact table, which facilitates LLMs to query information by using symbolic language (e.g., SQL
language). ii) Sub-task (§3.1) and Knowledge (§3.2) Tools. To compact our planner’s context/text
length and improve effectiveness, we simplify memory information querying by designing a series
of sub-task tools. Each tool focuses on different kinds of spatial-temporal reasoning (e.g., “How...”,
“Why...”, etc.) by using individual LLM-driven sub-agents with task-specific prompts and examples.
Additionally, for tasks requiring domain-specific knowledge, external knowledge sources can be
easily incorporated through dedicated sub-agent tools. iii) Monte Carlo Tree Search (MCTS)
Planner (§3.3). To efficiently explore the large planning space, we propose a novel tree-search-like
planner. The planner iteratively finds feasible solutions by backpropagating the answer’s reward and
selecting a highly expandable node to expand a new solution. After summarizing all the results,
the planner derives an informative final answer. To design the tree search planner, we equip our
DoraemonGPT with MCTS [27–29], which has shown effectiveness in finding optimal decisions
from a large search space [30], especially in the game AI community [31–33].

Combining the above designs together, DoraemonGPT handles dynamic spatial-temporal tasks ef-
fectively and targeted, supports a comprehensive exploration of multiple potential solutions, and
can extend its expertise by leveraging multi-source knowledge. On the NExT-QA [34] bench-
mark, which includes a variety of dynamic scenarios and challenging video reasoning tasks, our
DoraemonGPT outperforms recent LLM-driven competitors (e.g., surpassing ViperGPT [9] by
19.3%/5.6%/15.2% in causal/temporal/descriptive reasoning). Extensive ablation studies validate
our MCTS planner’s effectiveness, outperforming the naı̈ve DFS method and other baselines. More-
over, when dealing with more complex in-the-wild tasks previously unapplicable or neglected by re-
cent approaches [9, 35], DoraemonGPT provides reasonable answers by integrating external know-
ledge and summarizing results from multiple feasible solutions.

2 RELATED WORK

Multimodal Understanding. Before the emergence of LLMs, various efforts were made to create
multimodal systems tailored for specific tasks [38–50]. While these systems showed impressive per-
formance in their respective domains, their applicability to broader, real-world scenarios was limited
due to the lack of generalizability. Recent years have witnessed remarkable progress in general mul-
timodal systems, due to the fast evolution of data volumes and computational resources. Specifically,
Frozen [51] is a milestone; it demenstrates a feasible way to empower LLMs the ability to handle
visual inputs. Since it was proposed, numerous efforts have been devoted to build large multimodal
models [7, 52–54]. Considering the training cost, several attempts [55, 56] try to build zero-shot sys-
tems for various tasks. An alternative strategy [57], which will be detailed latter, involves combining
multiple models or APIs to tackle compositional multimodal reasoning tasks. Our DoraemonGPT

2

Under review as a conference paper at ICLR 2024

Stochasitic
Rethinking

Source

Bag of
Tools

Solution

Symbolic
Memory

Symbolic
Language

Solution

QueryInput

LoopLoop

Question
(Task)

Multiple
Solutions

Loop

Task-related
Symbolic Memory

Source

Space Time

Solution 1

Solution 2
…

PlannerPlanner

HuggingGPT
ChatDB
Symbolic memoryOurs

Question
(Task)

Question
(Task)

Other Tools

Sub-task Tools

…Why How

Memory
Construction

(a) Naı̈ve planners

Stochasitic
Rethinking

Source

Bag of
Tools

Solution

Symbolic
Memory

Symbolic
Language

Solution

QueryInput

LoopLoop

Question
(Task)

Multiple
Solutions

Loop

Task-related
Symbolic Memory

Source

Space Time

Solution 1

Solution 2
…

PlannerPlanner

HuggingGPT
ChatDB
Symbolic memoryOurs

Question
(Task)

Question
(Task)

Other Tools

Sub-task Tools

…Why How

Memory
Construction

(b) w/ symbolic memory

MCTS
Planner

Source

Bag of
Tools

Solution

Symbolic
Memory

Symbolic
Language

Solution

QueryInput

LoopLoop

Question
(Task)

Multiple
Solutions

Loop

Task-related
Symbolic Memory

Source

Space Time

Solution 1

Solution 2
…

PlannerPlanner

HuggingGPT
ChatDB
Symbolic memoryOurs

Question
(Task)

Question
(Task)

Memory
Construction

Knowledge Tools

Sub-task Tools
…Why How

(c) DoraemonGPT (ours)
Figure 1: (a) Naı̈ve LLM-driven planners (e.g., [9–11]) decompose a static image task to a se-
quence of tool executions, while real-world environments are inherently dynamic. (b) Planners with
symbolic memory (e.g., [17, 36, 37]) iteratively generate symbolic languages to retrieve external
knowledge or information. (c) Regarding a given dynamic video task, our DoraemonGPT (§3)
decouples spatial-temporal attributes into task-related memories. Instead of generating symbolic
languages directly, sub-task (symbolic) tools for different kinds of spatial-temporal reasoning (e.g.,
“Why...”, “How...”) and other tools (e.g., for retrieving external knowledge) are planned to solve the
task. By introducing the MCTS planner, DoraemonGPT can explore the large planning space, find
potential solutions, and deliver an improved final answer.

shares a similar spirit of decomposing complex tasks into simpler ones, but it is designed to solve
complicated tasks for dynamic modalities in the real-world senarios.
LLM-driven Modular Systems. Deconstructing complex tasks and merging the results from mul-
tiple intermediate steps is an innate human ability that drives the scientific and industrial communi-
ties [58, 59]. Benefiting from the impressive emergent capabilities of LLMs, VisProg [11] pioneers
the idea of addressing complex vision tasks through the decomposition of questions into manageable
subtasks. Alongthis line, tremendousprogresshasbeenachieved, which can be divided into two cate-
gories according to reasoning styles: i) Reasoning with fixed paths[9–11, 60–62]. They transform the
given task into a ordered sequence of subtasks, each addressed by a specific module. For example,
ViperGPT[9] treats the solving process as a Python program with manually designed APIs. Similarly,
HuggingGPT [10] models task dependencies between numerous foundation models. ii) Reasoning
with dynamic paths [19, 63–66]. Considering the intermediate results may not meet expectations, a
promisingavenue is toperformplanningandexecutingconcurrently.Suchan interactive paradigm[19]
provides a flexible and error-tolerant manner compared to those with fixed paths. Additionally, there
are many agents focussing on other domains, e.g., planning in the open-world environments [67–69],
tool usage [70, 71], reinforcement learning [20, 72]. This work focuses on computer vision only.
Despite impressive, existing LLM-driven modular systems mainly focus on developing specific stra-
tegies to solve composition tasks for static modalities, ignoring the fundamental gaps between static
and dynamic modalities, which is a pivotal aspect towards achieving artificial general intelligence
(AGI) [73]. These works, to some extent, can be seen as a subset of our system. Though exceptions
exist [9, 35, 66, 74], in general they are scattered, lacking systematic study, e.g., simply treating the
videoasasequenceof images [9] or building achatbot based onpre-extracted information of the given
video [35, 74]. In sharp contrast, we take the video and task as a whole, resulting in a compact, task-
related memory. The reasoning paths of our system are dynamic powered by the MCTS planner. In
addition to facilitate the answer searching, MCTS planner has the potential to find multiple possible
candidates. This is crucial for questions with open-ended answer.
LLMs with External Memory. How to effectively design prompt templates, known as prompt eng-
nieering, is of importance for accurate LLM responses [75, 76]. One of the areas in the spotlight is
memory-augmented LLMs [36, 37, 69, 77–84]. In general, training-free memories can be divided
into: i) Textual memory [69, 85]. In this kind of memory, the long contexts LLMs cannot handle
(e.g., books) are stored as embeddings, which can be further retrieved by computing similarity. A
typical example is the document question answering shown in LangChain1. ii) Symbolic memory. It
models memory as structured represtations with corresponding symbolic languages, e.g., codes for
programing language [84], execution commands for Excel2, and structured query language (SQL)
for databases [36, 37]. Different from techniques [86–93] that directly extend the context window

1https://docs.langchain.com/docs/use-cases/qa-docs
2https://chatexcel.com/

3

Under review as a conference paper at ICLR 2024

Video

“Describe the experiment and its chemical
principle. Provide step-by-step instructions
so that I can replicate it at home.”

Question / Task

Task-related Symbolic Memory

Memory
Construction

task-relatedinput

Space-dominant Time-dominant

relatedunrelated

00:00-00:03
Caption

……
Elephant toothpaste is…

Audio

A man in a white coat is...

……

ID: 01
Action

……
At Frame 0: [0.39, 0.16, …

Trajectory

Speaking and Standing

Person

……

Sub-task Tools
When Why

HowWhat

Count

Other

Other Tools
External Knowledges

Utility Tools

Monte Corlo Tree Search Planner
Question: Describe the
experiment and its ……

Action: Textual Knowledge
Input: Bring_Science_Home.txt
Observation: Make Elephant
Toothpaste: A bubbly science…

Action: Google Search
Input: The detailed step of …
Observation: … if you want to
get your foam stripes like …

Action: Time-dominant Construction
Input: video.mp4&Describe the…
Observation: Built time-dominant…

Action: How
Input: How to replicate the…
Observation: To replicate this
experiment at home, please…

Summarize (N=3)

Final answer 1: The
experiment done in
the video is elephant
toothpaste. To
replicate at home,
please gather the…

Final answer 2:
Elephant Toothpaste
is an impressive
chemical reaction
that involves rapid
decomposition of …

Final answer 3:
The demonstration
is called Elephant’s
Toothpaste because
the chemical reaction
produces a large…

Action: What
Input: What’s the experiment?
Observation: The experiment is
elephant toothpaste…

Action: What
Input: What’s the chemical
principle behind the experiment.
Observation: The elephant …

Figure 2: Overview. Given a video with a question/task, DoraemonGPT first extracts a Task-related
Symbolic Memory (§3.1), which has two types of memory for selection: space-dominant mem-
ory based on instances and time-dominant memory based on time frames/clips. The memory can
be queried by sub-task tools, which are driven by LLMs [1] with different prompts and generate
symbolic language (i.e., SQL sentences) to do different reasoning. Also, other tools for querying
external knowledge (§3.2) or utility tools are supported. For planning, DoraemonGPT employs the
MCTS Planner (§3.3) to decompose the question into an action sequence by exploring multiple fea-
sible N solutions, which can be further summarized into an informative answer.

of LLMs, memory-augmented LLMs use retrieval-based approaches to bypass the limitation of con-
text length. This is more favored because: (i) it is a plug-and-play module without any fine-tuning or
architectural modifications; and (ii) concurrent works [18, 94] suggest that LLMs may be distracted
or lost while encounting irrelevant or long contexts. By absorbing their ideas of memory organi-
zation, we construct a request-related database, which stores intance-aware and instance-agnostic
information into indivisual tables. To retrieve the relevant information, we explicitly define seve-
ral sub-task tools based on prompt templates and SQL, with respect to different purposes. With a
broader view, our multi-source knowledge, which is a complementary module to provide reliable
guidances in specific domains, can also be considered as a hybrid of external memories.

3 DORAEMONGPT

Overview. DoraemonGPT is an LLM-driven agent capable of seamlessly utilizing various tools to
decompose a complex dynamic video task into sub-tasks and solve them. Given a video (V) with a
textual task/question (Q), DoraemonGPT first extracts a Task-related Symbolic Memory (§3.1) from
V based on the task analysis of Q. Next, employing a Monte Carlo Tree Search (MCTS) Planner
(§3.3), DoraemonGPT automatically schedules the tool sets for querying the symbolic memory,
accessing external knowledge (§3.2), and calling other utility tools (such as video inpainting, etc.) to
solve the question Q. Ultimately, the planner explores the planning space, returns multiple possible
answers, and summarizes an improved answer. An illustration is shown in Fig. 2.

3.1 TASK-RELATED SYMBOLIC MEMORY (TSM)

Videos are complex dynamic data, including spatial-temporal relations. When giving a question Q
regarding a video V , only a part of related attributes is essential for making a solution, disregarding
the abundance of extraneous information. Thus, we propose to extract and store potentially relevant
video information regarding Q into a TSM before solving Q.

4

Under review as a conference paper at ICLR 2024

Table 1: The attribute types in space-dominant and time-dominant memories (§3.1). Each attribute
is extracted or predicted based on different foundation models.

Attribute Used Model Explanation
Space-dominant Memory

ID number - A unique ID assigned to an instance
Category YOLOv8 [95] The category of an instance, e.g., person
Trajectory Deep OC-Sort [96] An instance’s bounding box in each frame
Segmentation YOLOv8-Seg [95] An instance’s segmentation mask in each frame
Appearance BLIP [54] / BLIP-2 [55] A description of an instance’s appearance
Action InternVideo [97] The action of an instance

Time-dominant Memory
Timestamp - The timestap of a frame/clip
Audio content Whisper [98] Speech recognition results of the video
Optical content OCR [99] Optical character recognition results of the video

Captioning BLIP [54]/BLIP-2 [55]/
InstructBlip [100] Frame-level/clip-level captioning results

TSM Construction. To construct the TSM, we use a straightforward in-context learning
method [51] to select the task type of TSM based on the question Q. We place the task
description of each type of TSK into the context of our LLM-driven planner, which will be
prompted to predict a suitable TSM in the format like “Action: ⟨TSM type⟩ construction...”. Then,
the API of constructing the corresponding TSM will be called to extract task-related attributes and
store them in an SQL table, which can be accessed by symbolic languages, i.e., SQL sentences.

There is no standardized criterion for categorizing video tasks. In DeoraemonGPT, we choose the
perspective of spatial-temporal decoupling, which has been widely applied in video representation
learning [101–103], to design two memory types:
• Space-dominant memory is primarily used to address questions related to specific targets (e.g.,

persons or animals) or their spatial relations. We use multi-object tracking methods [96] to detect
and track instances. Each instance has attributes that include unique ID, semantic category,
trajectory & segmetnation for localization, appearance description extracted by [54, 55]
and used for text-based grounding, and action classification.

• Time-dominant memory focuses on constructing temporal-related information of the video re-
garding the question. It requires comprehending the content throughout the video. The attributes
stored in this memory include timestamp, audio content by ASR [98], optical content
by OCR [99], frame-level captioning by [54, 55, 100], clip-level captioning by dedupicating
similar and continuous frame-level results, etc.

Table 1 provides the attribute types with corresponding extraction models of our TSMs.

Sub-task Tools. Although LLM-driven agents [35, 36] can assess external information by in-context
learning of the whole memory or generating symbolic sentences to access the memory, these meth-
ods can significantly increase the length of the context, potentially leading to the omission of cru-
cial information in the reasoning process or being influenced by redundant context. Thus, we pro-
vide a series of sub-task tools responsible for querying information from our TSMs [18, 94] by
answering sub-task questions. The LLM-driven planner learns the function of each sub-task tool
through its in-context description, which describes the sub-task description, tool name,
and tool inputs. To call the API of a sub-task tool, DoraemonGPT parses the command generated
by LLMs, like “Action: ⟨tool name⟩. Input: ⟨video name⟩#⟨sub question⟩...”.

To collaborate with the above two kinds of TSMs, we design sub-task tools with different
sub-task description and for solving different sub-questions, including:
• When: related to temporal understanding, e.g., “When the dog walks past by the sofa?”
• Why: related to causal reasoning, e.g., “Why did the lady shake the toy?”
• What: describing the required information, e.g., “What’s the name of the experiment?”
• How: what manner, means, or quality of something, e.g., “How does the baby keep himself safe?”
• Count: counting something, e.g., “How many people in the room?”
• Other: questions not in the above tools, e.g., “Who slides farther at the end?”
The API functions of these tools are built upon LLMs as well. Each sub-task tool function is an
individual LLM-driven agent, which can generate SQL sentences to query our TSMs and answer

5

Under review as a conference paper at ICLR 2024

the given sub-task question. Different sub-task agents have different in-context examples regarding
their purposes. Note that a sub-question may be suitable for two or more sub-tools (e.g., “What was
the baby doing before playing the toy?”, related to what and when), and our MCTS planner (§3.3)
is capable of exploring different selections.

3.2 KNOWLEDGE TOOLS AND OTHERS

When tackling complex problems, LLM-driven agents sometimes fail to make accurate decisions
solely based on video understanding and the implicit knowledge learned by LLMs during training.
Thus, DoraemonGPT supports the integration of external knowledge sources that can assist the
LLM in comprehending the specialized content within the input video/question. In DoraemonGPT,
a knowledge source can be integrated in a plug-and-play manner by using an individual knowledge
tool. Similar to the sub-task tools (§3.1), a knowledge tool consists of two parts: i) an in-context
knowledge description to describe the given knowledge source and ii) an API function to
query information from the source by question answering.

We consider three types of API function for covering different knowledge: i) symbolic knowl-
edge refers to information presented in a structured format such as Excel or SQL tables. The
API function is a symbolic question-answering sub-agent like our sub-task tools (§3.1). ii) tex-
tual knowledge encompasses knowledge expressed through natural language text, such as research
publications, reference books, etc. The API function is built based on text embedding and search-
ing [104]. iii) web knowledge denotes knowledge searched from the internet. The API function is
a search engine API, such as Google, Bing, etc. Besides the knowledge tools, DoraemonGPT also
supports integrating general utility tools, commonly used in recent LLM-driven agents [57], to help
complete more specialized vision tasks, such as video editing, inpainting, etc.

3.3 MONTE CARLO TREE SEARCH (MCTS) PLANNER

Previous LLM-driven planners [9–11] decompose the given Q into an action/sub-task sequence and
solve it step by step. Such a strategy can be seen as a greedy search method which generates a
chain of action nodes until the final answer. However, we consider the large planning space of
solving dynamic video tasks as a tree, and a single attempt may not yield the correct result, or better
solutions may exist. To efficiently explore the planning space, we propose a novel tree-search-like
planner equipped with MCTS [27–29], which has shown its practicality in searching large trees.

We define the question input Q as the root node v0, and an action or tool call is a non-root node,
then an action sequence can be viewed as a path from the root node to a leaf node. In our MCTS
planner, a non-root node is a ReAct [19]-style step in the form of ⟨thought, action, action input,
observation⟩, and a leaf node has a final answer in addition. The planner iteratively executes the
following four phases for N times and produces N solutions:

Node Selection. Each iteration starts by selecting an expandable node for planning a new solution.
For the first iteration, only the root v0 is selectable. For subsequent iterations, we randomly select a
non-leaf node based on their sampling probability, formulated as P (vi) = Softmax(Ri), where Ri

is the reward value of node vi initialized as 0 and updated in the Reward Back-propagation phase.
The node with a higher reward has a greater probability of being selected.

Branch Expansion. A child will be added to the selected expandable node to create a new branch.
To leverage LLM for generating a new tool call different from the previous child nodes, we add
historical tool actions into the prompt of LLM and instruct it to make a different choice. Such an
in-context prompt will be removed in the subsequent chain execution toward a new final answer.

Chain Execution. After expanding a new branch, we use a step-wise LLM-driven planner [19] to
generate a new solution. The execution process consists of a chain of steps/nodes of tool calls and
will terminate upon obtaining the final answer or encountering an execution error.

Reward Back-propagation. After obtaining a leaf/outcome node vl, we will gradually propagate
its reward to its ancestor nodes until v0. In our method, we consider two kinds of reward:
• Failure: the planner produces an unexpected result, such as a failed tool call, incorrect result

format, etc. The reward Rvl is set to a negative value (e.g., −1) for these cases.

6

Under review as a conference paper at ICLR 2024

Table 2: Comparison of our DoraemonGPT with SOTAs on NExT-QA [34] (§4.2). †: reimplement
using the officially released codes. ∗: we filter out those failed executions (i.e., compilation error)
of ViperGPT [9] and record the performance on successful executions (840/900 on s val). All
LLM-driven systems (LLM agent) use the same LLM, i.e., GPT-3.5-turbo.

Method Split Publication AccC AccT AccD Avg AccA
Su

pe
rv

is
ed

HME [105] val CVPR 2019 46.2 48.2 58.3 50.9 48.7
VQA-T [106] val ICCV 2021 41.7 44.1 60.0 48.6 45.3

ATP [107] val CVPR 2022 53.1 50.2 66.8 56.7 54.3
VGT [108] val ECCV 2022 52.3 55.1 64.1 57.2 55.0
VGT [108] s val ECCV 2022 49.7 53.3 63.7 55.6 55.6

MIST [109] val CVPR 2023 54.6 56.6 66.9 59.3 57.2
MIST [109] s val CVPR 2023 51.7 55.3 67.0 58.0 58.0

L
L

M
ag

en
t †ViperGPT [9] s val ICCV 2023 29.7 37.3 47.3 38.1 38.1

∗†ViperGPT [9] ∗s val ICCV 2023 33.0 40.1 48.8 40.8 40.8
†VideoChat [35] s val - 46.7 45.3 61.0 51.0 51.0

Ours s val - 52.3 45.7 64.0 54.0 54.0

• Non-failure: the planner successfully produces a result that does not belong to failure results, but
it is not sure whether the result is correct as ground truth. Rvl is set to a positive value (e.g., 1).

For simplicity, let α be a positive base reward, we set Rvl = ±α for Failure and Non-failure,
respectively. According to [94], the outcome produced by LLMs is more related to the context at
the beginning (the initial prompts) and the end (the final nodes). We consider that more reward
should be applied to nodes close to vl. Thus, the backpropagation function is formulated as Rvi ←
Rvi + Rvle

β(1−d(vi,vl)), where d(vi, vl) denotes the node distance between vi and vl, and β is a
hyper-parameter for controlling the decay rate of the reward. The further the node distance, the
greater the reward decay ratio, eβ(1−d(vi,vl)).
After all the MCTS iterations, the planner will produce N non-failure answers at most, and we
can use LLMs to summarize all the answers to generate an informative answer. Alternatively, for
single-/multiple-choice questions, we can determine the final answer through a voting process.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets. NExT-QA [34] is a benchmark for video question answering designed to improve video
understanding by focusing on causal action reasoning, temporal action reasoning, and common
scene comprehension. It contains 34,132/4,996/8,564 questions for train/val/test. Each ques-
tion is annotated with a question type (causal/temporal/descriptive) and 5 answer candidates. Limi-
ted by the frequency of API calls with GPT-3.5 and budget, we create a balanced subset of NExT-QA
as in [11]. Concretely, for evaluation, we randomly sample up to 300 samples per question type from
the val set, resulting in a total of 900 questions (s val). For ablation studies, we randomly sample
10 samples per question type from train, resulting in a total of 30 questions (s train).

Evaluation Metric. We adopt the standard metric [34, 109], top-1 test accuracy, for evaluation. We
report accuracy for causal (AccC), temporal (AccT), descriptive (AccD). We also report Avg (the
average of AccC, AccT, and AccD) and AccA (the overall accuracy of all questions).

Implementation Details. We use GPT-3.5-turbo API provided by OpenAI as our LLM. As summa-
rized in Table 1, we use BLIP series [55, 100] for captioning, YOLOv8 [95] and Deep OC-Sort [96]
for object tracking, PaddleOCR [99] for OCR, InternVideo [97] for action recognition, and Whis-
per [98] for ASR. Our experiments are conducted under the in-context learning (ICL) setting.

Competitors. We involve several open-sourced LLM-driven agents for performance comparison.
ViperGPT [9] leverages code generation models to create subroutines from vision-and-language
models through a provided API, thus it solves the given task by generating Python code that is later
executed. VideoChat [35] is an end-to-end chat-centric video understanding system that integrates
several foundation models and LLMs to build a chatbot. We do not report the performance of others
as they do not release their codes for video tasks or even open-source it.

Hyperparameters. We set α = 1 and β = 0.5 for the reward back-propagation (cf. §3.3). For
experiments on NExT-QA, exploring N = 2 solutions has better accuracy-cost trade-offs.

7

Under review as a conference paper at ICLR 2024

Video

“Find the wrong operations in this video
and explain why. Provide step-by-step
instructions so that I can finish it safely.”

Question / Task

Sub-task Tools
When Why

HowWhat

Count

Other

Other Tools
External Knowledges

Utility Tools

Monte Corlo Tree Search Planner

Question: Find the wrong
operations in this video …

Action: What
Input: What’s wrong in the
operations?
SQL: SELECT appearance
FROM …
Observation: A person, a vase,
at 00:00:16, …

Final answer 2:
… It should be handled with great
care since …

Fail to continue …

Action: What
Input: What operations were
taken in the video?
SQL: SELECT captioning FROM …
Observation: A person is
pouring liquid into a flask …

Fail to continue …

Action: What
Input: What operations were taken in
the video?
SQL: SELECT audio_content FROM …
Observation: Let the water slowly
drip into the concentrated sulfuric
acid in the bottle …

Final answer 1:
The wrong operation is to pour
water into pie sulfuric acid …

Action: Google Search
Input: Experiments about Diluting
concentrated sulfuric acid
Observation: … When diluting con-
centrated sulfuric acid …

Action: Text Knowledge
Input: About_diluting
concentrated_sulfuric_acid.txt
Observation: …. Never pour water
into a pie of sulfuric acid …

Summary: The wrong operation is to pour water into the pie sulfuric acid. The
experimental procedure is: 1. slowly pour concentrated sulfuric acid along the wall of the
beaker into the beaker containing water 2. stir constantly with a glass rod 3. touch the
outside of the beaker with your hand to feel the change in temperature of the solution.

Root

No. 1

No. 2

No. 3

No. 6

No. 5

No. 4
No. 7

No. 8

No. 9

Notebook

No. 10

No. 11

About_diluting
concentrated_
sulfuric_acid.txt

Action:
Time-dominant Construction
Input: video.mp4&Find the …

Action:
Space-dominant Construction
Input: video.mp4&Find the
wrong operations in this…

Figure 3: An in-the-wild example of DoraemonGPT. Given a video input and a question, our system
automatically explores the solution space powered by MCTS planner and various tools. This figure
demonstrates both the utilized tools, and the result of intermediate steps during the exploration. Ta-
king advantage of the tree-like exploration paths, DoraemonGPT can not only summarize collected
answers into a better one, but also has the potential to generate multiple potential solutions. (§4.3)

Reproducibility. Our algorithm is implemented in PyTorch and LangChain and tested on an NVI
-DIA Tesla A100 GPU with 80G memory. To guarantee reproducibility, the code will be released.

4.2 QUANTITATIVE RESULT

Table 2 presents comparisons of our DoraemonGPT against several top-leading supervised VQA
models and LLM-driven systems on NExT-QA. As can be seen, DoraemonGPT achieves com-
petitive performance compared to recently proposed supervised models. In particular, it shows
a more promising improvement in causal questions, even outperforming the previous SOTA,
MIST [109] (52.3 vs 51.7). The main reason is that our task-related symbolic memory can pro-
vide enough information for reasoning. In terms of temporal and descriptive questions, super-
vised models are slightly superior to ours, mainly due to their well-designed architectures that have
learned underlying patterns. In addition, DoraemonGPT outperforms recent concurrent works, i.e.,
ViperGPT [9] and VideoChat [35]. Concretely, it outperforms ViperGPT by 19.3/5.6/15.2/13.2
(AccC/AccT/AccD/Avg) and VideoChat by 5.6/0.4/3.0/3.0 across the four question types. Note that
we have filtered out the failed execution cases (60/900 on s val) of ViperGPT and only record the
performance on successful executions, which improves ViperGPT’s Avg score from 38.1 to 40.8.
These results demonstrate the efficacy of our MCTS planner based on task-related memory.

4.3 IN-THE-WILD EXAMPLE

In Fig. 3, we visualize the reasoning paths of an in-the-wild example. As depicted, DoraemonGPT
is asked to check the experimental operations shown in the video and tell the user how to finish it
step by step. Specifically, DoraemonGPT first makes two failed attempts at the beginning, i.e., the
queried SQL table or symbolic memory does not contain the information related to the sub-question.
Regarding the relevant parts, DoraemonGPT understands the experimental operations shown in the
video after expanding a new tree branch by querying a different sub-question. Then, there are two
alternative ways to get the final answer, i.e., through the textual notebook provided by users or
through a search engine. These paths generate two relevant but different final answers, which can be
further summarized into a better, more comprehensive answer. Such an exploration process shows
our system’s ability to handle questions more complex than those constructed in previous studies.

8

Under review as a conference paper at ICLR 2024

Table 3: A set of ablative experiments about the MCTS planner on NExT-QA [34] s train (§4.4).

N AccC AccT AccD AccA

1 63.3 20.0 46.7 43.3
2 80.0 43.3 46.7 56.7
3 86.7 43.3 53.3 61.1
4 96.7 46.7 53.3 65.7
5 86.7 43.3 50.0 60.0

(a) Number of answer candidates

α β AccC AccT AccD AccA

0.5 1.0 86.7 23.3 50.0 53.3
1.0 0.5 96.7 46.7 53.3 65.7
0.5 2.0 86.7 26.7 50.0 54.4
2.0 0.5 83.3 46.7 50.0 60.0
2.0 2 80.0 46.7 50.0 58.9

(b) Reward and decay rate (N = 4)

Strategy AccC AccT AccD AccA

DFS 66.7 36.7 50.0 51.1
Root 73.3 16.7 46.7 45.6

Uniform 67.7 26.7 50.0 47.8
MCTS 96.7 46.7 53.3 65.7

(c) Exploring strategy (N = 4)

4.4 DIAGNOSTIC EXPERIMENT

To gain more insights into DoraemonGPT,we conducta set of ablative experiments onNExT-QA[34]

Table 4: Analysis of essential components on
NExT-QA [34] s train (§4.4).

TDM SDM AccC AccT AccD AccA

✓ 63.3 26.7 53.3 47.8
✓ 53.3 23.3 46.7 41.1

✓ ✓ 96.7 46.7 53.3 65.7

s train by randomly select 90 videos.

Task-related Symbolic Memory. First, we inve-
stigate the essential components in DoraemonGPT,
i.e., symbolic memories (§3.1) for space-dominant
(SDM) and time-dominant (TDM) information. The
results are summarized in Table 4. Two crucial con-
clusions can be drawn. First, TDM is more pre-
ferred for temporal questions, while SDM can provide relevant information for descriptive ques-
tions. Second, our complete system achieves the best performance by combining our SDM and
TDM, confirming the necessity of dynamically querying two types of symbolic memory.

Multiple Solutions by MCTS Planner. We next study the influence of the number of answer can-
didates during the exploring process of our MCTS planner. When N = 1, the planner is equivalent
to a greedy search, explores only a chain of nodes, and returns a single answer – the first node in
LLM’s thinking that can be terminated without further exploration. As shown in Table 3a, gradually
increasing N from 1 to 4 leads to better performance (i.e., 43.3 → 65.7). This supports our hy-
pothesis that one single answer is far from enough to handle the larger planning space for dynamic
modalities and proves the efficacy of our MCTS planner. Since the questions in NExT-QA [34] are
single-choice, exploring more answers does not always result in positive returns. We stop using N
> 5 as the required number of API calls exceeds our budget.

Back-propogation in MCTS Planner. Then, we ablate the effect of the base reward α and decay
rate β (cf. §3.3) that control the exploring procedure of our MCTS planner. As reported in Table 3b,
their performance is stable regardless of the combination of α and β used. Hence, we set the slightly
better one, α = 1 and β = 0.5, as our default setting. We leave some special combinations in the
next part (e.g., our MCTS planner becomes the depth-first search (DFS) when setting β = 108 and
Rvl = 1 for both Failure and Non-failure cases).

Exploring Strategies used by Planner. Last, to verify the advantage of our MCTS planner, we
compare MCTS with several standard exploring strategies, i.e., depth-first search (DFS), Root, which
always selects the root node, and Uniform, which samples a node with equal probability. As shown
in Table 3c, we observe that their performance is suboptimal due to the inability to leverage the
value/reward of the outcome leaf nodes and accordingly adjust their searching strategy. Compared
to these naı̈ve strategies, our MCTS planner adaptively samples a node with the guidance of reward
back-propagation, which is more effective in a large solution space. These results further validate
the superiority of the proposed MCTS planner.

5 CONCLUSION

Regarding real-world scenarios’ dynamic and ever-changing nature, we present DoraemonGPT, an
LLM-driven agent for solving dynamic video tasks. Compared to existing LLM-driven visual mod-
ular systems, DoraemonGPT has merits in: i) conceptually elegant system designed by delving into
the dynamic modalities in our lives; ii) compact task-related symbolic memory by decoupling, ex-
tracting, and storing spatial-temporal attributes; iii) effective and decomposed memory querying
through symbolic sub-task tools; iv plug-and-play knowledge tools for accessing domain-specific
knowledge; v) automated exploration of large planning space using MCTS planner, providing mul-
tiple solutions with an informative final answer; and vi) answer diversity that provides multiple
potential candidates by fully exploring the solution space. Experiments confirm the versatility and
effectiveness of DoraemonGPT for solving complicated tasks in dynamic scenes.

9

Under review as a conference paper at ICLR 2024

REFERENCES

[1] OpenAI. Introducing chatgpt. OpenAI Blog, 2021.
[2] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,

Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained
transformer language models. arXiv preprint arXiv:2205.01068, 2022.

[3] Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Pas-
sos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical
report. arXiv preprint arXiv:2305.10403, 2023.

[4] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra,
Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al.
Palm: Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

[5] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Tim-
othée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama:
Open and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[6] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

[7] OpenAI. Gpt-4 technical report. OpenAI Blog, 2023.
[8] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin

Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source
chatbot impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed
14 April 2023), 2023.

[9] Dı́dac Surı́s, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execu-
tion for reasoning. In ICCV, 2023.

[10] Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang.
Hugginggpt: Solving ai tasks with chatgpt and its friends in huggingface. arXiv preprint
arXiv:2303.17580, 2023.

[11] Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual rea-
soning without training. In CVPR, pages 14953–14962, 2023.

[12] Bo Wu, Shoubin Yu, Zhenfang Chen, Joshua B Tenenbaum, and Chuang Gan. Star: A bench-
mark for situated reasoning in real-world videos. In NeurIPS, 2021.

[13] Laura Smith, J Chase Kew, Xue Bin Peng, Sehoon Ha, Jie Tan, and Sergey Levine. Legged
robots that keep on learning: Fine-tuning locomotion policies in the real world. In ICRA,
pages 1593–1599, 2022.

[14] Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pascanu, Peter
Battaglia, and Timothy Lillicrap. A simple neural network module for relational reasoning.
NeurIPS, 30, 2017.

[15] Bolei Zhou, Alex Andonian, Aude Oliva, and Antonio Torralba. Temporal relational reason-
ing in videos. In ECCV, pages 803–818, 2018.

[16] Makarand Tapaswi, Yukun Zhu, Rainer Stiefelhagen, Antonio Torralba, Raquel Urtasun, and
Sanja Fidler. Movieqa: Understanding stories in movies through question-answering. In
CVPR, pages 4631–4640, 2016.

[17] Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng, Yujia Xie, Yu Hu, Qiuyuan Huang,
Lars Liden, Zhou Yu, Weizhu Chen, et al. Check your facts and try again: Improving
large language models with external knowledge and automated feedback. arXiv preprint
arXiv:2302.12813, 2023.

[18] Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H Chi, Nathanael
Schärli, and Denny Zhou. Large language models can be easily distracted by irrelevant con-
text. In ICML, pages 31210–31227, 2023.

[19] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and
Yuan Cao. React: Synergizing reasoning and acting in language models. arXiv preprint
arXiv:2210.03629, 2022.

10

Under review as a conference paper at ICLR 2024

[20] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao.
Reflexion: Language agents with verbal reinforcement learning. In NeurIPS, 2023.

[21] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng,
Jonathan Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied
reasoning through planning with language models. arXiv preprint arXiv:2207.05608, 2022.

[22] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David,
Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can,
not as i say: Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691,
2022.

[23] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as
zero-shot planners: Extracting actionable knowledge for embodied agents. In ICML, pages
9118–9147, 2022.

[24] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and
Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language mod-
els. arXiv preprint arXiv:2305.10601, 2023.

[25] Richard E Korf. Depth-first iterative-deepening: An optimal admissible tree search. Artificial
intelligence, 27(1):97–109, 1985.

[26] Robert M Haralick and Gordon L Elliott. Increasing tree search efficiency for constraint
satisfaction problems. Artificial intelligence, 14(3):263–313, 1980.

[27] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowl-
ing, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon
Colton. A survey of monte carlo tree search methods. IEEE Transactions on Computational
Intelligence and AI in games, 4(1):1–43, 2012.

[28] Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In
International conference on computers and games, pages 72–83, 2006.

[29] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In ECML, pages
282–293, 2006.

[30] Tom Vodopivec, Spyridon Samothrakis, and Branko Ster. On monte carlo tree search and
reinforcement learning. Journal of Artificial Intelligence Research, 60:881–936, 2017.

[31] Sylvain Gelly, Yizao Wang, Rémi Munos, and Olivier Teytaud. Modification of UCT with
patterns in Monte-Carlo Go. PhD thesis, INRIA, 2006.

[32] Guillaume MJ B Chaslot, Mark HM Winands, and H Jaap van Den Herik. Parallel monte-
carlo tree search. In Computers and Games: 6th International Conference, CG 2008, Beijing,
China, September 29-October 1, 2008. Proceedings 6, pages 60–71, 2008.

[33] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game
of go without human knowledge. nature, 550(7676):354–359, 2017.

[34] Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua. Next-qa: Next phase of question-
answering to explaining temporal actions. In CVPR, pages 9777–9786, 2021.

[35] KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhai Wang, Ping Luo, Yali Wang,
Limin Wang, and Yu Qiao. Videochat: Chat-centric video understanding. arXiv preprint
arXiv:2305.06355, 2023.

[36] Chenxu Hu, Jie Fu, Chenzhuang Du, Simian Luo, Junbo Zhao, and Hang Zhao. Chatdb: Aug-
menting llms with databases as their symbolic memory. arXiv preprint arXiv:2306.03901,
2023.

[37] Ruoxi Sun, Sercan O Arik, Hootan Nakhost, Hanjun Dai, Rajarishi Sinha, Pengcheng Yin,
and Tomas Pfister. Sql-palm: Improved large language modeladaptation for text-to-sql. arXiv
preprint arXiv:2306.00739, 2023.

[38] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen Gould,
and Lei Zhang. Bottom-up and top-down attention for image captioning and visual question
answering. In CVPR, pages 6077–6086, 2018.

[39] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic
visiolinguistic representations for vision-and-language tasks. NeurIPS, 32, 2019.

11

Under review as a conference paper at ICLR 2024

[40] Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Ok-vqa: A
visual question answering benchmark requiring external knowledge. In CVPR, pages 3195–
3204, 2019.

[41] Kenneth Marino, Xinlei Chen, Devi Parikh, Abhinav Gupta, and Marcus Rohrbach. Krisp: In-
tegrating implicit and symbolic knowledge for open-domain knowledge-based vqa. In CVPR,
pages 14111–14121, 2021.

[42] Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zisserman. Frozen in time: A joint video
and image encoder for end-to-end retrieval. In ICCV, pages 1728–1738, 2021.

[43] Jie Lei, Linjie Li, Luowei Zhou, Zhe Gan, Tamara L Berg, Mohit Bansal, and Jingjing Liu.
Less is more: Clipbert for video-and-language learning via sparse sampling. In CVPR, pages
7331–7341, 2021.

[44] Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Ro-
hit Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the
world in 3,000 hours of egocentric video. In CVPR, pages 18995–19012, 2022.

[45] Kevin Qinghong Lin, Jinpeng Wang, Mattia Soldan, Michael Wray, Rui Yan, Eric Z XU,
Difei Gao, Rong-Cheng Tu, Wenzhe Zhao, Weijie Kong, et al. Egocentric video-language
pretraining. NeurIPS, 35:7575–7586, 2022.

[46] Lin Li, Jun Xiao, Guikun Chen, Jian Shao, Yueting Zhuang, and Long Chen. Zero-shot visual
relation detection via composite visual cues from large language models. In NeurIPS, 2023.

[47] Benita Wong, Joya Chen, You Wu, Stan Weixian Lei, Dongxing Mao, Difei Gao, and
Mike Zheng Shou. Assistq: Affordance-centric question-driven task completion for ego-
centric assistant. In ECCV, pages 485–501, 2022.

[48] Joya Chen, Difei Gao, Kevin Qinghong Lin, and Mike Zheng Shou. Affordance grounding
from demonstration video to target image. In CVPR, pages 6799–6808, 2023.

[49] Ronghang Hu, Amanpreet Singh, Trevor Darrell, and Marcus Rohrbach. Iterative answer
prediction with pointer-augmented multimodal transformers for textvqa. In CVPR, pages
9992–10002, 2020.

[50] Zhengyuan Yang, Yijuan Lu, Jianfeng Wang, Xi Yin, Dinei Florencio, Lijuan Wang, Cha
Zhang, Lei Zhang, and Jiebo Luo. Tap: Text-aware pre-training for text-vqa and text-caption.
In CVPR, pages 8751–8761, 2021.

[51] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language
models are few-shot learners. NeurIPS, 33:1877–1901, 2020.

[52] Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied
multimodal language model. arXiv preprint arXiv:2303.03378, 2023.

[53] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023.

[54] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-
image pre-training for unified vision-language understanding and generation. In ICML, pages
12888–12900, 2022.

[55] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-
image pre-training with frozen image encoders and large language models. arXiv preprint
arXiv:2301.12597, 2023.

[56] Shoubin Yu, Jaemin Cho, Prateek Yadav, and Mohit Bansal. Self-chained image-language
model for video localization and question answering. In NeurIPS, 2023.

[57] Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang,
Junzhe Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model
based agents: A survey. arXiv preprint arXiv:2309.07864, 2023.

[58] Allen Newell, Herbert Alexander Simon, et al. Human problem solving, volume 104. 1972.
[59] Yingxu Wang and Vincent Chiew. On the cognitive process of human problem solving. Cog-

nitive systems research, 11(1):81–92, 2010.

12

Under review as a conference paper at ICLR 2024

[60] Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan.
Visual chatgpt: Talking, drawing and editing with visual foundation models. arXiv preprint
arXiv:2303.04671, 2023.

[61] Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-
Chun Zhu, and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large
language models. arXiv preprint arXiv:2304.09842, 2023.

[62] Yaobo Liang, Chenfei Wu, Ting Song, Wenshan Wu, Yan Xia, Yu Liu, Yang Ou, Shuai Lu,
Lei Ji, Shaoguang Mao, et al. Taskmatrix. ai: Completing tasks by connecting foundation
models with millions of apis. arXiv preprint arXiv:2303.16434, 2023.

[63] Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina
Kim, Christopher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al.
Webgpt: Browser-assisted question-answering with human feedback. arXiv preprint
arXiv:2112.09332, 2021.

[64] Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. arXiv preprint arXiv:2302.04761, 2023.

[65] Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Ehsan Azarnasab, Faisal Ahmed,
Zicheng Liu, Ce Liu, Michael Zeng, and Lijuan Wang. Mm-react: Prompting chatgpt for
multimodal reasoning and action. arXiv preprint arXiv:2303.11381, 2023.

[66] Difei Gao, Lei Ji, Luowei Zhou, Kevin Qinghong Lin, Joya Chen, Zihan Fan, and Mike Zheng
Shou. Assistgpt: A general multi-modal assistant that can plan, execute, inspect, and learn.
arXiv preprint arXiv:2306.08640, 2023.

[67] Zihao Wang, Shaofei Cai, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe, explain, plan
and select: Interactive planning with large language models enables open-world multi-task
agents. In NeurIPS, 2023.

[68] Haoqi Yuan, Chi Zhang, Hongcheng Wang, Feiyang Xie, Penglin Cai, Hao Dong, and
Zongqing Lu. Plan4mc: Skill reinforcement learning and planning for open-world minecraft
tasks. arXiv preprint arXiv:2303.16563, 2023.

[69] Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In Pro-
ceedings of the 36th Annual ACM Symposium on User Interface Software and Technology,
pages 1–22, 2023.

[70] Jingqing Ruan, Yihong Chen, Bin Zhang, Zhiwei Xu, Tianpeng Bao, Guoqing Du, Shiwei
Shi, Hangyu Mao, Xingyu Zeng, and Rui Zhao. Tptu: Task planning and tool usage of large
language model-based ai agents. arXiv preprint arXiv:2308.03427, 2023.

[71] Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng,
Yufei Huang, Chaojun Xiao, Chi Han, et al. Tool learning with foundation models. arXiv
preprint arXiv:2304.08354, 2023.

[72] Zelai Xu, Chao Yu, Fei Fang, Yu Wang, and Yi Wu. Language agents with reinforcement
learning for strategic play in the werewolf game. arXiv preprint arXiv:2310.18940, 2023.

[73] Ben Goertzel. Artificial general intelligence: concept, state of the art, and future prospects.
Journal of Artificial General Intelligence, 5(1):1, 2014.

[74] Junke Wang, Dongdong Chen, Chong Luo, Xiyang Dai, Lu Yuan, Zuxuan Wu, and Yu-Gang
Jiang. Chatvideo: A tracklet-centric multimodal and versatile video understanding system.
arXiv preprint arXiv:2304.14407, 2023.

[75] Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan,
and Jimmy Ba. Large language models are human-level prompt engineers. arXiv preprint
arXiv:2211.01910, 2022.

[76] Jiaqi Wang, Zhengliang Liu, Lin Zhao, Zihao Wu, Chong Ma, Sigang Yu, Haixing Dai, Qiushi
Yang, Yiheng Liu, Songyao Zhang, et al. Review of large vision models and visual prompt
engineering. arXiv preprint arXiv:2307.00855, 2023.

[77] Yuxiang Wu, Yu Zhao, Baotian Hu, Pasquale Minervini, Pontus Stenetorp, and Sebastian
Riedel. An efficient memory-augmented transformer for knowledge-intensive nlp tasks. arXiv
preprint arXiv:2210.16773, 2022.

13

Under review as a conference paper at ICLR 2024

[78] Yuhuai Wu, Markus N Rabe, DeLesley Hutchins, and Christian Szegedy. Memorizing trans-
formers. arXiv preprint arXiv:2203.08913, 2022.

[79] Zexuan Zhong, Tao Lei, and Danqi Chen. Training language models with memory augmen-
tation. arXiv preprint arXiv:2205.12674, 2022.

[80] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Na-
man Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-
augmented generation for knowledge-intensive nlp tasks. NeurIPS, 33:9459–9474, 2020.

[81] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval
augmented language model pre-training. In ICML, pages 3929–3938, 2020.

[82] Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick,
Jane Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Few-shot learning
with retrieval augmented language models. arXiv preprint arXiv:2208.03299, 2022.

[83] Omar Khattab, Keshav Santhanam, Xiang Lisa Li, David Hall, Percy Liang, Christopher
Potts, and Matei Zaharia. Demonstrate-search-predict: Composing retrieval and language
models for knowledge-intensive nlp. arXiv preprint arXiv:2212.14024, 2022.

[84] Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu Li, Rahul Nadkarni, Yushi Hu, Caiming
Xiong, Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer, et al. Binding language models
in symbolic languages. arXiv preprint arXiv:2210.02875, 2022.

[85] Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Weijie Su, Chenyu Yang, Gao Huang, Bin
Li, Lewei Lu, Xiaogang Wang, et al. Ghost in the minecraft: Generally capable agents for
open-world enviroments via large language models with text-based knowledge and memory.
arXiv preprint arXiv:2305.17144, 2023.

[86] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. NeurIPS, 35:16344–16359, 2022.

[87] Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning.
arXiv preprint arXiv:2307.08691, 2023.

[88] Nir Ratner, Yoav Levine, Yonatan Belinkov, Ori Ram, Inbal Magar, Omri Abend, Ehud
Karpas, Amnon Shashua, Kevin Leyton-Brown, and Yoav Shoham. Parallel context windows
for large language models. In ACL, pages 6383–6402, 2023.

[89] Yaru Hao, Yutao Sun, Li Dong, Zhixiong Han, Yuxian Gu, and Furu Wei. Structured prompt-
ing: Scaling in-context learning to 1,000 examples. arXiv preprint arXiv:2212.06713, 2022.

[90] Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending con-
text window of large language models via positional interpolation. arXiv preprint
arXiv:2306.15595, 2023.

[91] Jesse Mu, Xiang Lisa Li, and Noah Goodman. Learning to compress prompts with gist tokens.
arXiv preprint arXiv:2304.08467, 2023.

[92] Amirkeivan Mohtashami and Martin Jaggi. Landmark attention: Random-access infinite
context length for transformers. arXiv preprint arXiv:2305.16300, 2023.

[93] Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context
window extension of large language models. arXiv preprint arXiv:2309.00071, 2023.

[94] Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts. arXiv preprint
arXiv:2307.03172, 2023.

[95] Glenn Jocher, Ayush Chaurasia, and etc. Yolo by ultralytics. https://github.com/
ultralytics/ultralytics, 2023.

[96] Gerard Maggiolino, Adnan Ahmad, Jinkun Cao, and Kris Kitani. Deep oc-sort: Multi-
pedestrian tracking by adaptive re-identification. arXiv preprint arXiv:2302.11813, 2023.

[97] Yi Wang, Kunchang Li, Yizhuo Li, Yinan He, Bingkun Huang, Zhiyu Zhao, Hongjie Zhang,
Jilan Xu, Yi Liu, Zun Wang, et al. Internvideo: General video foundation models via genera-
tive and discriminative learning. arXiv preprint arXiv:2212.03191, 2022.

[98] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya
Sutskever. Robust speech recognition via large-scale weak supervision. In ICML, pages
28492–28518, 2023.

14

https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics

Under review as a conference paper at ICLR 2024

[99] PaddlePaddle. Paddleocr. https://github.com/PaddlePaddle/PaddleOCR,
2023.

[100] Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng
Wang, Boyang Li, Pascale Fung, and Steven C. H. Hoi. Instructblip: Towards general-purpose
vision-language models with instruction tuning. ArXiv, 2023.

[101] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for
video understanding? In ICML, volume 2, page 4, 2021.

[102] Daniel Neimark, Omri Bar, Maya Zohar, and Dotan Asselmann. Video transformer network.
In ICCV, pages 3163–3172, 2021.

[103] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia
Schmid. Vivit: A video vision transformer. In ICCV, pages 6836–6846, 2021.

[104] OpenAI. New and improved embedding model. https://openai.com/blog/
new-and-improved-embedding-model, 2022.

[105] Chenyou Fan, Xiaofan Zhang, Shu Zhang, Wensheng Wang, Chi Zhang, and Heng Huang.
Heterogeneous memory enhanced multimodal attention model for video question answering.
In CVPR, pages 1999–2007, 2019.

[106] Antoine Yang, Antoine Miech, Josef Sivic, Ivan Laptev, and Cordelia Schmid. Just ask:
Learning to answer questions from millions of narrated videos. In ICCV, pages 1686–1697,
2021.

[107] Shyamal Buch, Cristóbal Eyzaguirre, Adrien Gaidon, Jiajun Wu, Li Fei-Fei, and Juan Carlos
Niebles. Revisiting the” video” in video-language understanding. In CVPR, pages 2917–
2927, 2022.

[108] Junbin Xiao, Pan Zhou, Tat-Seng Chua, and Shuicheng Yan. Video graph transformer for
video question answering. In ECCV, pages 39–58, 2022.

[109] Difei Gao, Luowei Zhou, Lei Ji, Linchao Zhu, Yi Yang, and Mike Zheng Shou. Mist: Multi-
modal iterative spatial-temporal transformer for long-form video question answering. In
CVPR, pages 14773–14783, 2023.

[110] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In
Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September
6-12, 2014, Proceedings, Part V 13, pages 740–755. Springer, 2014.

[111] Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A dataset for large vocabulary instance
segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 5356–5364, 2019.

[112] Jie Lei, Licheng Yu, Tamara L Berg, and Mohit Bansal. Tvqa+: Spatio-temporal grounding
for video question answering. In ACL, 2020.

[113] Jie Lei, Licheng Yu, Mohit Bansal, and Tamara L Berg. Tvqa: Localized, compositional
video question answering. In EMNLP, 2018.

15

https://github.com/PaddlePaddle/PaddleOCR
https://openai.com/blog/new-and-improved-embedding-model
https://openai.com/blog/new-and-improved-embedding-model

Under review as a conference paper at ICLR 2024

A APPENDIX

This appendix contains additional details for the ICLR 2024 submission, titled “DoraemonGPT:
Toward Solving Real-world Tasks with Large Language Models”. The appendix is organized as
follows:

• §A.1 depicts visual examples regarding the MCTS planner.
• §A.2 offers more implementation details of the MCTS planner.
• §A.3 introduces more in-the-wild examples.
• §A.4 provides inference results on NExT-QA [34] dataset.
• §A.6 analyzes time of inference and efficiency of token usage.
• §A.5 discusses used foundation models.
• §A.8 discusses our limitations.
• §A.9 discusses the broader impacts of our work.

A.1 ILLUSTRATION OF MCTS PLANNER

Root

Action 1 Action 2

Failed Action 3
Answer 1

𝑅=-0.61+0.61

𝑅=-1 𝑅=1

𝑅=1
𝑅=-1

Expandable
nodes

Selected
node

Root

Action 1 Action 2

Failed Action 3
Answer 1

Action 4
𝑅=0

Root

Action 1 Action 2

Failed Action 3
Answer 1

Action 4
𝑅=0

Action 5

𝑅=1

Action 6
Answer 2

𝑅=0

Root

Action 1 Action 2

Failed Action 3
Answer 1

Action 4
𝑅=0.61

Action 5

𝑅=1

Action 6
Answer 2

𝑅=1

𝑅=-0.61+0.61

𝑅=-1 𝑅=1

𝑅=1
𝑅=-1

𝑅=-0.61+0.61

𝑅=-1 𝑅=1

𝑅=1
𝑅=-1

𝑅=-0.61+0.61+0.37

𝑅=-1 𝑅=1

𝑅=1
𝑅=-1

(a) Node selection

Root

Action 1 Action 2

Failed Action 3
Answer 1

𝑅=-0.61+0.61

𝑅=-1 𝑅=1

𝑅=1
𝑅=-1

Expandable nodes

Selected
node

Root

Action 1 Action 2

Failed Action 3
Answer 1

Action 4
𝑅=0

Root

Action 1 Action 2

Failed Action 3
Answer 1

Action 4
𝑅=0

Action 5

𝑅=1

Action 6
Answer 2

𝑅=0

Root

Action 1 Action 2

Failed Action 3
Answer 1

Action 4
𝑅=0.61

Action 5

𝑅=1

Action 6
Answer 2

𝑅=1

𝑅=-0.61+0.61

𝑅=-1 𝑅=1

𝑅=1
𝑅=-1

𝑅=-0.61+0.61

𝑅=-1 𝑅=1

𝑅=1
𝑅=-1

𝑅=-0.61+0.61+0.37

𝑅=-1 𝑅=1

𝑅=1
𝑅=-1

(b) Branch Expansion

Root

Action 1 Action 2

Failed Action 3
Answer 1

𝑅=-0.61+0.61

𝑅=-1 𝑅=1

𝑅=1
𝑅=-1

Expandable nodes

Selected
node

Root

Action 1 Action 2

Failed Action 3
Answer 1

Action 4
𝑅=0

Root

Action 1 Action 2

Failed Action 3
Answer 1

Action 4
𝑅=0

Action 5

𝑅=1

Action 6
Answer 2

𝑅=0

Root

Action 1 Action 2

Failed Action 3
Answer 1

Action 4
𝑅=0.61

Action 5

𝑅=1

Action 6
Answer 2

𝑅=1

𝑅=-0.61+0.61

𝑅=-1 𝑅=1

𝑅=1
𝑅=-1

𝑅=-0.61+0.61

𝑅=-1 𝑅=1

𝑅=1
𝑅=-1

𝑅=-0.61+0.61+0.37

𝑅=-1 𝑅=1

𝑅=1
𝑅=-1

(c) Chain Execution

Root

Action 1 Action 2

Failed Action 3
Answer 1

𝑅=-0.61+0.61

𝑅=-1 𝑅=1

𝑅=1
𝑅=-1

Expandable nodes

Selected
node

Root

Action 1 Action 2

Failed Action 3
Answer 1

Action 4
𝑅=0

Root

Action 1 Action 2

Failed Action 3
Answer 1

Action 4
𝑅=0

Action 5

𝑅=1

Action 6
Answer 2

𝑅=0

Root

Action 1 Action 2

Failed Action 3
Answer 1

Action 4
𝑅=0.61

Action 5

𝑅=1

Action 6
Answer 2

𝑅=1

𝑅=-0.61+0.61

𝑅=-1 𝑅=1

𝑅=1
𝑅=-1

𝑅=-0.61+0.61

𝑅=-1 𝑅=1

𝑅=1
𝑅=-1

𝑅=-0.61+0.61+0.37

𝑅=-1 𝑅=1

𝑅=1
𝑅=-1

(d) Back-propagation

Figure 4: An illustration of our Monte Carlo Tree Search (MCTS) planner (§A.1). R: the reward
of a node. Root: the input video and question/task. Action: a ReAct [19]-style step in the form of
⟨thought, action, action input, observation⟩.

Fig. 4 illustrates the MCTS planner with one failed solution and two feasible solutions. The illus-
trated iteration, which produces the second feasible answer, begins with a node selection (Fig. 4a),
and the Root node with the second highest reward is luckily sampled from all expandable non-leaf
nodes. Then, the MCTS planner expands the Root node with a new child node, Action 4, in Branch
Expansion (Fig. 4b). Following the expansion, the planner continuously executes actions after Ac-
tion 4 until getting a new answer, Answer 2 (Fig. 4c). Lastly, the planner back-propagates the reward
of Answer 2 to its ancestors. Note that those nodes closer to Answer 2 receive more rewards.

A.2 IMPLEMENTATION DETAILS OF MCTS PLANNER

Fig. 5 shows the in-context prompt used in the LLMs of our MCTS planner. By changing the place-
holders in the form like {placeholder}, the prompt can be adapted to complete branch expansion
or chain execution. The meaning of each placeholder in the prompt is listed below:
• {video filename}: the file path of the input video.
• {input question}: the given question/task regarding the given video.
• {tool names}: the names of tools that can be called by the planner, including sub-task tools,

knowledge tools, and utility tools.
• {tool descriptions}: the descriptions of all the callable tools’ functions and input format. For

example, the description of our What sub-task tool is “Useful when you need to describe the
content of a video......The input to this tool must be a string for the video path and a string for the
question. For example: inputs is ./videos/xxx.mp4#What’s in the video?”.

• {agent scratchpad}: the place to put the intermediary output during executing a ReAct [19] step.

16

Under review as a conference paper at ICLR 2024

"""
Regarding a given video from {video_filename}, answer the following

questions as best you can. You have access to the following tools:
{tool_descriptions}
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question
Begin!
Question: {input_question}
{ancestor_history}
Thought: {expansion_prompt} {agent_scratchpad}
"""

Figure 5: The in-context prompt of the MCTS planner (§A.2).

• {ancestor history}: the place to put the history of all the ancestor nodes. For example, when
selecting a non-root node for branch expansion, the action history (which is a string in the form
of ⟨thought, action, action input, observation⟩ for each node) of all the ancestor nodes of this
non-root node will be put in {ancestor history}.

• {expansion prompt}: the place to put the history of all the child nodes for expanding a node, e.g.,
“I have thought about the next action before, such as......I want to think out a different action.”.
Only useful in the branch expansion phase, set to an empty string for chain execution.

A.3 MORE IN-THE-WILD EXAMPLES

In Fig. 6a, we visualize the reasoning path of a standard video understanding task. As depicted,
DoraemonGPT is asked to identify the speaker and analyze information about the dismissal. After
several calls to various tools, DoraemonGPT got the right answers. Here we also visualize the
time-dominant symbolic memory, which is the pivotal part of data processing in DoraemonGPT.
Combining it with the well-defined symbolic language (SQL) promises transparency and efficiency.

In addition, we demonstrate an example of video editing by integrating a video inpainting tool. In
Fig. 6b, DoraemonGPT is asked to recognize the right person and remove it from the video. To
accomplish this, DoraemonGPT constructs the space-dominant memory that encompasses the seg-
mentation results for each object within the scene. After recognizing the right person, the inpainting
tool is successfully called with an input of the unique ID number assigned to the man on the right,
which successfully generates the desired video output.

A.4 INFERENCE RESULTS ON NEXT-QA

Fig. 7 depicts inference results of DoraemonGPT on NExT-QA [34] dataset. From the top part, we
have the following findings: (i) A simple question can be finished within a sub-task tool, e.g., using
only the What tool can get the correct answer. (ii) The output of LLM that is not formatted may
result in an error case, which is very common in current LLM-driven agents. Similar examples can
be observed in the bottom part of the same figure.

As shown in the bottom part of Fig. 7, it’s quite possible to pick the wrong tool in the early stages
of exploration. Our system is able to explore the planning space with multiple branches further.
Interestingly, LLM sometimes considers current information insufficient to make a choice. This is
tolerated as our system will eventually vote or summarize all candidate answers.

17

Under review as a conference paper at ICLR 2024

Action: Google Search
Input: Who started Apple in
their parents' garage when
they were 20?
Observation: … Steve Jobs …

Video

“Who is the speaker in this video? When
does this video mention that he was fired?
Please detail why he was fired? ”

Question / Task

Sub-task Tools
When Why

HowWhat

Count

Other

Other Tools
External Knowledges

Utility Tools

Question: Who is the speaker
in this video? When does …

Action:
Time-dominant Construction
Input: video.mp4&Who is …
Observation: Built…

Action: What
Input: What does the speaker talk about?
SQL: SELECT audio_content FROM …
Observation: … Waz and I started Apple in my
parents' garage when I was 20 …

The speaker is Steve Jobs. At 00:00:23, he said “And then I got fired”. He
got fired from Apple due to a failed boardroom coup.

No. 0
No. 1 No. 2

No. 6

No. 3

Action: When
Input: When was he fired?
SQL: SELECT audio_content FROM …
Observation: … at 00:23, And then I
got fired …

No. 4Action: Google Search
Input: Why did Steve Jobs get fired
from Apple?
Observation: … Ousted from Apple
after a failed boardroom coup …

No. 5

Timestamp Captioning Optical content Audio content

00:00:00 steve jobs is
speaking … - I was lucky. I

found …

00:00:05 steve jobs is
speaking … I found what … Waz and I

started …

… … … …

00:00:23 steve jobs is
speaking … And had just … And then I got

fired.

(a) Video understanding.

Video
“Help me remove the person on the right. ”

Question / Task

Question: Help me remove
the person on the right.

Action:
Space-dominant construction
Input: video.mp4&Remove …
Observation: Built…

No. 0
No. 1

The man on the right has been successfully inpainted. The resulting video is
now available at the following path: ./result/video.mp4.

No. 4
ID Category Appearance ... Trajectory

1 person a man in a black
coat walking … … At 00:00:00, [1, 0,

424, 214] …

2 person a man with a sign
walking … … At 00:00:00, [242, 51,

78, 230] …

… … … … …

7 bench a bench in the snow … At 00:00:00, [559,
161, 167, 153] …

Action: What
Input: What is the appearance and id of the person standing on the right?
SQL: SELECT appearance, id FROM …
Observation: The man on the right takes a sign and his ID is 2.

No. 2

… …

… …

Action: Inpainting
Input: {video_filename: video.mp4; id_number: 2}
Observation: The object with ID=2 has been successfully inpainted.
Resulting video path is ./result/inpainted_video.mp4.

No. 3

Output

… …
m

ask

(b) Video editing.

Figure 6: In-the-wild examples of DoraemonGPT (§A.3). In the video editing example, the segmen-
tation mask is also visualized.

A.5 DISCUSSION ON THE IMPACT OF FOUNDATION MODELS

DoraemonGPT leverages foundation models to extract space-dominant and time-dominant informa-
tion from videos. Hence, the performance of DoraemonGPT is influenced by the quality of these
models as well as its own limitations. This impact can be further summarized as follows:

In space-dominant memory:

Detection (YOLOv8 [95]): The object categories (COCO [110], 80 common categories) are limited
by the model, which hinders DoraemonGPT from obtaining information about objects outside these
categories. However, YOLOv8 [95] can be replaced with a detection model that supports a wider
range of categories (such as one trained on LVIS [111], with 1000+ categories).

Tracking (Deep OC-sort [96]): The current multi-object tracking model is prone to errors in ex-
tremely complex scenes (such as those with numerous occluded or similar objects), which affects
DoraemonGPT’s ability to locate instances in complex videos accurately.

18

Under review as a conference paper at ICLR 2024

“How is the woman
feeling at the end of
the video?”
A. Reluctant B. sad
C. listening attentively
D. happy E. enjoying

Root

Action: What
Input: What is the woman feeling at the end of the video?
SQL: SELECT visual_content FROM …
Observation: The woman is feeling happy at the end of the video.

No. 0

No. 1 No. 1

“Why does the
shorter woman
sprinkle something
into her frying pan
at the beginning of
the video?”
A. Seasoning B. blow the
candle C. prevent spilling
D. balance her E. stabilise
crab when cutting

Root

Action: Other
Input: Why does the shorter woman sprinkle
something into her frying pan at the beginning
of the video?
SQL: SELECT visual _content , subtitles FROM …
Observation: … The answer cannot be
determined from the given tables.

No. 0

Action: What
Input: What is the woman's facial expression
and body language at the end of the video?
SQL: SELECT visual_content FROM …
Observation: The woman at the end of the
video has a happy facial expression.

No. 1 No. 1

Parsing LLM output
“Based on the observation, the answer
should be D. Happy.”
Fail to parse as not consistent format

No. 2

Action: Why
Input: Why does the shorter woman sprinkle
something into her frying pan at the beginning of
the video?
SQL: SELECT visual_content, subtitles FROM …
Observation: The query result shows that there is
no specific information about the shorter woman
sprinkling something into her frying pan at the
beginning of the video. Therefore, we cannot
determine the reason behind this action.

No. 1

Action: What
Input: What is in the video?
SQL: SELECT visual_content FROM …
Observation: The video shows two women
preparing food in a kitchen.

No. 1 No. 2

No. 2

Parsing LLM output
“… try to observe any visual or audio cues
that may provide insight into …”
Fail to parse as not consistent format

No. 2

D. happy

A. Seasoning

N/A

Figure 7: Inference results on NExT-QA [34]. (§A.4)

Segmentation (YOLOv8-seg [95]): The segmentation results may not perfectly align with in-
stances’ edges, and incomplete segmentation masks can impact the precision of AIGC tools such as
video editing (e.g., inpainting).

Appearance description (BLIP [54]/BLIP-2 [55]): The textual descriptions cannot accurately cap-
ture all the details of an instance (such as intricate clothing details on a human body), which affects
DoraemonGPT’s handling of tasks related to detailed descriptions.

Action recognition (InternVideo [97]): The accuracy is limited by the capabilities of the model,
which in turn affects DoraemonGPT’s ability to handle action-related inquiries.

In time-dominant memory:

Speech recognition (Whisper [98]): Current methods can accurately convert audio to text. How-
ever, in multi-party conversation scenarios, the methods still cannot accurately perform voiceprint
recognition for multiple speakers and accurately separate the results of different speakers. Addi-
tionally, it is challenging to match multiple voiceprints with the visual IDs of the speakers. This
limitation restricts the ability of DoraemonGPT to infer and deduce the identities of speakers in
complex multi-party conversation scenarios, relying solely on the inherent capabilities of LLMs.

Optical character recognition (OCR [99]): OCR technology can accurately recognize subtitles
and well-structured text. However, it still struggles to robustly handle occluded text and artistic
fonts.

Captioning (BLIP [54]/BLIP-2 [55]/InstructBLIP [100]): It cannot guarantee that the textual
descriptions can accurately cover all the details in the scene, which can affect DoraemonGPT’s
ability to handle tasks related to detailed descriptions.

Additionally, the domain of the training set for foundation models also affects DoraemonGPT. For
instance, currently, visual foundation models trained on real and common scenarios still struggle
with extreme lighting conditions or non-realistic scenes (such as simulations or animations).

19

Under review as a conference paper at ICLR 2024

A.6 EVALUATION ON THE INFERENCE TIME AND TOKEN USAGE EFFICIENCY

For efficiency comparison, we thoroughly analyze the efficiency of DoraemonGPT in comparison
with the baselines, ViperGPT and VideoChat. The tables 5 above provide a detailed analysis of the
time required for each foundation model used in memory building. When processing videos at a
rate of 1 fps, it takes approximately 1 second (or 0.42/0.47s for space/time-dominant memory) to
process a 10s video clip using an NVIDIA-A40 GPU. The actual processing time increases linearly
with video length.

Table 5: Token Efficiency (Averaged on the NExT-QA [34] s val).

Method Prompt tokens Node tokens Steps
per Answer

Tokens
per Answer NExT-QA Acc.

ViperGPT [9] 4127 - - 4127 38.1
VideoChat [35] 722 - - 722 51.0
DoraemonGPT 617 34.6 2.3 1498 54.0

In comparison, VideoChat creates a time-stamped memory and takes around 2 seconds to process a
10s video at 1 fps. On the other hand, ViperGPT does not construct a memory but generates a code
to invoke foundation models. However, there is a 6.7% chance (60 out of 900 videos) that ViperGPT
fails to generate an executable code, and it’s difficult to fairly compare the average time of calling
foundation models in ViperGPT.

Table 6: Time Analysis of Space-Dominant Memory Construction.

Model BLIP-2 [55] YOLO-v8 [95] Deep OC-Sort [96] InternVideo [97] Sum
Time(s) 0.09 0.16 0.14 0.03 0.42

Due to the influence of simultaneous requests and network delay on ChatGPT’s online server, it’s
impossible to fairly record the run-time of ChatGPT. Thus, a more equitable efficiency comparison
when calling ChatGPT is to record the number of tokens used. As shown in the table above, Dorae-
monGPT’s prompt design is more efficient (617 tokens), which is less than VideoChat’s approach
of directly incorporating video memory into the prompt (722 tokens) and significantly less than
ViperGPT’s approach of including a large code definition in the prompt (4127 tokens). Additionally,
even though the introduction of our MCTS planner divides the task into multiple nodes/steps, Do-
raemonGPT still requires far fewer tokens on average to obtain an answer compared to ViperGPT
(1498 tokens vs 4127 tokens). Furthermore, DoraemonGPT significantly outperform VideoChat
(54.0 vs 51.0) on the challenging NExT-QA dataset.

Table 7: Time Analysis of Time-Dominant Memory Construction.

Model OCR [99] Whisper [98] BLIP-2 [55] Sum
Time(s) 0.02 0.36 0.09 0.47

A.7 QUANTITAVE RESULT ON TVQA+

Datasets. The TVQA+ [112] dataset is an enhanced version of the original TVQA [113] dataset,
augmented with 310.8K bounding boxes to link visual concepts in questions and answers to de-
picted objects in videos. It’s designed for the spatio-temporal video question answering task, which
challenges intelligent systems to identify relevant moments and visual concepts to answer natural
language questions about videos. For evaluation, we randomly sample 900 samples from the val
set, resulting in a total of 900 questions (s val).

Evaluation Metric. We report accuracy as in NExT-QA [34].

Performance Comparision. The results on the TVQA+ [112] confirms again the superiority of
DoraemonGPT. From table 8 we can observe that our approach yields remarkable performance, i.e.,
DoraemonGPT outperforms ViperGPT [9] and VideoChat [35] by 10.2% and 5.9%, respectively.
In particular, ViperGPT has a 10.9% probability of generating uncompilable code (98 out of 900
videos). However, even when filtering out these failures, its performance (30.1%) is still lower
compared to VideoChat and DoraemonGPT, which are specifically designed for dynamic videos.
This is consistent with the findings on NExT-QA [34].

20

Under review as a conference paper at ICLR 2024

Table 8: Comparison of our DoraemonGPT with SOTAs on TVQA+ [112]. †: reimplement using
the officially released codes. ∗: we filter out those failed executions (i.e., compilation error) of
ViperGPT [9] and record the performance on successful executions (802/900 on s val).

Method Split Accuracy
†ViperGPT [9] s val 26.8
∗†ViperGPT [9] s val 30.1
†VideoChat [35] s val 34.4
DoraemonGPT s val 40.3

A.8 LIMITATIONS

Despite its comprehensive and conceptually elegant system, DoraemonGPT has some limitations
for future studies. First, although TSM is a simple and effective way to decouple and handle spatial-
temporal reasoning and DoraemonGPT has shown effectiveness with two task-related memory types
(space-dominant and time-dominant), we believe that by further subdividing the types of tasks, we
can introduce more nuanced categories of memory (e.g., human-centric memory) to construct task-
related information with greater task-relevance. However, at present, the design of memory types
is still a heuristic and manually driven process, lacking an automated design method. Second, the
establishment of memory relies on the available foundation models (e.g., BLIP-2 [55]). In other
words, foundation models’ performance directly influences memory’s reliability. Incorrect model
predictions will introduce noise into the memory, thereby reducing its reliability and affecting the
accuracy of decision-making. Additionally, foundation models may struggle to effectively extract
the required video attributes in real-world scenarios that are difficult to generalize (e.g., low light,
blurriness, occlusions, etc.). Third, the accuracy of planning in DoraemonGPT is limited by the
capabilities of LLMs. When using a small-scale or insufficiently trained LLM, the likelihood of
DoraemonGPT exploring reasonable solutions may be significantly reduced. Last, while the MCTS
planner significantly improves the decision making ability of DoraemonGPT, it also introduces ad-
ditional computational cost. This means that DoraemonGPT may only be available on high-end
computing systems or online LLM services [1], limiting its use in real-time, resource-constrained
scenarios.

A.9 BROADER IMPACTS

DoraemonGPT aims to solve real-world dynamic tasks with LLMs and can handle video-based rea-
soning tasks, potentially revolutionizing several fields. Our system has potential applications in
autonomous vehicles, surveillance systems, and interactive robotics, where dynamic understanding
and decision making are crucial. However, it is important to consider the ethical implications and
potential misuse of such systems. First, like many AI systems, DoraemonGPT could be exploited
by malicious individuals for video manipulation or generating misleading content, posing threats to
privacy and security. Protecting against such potential misuse requires robust safeguards and mea-
sures to detect and prevent malicious activities. Second, biases in the training data of LLMs or
foundation models could unintentionally perpetuate discriminatory behavior. Mitigating biases and
promoting fairness in the training and deployment of DoraemonGPT is essential to ensure equitable
outcomes. Third, the reliance on external knowledge sources highlights the importance of data
access and usage rights. Users and developers must adhere to regulations and ethical guidelines as-
sociated with these resources to avoid any legal complications. Fourth, the methodology introduced
in DoraemonGPT holds potential for application of LLM-driven agents beyond the realm of vision.
The rapid expansion of LLM-driven agents opens doors to transformative impacts across various
fields [20, 67–72]. DoraemonGPT, with its novel approach to modeling the dynamic aspects of vi-
sual scenes, tackles complex tasks through a computer vision lens. This innovation could extend
its influence to other domains. For instance, in tool usage, our MCTS planner can offer effective
exploration strategies in large solution spaces. Additionally, when it comes to open-world environ-
ments, our symbolic memory could provide precise guidances through symbolic language. This is
particularly relevant for interactive planning scenarios[67, 69].

21

	Introduction
	Related Work
	DoraemonGPT
	Task-related Symbolic Memory (TSM)
	Knowledge Tools and Others
	Monte Carlo Tree Search (MCTS) Planner

	Experiment
	Experimental Setup
	Quantitative Result
	In-the-wild Example
	Diagnostic Experiment

	Conclusion
	Appendix
	Illustration of MCTS Planner
	Implementation Details of MCTS Planner
	More In-the-wild Examples
	Inference Results on NExT-QA
	Discussion on the Impact of Foundation Models
	Evaluation on the Inference Time and Token Usage Efficiency
	Quantitave Result on TVQA+
	Limitations
	Broader Impacts

