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Abstract

Recent advances in visual tokenizers have demonstrated their effectiveness for
multimodal large language models and autoregressive generative models. However,
most existing visual tokenizers rely on a fixed downsampling rate at a given
visual resolution, and consequently produce a constant number of visual tokens,
ignoring the fact that visual information of varying complexity warrant different
token budgets. Motivated by this observation, we propose an adaptive video
tokenizer "VaporTok" with two core contributions: Probabilistic Taildrop: We
introduce a novel taildrop mechanism that learns a truncation index sampling
distribution conditioned on visual complexity of the video. During both training
and inference, the decoder reconstructs videos at adaptive token lengths, allocating
more tokens to complex videos and fewer to simpler ones. Parallel Sample
GRPO with Vapor Reward: By leveraging the probability distribution produced
by probabilistic taildrop, we reformulate the visual tokenization pipeline as a
sequential decision process. To optimize this process, we propose a variant of
GRPO and a composite reward encompassing token efficiency, reconstruction
fidelity, and generative quality, thus enabling metrics-aware adaptive tokenization
across diverse objectives. Extensive experiments on standard video generation
benchmarks confirm our analysis, showing that our adaptive approach matches or
outperforms fixed-rate baselines and naive taildrop while using fewer tokens.

1 Introduction

Visual generative models have undergone rapid advancements in recent years, progressing from
VAEs[22] and GANs[17] to diffusion models[18]. More recently, autoregressive (AR) based
approaches[7, 5, 42, 45] have emerged as a prominent direction, demonstrating competitiveness with
diffusion models. The superior performance is largely due to the scalability and flexibility of the
AR paradigm, as demonstrated by large language models (LLMs) [58, 46, 10]. Similar to LLMs,
AR-based visual generative models necessitate a visual tokenizer, which is essential for converting
image or video data into vector representations that the model can process. Consequently, research
into visual tokenizers has become a central focus in visual generative models.

Despite their remarkable performance, AR models still face fundamental limitations inherent in
the AR paradigm. Specifically, the computational complexity of processing token sequences grows
quadratically with their length. In addition, the prediction errors can accumulate progressively as
observed in numerous works[1, 8, 36]. Intuitively, a shorter, more compact visual token sequence can
be a favorable option. Existing visual tokenizers[47, 60, 29, 62] generally output a predetermined
number of latent tokens for subsequent generation tasks. While there are some attempts at adaptive
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tokenization (e.g., [11, 57, 2, 31, 51]), most of them still depend on a manually specified range of
token counts without an effective prior, limiting their capacity for truly adaptive tokenization.
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Figure 1: VaporTok employs two-stage training: the first
stage uses visual complexity for supervision, the second stage
uses GRPO with multiple task-aware rewards for supervision.

Another representative limitation in
AR-based visual generative models is
that the training of tokenizers and AR
models are usually divided into two
separated stages, making the visual to-
kenizer sub-optimal and preventing it
from generalizing well to downstream
tasks. In fact, the above issues are
intertwined. Determining visual rep-
resentation and its adaptivity should
not only satisfy the data prior but also
align with downstream task character-
istics. On the other hand, the super-
vision of visual generation can help
optimize both AR generative model
and, more importantly, its tokenizer, if
back-propagated properly. This implies that an efficient, adaptive and downstream-aware visual
tokenizer is the key to address the AR issues mentioned above.

In this work, we introduce VaporTok, an adaptive video tokenizer that leverages both data prior and
task-related signals to optimize its adaptivity. Specifically, we observe that visual data inherently
possesses varying degrees of complexity in terms of content across spatial and temporal di-
mensions. Consequently, representing simple content with excessive tokens can lead to redundancy.
Conversely, complex content may not be adequately captured if represented with too few tokens.
Therefore, dynamically adjusting token number based on visual complexity would enable a more
faithful alignment between visual information and its representation. Inspired by this, we propose
"Probabilistic Taildrop", a method that leverages visual complexity to build a sampling distribution
over token counts and then drops the excess tail tokens accordingly. The complexity informed taildrop
not only helps mitigate quadratic computation by producing a compact token sequence, but also
reduce error accumulation by condensing meaningful information at the head of the sequence.

When tackling the limitation of training disparity between tokenizer and AR model, the main
technical challenge is the differentiability of the two models due to hard token indexing. Recently,
reinforcement learning (RL), particularly GRPO[37], has shown considerable advantages in various
domains[10, 13, 6, 59, 50, 21]. Notably, the reward formulation in reinforcement learning does
not necessitate differentiability with respect to the parameters of the policy model. Therefore,
we propose to leverage this characteristic to unlock task-aware adaptive tokenizer training. The core
idea is that by optimizing the visual tokenizer using RL-based rewards, these non-differentiable
supervisory signals could be effectively transmitted during its training. Although the idea seems
intuitive, it is non-trivial to achieve. Our approach innovatively formulates visual tokenization as a
sequential decision process, which is compatible with RL training framework. To the best of our
knowledge, this is the first work that employs RL framework to formulate and train a visual
tokenizer for task-aware adaptive tokenization. In addition, we design a novel "Vapor Reward"
that accommodates multiple supervisory signals into the reward function, providing valuable insights
for the community. Our contribution can be summarized as follows:

- Probabilistic Taildrop: An adaptive video tokenization technique adjusting token count based
on visual complexity for more efficient sequences.

- RL for Task-Aware Tokenizer Training: A novel framework that formulates video tokenization
as a sequential decision process and uses RL to optimize the tokenizer, making its adaptivity aware of
multiple metrics, including downstream AR generation performance.

- Vapor Reward: A new multi-signal reward function designed to effectively guide the RL-based
tokenizer optimization.
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2 Related work

Adaptive visual tokenizers. Most existing visual tokenizers [12, 29, 62, 27, 63, 48, 33, 9, 28, 49,
16, 68, 20, 55, 43, 67] are limited to representing visual features using a fixed number of tokens,
ignoring the varying complexity of visual content. As a result, recent works have shifted toward
adaptive tokenization schemes that dynamically adjust the token budgets based on visual complexity.
ALIT [11] employs a recurrent encoding scheme to progressively assemble the token sequence of an
image and the process can be halted. CAT[39] leverages a MLLM’s complexity analysis of image
captions to regress which compression rate to apply. FlexTok[2] and One-D-Piece[31] both employ
nested dropout to encourage the model to prioritize core visual information in early tokens, yielding
a coarse-to-fine representation without fixed-length constraints. ElasticTok[57] extends the taildrop
technique to the video domain and adaptively selecting the token count at inference based on a
reconstruction-quality threshold. ViLex[51] introduces a novel "visual language" that encodes image
tokens after taildrop into the textual token space by self-supervised training on a frozen text-to-image
diffusion model. These adaptive methods either pick from a fixed set of token counts or use random
taildrop with thresholding, yet neither is truly adaptive: the first is limited to predefined choices, and
the second ignores visual complexity during training. In addition, they focus only on reconstruction
and neglect the impact of adaptive token selection on downstream performance.

GRPO in vision domains. Enhancing foundation models via reinforcement learning has become a
major research focus. Motivated by the strong inference performance of DeepSeek R1[10], Group
Relative Policy Optimization (GRPO) [37] has demonstrated clear advantages over PPO in both
training efficiency and final model quality. In computer vision, core generation and understand-
ing tasks, including Visual Question Answering[32, 59], Image Grounding[6], Video Question
Answering[14, 38], and Visual Generation[50, 56, 21, 25], are actively investigating the integration
of GRPO to boost existing methods, seeking to transfer the success of GRPO from large language
models to vision.

3 Method

3.1 Probabilistic Taildrop

Conventional taildrop technique [23] simply samples truncation positions from uniform distribution
without considering any prior information about visual complexity. This can lead to insufficient preser-
vation of complex visual content when too few tokens are selected, and to unnecessary redundancy
when too many tokens are retained for simpler visuals. In contrast, we propose probabilistic taildrop,
which constructs a truncation-sampling distribution informed by the complexity of the visual input.
During training, truncation index are drawn from this distribution to perform taildrop. This strategy
both preserves the fundamental principle of taildrop—compressing semantic information into
earlier tokens while relegating detailed information to later tokens—and adaptively selects
truncation points based on visual priors, thereby achieving efficient yet faithful visual encoding.

To implement probabilistic taildrop, we introduce the Taildrop Probability Query Module in Sec-
tion 3.1.1 to obtain the taildrop probabilities. To incorporate visual priors into the supervision of
these probabilities, we construct a distribution from the visual information to regularize the predicted
taildrop probabilities, as described in Section 3.1.2.

3.1.1 Taildrop Probability Query Module

Given a video V ∈ RT×H×W×3, VaporTok first patchify it into a sequence of video tokens P :

P = Patchify(V ) ∈ R( T
fT

× H
fH

× W
fW

)×D
, (1)

where fT , fH , fW are the temporal and spatial downsampling factors. And then P will be concate-
nated with K learnable query tokens Q ∈ RK×D and the combined sequence will be passed into the
encoder :

ZP ⊕ ZQ = Enc
(
P ⊕Q

)
∈ R( T

fT
× H

fH
× W

fW
+K)×D

, (2)

where ⊕ denotes concatenation and ZP ,ZQ denotes the represatation of P , Q after encoder respec-
tively. To enable VaporTok to learn a distribution for taildrop, we introduce Taildrop Probability
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Figure 2: VaporTok pipeline: A taildrop probability query module constructs a taildrop probability
supervised by a video-complexity prior. An index is then sampled according to this probability, and
only the tokens preceding that index are retained for reconstruction training.

Query Module consisting of I successive transformer blocks and a softmax layer, as illustrated in
Figure 2. A dedicated taildrop probability query Qtail ∈ RD is concatenated with ZP and fed into
transformer blocks of Taildrop Probability Query Module :

Q′
tail ⊕ Z ′

P = TransformerBlocks
(
Qtail ⊕ ZP

)
∈ R(1+ T

fT
× H

fH
× W

fW
)×D

, (3)

Q′
tail is then passed through an MLP followed by a softmax layer to produce the taildrop probability

distribution P :
P = Softmax

(
MLP

(
Q′

tail

))
∈ RK , (4)

where K is the total token counts of latent query ZQ. To enable adaptive token usage, a truncation
index t is sampled according to the learned taildrop probability P :

t ∼ Categorical(P ) (5)

All latent tokens of ZQ whose index exceeds the sampled index t are discarded and only the first
t tokens are concatenated with the decoder query M which are then passed to the decoder for
reconstruction :

PTD_ZQ = ProbabilisticTaildrop(ZQ) = ZQ, 1:t ∈ Rt×D (6)

V̂ = Dec (M ⊕ PTD_ZQ) ∈ RT×H×W×3 (7)

The first-stage training loss of VaporTok is composed of L1 reconstruction loss, LPIPS perceptual
loss[66], GAN loss[17], quantizer loss[48] and prior loss[48]. The detail is provided in the Appendix.

3.1.2 Video Complexity Prior

Implicitly modeling video complexity is impractical. Therefore, we explicitly supervise the Taildrop
Probability Query Module with a Gaussian distribution that contains visual prior information. First,
the spatial and temporal complexities are computed separately and then these complexities are
mapped to a corresponding token count via Equation 9. We then construct a Gaussian distribution to
supervise the taildrop probabilities, with its mean set to the token count obtained from the preceding
mapping and its variance determined by K, the total number of encoder query tokens. Specifically,
let visual complexity of video i be :

ci = SCi × TCi, (8)

where SCi and TCi are its spatial and temporal complexities whose details are provided in the
Appendix. Then maintain an empirical CDF F over all observed complexities in training set and map
each video complexity ci to a token count ki by :

ki = ⌊s+∆F (ci)⌋ , F (ci) ∈ [0, 1]. (9)

4



where s is a predefined minimum token count tolerable for reconstruction and ∆ is the maximum
increment. This yields a whole dataset wise mapping :

{ci}|dataset|i=1 7−→ {ki}|dataset|i=1 . (10)

For each training sample i, we construct a 1D Gaussian distribution with mean ki and variance
K · σscale as the prior distribution :

GaussianPriori = N
(
t; µ = ki, σ

2 = K · σscale

)
(11)

where ki is the token count calculated by visual complexity prior for the i-th video, K is the total
token counts of ZQ, and σscale is a hyperparameter to control the trend of the prior distribution.

Then, the loss of sample video i to train the taildrop branch, specifically Taildrop Probability Query
Module and VaporTok encoder, is calculated as the KL divergence between Pi and GaussianPriori:

Lossi = KL(Pi ||GaussianPriori) (12)

3.2 Parallel Sample GRPO with Vapor Reward

Since the sampling operation employed in the VaporTok is non-differentiable, it is infeasible to
propagate the reconstruction loss to the Probabilistic Taildrop branch through the latent space.
Nevertheless, in reinforcement learning, the reward function can be treated as an arbitrary black box,
whose information can be passed to the policy model, even though the reward is not differentiable
with respect to the parameters of the policy model. In addition, except for the basic reconstruction
feedback, several helpful metrics can also be incorporated in reward definition to make the
tokenizer more efficient and appropriate for downstream generation task.

To this end, we cast the video tokenization as a sequential decision process in Section 3.2.1 and
introduce Parallel Sampling GRPO in Section 3.2.2 to optimize this process while avoiding mode
collapse. Furthermore, in Section 3.2.3, we introduce Vapor Reward, which enables GRPO to
refine VaporTok’s adaptivity with respect to both reconstruction and generation tasks. Finally, in
Section 3.2.4, we define the optimization objective of Parallel Sample GRPO.

3.2.1 Definition of sequential decision process

Given an entire video Ventire ∈ RNGRPO×H×W×3 of length NGRPO, we first partition it into
L =

⌈
NGRPO

NVAE

⌉
video clips (V 1

clip, V
2
clip, . . . , V

i
clip, . . . , V

L
clip), where NVAE is the predefined frame

count can be processed by VaporTok encoder at one time. For each video clip V i
clip, VaporTok

encoder computes its latent representation Z
(i)
Q and Taildrop Probability Query Module computes its

taildrop probability distribution Pi. We define the three key components of the sequential decision
process in the context of token truncation problem as follows:

• State S: the current input video clip V i
clip ∈ RNVAE×H×W×3 ;

• Action A: the truncation index sampled from Pi to truncate the latent representation Z
(i)
Q of

current video clip V i
clip;

• Reward R(s, a): we will introduce our proposed Vapor Reward in Section 3.2.3.

Then we can get a taildrop probability sequence (P1, P2, . . . , Pi, . . . , PL) to sample truncation
index for each latent representation Z

(i)
Q respectively. Also, we define the policy in our pipeline

as πθ(Pi | V i
clip), where θ is the parameter of Taildrop Probability Query Module proposed in

Section 3.1.1. Notably, the key difference between Markov Decision Process (MDP) and our
proposed sequential decision process is that the latter does not satisfy the Markov property, and its
transition dynamics P(s′ | s, a) are implicitly defined by the entire input video Ventire.

3.2.2 Parallel Sample GRPO

In our setting, the G trajectories within GRPO group share exactly the same state sequence
(V 1

clip, V
2
clip, . . . , V

i
clip, . . . , V

L
clip), and thus the same policy πθ(Pi | V i

clip) is applied. This leads to
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Figure 3: Parallel Sample GRPO pipeline: Split the video into a sequence of clips and apply the
taildrop probability query module to generate corresponding taildrop probabilities. Then perform
parallel sampling to derive a truncation matrix I , compute rewards using the Vapor Reward, and
update the parameters of taildrop probability query module via GRPO.

highly similar or even identical sampled truncation index path across all G trajectories within a group,
especially under greedy or top-k sampling strategies, which in turn causes severe mode collapse. To
address this issue, we propose Parallel Sample GRPO, a variant of GRPO specifically designed for
training GRPO in such non-Markovian scenario, which concludes two remedies:

Stochastic parallel sampling. Rather than restricting sampling to the top-k candidates, we draw
samples from the whole categorical distribution defined by the taildrop probability distribution
Pi. The sampling strategy increases the probability of selecting lower probability indexes and
allows for greater diversity between trajectories within a group. Specifically, a truncation matrix
I = [Ii,j ] ∈ ZG×L is obtained, where each row represents a truncation path that specifies how
many tokens are used to represent each clip in the video and there are G such truncation paths in
total. Besides, to further mitigate the mode collapse introduced by the non-Markovian nature of the
defination, we augment the reward signal with an exploration bonus defined in Equation 14, which
encourages diversity across trajectories and therefore promotes exploration.

3.2.3 Vapor Reward

We define the Vapor Reward to incorporate reconstruction, token-count, and downstream feedback
into the policy model (Taildrop Probability Query Module) while avoiding collapsed sampling paths
within a group. The Vapor Reward comprises of following four types of rewards:

Efficiency reward. To encourage the latent representation of entire video Ventire to be more efficient,
we define the efficiency reward. Specifically, for the i-th path, the efficiency reward is defined as:

R
(i)
efficiency = Nmax −N (i)

curr (13)

where Nmax is the maximum permissible token count for the video, which can be calculated as
Nmax = L ×K, where K is the total token number of ZQ. N (i)

curr is the actual number of tokens
retained and can be calculated as N (i)

curr =
∑L

j=1 Ii,j

Diversity reward. To encourage exploration and mitigate mode collapse, we define a diversity
reward for each path based on how different its sampled index sequence is from others in the same
group. Specifically, for the i-th path, the diversity reward is defined as:

R
(i)
diversity =

1

(G− 1)L

L∑
j=1

G∑
k=1
k ̸=i

1 [Ii,j ̸= Ik,j ] (14)

where I = [Ii,j ] ∈ ZG×L is the sampled truncation matrix, G is the number of sampled paths, and L
is the sequence length. The indicator function 1[·] is equal to 1 if its argument is true and 0 otherwise.
A higher reward is assigned to a path if its sampled indices are more dissimilar from the others.
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Reconstruction reward. To encourage the refined taildrop probability to preserve the reconstruction
ability learned from former stage, we define reconstruction reward. Specifically, for the i-th path, the
reconstruction reward is defined as:

R
(i)
reconstruction = −

L∑
j=1

MSE
(
V̂ j
clip, V

j
clip

)
(15)

For j-th video clip, we use the truncation index path Ii,j to truncate the latent representation and
reconstruct the video clip via the VaporTok decoder. Then we compute the mean-squared error
between reconstructed video clip V̂ j

clip and ground-truth video clip V j
clip. The reconstruction reward

for the i-th path is the negative of the sum of the reconstruction MSE of all video clips of current
entire video.

Generation reward. To make the taildrop probability be aware of downstream generation perfor-
mance, we define generation reward. The former work LARP[48] impose a lightweight AR prior
model to encourage the latent space to be more suitable for downstream AR-based generation. Hence,
the prior model in LARP[48] is reused in our VaporTok (the detail about lightweight ar prior used in
VaporTok is provided in the Appendix), and its top-5 accuracy on latent-token predictions is employed
as the AR generation reward, guiding the taildrop probability query module to improve efficiency
without sacrificing downstream generation performance. Specifically, for the i-th path, the generation
reward is defined as:

R
(i)
generation =

L∑
j=1

Accuracytop5
(
PTD_Zj

Q) (16)

3.2.4 Objective of Parallel Sample GRPO

For each entire input video Ventire, a batch of G candidate truncate index sequence {ki}Gi=1,where
ki = (Ii,1, Ii,2, . . . , Ii,j , . . . , Ii,L), is sampled from the old policy πθold and scores by reward:

Ri =
∑

m∈M
λm R(i)

m (17)

where m is one element of M = {efficiency, diversity, reconstruction, generation} and the non-
negative weights {λm} control the relative importance of each reward component. To obtain relative
advantages, the rewards {Ri} are normalized by their mean and standard deviation:

Ai =
Ri − mean{R1, R2, . . . , RG}

std{R1, R2, . . . , RG}
. (18)

The parameter θ is then updated to maximize the following objective:

JGRPO(θ) = EI∼πθold

[
1

G

G∑
i=1

min
(
ρi Ai, clip(ρi, 1− ϵ, 1+ ϵ)Ai

)
− β DKL

(
πθ ∥πref

)]
, (19)

ρi =
πθ(ki | Ventire)

πθold(ki | Ventire)
,

ϵ denotes the clipping threshold, β scales the KL-divergence penalty, I = [Ii,j ] ∈ ZG×L is the
sampled truncation matrix, and Ai represents the advantage estimate for the ith sample.

4 Experiments

Dataset. We conduct video reconstruction and generation experiments using the Kinetics-600[4]
and UCF-101[41] datasets. In the first stage, we use NVAE = 16 frame video clips at a spatial
resolution of 128 × 128 for VaporTok training and evaluation following [48]. In the second stage,
Parallel Sample GRPO training operates on full NGRPO = 80 frame videos and the sequence length
optimized by GRPO is L =

⌈
NGRPO

NVAE

⌉
=

⌈
80
16

⌉
= 5.

Implementation details. VaporTok first patchifies the input video into a sequence of tokens. In all
experiments, we set the patch sizes to fT = 4, fH = 8, fW = 8, so that a 16× 128× 128 video clip
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Table 1: Comparison of generative video models. VaporTok refers to the evaluation results after
Stage 1 training, while VaporTok-GRPO refers to the evaluation results after Stage 2 training. The
reported token counts are the average number of tokens used per video.

Method #Params #Tokens rFVD↓ gFVD↓

Tokenizer Generator K600 UCF

Diffusion-based generative models with continuous tokenizers
VideoFusion [26] — 2B — — — 173
HPDM [40] — 725M — — — 66

MLM generative models with discrete tokenizers
MAGVIT-MLM [61] 158M 306M 1024 25 9.9 76
MAGVIT-v2-MLM [62] — 307M 1280 8.6 4.3 58

AR generative models with discrete tokenizers
CogVideo [19] — 9.4B 2065 — 109.2 626
TATS [15] 32M 321M 1024 162 — 332
MAGVIT-AR [61] 158M 306M 1024 25 — 265
MAGVIT-v2-AR [62] — 840M 1280 8.6 — 109
OmniTokenizer [49] 82.2M 650M 1280 42 32.9 191
LARP-1024 [48] 173M 632M 1024 20 5.1 57
LARP-512 [48] 173M 632M 512 53.3 — 86
VaporTok (Ours) 195M 632M 498 53.9 8.3 80
VaporTok-GRPO (Ours) 195M 632M 361 66.6 10.4 98

is split into 4× 16× 16 = 1024 patches. The number of encoder query tokens is set to k = 1024.
The quantizer and prior model is set as same as [48], where the factorized codebook is employed of
size 8192 with embedding dimension dcodebook = 8 and prior model is adapted from a small GPT-2
backbone[35]. For taildrop probability query module, we set the number of transformer blocks as
I = 2, and the softmax temperature is set to 1.8. Due to the high computational cost of training, we
trained for 30 epochs on the UCF101 and K600 datasets using the pretrained model provided by
LARP[48], which required 90 hours on 8 A100 GPUs.

For parallel sample GRPO, we set the group size G = 8, the KL penalty weight β = 0.1, the number
of inner iterations µ = 2, and the clipping bounds to ϵlow = 0.2 and ϵhigh = 0.28 as in [64]. The
default reward weights for efficiency, penalty, diversity, reconstruction, and generation are set to
1:1:1:1:1. The GRPO training process uses the UCF101 dataset for a single epoch, which takes 3
hours on a single A100 GPU.

For AR generative model, we adopt a LLaMA-style transformer [42]. In the class-conditional
generation task on UCF-101 we prepend a [cls] token to represent the category, and a [stop]
token to cease the generation process when encountering it. The generation task is trained on the
UCF101 dataset for 3000 epochs, which takes 40 hours on 8 A100 GPUs.

Table 2: Comparison of different training techniques.
Base

Model #Tokens Taildrop Prob.
Taildrop Index rFVD↓ gFVD↓ gFVD/

rFVD

LARP [48] 1024 ✗ ✗ — 20.00 57.00 2.85
VaporTok 1024 ✓ ✗ sample 49.45 62.34 1.26
LARP [48] 512 ✗ ✗ — 53.25 86.25 1.62
VaporTok 512 ✓ ✗ sample 81.94 93.34 1.14
VaporTok 509 ✗ ✓ argmax 59.49 90.65 1.52
VaporTok 498 ✗ ✓ sample 53.92 80.13 1.48
VaporTok 409 ✗ ✓ pre-sample 73.01 95.41 1.30

Table 3: Entropy of taildrop probabilities
under different GRPO implementation
on UCF101 validation set.
Model Diversity

Reward
Parallel

Sampling
TopK

Sampling Entropy

VaporTok — — — 5.11308
VaporTok-GRPO ✗ ✗ ✓ 0.00642
VaporTok-GRPO ✗ ✓ ✗ 0.01795
VaporTok-GRPO ✓ ✓ ✗ 4.11323

4.1 Video reconstruction & generation comparison

On the UCF-101 class-conditional generation benchmark, we evaluate LARP against video generation
approaches—spanning diffusion-based models, masked-language-modeling methods, and autoregres-
sive methods as in [48]. As shown in Table 1, VaporTok achieves competitive performance with other
video generators on the UCF-101 dataset even when using significantly fewer tokens. Notably, our
VaporTok model shows a much smaller gap between gFVD and rFVD than other AR-based video
generators. Besides, after GRPO training, we can further reduce the average latent token count from
roughly 50% down to about 30% of the original while still preserving reconstruction and generation
quality—thus achieving efficient adaptivity.
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4.2 Comparison of training techniques

To demonstrate the effectiveness of proposed probabilistic taildrop technique, we make a comparison
of different type of training strategies and show the evaluation result in Table 2. For naive taildrop, we
conducted experiments to test whether taildrop can induce a progressively decreasing importance of
tokens along the sequence. From first two rows in Table 2: taildrop causes a substantial performance
drop in rFVD, from 20 to 49.45, yet gFVD almost fully recovers the gap introduced by reconstruction
and achieve competitive gFVD 62.34 with 57. This shows that taildrop training can partially close the
original gap between reconstruction and generation performance by enforcing a semantic-to-detail
ordering in the latent space, which greatly reduces error accumulation during autoregressive inference.
The same conclusion can also be drawn from the third and fourth rows in Table 2. For probabilitstic
taildrop, we examine three strategies for obtaining the truncation index from the taildrop probability
distribution: taking the argmax, directly sampling, and a pre-sampling variant that only samples from
indices before the argmax. Among these strategies, directly sampling from the taildrop probability
yields the best performance, achieve the best gFVD 80.13 with a similar token count to baseline
methods. The argmax approach lacks variability across different lengths for the same video, thereby
missing the core advantage of taildrop—structuring the latent space from semantic to detail. Pre-
sampling best reflects this advantage, but it tends to reduce the average token count significantly,
which slightly compromises reconstruction and generation quality.

4.3 Ablation studies

Impact of different sampling strategies. To verify that Parallel Sample GRPO alleviates mode
collapse introduced by non-Markovian setting, we compute the average entropy of the taildrop proba-
bilities on UCF101 validation set. The results appear in Table 3: The conclusion that probabilities
adjusted by GRPO inevitably become more concentrated can be drawn from the lower entropy
compared to that optimized by the prior probability of the first stage as shown at the first row in Table
3. This concentration is an unavoidable consequence of mode collapse introduced by our definition
of sequential decision process. However, unlike the complete collapse observed with direct topk
sampling, our parallel sampling combined with an exploration reward effectively mitigates the issue.

(a) Generation Reward

(b) Reconstruction Reward

Figure 4: The generation (top) and re-
construction (bottom) rewards under dif-
ferent reward weights where the weights
order is efficiency, diversity, reconstruc-
tion, and generation.

Impact of four rewards in Vapor Reward. During
GRPO fine-tuning, we only adjust the taildrop probabil-
ity without altering the latent-space distribution, our goal
is to reduce token usage without degrading generation or
reconstruction quality—that is, to achieve an efficiently
task-aware adaptive tokenizer.

Firstly, we isolated the individual effects of the generation
reward and reconstruction reward. We conducted three
ablations: (a) dropping the generation reward, (b) dropping
the reconstruction reward, and (c) dropping both. Fig-
ure 4 shows that relying solely on the generation reward
yields a large boost in generation quality at the expense
of reconstruction quality, whereas relying solely on the re-
construction reward greatly improves reconstruction with
negligible impact on generation. If both rewards are re-
moved, the model suffers its worst overall performance on
both tasks. Notably, using both rewards simultaneously
allows steady improvement in both without compromising
either. These results confirm that jointly optimizing gener-
ation and reconstruction rewards outperforms using either
one alone or none at all.

To rigorously assess all four rewards, we carried out a
full four-way ablation, removing each reward in turn. The
results are summarized in Table 5. Without the efficiency reward, the performance of reconstruction
and generation become stronger, but this leads to an increase in the average token cost, violating our
efficiency goal. Leaving out the diversity reward produces comparable task performance but causes
the taildrop probability to collapse to a few fixed indices, undermining true adaptivity. Omitting
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Table 4: Ablation of each rewards where each row “w/o R” indicates the model trained without
reward R. The reported token counts are the average number of tokens used per video on the UCF101
validation set.

Missing Reward #Tokens rFVD↓ PSNR↑ gFVD↓ MSE↓ ACC↑

VaporTok-GRPO 361 66.6 24.49 97.92 4.48× 10−3 3.70%

w/o efficiency reward 874 42.2 27.08 60.17 2.52× 10−3 4.44%
w/o diversity reward 325 74.9 24.23 100.94 4.77× 10−3 3.65%
w/o reconstruction reward 318 73.7 24.19 109.52 4.77× 10−3 3.60%
w/o generation reward 297 77.5 24.04 113.56 4.96× 10−3 3.56%

either the reconstruction or generation reward leads to a performance drop in corresponding tasks.
In conclusion, dropping any single reward prevents the model from maintaining reconstruction and
generation quality in an efficiently adaptive manner.

4.4 The alignment between FVD and reward

To verify the alignment between the final FVD and the reward, the results of reconstruction and
generation under both sampling and argmax settings are shown in the Figure 5. It can be observed
that rFVD strongly correlates with the reconstruction reward, while gFVD shows a similarly strong
correlation with the generation reward. This further supports the validity of our reward design: the
reconstruction MSE serves as a reliable proxy for reconstruction quality, and the top-5 accuracy
of the prior model effectively reflects generation quality.

3.1 3.3 3.5
Top-5 Accuracy 

110

130

150

gF
VD

 

gFVD vs Top-5 Accuracy
argmax
sample

(a) Alignment between gFVD and ACC

0.0040 0.0045 0.0050 0.0055
MSE 

60

80

100

120

rF
VD

 

rFVD vs MSE
argmax
sample

(b) Alignment between rFVD and MSE

Figure 5: rFVD and MSE exhibit a strong positive correlation, while gFVD and ACC show a clear
negative correlation, indicating the effectiveness and rationality of the proposed reward design.

5 Conclusion and future work

We introduce VaporTok, an efficient and adaptive video tokenizer with two key innovations. First,
our probabilistic taildrop leverages visual complexity to dynamically determine truncation indexes,
preserving semantic-to-detail token structure. Second, we introduce a parallel sample GRPO strategy
guided by the Vapor Reward, a unified signal combining token count, reconstruction quality, and
generation fidelity, to inject multiple task-related information to VaporTok. Our results show that
adaptive tokenization can be effectively learned during training, and demonstrate the effectiveness of
GRPO in optimizing tokenizers. However, the present work explores only how to employ GRPO
to optimize the truncation probability rather than the entire VAE, and only the generation task is
considered as downstream task. Moreover, although various methods have been employed to mitigate
mode collapse, the truncation diversity of VaporTok after GRPO training remains notably lower than
that after the prior training. Future work will investigate extending GRPO to entire VAE optimization,
modeling video tokenization as a complete Markov decision process and applying the framework to
understanding [34, 65, 44] and unified generation&understanding scenarios as in [28, 9, 33, 53]
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Reflected in Section1 contribution.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitation in conclusion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper do not propose new theory.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The reproduce details are already included in the experiment section and
appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide the code in supplementary.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
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Appendix:

A Additional Methodological Details about VaporTok

A.1 Computation of video spatio&temporal complexity

Given a video tensor V ∈ RT×H×W×3, each frame is converted to grayscale via

gt(x, y) = 0.299Vt,x,y,1 + 0.587Vt,x,y,2 + 0.114Vt,x,y,3, (20)

,where t = 1, . . . , T and (x, y) ∈ {1, . . . ,H} × {1, . . . ,W}.

Spatial Complexity. Define the empirical pixel-value distribution of frame t as

pt(v) =
1

HW

∣∣{(x, y) | gt(x, y) = v}
∣∣, v = 0, 1, . . . , 255. (21)

The Shannon entropy of frame t is

Ht = −
255∑
v=0

pt(v) log2 pt(v), (22)

and the spatial complexity is the average frame entropy:

SC =
1

T

T∑
t=1

Ht. (23)

Temporal Complexity. The temporal complexity is defined as the mean absolute difference between
consecutive frames:

TC =
1

(T − 1)HW

T−1∑
t=1

H∑
x=1

W∑
y=1

∣∣gt+1(x, y)− gt(x, y)
∣∣. (24)

A.2 AR prior in VaporTok

Inspired by the AR prior model introduced in LARP [48], we integrate a similar lightweight autore-
gressive model into VaporTok as shown in Figure 6. This AR model is designed to make latent tokens
more compatible with downstream AR generation tasks, and thus its implementation and associated
evaluation metrics can serve as a proxy for downstream generation performance.

Similar to LARP, our lightweight AR model is trained jointly with the VaporTok tokenizer in an end-
to-end manner. Specifically, the model takes the quantized latent token embeddings as input, and uses
the corresponding codebook IDs as labels. To address the instability caused by the training-inference
discrepancy inherent to AR models, Scheduled Sampling Mixing as proposed in [3, 30] is employed.

The key difference is that the prior model used in VaporTok is trained only on the retained latent
tokens after truncation rather than the whole latent space. Moreover, to enable efficient batchwise
training, we adopt the attention masking scheme described in Section A.3 within the transformer
blocks of the AR prior model.

A.3 Attention mask in reconstruction&generation pipeline

Attention mask for the VaporTok decoder. During the training of VaporTok, the spatiotemporal
complexity of each video sample varies, which results in different taildrop probabilities. Additionally,
since sampling is performed over the entire probability distribution during training. These two
factors lead to varying truncation positions across samples. Consequently, it becomes infeasible
to reconstruct all samples within a batch using a shared decoder input length.To address this issue,
we design an adaptive attention mask for the VaporTok decoder to accommodate the variable token
lengths caused by the probabilistic taildrop. Specifically, as illustrated in Figure 7(a): For each
sample, we construct an individual attention mask: all tokens from decoder queries M are granted

22



Prior Loss

··· ···

···

······

···

Probabilistic Taildrop

···

VaporTok Encoder

VaporTok Decoder

Codebook ID

Quantizer

Video Patches Encoder Queries

AR Prior

Transformer Block 1

Transformer Block 2

Transformer Block N

：

···

···3 9 7 2 8

Taildrop Probability 

TPQ Module

Codebook Embedding

Figure 6: AR prior model in VaporTok.

full visibility, while for latent tokens, positions beyond the truncation point are masked out to
ensure that dropped tokens do not participate in attention computation. This prevents non-informative
tokens from interfering with the training process and allows batchwise training of VaporTok.

Attention mask for the AR prior model. The AR prior model originally adopts a causal attention
mask, which ensures that later tokens do not affect the prediction of earlier tokens. However, if we
apply a standard causal mask without modification, tokens before the truncation point can still attend
to and influence those after the truncation, which is undesirable. Due to the introduction of taildrop,
tokens after the truncation point should not be supervised and influenced by prior tokens during
training. To resolve this, we propose a modified attention mask as shown in Figure 7(b).

Attention mask for the downstream AR generative model. Since the AR prior model serves
as a compact abstraction of the downstream AR generative model, the attention mask used in
the downstream AR model is identical to that of the AR prior model, which is also illustrated as
Figure 7(b).

A.4 The complete loss function of VaporTok

Lrec = λL1 · LL1 + λperc · Lperc + λGAN · LGAN + λcommit · Lcommit (25)

Lrepresentation prior = − 1

N

N∑
i=1

log p(yi | xi) (26)

Lprobability prior = KL(P ||GaussianPrior) (27)
Lrec is comprised of L1 loss, perceive loss, GAN loss, and commitment loss as traditional VQ
tokenizer. In Equation 26, x denotes codebook embedding, y denotes codebookid. In Equation 27, P
denotes taildrop probability and GaussianPrior denotes prior probability. The complete loss of
VaporTok is:

Lcomplete = Lrec + λrep · Lrep_prior + λprob · Lprob_prior (28)

B Supplementary Experiments on Vapor Reward

B.1 Penalty reward

In our experiment of argmax sampling of probabilistic taildrop, the truncation index always becomes
too small to be enough to reconstruct&generate videos, so a reward to punish such truncation is
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introduced in such senario. Specifically, for the i-th path, the penalty reward is defined as:

R
(i)
penalty = −

L∑
j=1

Penalty(Ii,j), if Ii,j < Nthreshold (29)

where Kthreshold is a manually defined threshold specifying the minimum number of tokens tolerable
for reconstructing the video clip and Penalty(ti) denotes a penalty function that imposes more
punishment when the truncation index becomes smaller. Then we design a five way ablation study in
argmax sampling strategy of probabilistic taildrop as shown in Table 5:

Table 5: Ablation of each rewards. Each row “w/o R” indicates the model trained without reward R.
Lower is better for rFVD, gFVD and MSE; higher is better for PSNR and prior top-5 accuracy.

Missing Reward #Tokens rFVD↓ PSNR↑ gFVD↓ MSE↓ ACC↑

VaporTok-GRPO 299 72.5 24.1 118 4.85× 10−3 3.24%

w/o efficiency reward 577 59.4 25.6 88.46 3.89× 10−3 3.88%
w/o diversity reward 305 75.4 24.7 105.85 4.80× 10−3 3.24%
w/o reconstruction reward 272 91.6 23.3 138.58 5.83× 10−3 3.13%
w/o generation reward 286 83.6 23.8 122.21 5.33× 10−3 3.17%
w/o penalty reward 58 3267 10.7 3255.59 9.45× 10−2 2.73%

B.2 Effect of reconstruction&generation reward under different weight

We adopt a baseline weighting of 1:1:1:1:1 for the efficiency, penalty, diversity, reconstruction,
and generation rewards respectively and then increased the proportion of each of reconstruc-
tion&generation rewards. As shown in Figure 8, as the weights for these two rewards grow, their
numerical values also increase, which demonstrates that the higher the combined weight on these
two performance rewards, the more faithfully the original reconstruction and generation quality is
preserved. It is worth noting that if both weights are set too high, performance gains come at the
expense of efficiency reward, contradicting our original intent that making tokenizer to be more
efficient.
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(a) Generation Reward (b) Reconstruction Reward

(c) Efficiency Reward (d) Diversity Reward

Figure 8: (a) generation reward (b) reconstruction reward (c) efficiency reward (d) diversity reward of
differenct reward weight where the order is efficiency, penalty, diversity, reconstruction, generation.

C Analysis about VaporTok

C.1 Mitigating the three core challenges of autoregressive generation

To mitigate the three key limitations of autoregressive (AR) visual generation, we propose a unified
solution within the VaporTok framework:

Quadratic complexity with long sequences. We introduce a sparse but sufficient token representation
by leveraging visual priors to reduce the number of tokens required for generation. Furthermore,
we apply GRPO to adaptively compress the token sequence while preserving downstream task
performance as much as possible.

Error accumulation during AR inference. We propose a probabilistic taildrop training strategy
that pushes important tokens toward the beginning of the visual representation. As a result, during
inference, the model generates the most critical tokens when the accumulation of prediction errors is
still minimal, thereby mitigating the impact of error accumulation.

Training gap between the tokenizer and the AR generator. To close this gap, we adopt two
complementary strategies. First, we refine the latent space following the approach of LARP [48] to
make it more suitable for AR generation. Second, we leverage the same AR-aligned information
to guide the training of the taildrop query module via GRPO. This enables our adaptive tokenizer
to incorporate downstream task constraints into both the adaptivity mechanism and the latent token
representation, thus reducing the mismatch between the tokenizer and the generator.

C.2 Taildrop training strategy for semantic-to-detail representation

The taildrop training strategy is designed to encourage a semantic-to-detail organization in the latent
token representations. This is primarily achieved through the following mechanism: for the same
video sample, train the model using different numbers of tokens for reconstruction. As a result, tokens
at the beginning of the sequence are exposed to the reconstruction objective more frequently, while
later tokens appear less often during training. Furthermore, even when only a small number of tokens
are used, the model is still tasked with reconstructing the entire video. This encourages early tokens
to encode more global, semantic information that is sufficient for reconstruction.

In addition, it is worth noting the distinction between the two evaluation metrics used in visual
reconstruction and generation: rFVD and gFVD. By design, gFVD is consistently worse (higher) than
rFVD. This is because rFVD evaluates the reconstruction quality using ground-truth codebook ID
directly obtained from the encoder, whereas gFVD evaluates the generation quality using codebook
ID predicted by the autoregressive model. Briefly, the only difference between rFVD and gFVD is that
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reconstruction relies on ground-truth ID, while generation depends on autoregressively predicted ID,
making the gap between gFVD and rFVD a direct indicator of the degree of AR error accumulation.
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(a) Comparison between LARP and VaporTok with
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Figure 9: (a) Naive taildrop reduces the gap between rFVD and gFVD, but it leads to a drop in recon-
struction performance, which in turn results in degraded generation performance. (b) Probabilistic
taildrop, by incorporating a visual prior, avoids the reconstruction performance degradation caused
by taildrop, while preserving its original ability to reduce the gap between rFVD and gFVD.

To quantify this effect, we report the gFVD/rFVD ratio as shown in Table 2 of the main paper and
Figure 9a to measure the discrepancy between reconstruction and generation. We conduct experiments
under both 1024-token and 512-token settings. The results show that with taildrop enabled, the gap
between gFVD and rFVD becomes smaller, demonstrating the effectiveness of taildrop in mitigating
AR error accumulation; specifically, the gFVD/rFVD ratio decreases from 2.85 to 1.26 under the
1024-token setting, and from 1.62 to 1.14 under the 512-token setting.

C.3 Difference between naive taildrop and probabilistic taildrop

The distinction between naive and probabilistic taildrop primarily manifests in training and inference:

Training: While naive taildrop uses uniform sampling for truncation during training, probabilistic
taildrop samples from a learned, prior-informed distribution. (We also investigate three specific
sampling strategies under the probabilistic framework.)

• Truncation by argmax of taildrop probability. The sequence is truncated at the index
corresponding to the maximum value in the taildrop probability distribution. While simple,
this approach always uses the same number of tokens for a given input, limiting the semantic-
to-detail effect.

• Sampling from the full taildrop probability. The truncation index is sampled from the entire
taildrop probability distribution. This allows different truncation lengths for the same input
and leads to strong reconstruction performance.

• Sampling indices before the argmax index. We sample a truncation index from the region
before the argmax position, based on the taildrop probability. This also enables varying
token counts across samples, though typically results in fewer tokens and slightly degraded
reconstruction quality.

Inference: During inference, naive taildrop uses the full set of tokens for decoding (which is the
default inference mode used for all reported results in this paper. Alternatively, one may adopt a
threshold-based token selection strategy, as in [57]). In contrast, probabilistic taildrop performs de-
coding using all tokens preceding the argmax index of the taildrop probability distribution, achieving
an adaptive number of tokens based on input complexity.

It is worth noting that, among the three sampling strategies for probabilistic taildrop during training
(from argmax to sample and then to pre-sample), the degree of semantic-to-detail structure in the
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Figure 10: Different paradigm of visual tokenizer: (a) The patchwise-token paradigm typically
represents each token as encoding information from a specific spatial region and usually adopts a
CNN as the backbone.(b) The holistic-token paradigm is not constrained by fixed spatial positions
and can flexibly adjust the information each token represents based on the training strategy. (c)
Taildrop is a training technique commonly used in the holistic-token paradigm, enabling the token
sequence to exhibit a semantic-to-detail property.

tokens used during inference gradually increases because of the frequency of sampling index before
argmax index is gradually frequent. In other words, these strategies increasingly mitigate AR error
accumulation. This trend is also validated by the experimental results reported in Table 2 of the main
text as the gFVD/rFVD ratio becomes smaller.

Furthermore, while naive taildrop helps narrow the gap between reconstruction and generation (rFVD
vs. gFVD), its uninformed dropping during training—without accounting for visual priors—results
in compromised reconstruction quality. In contrast, our probabilistic taildrop incorporates a learned
prior distribution, maintaining competitive reconstruction performance (rFVD) and achieving superior
generation quality by alleviating AR error accumulation.

C.4 Different visual tokenizer paradigm

Visual tokenizers can be classified according to various criteria, and one particularly informative
distinction is how they map visual patches to latent tokens, yielding two families: Patchwise-Token
and Holistic-Token.

In the Patchwise-Token paradigm as depicted in Figure 10(a) , each learned token corresponds
one-to-one with a visual patch, thereby preserving the spatial structure imposed. Briefly, given a
video input V ∈ RT×H×W×3, the encoder outputs a downsampled feature map

Z = Enc(V ) ∈ R
T
fT

× H
fH

× W
fW

×D
, (30)

where fT , fH , fW are the temporal and spatial downsampling factors. The reconstructed video is
then obtained as

V̂ = Dec
(
Z
)
∈ RT×H×W×3. (31)

In the Holistic-Token paradigm as depicted in Figure 10(b), each latent token may assume different
semantic roles depending on the training strategy, resulting in a more flexible representational scope.
Different from Patchwise-Token paradigm mainly depends on 3D CNN as the backbone, Holistic-
Token paradigm usually employs Transformer blocks as the backbone, so a simple patch embedding
layer is needed to be conducted to V ∈ RT×H×W×3

P = Patchify(V ) ∈ R( T
fT

× H
fH

× W
fW

)×D
, (32)
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and then P will be concated with K learnable query tokens Q ∈ RK×D and the combined sequence
will be passed into the encoder:

ZP ⊕ ZQ = Enc
(
P ⊕Q

)
∈ R( T

fT
× H

fH
× W

fW
+K)×D

, (33)

where ⊕ denotes concatenation and ZP ,ZQ denotes the represatation of P , Q after encoder respec-

tively. During detokenization, M ∈ R( T
fT

× H
fH

× W
fW

)×D, the decoder query of the same shape as
the video patches P , will be concatenated with ZQ and passed to the decoder to renconstruct the
input video.

V̂ = Dec
(
M ⊕ ZQ

)
∈ RT×H×W×3. (34)

It is worth noting that the taildrop training strategy is typically employed in holistic-token tokenizers.
This is primarily because the query representation is not constrained by fixed spatial regions, allowing
it to flexibly adapt to different training objectives and strategies. Moreover, such flexibility enables
the model to achieve effective representation learning with less training data.

D Supplementary Related Work about Fixed-length Visual Tokenizer

Visual tokenizers for understanding tasks typically rely on contrastive learning, for example: CLIP[34]
trains paired image and text encoders with an InfoNCE contrastive loss over matched image–caption
pairs, enabling strong zero-shot transfer across diverse vision task; SigLIP[65] replaces CLIP’s
softmax-based InfoNCE loss with an independent pairwise sigmoid loss, removing the need for global
normalization and scaling more efficiently to very large or small batch sizes. TULIP[44] augments
CLIP-style pretraining with generative data augmentation and unified image–image, text–text, and
image–text contrastive objectives plus reconstruction regularization to learn fine-grained visual
features without sacrificing semantic alignment.

Whereas visual tokenizers designed for generation usually employ VAE-based architectures: VQ-
VAE[47] first introduce vector quantization into VAE, transforming data from continuous spaces
into discrete tokens to simplify modeling and circumvent issues of “posterior collapse” in VAE
framework; VQ-GAN[12] improves image reconstruction quality by introducing adversarial loss
and using a Transformer for autoregressive visual generation; FSQ[29] projects representations into
a lower dimensional space for quantization into fixed values, while its variant LFQ[62, 27] further
simplifies the process by using binary quantized representations. This new kind of quantization
method effectively enhances the AR generation paradigm by dramatically enlarging the vocab size
and improving the encoding efficiency. Beyond these patch-to-token VAEs, there are also VAEs that
learn holistic tokens, such as TiTok[63] and LARP[48], by compressing visual information into a
holistic query, they eliminate the patch-to-token correspondence constraint, yielding a more flexible
architecture with inherent compression potential.

Recently, along with the rapid development of the unified model[52, 54, 53, 69], there are also
several visual tokenizers designed for both generation and understanding, such as TokenFlow[33],
SemHiTok[9] and UniTok[28]. These works focus on unifying visual generation and understanding
within a single visual tokenizer by employing discrete representations and hierarchical or multi-
codebook strategies, addressing the differing requirements in token granularity and semantic level
between generation and understanding tasks.

While the above methods have shown impressive results for static images, extending visual tokenizers
to video requires capturing both temporal continuity and spatial detail, presenting new challenges for
tokenizer architectures and training paradigms. Recent work addresses this by integrating temporal
modeling[49], diffusion-guided reconstruction[16], hierarchical codebooks[68], and coordinate-based
patch schemes[20] to efficiently compress and faithfully reconstruct long video sequences.

E Visualization

We present visualizations of VaporTok’s reconstruction and final class-based generation results, as
shown in the Figure 11 and Figure 12.
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Figure 11: Video reconstruction on UCF101.
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Figure 12: Class-based video generation on UCF101.

F Broader Impacts

Our Adaptive Video Tokenizer is designed exclusively for autoregressive video generation tasks, and
is not intended for video understanding or classification; by allocating fewer tokens to low-complexity
videos and more to high-detail videos, our method reduces computational and bandwidth costs
for real-time generative applications (e.g., interactive video editing, virtual content creation); it
enables fast, adaptive video synthesis for artistic tools and educational simulators, lowering barriers
for non-expert users to generate high-fidelity video content; it facilitates deployment of generative
video models on edge devices (e.g., AR/VR headsets, mobile phones) by reducing token sequence
length and inference latency; however, improved efficiency in video generation could be misused
to produce highly realistic deepfake videos, exacerbating misinformation campaigns; although not
designed for recognition, the underlying tokenizer could be adapted to generate misleading synthetic
footage for surveillance evasion or identity spoofing; training on unbalanced datasets may lead the
tokenizer to allocate token budgets unevenly, causing generative artifacts that disproportionately
affect certain demographics; while inference is more efficient, training the dual-branch model remains
GPU-intensive, contributing to carbon emissions.
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G Safeguards

To mitigate potential misuse and harms, we will release a detailed model card specifying that use for
deceptive or harmful video synthesis (e.g., deepfakes) is prohibited; distribute weights under a non-
commercial, no-derivatives license (e.g., CC BY-NC-ND) and/or via an API with rate limits rather
than open weight download; embed imperceptible watermarks in generated videos for provenance
tracking and provide a companion detection model to flag synthetic content; maintain a public
issue tracker for misuse reports and regularly update the model to address discovered biases or
vulnerabilities; publish training logs, compute cost estimates, and carbon-emission metrics to inform
users of environmental impact.
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