

000 001 002 003 004 005 *RealEngine*: SIMULATING AUTONOMOUS DRIVING IN 006 REALISTIC CONTEXT 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030

ABSTRACT

031 Driving simulation plays a crucial role in developing reliable driving agents by
032 providing controlled, evaluative environments. To enable meaningful assessments,
033 a high-quality driving simulator must satisfy several key requirements: multi-
034 modal sensing capabilities (e.g., camera and LiDAR) with realistic scene rendering
035 to minimize observational discrepancies; closed-loop evaluation to support free-
036 form trajectory behaviors; highly diverse traffic scenarios for thorough evaluation;
037 multi-agent cooperation to capture interaction dynamics; and high computational
038 efficiency to ensure affordability and scalability. However, existing simulators and
039 benchmarks fail to comprehensively meet these fundamental criteria. To bridge
040 this gap, this paper introduces *RealEngine*, a novel driving simulation framework
041 that holistically integrates 3D scene reconstruction and novel view synthesis tech-
042 niques to achieve realistic and flexible closed-loop simulation in the driving context.
043 By leveraging real-world multi-modal sensor data, *RealEngine* reconstructs back-
044 ground scenes and foreground traffic participants separately, allowing for highly
045 diverse and realistic traffic scenarios through flexible scene composition. This
046 synergistic fusion of scene reconstruction and view synthesis enables photorealistic
047 rendering across multiple sensor modalities, ensuring both perceptual fidelity and
048 geometric accuracy. Building upon this environment, *RealEngine* supports three
049 essential driving simulation categories: non-reactive simulation, safety testing,
050 and multi-agent interaction, collectively forming a reliable and comprehensive
051 benchmark for evaluating the real-world performance of driving agents.
052
053

1 INTRODUCTION

031 Autonomous driving (AD) methods (Yin et al., 2021; Li et al., 2022b; Ye et al., 2023; Hu et al., 2023b;
032 Wen et al., 2023; Fu et al., 2024) have advanced rapidly, largely due to the introduction of diverse
033 driving datasets (H. Caesar, 2021; Caesar et al., 2020; Montali et al., 2024) and simulators (Dosovitskiy et al., 2017). These resources facilitate research by supporting model training, testing, and
034 evaluation across a variety of virtual and real driving environments, utilizing a wealth of multimodal
035 sensor, including cameras and LiDAR.

036 However, existing AD datasets and simulators have fundamental limitations that prevent them
037 from fully capturing real-world driving scenarios and challenges, diminishing their credibility and
038 usefulness in practical applications. For instance, real driving data typically provides only pre-existing
039 driving trajectories (H. Caesar, 2021; Caesar et al., 2020), allowing for open-loop evaluation without
040 immediate feedback or interaction with the trajectories planned by driving agents. This results
041 in a significant discrepancy between simulated and actual driving behavior. The static nature of
042 recorded datasets, where other vehicles do not react to the actions of the ego vehicle, creates a
043 scenario fundamentally different from real-world situations. Although the closed-loop simulator
044 CARLA (Dosovitskiy et al., 2017) addresses this issue by providing real-time feedback to driving
045 agents, it relies on manual 3D modeling and graphics engines, which lacks realism and exhibits
046 a substantial appearance gap from actual driving scenarios. Consequently, models trained in this
047 environment may struggle to handle real-world driving conditions effectively. Further, previous
048 benchmarks primarily focus on non-collision and normal driving scenarios, which limits the models'
049 ability to address unseen risks encountered in the real world.
050
051

054
 055
 056
Table 1: Comparison of various datasets, generative models, world models, and simulators in terms of
 057 interactivity, fidelity, diversity, and efficiency. **DATA.** represents dataset, **GEN.** represents generative
 058 model, **W.M.** represents world model, **SIM.** represents simulator.

Type	Name	Interactivity			Fidelity			Diversity		Efficiency	
		Uncontrollable closed-loop	Controllable closed-loop	Multi-agent simulation	Realistic images	Real-world roadgraph	Safety test cases	Multi-view images	LiDAR point cloud	Efficient rendering	
DATA.	CitySim (Robinson et al., 2009)	✗	✗	✗	✗	✓	✗	✗	✗	✗	
	Bench2Drive (Jia et al., 2024)	✗	✗	✗	✗	✓	✓	✓	✓	✓	
	nuPlan (H. Caesar, 2021) / Navsim (Dauner et al., 2024)	✗	✗	✗	✓	✓	✗	✓	✓	✗	
	nuScenes (Caesar et al., 2020) / Waymo dataset (Sun et al., 2020)	✗	✗	✗	✓	✓	✗	✓	✓	✗	
GEN.	MagicDrive (Gao et al., 2023) / DriveDreamer (Wang et al., 2023a)	✗	✗	✗	✓	✓	✗	✓	✗	✗	
	SimGen (Zhou et al., 2024d)	✗	✗	✗	✓	✓	✗	✗	✗	✗	
W.M.	KiGRAS (Zhao et al., 2024) / SMART (Wu et al., 2024b)	✓	✗	✓	✗	✓	✗	✗	✗	✗	
	MUV0 (Bogdolli et al., 2023)	✓	✗	✗	✗	✓	✗	✗	✓	✗	
	Vista (Gao et al., 2024) / GAIA-1 (Hu et al., 2023a)	✓	✗	✗	✓	✗	✗	✗	✗	✗	
SIM.	Waymax (Gulino et al., 2024)	✓	✓	✓	✗	✓	✗	✗	✗	✗	
	SUMO (Krajzewicz et al., 2012) / LimSim (Wenl et al., 2023)	✓	✓	✗	✗	✓	✗	✗	✗	✗	
	CARLA (Dosovitskiy et al., 2017)	✓	✓	✗	✗	✓	✗	✓	✓	✓	
	STRIVE (Rempke et al., 2022)	✓	✓	✗	✗	✓	✓	✗	✗	✗	
	MetaDrive (Li et al., 2022a)	✓	✓	✗	✗	✓	✓	✓	✓	✓	
	Unism (Yang et al., 2023b) / OAism (Yan et al., 2024a)	✓	✓	✗	✓	✓	✓	✓	✓	✓	
	NeuroNCAP (Ljungbergh et al., 2024)	✓	✓	✗	✓	✓	✓	✓	✗	✗	
	DriveArena (Yang et al., 2024)	✓	✓	✗	✓	✓	✓	✓	✗	✗	
HUGSIM (Zhou et al., 2024a)		✓	✓	✗	✓	✓	✓	✓	✓	✓	
<i>RealEngine</i> (Ours)		✓	✓	✓	✓	✓	✓	✓	✓	✓	

069
 070 To advance the field, we introduce *RealEngine*, a pioneering autonomous driving simulation platform
 071 capable of rendering realistic multimodal sensor data efficiently and supporting closed-loop simula-
 072 tion. It is distinguished by the following features: **(i) Realistic scene rendering**, closely resembling
 073 the real world to minimize domain discrepancies between simulated and actual driving environments,
 074 allowing both camera images and LiDAR point clouds; **(ii) Closed-loop simulation**, enabling driv-
 075 ing along free-form trajectories planned by agents while providing corresponding feedback; **(iii)**
 076 **Supporting diverse scenarios**, including a wide range of hazardous driving situations to facilitate
 077 comprehensive safety-critical evaluations of driving agents; **(iv) Multi-agent co-operation and inter-
 078 action**, closely approximating various real-world conditions in terms of driving dynamics and scene
 079 complexity. As summarized in Table 1, no existing benchmarks or simulators meet these fundamental
 080 requirements simultaneously, as well as a spectrum of driving simulation focused features.

081 Our *RealEngine* is founded on the innovative concept of seamlessly integrating scene reconstruction
 082 with the composition of traffic participants. We reconstruct the background scene and foreground
 083 traffic participants separately with the corresponding real-world data. This approach simultaneously
 084 addresses key limitations of existing scene reconstruction methods (Chen et al., 2023; Wu et al.,
 085 2023; Yang et al., 2023a; Yan et al., 2024b; Chen et al., 2024; Turki et al., 2023): **(i)** Unable to
 086 acquire occluded regions within a scene; **(ii)** Inferior performance in synthesizing novel viewpoints
 087 of traffic participants; **(iii)** Limited choice of possible traffic participants. Our decomposed design
 088 naturally supports flexible scene editing while enabling the concurrent operation of multiple driving
 089 agents, as required for realistic driving simulations. By merging the background scene with diverse
 090 traffic participants, we can efficiently simulate a wide range of high-quality, unique driving scenarios
 091 tailored to any specific requirements. We generate a diverse range of driving scenarios and simulate
 092 three driving categories: *non-reactive*, *safety test*, and *multi-agent interaction*. This offers a high
 093 quality, reliable, flexible, and comprehensive benchmark for assessing the real-world performance of
 094 driving agents.

095 2 RELATED WORK

097 **Autonomous driving.** Recent research in autonomous driving have shifted from addressing individ-
 098 ual tasks to exploring end-to-end planning, enabling the progressive execution from perception to
 099 ego-planning within a unified framework. Early works (Casas et al., 2021; Hu et al., 2022; Chitta et al.,
 100 2023) implement this by leveraging simplified auxiliary tasks, which limits the final performance.
 101 In contrast, UniAD (Hu et al., 2023b) and VAD (Jiang et al., 2023) have advanced this paradigm
 102 by integrating a broader spectrum of driving tasks, achieving notable progress in planning tasks by
 103 producing explicit intermediate results. Additionally, recent approaches present sparse representa-
 104 tions (Zhang et al., 2024a; Sun et al., 2024), employ lightweight diffusion-based generation (Liao
 105 et al., 2025) to efficiently facilitate end-to-end planning. For enabling these driving methods to be
 106 evaluated extensively and authentically, we provide a reliable testing platform here.

107 **Sensor simulation.** The geometric reconstruction of extensive urban spaces, such as streets and cities,
 108 has played a pivotal role in autonomous driving (Sun et al., 2020; Caesar et al., 2020). Recently,

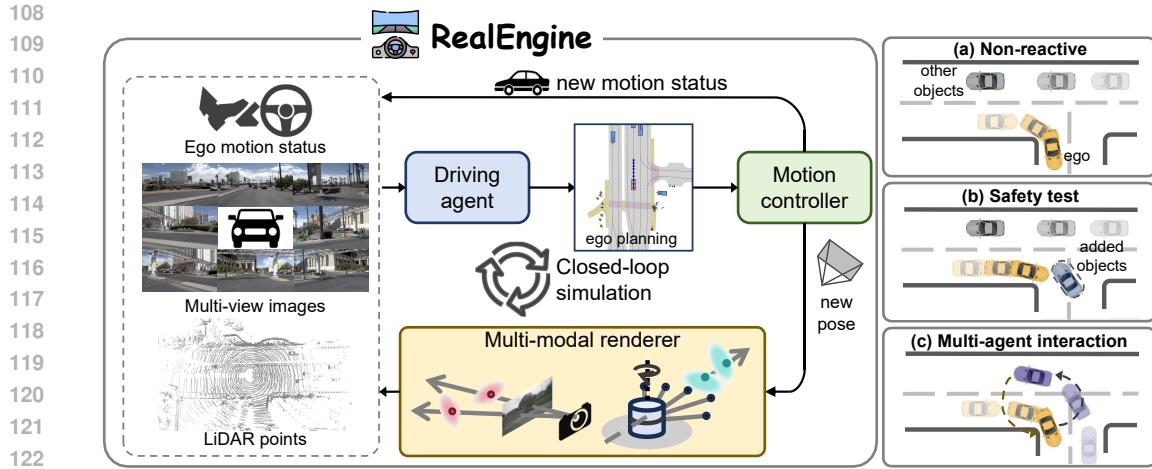


Figure 1: **The working mechanism of *RealEngine*.** It consists of three modules: a driving agent, a motion controller and a multi-modal renderer. Given a traffic scene represented by multimodal data including multi-view images and LiDAR point cloud, the driving agent predicts the trajectory, according to which *RealEngine* updates the ego-motion state for all traffic participants. Moving to the next time step, the multimodal sensor data will be refreshed by the current ego-motion state, which is then used for the driving agent to make the next trajectory planing. We consider three driving situations: non-reactive, safety test, and multi-agent interaction.

Gaussian splatting (Kerbl et al., 2023) based methods have been introduced to model dynamic urban scenes. PVG (Chen et al., 2023) incorporates periodic vibration at each Gaussian primitive to represent static and dynamic objects uniformly. At the same time, explicitly decomposing scenes into independent entities has become common practice, as seen in works such as StreetGaussians (Yan et al., 2024b), DrivingGaussians (Zhou et al., 2024c), HUGS (Zhou et al., 2024b) and OmniRe (Chen et al., 2024). Recently, LiDAR simulation studies have focused on using real data for improved realism. For instance, LiDARsim (Manivasagam et al., 2020) and PCGen (Li et al., 2023) use multi-step, data-driven methods to simulate point clouds from real data. Additionally, works such as (Tao et al., 2023; Zhang et al., 2024b; Zheng et al., 2024; Xue et al., 2024; Tao et al., 2024; Wu et al., 2024a) leverage NeRF (Mildenhall et al., 2020) for scene reconstruction and LiDAR simulation. Recent works (Jiang et al., 2025; Zhou et al., 2025) introduce Gaussian splatting (Kerbl et al., 2023) into the LiDAR reconstruction task, achieving improved reconstruction quality and rendering speed. However, sensor-acquired data is prone to occlusions, leading to information loss within scenes. Additionally, reconstructed dynamic objects can distort when viewed from alternative perspectives, limiting scene editability and novel view synthesis. To address these challenges, we propose modeling the foreground and background separately allowing them to be composed in a flexible manner, resulting in a comprehensive driving simulation platform.

Closed-loop simulation in realistic settings. Closed-loop simulation (Gulino et al., 2024; H. Caesar, 2021; Dosovitskiy et al., 2017; Li et al., 2022a) is crucial for the evaluation and deployment of AD planning systems, collecting sufficient driving statistics and improving the emergency response capability of driving agents. To make simulators more realistic, recent research has explored using existing real-world driving datasets. Bench2Drive (Jia et al., 2024) improves the CARLA benchmark by reconstructing the data format to be more aligned with the nuScenes dataset, bridging the gap between reinforcement learning planners and end-to-end planners. Navsim (Dauner et al., 2024) imitates closed-loop evaluation to adjust the nuPlan benchmark, introducing more comprehensive and practical metrics. With the emergence of novel 3D rendering and generation research, some works integrate these techniques into existing datasets, better simulating and constructing richer and more diverse scenarios. NeuroNCAP (Ljungbergh et al., 2024) utilizes NeRF (Mildenhall et al., 2020) to render novel surrounding views and creates collision scenarios to enhance measurement. Relying on powerful generative models and extensive driving data, DriveArena (Yang et al., 2024) is capable to yield controllable and abundant real-world scenarios and realize closed-loop simulation. However, these simulators all fail to meet the fundamental criteria as mentioned earlier. This motivates the introduction of our *RealEngine*, a more reliable and powerful benchmark for assessing the real-world performance of driving agents.

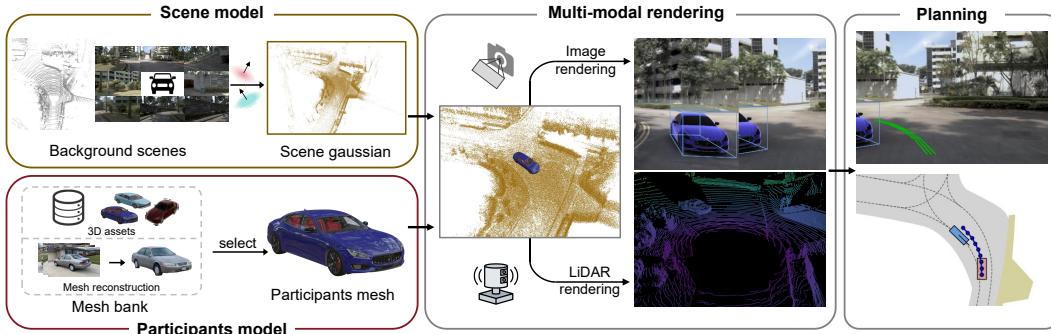


Figure 2: **Scene composition.** We start with modeling the background scene based on real sensor data and obtaining the meshes of traffic participants either by extracting them from the reconstructed data or through manual creation. That makes a rich space for designing a variety of customizable traffic scenarios. To create a specific scenario, we select both the background scene and traffic participants, which can be integrated based on each participant’s spatial coordinates over time. This naturally enables the creation of highly diverse scenes to support extensive closed-loop simulation.

3 METHOD

We present *RealEngine*, a reliable and comprehensive autonomous driving simulation platform capable of rendering realistic multimodal sensor data efficiently and supporting closed-loop simulation. It is composed of: (i) Simulator infrastructure including background scene and traffic participants as well as their compositions; (ii) Closed-loop driving simulation; (iii) Assessment of driving agents. The working mechanism of *RealEngine* is depicted in Figure 1.

3.1 SIMULATOR INFRASTRUCTURE

The advancement of recent generative models has been recently exploited for closed-loop driving simulation. For example, DriveArena (Yang et al., 2024) streamlines a couple of generative functions, such as interactive traffic flows and novel scene synthesis, allowing to simulate virtual driving scenes. However, this approach suffers from several key drawbacks: (1) Need for large manually labelled training data for video generative model optimization; (2) Substantial running overhead, even without support to multimodal sensor data such as LiDAR point clouds (3) Inability to support multi-agent co-operation and interaction. (4) Dependence on a pre-defined high-definite map; (5) Low controllability on the traffic scenario including background scene and traffic participants, consequently causing frequent situational inconsistency over space and time; (6) Low spatiotemporal realism. While some of the above issues, such as realistic scene rendering, more flexible traffic scenario editing, and no need for training data collection, can be addressed by NeuroNCAP (Ljungbergh et al., 2024), it narrowly focuses on safety test of driving agents. Further, it cannot well generalize to free form trajectories otherwise the novel view synthesis will degraded substantially.

To address all the problems mentioned above, we propose decoupling the background scene and foreground traffic participants by reconstructing each of them individually from the corresponding real sensor data, allowing the composition of diverse traffic scenarios and free form driving trajectories of multiple agents while maintaining high-fidelity novel view synthesis in multiple modalities (*e.g.*, camera images and LiDAR).

3.1.1 BACKGROUND SCENE MODELS

To reconstruct realistic background environments, we adopt StreetGaussians (Yan et al., 2024b) for camera images and GS-LiDAR (Jiang et al., 2025) for LiDAR point clouds, chosen for their high rendering efficiency and cross-modal fidelity. Importantly, RealEngine maintains flexibility—alternative methods such as PVG (Chen et al., 2023), OmniRe (Chen et al., 2024), and LiDAR-RT (Zhou et al., 2025) can be seamlessly incorporated into our system as modular components.

Pose calibrations in nuPlan (H. Caesar, 2021) is relatively coarse, posing challenges for accurate scene reconstruction. A widely used conventional method for camera pose correction (Yan et al., 2024b; Chen et al., 2024; Hess et al., 2024) involves learning a trainable correction matrix that adjusts

216 the camera pose automatically during training. However, this method is only effective for small pose
 217 deviations and fails to converge on nuPlan, leading to suboptimal results. To address this issue, we
 218 propose a pose correction method based on LiDAR point cloud registration.
 219

220 As the geometric information of the background scene remains fixed in the world coordinate system,
 221 we can align the ego vehicle’s poses across different frames by registering LiDAR points transformed
 222 to the world. We remove dynamic vehicles from the LiDAR data based on annotation information
 223 and filter out ground points which vary significantly across frames. All remaining point clouds are
 224 transformed into the world coordinate system and truncated within a predefined region to ensure
 225 consistency across frames. We select the central LiDAR frame P_{refer} as the reference frame and
 226 apply a learnable correction matrix M to transform the LiDAR frames P . The transformed LiDAR
 227 frames are then compared with the reference frame using the Chamfer Distance (C-D) (Fan et al.,
 228 2017) as the loss function:
 229

$$\mathcal{L}_{\text{cd}} = \text{CD}(\mathcal{M}P, P_{\text{refer}}) \quad (1)$$

230 Additionally, we leverage learnable image exposure transformations to handle cross-camera appear-
 231 ance variations, and utilizes video generative prior (Yang et al., 2025; Yu et al., 2024a) to optimize
 232 the scene model across multiple trajectories in Section A.1.2. For further details on camera image
 233 and LiDAR point cloud reconstruction, please refer to Section A.1. By leveraging these advanced
 234 reconstruction techniques, we achieve precise multi-modal background reconstruction with high
 235 rendering efficiency, enabling flexible scene editing and realistic simulation of autonomous driving
 236 agents.
 237

238 3.1.2 TRAFFIC PARTICIPANTS MODELS 239

240 Traffic participants (e.g., vehicles, bicycles) are essential for realistic driving scenarios. To enable
 241 high-fidelity and diverse simulations, we curate a comprehensive set of 3D participant models.
 242 Conventional approaches (Yan et al., 2024b; Chen et al., 2024; Zhou et al., 2024a) insert reconstructed
 243 Gaussian splatting primitives into the background scene according to predefined trajectories. While
 244 providing high-quality rendering from training viewpoints, they degrade significantly when rendering
 245 resolution, viewpoint, or object distance changes (Yan et al., 2024c; Yu et al., 2024b; Song et al.,
 246 2024). This degradation causes visual artifacts, especially in close-range interactions (e.g., collisions),
 247 and also introduces inconsistencies in lighting and shadows between foreground objects and the
 248 background scene.
 249

250 To address these issues, RealEngine represents traffic participants using 3D meshes, ensuring con-
 251 sistent geometry across all viewpoints and distances. To achieve seamless integration, we employ
 252 a diffusion model to guide learning of scene-consistent lighting and shading, as further detailed
 253 in Section 3.1.3. Meshes are rendered using ray tracing to produce both RGB images and depth maps,
 254 enabling accurate occlusion reasoning between participants and scenes.
 255

256 The 3D meshes are sourced from two complementary pipelines: (i) High-quality meshes manually
 257 created for key traffic objects. (ii) Meshes reconstructed from real-world datasets, including 360-
 258 degree images from CO3D (Reizenstein et al., 2021) and 3DRealCar (Du et al., 2024). These are
 259 processed via 3D Gaussian Splatting (3DGS) for reconstruction, followed by mesh extraction for
 260 flexible use in scene composition.
 261

262 3.1.3 DRIVING SCENARIO COMPOSITION 263

264 The combination of reconstructed background scenes and traffic participant models forms a rich
 265 design space for creating diverse and flexible driving scenarios. Scenario composition begins by
 266 selecting a background scene, into which a set of traffic participants is inserted. Each participant
 267 is assigned an initial position, orientation, and free-form trajectory, either manually specified or
 268 dynamically planned by a driving agent. These participants are then spatially registered into the
 269 background scene’s coordinate system. An overview is shown in Figure 2.
 270

271 To ensure realistic integration between foreground participants and background scenes, we introduce
 272 a physically based rendering (PBR) process that optimizes environment light maps for consistent
 273 relighting and shadow casting. We adopt the Disney BRDF lighting model (Wang et al., 2023b),
 274

270 where the foreground color is computed as:
 271

$$272 \quad C_{fg}(\mathbf{x}) = \int_{\Omega} f_r(\mathbf{x}, \omega, \omega_o) \mathbf{L}_i(\omega) |\langle \omega, \mathbf{n} \rangle| d\omega \quad (2)$$

273 Here, \mathbf{x} denotes the surface point where the camera ray ω_o intersects, \mathbf{n} the surface normal, ω the
 274 light direction, and \mathbf{L}_i the incoming illumination. The BRDF f_r models the surface reflectance.
 275

276 For shadows, we assume a ground plane closely aligned to the foreground object’s base. For each
 277 camera ray ω_o , we compute the ground intersection \mathbf{x}' and its normal \mathbf{n}' . Shadow rays ω' are traced
 278 across the hemisphere Ω' to determine occlusion, and the shadow intensity \mathbf{I} is computed:
 279

$$280 \quad \mathbf{I}(\mathbf{x}') = \frac{\int_{\Omega(\mathbf{x}')} \mathbf{L}_s(\omega') |\langle \omega', \mathbf{n}' \rangle| d\omega'}{\int_{\Omega'} \mathbf{L}_s(\omega') |\langle \omega', \mathbf{n}' \rangle| d\omega'} \quad (3)$$

281 where \mathbf{L}_s is the shadow environment map, and $\Omega(\mathbf{x}')$ represents the solid angle of unoccluded light
 282 rays at point \mathbf{x}' with respect to the foreground mesh.
 283

284 The final composed image is:
 285

$$286 \quad \mathbf{C} = \mathbf{C}_{bg} \cdot \mathbf{I} \cdot (1 - \mathbf{M}_{fg}) + \mathbf{C}_{fg} \cdot \mathbf{M}_{fg} \quad (4)$$

287 where \mathbf{C}_{bg} is the background image, \mathbf{C}_{fg} and \mathbf{M}_{fg} are the rendered foreground RGB and mask, re-
 288 spectively. We optimize $\{\mathbf{L}_i, \mathbf{L}_s\}$ using StableDiffusion (Rombach et al., 2022) with SDS loss (Poole
 289 et al., 2022), ensuring photorealistic blending.
 290

3.2 CLOSED-LOOP DRIVING SIMULATION

291 Built upon this flexible scenario composition and novel view synthesis-enabled reconstruction,
 292 RealEngine supports a wide range of driving scenarios. We demonstrate three categories:
 293

294 **Non-reactive Simulation.** Evaluates closed-loop planning where other participants follow fixed
 295 pre-recorded trajectories (Figure 1 (a)). The agent perceives rendered multi-modal sensor data, plans
 296 trajectories, and executes motion via a linear quadratic regulator, completing the closed-loop cycle.
 297

298 **Safety Test Simulation.** Evaluates agent reactions to inserted participants exhibiting hazardous
 299 behaviors (e.g., sudden lane changes or blocked intersections), testing safety-critical skills (Figure
 300 1 (b)).
 301

302 **Multi-agent Interaction Simulation.** Simulates cooperative and adversarial interactions where
 303 multiple agents, each running independent planning, simultaneously navigate the scene (Figure 1 (c)).
 304

3.3 ASSESSMENT OF DRIVING AGENTS

305 Driving agent assessment aims to evaluate the agent’s trajectory planning performance across both
 306 space and time, considering safety, progress, and interaction quality within diverse traffic scenarios.
 307 In traditional open-loop evaluation, the Predictive Driver Model Score (PDMS) (Dauner et al., 2024)
 308 measures trajectory quality at individual time steps. However, open-loop PDMS does not capture how
 309 planning decisions evolve over time, nor does it account for interactions with dynamic participants in
 310 the scene.
 311

312 To address these issues, RealEngine introduces a *closed-loop extension* of PDMS, which evaluates
 313 the agent’s performance over a continuous sequence of future steps. Specifically, starting at time
 314 step t , the agent plans a sequence of future positions over N steps, continuously interacting with the
 315 environment and surrounding participants.
 316

317 At each step, the agent receives updated sensor observations rendered from the new position, which
 318 are used to generate the next planned trajectory, creating a fully closed-loop simulation. During
 319 this process, other traffic participants follow either their pre-recorded reference trajectories or react
 320 through independent planning processes, depending on the scenario type.
 321

322 The final closed-loop PDMS over the horizon t to $t + N$ is formulated as:
 323

$$324 \quad \text{PDMS}_{t:t+N} = \underbrace{\left(\prod_{m \in \{\text{NC, DAC}\}} \text{score}_m \right)}_{\text{penalty terms}} \times \underbrace{\left(\frac{\sum_{w \in \{\text{EP, TTC, C}\}} \text{weight}_w \cdot \text{score}_w}{\sum_{w \in \{\text{EP, TTC, C}\}} \text{weight}_w} \right)}_{\text{weighted average rewards}}. \quad (5)$$

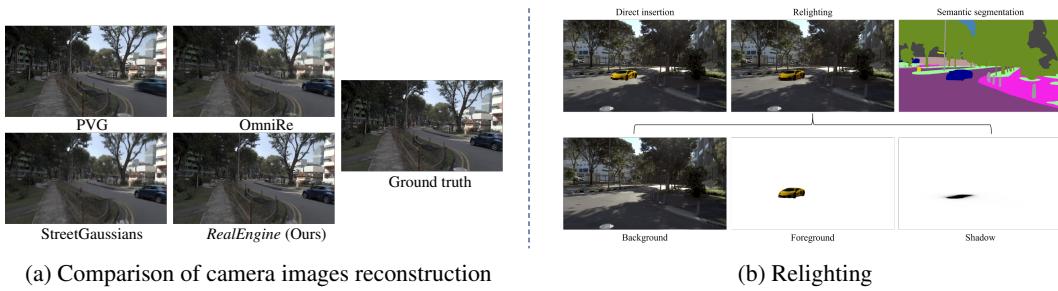


Figure 3: (a) Compared to state-of-the-art reconstruction methods, we achieve superior camera image reconstruction in the nuPlan (H. Caesar, 2021) benchmark. Additionally, (b) our foreground relighting technique enables seamless integration of inserted participants with the background scene.

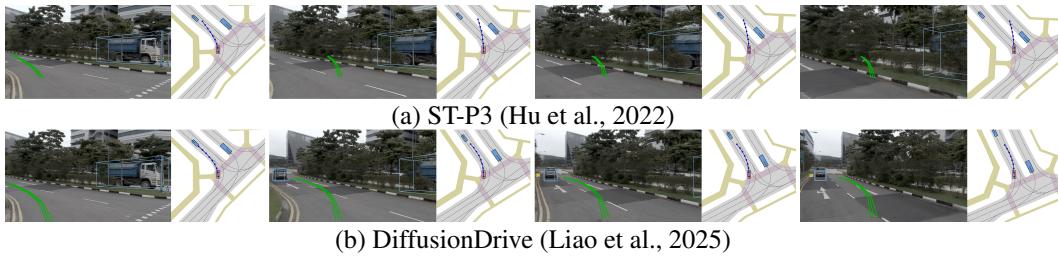


Figure 4: **Non-reactive simulation.** The driving agent’s planned trajectory at each step is visualized in bird’s-eye view (blue) and the front-view camera (green). During closed-loop simulation, ST-P3 (Hu et al., 2022) exhibits inconsistencies in consecutive frame planning, leading to error accumulation and causing the vehicle to navigate into invalid regions. In contrast, DiffusionDrive (Liao et al., 2025) maintains more consistent planning across consecutive frames, resulting in a higher PDM Score.

The *penalty terms* include: (1) NC (No Collision): Whether the agent avoids collisions with other vehicles, pedestrians, or cyclists. (2) DAC (Driveable Area Compliance): Whether the agent stays within the valid drivable area (lanes, intersections, etc.).

The *weighted average reward terms* reflect the overall driving quality across three dimensions: (1) EP (Ego Progress): How effectively the agent advances toward the goal within the given time horizon. (2) TTC (Time to Collision): How much time the agent maintains between itself and potential collision risks. (3) C (Comfort): Evaluating smoothness of the planned trajectory, including acceleration and jerk. This combined metric captures both safety-critical behaviors (penalties) and desirable driving qualities (rewards), providing a comprehensive assessment of the agent’s closed-loop performance in diverse and dynamic traffic scenarios.

4 EXPERIMENTS

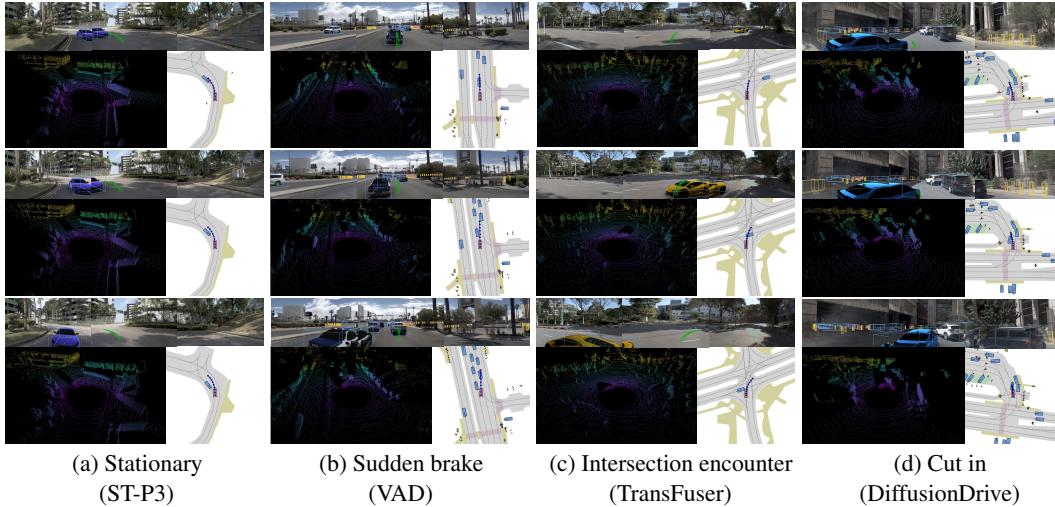
Datasets. We use CO3D (Reizenstein et al., 2021) and 3DRealCar (Du et al., 2024) to reconstruct diverse foreground traffic participants, followed by mesh extraction for rendering and scene composition. Additionally, we include high-quality meshes from Sketchfab (Contributors) for further diversity in foreground insertion and relighting.

For background scene reconstruction and scene editing, we leverage Navsim (Dauner et al., 2024), which is derived from OpenScene (Contributors, 2023), a simplified version of nuPlan (H. Caesar, 2021). We select 14 diverse sequences from Navsim for scene editing and driving agent evaluation, and design 14, 21, and 14 test cases for the non-reactive, safety, and multi-agent interaction simulation, respectively. To ensure high-quality sensor simulation, we retrieve high-frequency images and LiDAR point clouds from the corresponding nuPlan sequences for background scene reconstruction. Using an NVIDIA RTX A6000, the rendering frame rate reaches 30Hz for camera images and 15Hz for LiDAR data.

Autonomous driving models. We evaluate four end-to-end driving models: ST-P3 (Hu et al., 2022), VAD (Jiang et al., 2023), TransFuser (Chitta et al., 2023), and DiffusionDrive (Liao et al., 2025), with

378
 379 **Table 2: Non-reactive simulation.** We show the no at-fault collision (NC), drivable area compliance
 380 (DAC), time-to-collision (TTC), comfort (Comf.), and ego progress (EP) subscores, and the PDM
 381 Score (PDMS), as percentages.

Method	Loop	Ego stat.	Image	LiDAR	NC ↑	DAC ↑	TTC ↑	Comf. ↑	EP ↑	PDMS ↑
Constant velocity (Dauner et al., 2024)			✓		92.9	64.3	85.7	100	29.4	46.8
ST-P3 (Hu et al., 2022)	Open-loop	✓	✓		92.9	71.4	92.9	100	46.2	59.6
VAD (Jiang et al., 2023)		✓	✓		92.9	85.7	92.9	100	48.5	66.1
TransFuser (Chitta et al., 2023)		✓	✓	✓	92.9	85.7	92.9	100	55.9	69.1
DiffusionDrive (Liao et al., 2025)		✓	✓	✓	92.9	85.7	92.9	100	56.7	69.5
ST-P3 (Hu et al., 2022)	Closed-loop	✓	✓		100	64.3	85.7	100	35.6	47.5
VAD (Jiang et al., 2023)		✓	✓		85.7	78.6	78.6	100	34.3	53.0
TransFuser (Chitta et al., 2023)		✓	✓	✓	92.9	71.4	85.7	100	46.0	57.9
DiffusionDrive (Liao et al., 2025)		✓	✓	✓	92.9	71.4	92.9	100	47.1	61.3
Human					100	100	92.9	100	68.3	83.8



406 **Figure 5: Safety test simulation.** The driving agent’s planned trajectory at each step is visualized
 407 in bird’s-eye view (blue) and the front-view camera (green). The driving agent is navigating in our
 408 designed safety-critical scenarios. The agent may (a)(b) successfully avoid a collision, (c) exhibit no
 409 reaction, or (d) attempt to decelerate to prevent a collision but ultimately fail.

410 **Table 3: Safety test and multi-agent simulation.** The notations are consistent with the **non-reactive**
 411 **simulation** Table 2 above.

Method	Simulation	Ego stat.	Image	LiDAR	NC ↑	DAC ↑	TTC ↑	Comf. ↑	EP ↑	PDMS ↑
Constant velocity (Dauner et al., 2024)		✓			47.6	71.4	38.1	100	36.7	36.3
ST-P3 (Hu et al., 2022)	Safety test	✓	✓		47.6	100	42.9	100	44.7	44.4
VAD (Jiang et al., 2023)		✓	✓		47.6	95.2	28.6	100	41.2	37.0
TransFuser (Chitta et al., 2023)		✓	✓	✓	47.6	100	38.1	100	44.1	42.2
DiffusionDrive (Liao et al., 2025)		✓	✓	✓	57.1	100	52.4	100	54.0	53.8
Constant velocity (Dauner et al., 2024)	Multi-agent	✓			42.8	60.7	39.3	100	27.8	27.4
ST-P3 (Hu et al., 2022)		✓	✓		53.6	96.4	50.0	100	44.6	46.3
VAD (Jiang et al., 2023)		✓	✓		32.1	71.4	32.1	100	27.7	28.8
TransFuser (Chitta et al., 2023)		✓	✓	✓	60.7	96.4	53.6	100	54.3	55.0
DiffusionDrive (Liao et al., 2025)		✓	✓	✓	57.1	96.4	50.0	100	51.7	51.9

419
 420 ST-P3 and VAD reimplemented on nuPlan (H. Caesar, 2021) for consistency. As a baseline, we also
 421 test Navsim’s constant velocity model for comparison.

424 4.1 DIVING SCENARIO QUALITY

426 We compared our optimized reconstruction results (Section A.1) with the state-of-the-art meth-
 427 ods (Yan et al., 2024b; Chen et al., 2024; 2023) on 6 Navsim (Dauner et al., 2024) sequences, as
 428 shown in Figure 3 (a), and observed a notable improvement in the reconstruction performance on
 429 nuPlan. Meanwhile, our foreground insertion blends more harmoniously with the background and
 430 can be recognized by perception models (Borse et al., 2021; Xie et al., 2021; Ren et al., 2024), as
 431 shown in Figure 3 (b). This enables the driving agents to correctly recognize the inserted foreground
 432 participants and respond accordingly.

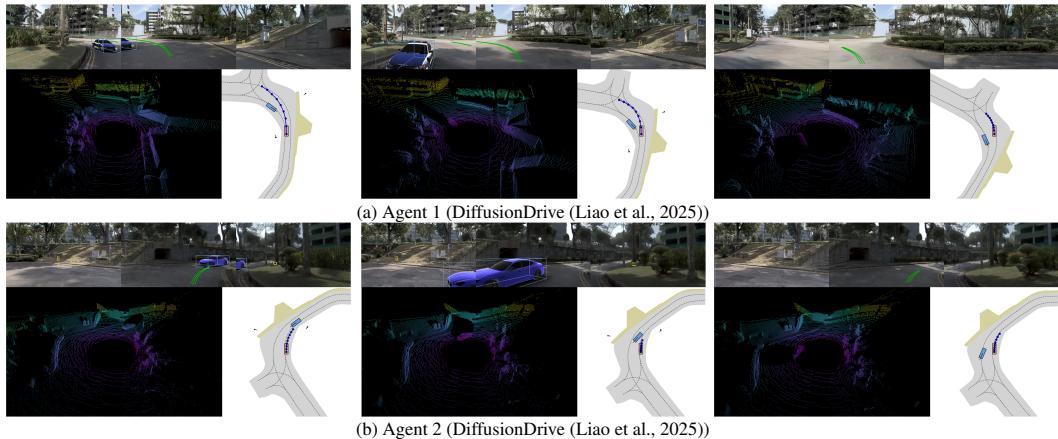


Figure 6: **Multi-agent interaction simulation.** The trajectory annotations are consistent with Figure 5. We set two agents (DiffusionDrive (Liao et al., 2025)) to plan trajectories simultaneously and independently in the showed turning scenario. The first agent avoids collision by increasing its turning radius, while the second agent decelerates to allow safe passage. Once the vehicles have passed each other, the second agent resumes its original speed.

4.2 CLOSED-LOOP SIMULATION

Non-reactive simulation. In the non-reactive setting, we conduct open-loop and closed-loop simulations on the driving agents and compare their performance, as shown in Table 2. Compared to directly predicting multiple frame trajectories in open-loop simulation, the PDM Score of the continuously predicted trajectories by the driving agent in closed-loop simulation is reduced to varying degrees. In particular, models tend to exhibit inconsistency in the adjacent predicted trajectories. This inconsistency leads to cumulative errors, causing the vehicle to navigate to unreasonable areas and resulting in a decrease in the DAC (drivable area compliance) metric, as shown in Figure 4.

Safety test simulation. For safety test simulation, we designed three test cases (simple, moderate, and challenging) tailored to each specific scenario and conducted closed-loop simulations to compute the PDM Score. As shown in Figure 5, in simple and moderate scenarios, such as a stationary vehicle blocking the lane or a sudden brake, driving agents can reasonably maneuver to avoid collisions. However, in more challenging scenarios, such as aggressive lane changes or intersection encounters, driving agents may exhibit some reaction but fail to avoid collisions, or in some cases, show minimal response to an imminent collision, leading to a significant drop in the PDM Score, as in Table 3.

Multi-agent interaction simulation. In the multi-agent interaction simulation, each vehicle is assigned to an instance of a certain driving agent model for independent and simultaneous control, with only the initial speed and high-level driving commands (right, left, straight, or unknown) specified. For each specific scenario, we design both simple and challenging test cases. At each time step, we render the sensor data for all driving agents to plan trajectories and conduct closed-loop simulations to compute the PDM scores for all instances and average the results, as presented in Table 3. Additionally, Figure 6 illustrates a turning scenario involving two DiffusionDrive (Liao et al., 2025) instances, where both agents successfully avoid collisions by adopting different yet reasonable strategies.

5 CONCLUSION

This paper introduces a novel driving simulation platform, *RealEngine*, capable of rendering realistic multimodal sensor data efficiently and perform closed-loop simulation in highly diverse traffic scenarios. *RealEngine* employs a foreground-background separate reconstruction and composition rendering approach, enabling convenient and more flexible control and editing of scenes. This allows for realistic interaction and continuous feedback between the driving agent and the simulation platform, while also facilitating multi-agent interactions within the simulation. Based on this, we simulate three driving categories: non-reactive, safety test, and multi-agent interaction, to establish a reliable and comprehensive benchmark for evaluating the real-world performance of driving agents.

486 **6 ETHICS STATEMENT**
487488 This work focuses on reconstructing urban scenes and evaluating the performance of autonomous
489 driving models. Our study does not involve human subjects, personally identifiable information, or
490 sensitive private data. All datasets employed are publicly available and widely used in the research
491 community, and we follow the corresponding licenses and usage guidelines. The reconstructed scenes
492 and evaluation results are intended solely for academic research and do not raise immediate safety
493 risks, as the experiments are performed in a simulation environment without deployment in real-world
494 driving systems.
495496 **7 REPRODUCIBILITY STATEMENT**
497498 We are committed to ensuring the reproducibility of our work. To this end, we will release the full
499 implementation and relevant scripts upon the final acceptance of the paper. This timeline allows us to
500 carefully clean and document the code for ease of use. Experimental settings, hyperparameters, and
501 implementation details are described in Section 4 and Section A.1 to facilitate verification prior to
502 code release.
503504 **REFERENCES**
505506 Daniel Bogdolla, Yitian Yang, and J Marius Zöllner. Muvo: A multimodal generative world model for
507 autonomous driving with geometric representations. *arXiv preprint*, 2023.508 Shubhankar Borse, Ying Wang, Yizhe Zhang, and Fatih Porikli. Inverseform: A loss function for
509 structured boundary-aware segmentation. In *CVPR*, 2021.511 Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
512 Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
513 autonomous driving. In *CVPR*, 2020.514 Sergio Casas, Abbas Sadat, and Raquel Urtasun. Mp3: A unified model to map, perceive, predict and
515 plan. In *CVPR*, 2021.517 Yurui Chen, Chun Gu, Junzhe Jiang, Xiatian Zhu, and Li Zhang. Periodic vibration gaussian:
518 Dynamic urban scene reconstruction and real-time rendering. *arXiv preprint*, 2023.519 Ziyu Chen, Jiawei Yang, Jiahui Huang, Riccardo de Lutio, Janick Martinez Esturo, Boris Ivanovic,
520 Or Litany, Zan Gojcic, Sanja Fidler, Marco Pavone, Li Song, and Yue Wang. Omnidre: Omni urban
521 scene reconstruction. *arXiv preprint*, 2024.523 Kashyap Chitta, Aditya Prakash, Bernhard Jaeger, Zehao Yu, Katrin Renz, and Andreas Geiger.
524 Transfuser: Imitation with transformer-based sensor fusion for autonomous driving. *IEEE TPAMI*,
525 2023.526 OpenScene Contributors. Openscene: The largest up-to-date 3d occupancy prediction benchmark in
527 autonomous driving. <https://github.com/OpenDriveLab/OpenScene>, 2023.529 Sketchfab Contributors. Sketchfab. <https://sketchfab.com/>.531 Daniel Dauner, Marcel Hallgarten, Tianyu Li, Xinshuo Weng, Zhiyu Huang, Zetong Yang, Hongyang
532 Li, Igor Gilitschenski, Boris Ivanovic, Marco Pavone, Andreas Geiger, and Kashyap Chitta.
533 Navsim: Data-driven non-reactive autonomous vehicle simulation and benchmarking. In *NeurIPS*,
534 2024.535 Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla: An
536 open urban driving simulator. In *CoRL*, 2017.538 Xiaobiao Du, Haiyang Sun, Shuyun Wang, Zhuojie Wu, Hongwei Sheng, Jiaying Ying, Ming Lu,
539 Tianqing Zhu, Kun Zhan, and Xin Yu. 3drealcar: An in-the-wild rgb-d car dataset with 360-degree
views. *arXiv preprint*, 2024.

540 Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set generation network for 3d object
 541 reconstruction from a single image. In *CVPR*, 2017.

542

543 Daocheng Fu, Xin Li, Licheng Wen, Min Dou, Pinlong Cai, Botian Shi, and Yu Qiao. Drive like a
 544 human: Rethinking autonomous driving with large language models. In *WACV*, 2024.

545

546 Ruiyuan Gao, Kai Chen, Enze Xie, Lanqing Hong, Zhenguo Li, Dit-Yan Yeung, and Qiang Xu.
 547 Magicdrive: Street view generation with diverse 3d geometry control. *arXiv preprint*, 2023.

548

549 Shenyuan Gao, Jiazhi Yang, Li Chen, Kashyap Chitta, Yihang Qiu, Andreas Geiger, Jun Zhang,
 550 and Hongyang Li. Vista: A generalizable driving world model with high fidelity and versatile
 551 controllability. *arXiv preprint*, 2024.

552

553 Cole Gulino, Justin Fu, Wenjie Luo, George Tucker, Eli Bronstein, Yiren Lu, Jean Harb, Xinlei Pan,
 554 Yan Wang, Xiangyu Chen, et al. Waymax: An accelerated, data-driven simulator for large-scale
 555 autonomous driving research. In *NeurIPS*, 2024.

556

557 K. Tan et al. H. Caesar, J. Kabzan. Nuplan: A closed-loop ml-based planning benchmark for
 558 autonomous vehicles. In *CVPR ADP3 workshop*, 2021.

559

560 Georg Hess, Carl Lindström, Maryam Fatemi, Christoffer Petersson, and Lennart Svensson. Splatad:
 561 Real-time lidar and camera rendering with 3d gaussian splatting for autonomous driving. *arXiv
 562 preprint*, 2024.

563

564 Anthony Hu, Lloyd Russell, Hudson Yeo, Zak Murez, George Fedoseev, Alex Kendall, Jamie Shotton,
 565 and Gianluca Corrado. Gaia-1: A generative world model for autonomous driving. *arXiv preprint*,
 566 2023a.

567

568 Shengchao Hu, Li Chen, Penghao Wu, Hongyang Li, Junchi Yan, and Dacheng Tao. St-p3: End-to-
 569 end vision-based autonomous driving via spatial-temporal feature learning. In *ECCV*, 2022.

570

571 Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima, Xizhou Zhu, Siqi Chai, Senyao Du,
 572 Tianwei Lin, Wenhui Wang, et al. Planning-oriented autonomous driving. In *CVPR*, 2023b.

573

574 Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao. 2d gaussian splatting for
 575 geometrically accurate radiance fields. In *SIGGRAPH*, 2024.

576

577 Xiaosong Jia, Zhenjie Yang, Qifeng Li, Zhiyuan Zhang, and Junchi Yan. Bench2drive: Towards
 578 multi-ability benchmarking of closed-loop end-to-end autonomous driving. *arXiv preprint*, 2024.

579

580 Bo Jiang, Shaoyu Chen, Qing Xu, Bencheng Liao, Jiajie Chen, Helong Zhou, Qian Zhang, Wenyu Liu,
 581 Chang Huang, and Xinggang Wang. Vad: Vectorized scene representation for efficient autonomous
 582 driving. In *ICCV*, 2023.

583

584 Junzhe Jiang, Chun Gu, Yurui Chen, and Li Zhang. Gs-lidar: Generating realistic lidar point clouds
 585 with panoramic gaussian splatting. In *ICLR*, 2025.

586

587 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting
 588 for real-time radiance field rendering. In *ACM TOG*, 2023.

589

590 Daniel Krajzewicz, Jakob Erdmann, Michael Behrisch, and Laura Bieker. Recent development and
 591 applications of sumo-simulation of urban mobility. *International journal on advances in systems
 592 and measurements*, 2012.

593

594 Chenqi Li, Yuan Ren, and Bingbing Liu. Pcgen: Point cloud generator for lidar simulation. In *ICRA*,
 595 2023.

596

597 Quanyi Li, Zhenghao Peng, Lan Feng, Qihang Zhang, Zhenghai Xue, and Bolei Zhou. Metadrive:
 598 Composing diverse driving scenarios for generalizable reinforcement learning. *IEEE TPAMI*,
 599 2022a.

600

601 Xin Li, Botian Shi, Yuenan Hou, Xingjiao Wu, Tianlong Ma, Yikang Li, and Liang He. Homogeneous
 602 multi-modal feature fusion and interaction for 3d object detection. In *ECCV*, 2022b.

594 Bencheng Liao, Shaoyu Chen, Haoran Yin, Bo Jiang, Cheng Wang, Sixu Yan, Xinbang Zhang,
 595 Xiangyu Li, Ying Zhang, Qian Zhang, et al. Diffusiondrive: Truncated diffusion model for
 596 end-to-end autonomous driving. In *CVPR*, 2025.

597

598 William Ljungbergh, Adam Tonderski, Joakim Johnander, Holger Caesar, Kalle Åström, Michael
 599 Felsberg, and Christoffer Petersson. Neuroncap: Photorealistic closed-loop safety testing for
 600 autonomous driving. In *ECCV*, 2024.

601

602 Sivabalan Manivasagam, Shenlong Wang, Kelvin Wong, Wenyuan Zeng, Mikita Sazanovich, Shuhan
 603 Tan, Bin Yang, Wei-Chiu Ma, and Raquel Urtasun. Lidarsim: Realistic lidar simulation by
 604 leveraging the real world. In *CVPR*, 2020.

605

606 Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
 607 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In *ECCV*, 2020.

608

609 Nico Montali, John Lambert, Paul Mougin, Alex Kuefler, Nicholas Rhinehart, Michelle Li, Cole
 610 Gulino, Tristan Emrich, Zoey Yang, Shimon Whiteson, et al. The waymo open sim agents
 challenge. *NeurIPS*, 2024.

611

612 Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
 613 diffusion. *arXiv preprint*, 2022.

614

615 Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler, Luca Sbordone, Patrick Labatut, and David
 616 Novotny. Common objects in 3d: Large-scale learning and evaluation of real-life 3d category
 617 reconstruction. In *ICCV*, 2021.

618

619 Davis Rempe, Jonah Phlion, Leonidas J Guibas, Sanja Fidler, and Or Litany. Generating useful
 620 accident-prone driving scenarios via a learned traffic prior. In *CVPR*, 2022.

621

622 Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao, Jiayu Chen, Xinyu Huang,
 623 Yukang Chen, Feng Yan, Zhaoyang Zeng, Hao Zhang, Feng Li, Jie Yang, Hongyang Li, Qing
 Jiang, and Lei Zhang. Grounded sam: Assembling open-world models for diverse visual tasks.
 624 *arXiv preprint*, 2024.

625

626 Darren Robinson, Frédéric Haldi, Philippe Leroux, Diane Perez, Adil Rasheed, and Urs Wilke.
 627 Citysim: Comprehensive micro-simulation of resource flows for sustainable urban planning. In
 628 *IBPSA*, 2009.

629

630 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 631 resolution image synthesis with latent diffusion models. In *CVPR*, 2022.

632

633 Xiaowei Song, Jv Zheng, Shiran Yuan, Huan-ang Gao, Jingwei Zhao, Xiang He, Weihao Gu, and
 634 Hao Zhao. Sa-gs: Scale-adaptive gaussian splatting for training-free anti-aliasing. *arXiv preprint*,
 635 2024.

636

637 Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui, James
 638 Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability in perception for autonomous
 639 driving: Waymo open dataset. In *CVPR*, 2020.

640

641 Tang Tao, Longfei Gao, Guangrun Wang, Peng Chen, Dayang Hao, Xiaodan Liang, Mathieu Salz-
 642 mann, and Kaicheng Yu. Lidar-nerf: Novel lidar view synthesis via neural radiance fields. *arXiv
 643 preprint*, 2023.

644

645 Tang Tao, Guangrun Wang, Yixing Lao, Peng Chen, Jie Liu, Liang Lin, Kaicheng Yu, and Xiaodan
 646 Liang. Alignmif: Geometry-aligned multimodal implicit field for lidar-camera joint synthesis. In
 647 *CVPR*, 2024.

648

649 Haithem Turki, Jason Y Zhang, Francesco Ferroni, and Deva Ramanan. Suds: Scalable urban
 650 dynamic scenes. In *CVPR*, 2023.

648 Xiaofeng Wang, Zheng Zhu, Guan Huang, Xinze Chen, and Jiwen Lu. Drivedreamer: Towards
 649 real-world-driven world models for autonomous driving. *arXiv preprint*, 2023a.
 650

651 Zian Wang, Tianchang Shen, Jun Gao, Shengyu Huang, Jacob Munkberg, Jon Hasselgren, Zan Gojcic,
 652 Wenzheng Chen, and Sanja Fidler. Neural fields meet explicit geometric representations for inverse
 653 rendering of urban scenes. In *CVPR*, 2023b.

654 Licheng Wen, Daocheng Fu, Xin Li, Xinyu Cai, Tao Ma, Pinlong Cai, Min Dou, Botian Shi, Liang
 655 He, and Yu Qiao. Dilu: A knowledge-driven approach to autonomous driving with large language
 656 models. *arXiv preprint*, 2023.

657 Licheng Wenl, Daocheng Fu, Song Mao, Pinlong Cai, Min Dou, Yikang Li, and Yu Qiao. Limsim: A
 658 long-term interactive multi-scenario traffic simulator. In *ITSC*, 2023.

659

660 Hanfeng Wu, Xingxing Zuo, Stefan Leutenegger, Or Litany, Konrad Schindler, and Shengyu Huang.
 661 Dynamic lidar re-simulation using compositional neural fields. In *CVPR*, 2024a.

662 Wei Wu, Xiaoxin Feng, Ziyan Gao, and Yuheng Kan. Smart: Scalable multi-agent real-time
 663 simulation via next-token prediction. *arXiv preprint*, 2024b.

664

665 Zirui Wu, Tianyu Liu, Liyi Luo, Zhide Zhong, Jianteng Chen, Hongmin Xiao, Chao Hou, Haozhe
 666 Lou, Yuantao Chen, Runyi Yang, et al. Mars: An instance-aware, modular and realistic simulator
 667 for autonomous driving. In *AAAI*, 2023.

668 Enze Xie, Wenhui Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping Luo. Segformer:
 669 Simple and efficient design for semantic segmentation with transformers. In *NeurIPS*, 2021.

670

671 Weiyi Xue, Zehan Zheng, Fan Lu, Haiyun Wei, Guang Chen, and Changjun Jiang. Geonlf: Geometry
 672 guided pose-free neural lidar fields. *arXiv preprint*, 2024.

673 Guohang Yan, Jiahao Pi, Jianfei Guo, Zhaotong Luo, Min Dou, Nianchen Deng, Qiusheng Huang,
 674 Daocheng Fu, Licheng Wen, Pinlong Cai, et al. Oasim: an open and adaptive simulator based on
 675 neural rendering for autonomous driving. *arXiv preprint*, 2024a.

676

677 Yunzhi Yan, Haotong Lin, Chenxu Zhou, Weijie Wang, Haiyang Sun, Kun Zhan, Xianpeng Lang,
 678 Xiaowei Zhou, and Sida Peng. Street gaussians for modeling dynamic urban scenes. In *ECCV*,
 679 2024b.

680 Zhiwen Yan, Weng Fei Low, Yu Chen, and Gim Hee Lee. Multi-scale 3d gaussian splatting for
 681 anti-aliased rendering. In *CVPR*, 2024c.

682 Jiawei Yang, Boris Ivanovic, Or Litany, Xinshuo Weng, Seung Wook Kim, Boyi Li, Tong Che, Danfei
 683 Xu, Sanja Fidler, Marco Pavone, et al. Emernerf: Emergent spatial-temporal scene decomposition
 684 via self-supervision. *arXiv preprint*, 2023a.

685

686 Xuemeng Yang, Licheng Wen, Yukai Ma, Jianbiao Mei, Xin Li, Tiantian Wei, Wenjie Lei, Daocheng
 687 Fu, Pinlong Cai, Min Dou, et al. Drivearena: A closed-loop generative simulation platform for
 688 autonomous driving. *arXiv preprint*, 2024.

689

690 Ze Yang, Yun Chen, Jingkang Wang, Sivabalan Manivasagam, Wei-Chiu Ma, Anqi Joyce Yang, and
 691 Raquel Urtasun. Unisim: A neural closed-loop sensor simulator. In *CVPR*, 2023b.

692

693 Zeyu Yang, Zijie Pan, Yuankun Yang, Xiatian Zhu, and Li Zhang. Driving scene synthesis on
 694 free-form trajectories with generative prior. In *ICCV*, 2025.

695

696 Tengju Ye, Wei Jing, Chunyong Hu, Shikun Huang, Lingping Gao, Fangzhen Li, Jingke Wang,
 697 Ke Guo, Wencong Xiao, Weibo Mao, et al. Fusionad: Multi-modality fusion for prediction and
 698 planning tasks of autonomous driving. *arXiv preprint*, 2023.

699

700 Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. Center-based 3d object detection and tracking.
 701 In *CVPR*, 2021.

702 Wangbo Yu, Jinbo Xing, Li Yuan, Wenbo Hu, Xiaoyu Li, Zhipeng Huang, Xiangjun Gao, Tien-
 703 Tsin Wong, Ying Shan, and Yonghong Tian. Viewcrafter: Taming video diffusion models for
 704 high-fidelity novel view synthesis. *arXiv preprint*, 2024a.

702 Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and Andreas Geiger. Mip-splatting: Alias-free
 703 3d gaussian splatting. In *CVPR*, 2024b.

704

705 Diankun Zhang, Guoan Wang, Runwen Zhu, Jianbo Zhao, Xiwu Chen, Siyu Zhang, Jiahao Gong,
 706 Qibin Zhou, Wenyuan Zhang, Ningzi Wang, et al. Sparsead: Sparse query-centric paradigm for
 707 efficient end-to-end autonomous driving. *arXiv preprint*, 2024a.

708

709 Junge Zhang, Feihu Zhang, Shaochen Kuang, and Li Zhang. Nerf-lidar: Generating realistic lidar
 710 point clouds with neural radiance fields. In *AAAI*, 2024b.

711

712 Jianbo Zhao, Jiaheng Zhuang, Qibin Zhou, Taiyu Ban, Ziyao Xu, Hangning Zhou, Junhe Wang,
 713 Guoan Wang, Zhiheng Li, and Bin Li. Kigras: Kinematic-driven generative model for realistic
 714 agent simulation. *arXiv preprint*, 2024.

715

716 Zehan Zheng, Fan Lu, Weiyi Xue, Guang Chen, and Changjun Jiang. Lidar4d: Dynamic neural fields
 717 for novel space-time view lidar synthesis. In *CVPR*, 2024.

718

719 Chenxu Zhou, Lvchang Fu, Sida Peng, Yunzhi Yan, Zhanhua Zhang, Yong Chen, Jiazhi Xia, and
 720 Xiaowei Zhou. LiDAR-RT: Gaussian-based ray tracing for dynamic lidar re-simulation. In *CVPR*,
 721 2025.

722

723 Hongyu Zhou, Longzhong Lin, Jiabao Wang, Yichong Lu, Dongfeng Bai, Bingbing Liu, Yue Wang,
 724 Andreas Geiger, and Yiyi Liao. Hugsim: A real-time, photo-realistic and closed-loop simulator for
 725 autonomous driving. *arXiv preprint*, 2024a.

726

727 Hongyu Zhou, Jiahao Shao, Lu Xu, Dongfeng Bai, Weichao Qiu, Bingbing Liu, Yue Wang, Andreas
 728 Geiger, and Yiyi Liao. Hugs: Holistic urban 3d scene understanding via gaussian splatting. In
 729 *CVPR*, 2024b.

730

731 Xiaoyu Zhou, Zhiwei Lin, Xiaojun Shan, Yongtao Wang, Deqing Sun, and Ming-Hsuan Yang.
 732 Drivinggaussian: Composite gaussian splatting for surrounding dynamic autonomous driving
 733 scenes. In *CVPR*, 2024c.

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

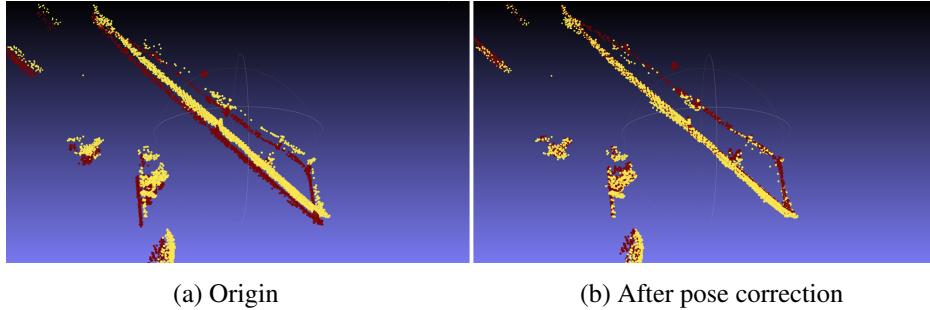
753

754

755

756 **A APPENDIX**
757758 **A.1 URBAN SCENE RECONSTRUCTION**
759760 **A.1.1 NUPLAN POSE CORRECTION**
761

762 We propose a pose correction method based on LiDAR point cloud registration in Section 3.1.1. As
763 shown in Figure 7, point cloud registration effectively corrects pose calibration errors. This leads
764 to improved scene reconstruction quality, which is reflected in the increased PSNR, as presented
765 in Table 4.



766
767
768
769
770
771
772
773
774
775
776 **Figure 7: Pose correction in nuPlan.** The yellow and red points originate from LiDAR point clouds
777 of different frames. (a) Due to the coarse pose calibration in nuPlan, LiDAR point clouds from
778 different frames are misaligned in the world coordinate system, posing challenges for high-quality
779 reconstruction. (b) After our pose correction, LiDAR point clouds are properly aligned, leading to
780 improved camera images reconstruction quality.

781 **Table 4: Ablation study on camera images reconstruction in the nuPlan benchmark.**
782

	PSNR↑	SSIM↑	LPIPS↓
w/o \mathcal{L}_{cd}	26.02	0.798	0.179
w/o undistortion	25.68	0.809	0.182
w/o color correction	28.05	0.853	0.132
RealEngine(Ours)	29.67	0.897	0.093

788 **A.1.2 CAMERA IMAGES RECONSTRUCTION**
789

790 We use StreetGaussians (Yan et al., 2024b) to reconstruct the scene and perform additional processing
791 on the nuPlan dataset. StreetGaussians (Yan et al., 2024b) uses manual pose annotation of dynamic
792 objects to distinguish between static background and moving objects. Dynamic objects are recon-
793 structed in their respective centered canonical spaces and then placed into the background scene
794 space during the rendering process based on the known poses.

795 As shown in Figure 8 (a), the camera images in nuPlan exhibit significant barrel distortion. Since
796 3DGS relies on image-based rendering and does not render rays corresponding to each pixel as NeRF
797 does, such distortion adversely affects the reconstruction of scene geometry. To mitigate this issue,
798 we applied a distortion correction to the images. Furthermore, due to varying exposure levels across
799 the cameras in the nuPlan dataset, the same object exhibits substantial color differences when viewed
800 from different cameras, as shown in Figure 8 (b), leading to ambiguities in the color information of
801 Gaussian primitives. To address this, we introduced a learnable affine transformation $\{A_i, t_i\}$ for
802 each camera i to individually calibrate the image colors:

$$803 \tilde{C}_i = A_i C_i + t_i \quad (6)$$

804 where i represents the camera index, C_i denotes the original rendered RGB map, and \tilde{C}_i refers to the
805 RGB map after exposure transformation. These processing methods improve the quality of scene
806 reconstruction, as shown in the ablation study in Table 4.

807 We compared our optimized reconstruction results with the state-of-the-art methods (Yan et al.,
808 2024b; Chen et al., 2024; 2023) on 6 Navsim (Dauner et al., 2024) sequences, as shown in Figure 3
809 and Table 5, and observed a notable improvement in the reconstruction performance on nuPlan.

Figure 8: **Distortion and color inconsistency in the nuPlan benchmark.** (a) The camera images in nuPlan exhibit significant barrel distortion, which poses challenges for Gaussian splatting based reconstruction. To address this, we apply distortion correction to the images. (b) Additionally, different cameras have varying exposure levels. To prevent color ambiguity for the same Gaussian primitive across different cameras, we learn an exposure transformation for each camera separately.

Table 5: Comparison with state-of-the-art camera images reconstruction methods in nuPlan.

	PSNR↑	SSIM↑	LPIPS↓
StreetGaussians (Yan et al., 2024b)	26.02	0.798	0.179
Omnire (Chen et al., 2024)	26.89	0.837	0.165
PVG (Chen et al., 2023)	28.32	0.854	0.176
RealEngine(Ours)	29.67	0.897	0.093

Although existing urban reconstruction methods perform excellently in synthesizing novel viewpoints for recorded trajectories, they face challenges when handling new trajectories in closed-loop simulations due to the limited viewpoints of driving videos and the vastness of the driving environment. To address this challenge, we employ DriveX (Yang et al., 2025) to enhance the reconstructed scene, which utilizes video generative prior (Yu et al., 2024a) to optimize the scene model across multiple trajectories. As shown in Figure 9, our final scene model is capable of generating high-fidelity virtual driving environments beyond the recorded trajectories, enabling free-form trajectory driving simulations. We additionally conduct the evaluation protocol described in DriveX (Yang et al., 2025) to measure lateral offset on the nuPlan dataset. The results reported in Table 6 also shows that our method is capable of synthesizing high-quality sensor data even when the ego-vehicle deviates from the original trajectory.

Table 6: **Lane change reconstruction.** We conduct the evaluation protocol described in DriveX (Yang et al., 2025) to measure lateral offset on the nuPlan dataset.

	±0m (recorded)	±1m	±2m	±3m
	PSNR↑	SSIM↑	FID↓	FID↓
PVG (Chen et al., 2023)	28.32	0.854	62.71	95.34
StreetGaussian (Yan et al., 2024b)	26.02	0.798	59.48	87.74
DriveX (our use) (Yang et al., 2025)	29.67	0.897	52.59	77.27
				86.84

A.1.3 LiDAR RECONSTRUCTION

We use GS-LiDAR (Jiang et al., 2025) to reconstruct the LiDAR point clouds. GS-LiDAR (Jiang et al., 2025) introduces a novel panoramic rendering technique with explicit ray-splat intersection,

Figure 9: **Lane change reconstruction.** We render the camera images by shifting the driving perspective 3 meters to the left and right. Due to the limited viewpoint of driving videos and the vastness of the driving environment, large translations from driving perspectives lead to a significant decline in reconstruction quality. To address this, we use DriveX (Yang et al., 2025), which leverages video generative prior to optimize the scene Gaussian primitives, resulting in improved reconstruction quality even with large viewpoint translations.

guided by panoramic LiDAR supervision. This method employs 2D Gaussian primitives (Huang et al., 2024) with periodic vibration characteristics (Chen et al., 2023), allowing for precise geometric reconstruction of both static and dynamic elements in driving scenes.

The LiDAR point clouds in nuPlan (H. Caesar, 2021) is generated by merging point clouds from five LiDAR sensors, with non-uniform angular distributions across different scan lines. However, GS-LiDAR assumes that the LiDAR point cloud originate from a single laser scanner with uniformly spaced scan lines. To address this discrepancy, we reproject the merged point cloud onto the top LiDAR sensor to obtain the range map, selecting the point with the smaller depth when multiple points project to the same pixel. Additionally, we discard the non-uniform scan lines at both ends while retaining the central region, where the scan lines are evenly distributed.

As shown in Figure 10, this processing method results in some loss of LiDAR information. However, since the driving agent (Chitta et al., 2023; Liao et al., 2025) converts the LiDAR point cloud into a 2-bin histogram over a 2D BEV grid with relatively low resolution, the missing information has a minimal impact on the driving agent. We evaluate the reconstruction performance on the same 6 sequences as the camera image reconstruction in Table 7.

Table 7: Evaluation of LiDAR reconstruction performance in the nuPlan benchmark.

	Point Cloud CD \downarrow	Depth RMSE \downarrow	Intensity PSNR \uparrow	Intensity RMSE \downarrow	Intensity PSNR \uparrow
GS-LiDAR (Jiang et al., 2025)	0.315	6.930	21.25	0.0903	20.88

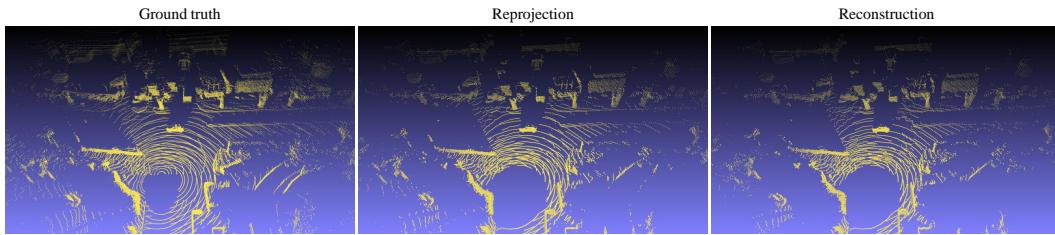


Figure 10: **LiDAR reconstruction.** Although reprojection may lead to some loss of LiDAR information, its impact on the low-resolution histogram used by the agent is minimal. Meanwhile, GS-LiDAR (Jiang et al., 2025) achieves high-quality reconstruction of the reprojected LiDAR data.

A.2 CONSISTENCY OF DRIVING BEHAVIORS

We replicate the same real-world evaluation scenarios from the Navsim (Dauner et al., 2024) benchmark in the non-reactive open-loop setting in Table 2, and evaluate autonomous driving models (Chitta et al., 2023; Liao et al., 2025) trained solely on real data in both the real open-loop environment and its simulated counterpart in RealEngine, comparing the performance differences.

We use the the Predictive Driver Model Score (PDMS) (Dauner et al., 2024) between trajectories as a measure of similarity, and conduct evaluations only on sequences where the PDMS is greater than zero. The gap is defined as follows:

$$\text{gap} = \frac{|\text{PDMS}_{\text{real}} - \text{PDMS}_{\text{sim}}|}{\max(\text{PDMS}_{\text{real}}, \text{PDMS}_{\text{sim}})} \quad (7)$$

Specifically, $\text{PDMS}_{\text{real}}$ refers to the PDMS of the trajectory planned based on real sensor inputs, whereas PDMS_{sim} corresponds to that planned using sensor data simulated by RealEngine. To evaluate the realism of camera and LiDAR simulation independently, we test three settings: **(i)** simulating only the camera (PDMS_{cam}), **(ii)** simulating only the LiDAR ($\text{PDMS}_{\text{lidar}}$), and **(iii)** simulating both camera and LiDAR ($\text{PDMS}_{\text{both}}$), as shown in Table 8. To better understand the realism of RealEngine, we also visualize the trajectories planned by DiffusionDrive (Liao et al., 2025), as shown in Figure 11.

Table 8: **Consistency of driving behaviors.** We test Transfuser (Chitta et al., 2023) and DiffusionDrive (Liao et al., 2025), which take camera and LiDAR inputs, under the three settings described in Section A.2.

Method	Image	LiDAR	$\text{PDMS}_{\text{real}} \uparrow$	$\text{PDMS}_{\text{cam}} \uparrow$	$\text{gap}_{\text{cam}} \downarrow$	$\text{PDMS}_{\text{lidar}} \uparrow$	$\text{gap}_{\text{lidar}} \downarrow$	$\text{PDMS}_{\text{both}} \uparrow$	$\text{gap}_{\text{both}} \downarrow$
Transfuser (Chitta et al., 2023)	✓	✓	81.18	80.99	0.77%	80.78	0.55%	80.56	0.98%
DiffusionDrive (Liao et al., 2025)	✓	✓	80.75	81.07	0.89%	80.85	0.42%	81.07	1.07%

The results show that the planned trajectory gap between the real-world environment and the counterpart simulated by RealEngine remains small (approximately 1%), which highlights the realism of our simulator and its effectiveness in supporting closed-loop evaluation of autonomous driving models.

Moreover, to provide a quantitative downstream evaluation, we test the performance of the perception module of DiffusionDrive (Liao et al., 2025) with respect to the ground-truth foreground inserted. Specifically, we measuring the IoU between the model predicted bounding boxes and the ground-truth annotations on the original dataset, as well as the IoU between the model predicted bounding boxes and the inserted foreground annotations for the inserted objects. A smaller gap between the two IoUs indicates that the inserted foreground objects are more realistic and better perceived by the autonomous driving model.

As shown in Table 9, although our relighting is not yet perfect, the inserted foreground objects can still be effectively perceived by the autonomous driving model. Moreover, the model’s ability to react to and avoid the inserted objects in certain simple scenarios further supports the realism of our insertions.

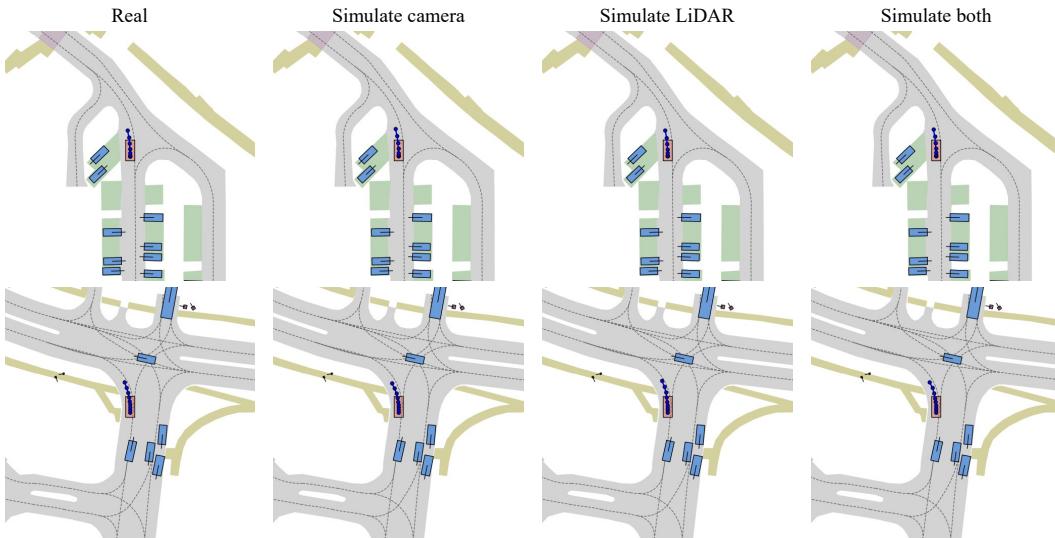


Figure 11: **Consistency of driving behaviors.** We test DiffusionDrive (Liao et al., 2025) under the same settings in Table 8. The close alignment between trajectories in the real and simulated environments demonstrates the high fidelity of our RealEngine.

Table 9: **Consistency of perception module.** We evaluate the Intersection over Union (IoU) between the model-predicted bounding boxes of DiffusionDrive (Liao et al., 2025) and the ground-truth annotations in the original dataset, as well as the IoU between the model predictions and the annotations of the inserted foreground objects. A smaller discrepancy between these two IoU values suggests that the inserted objects are more realistic and are better recognized by the autonomous driving model.

		IoU-origin↑	IoU-inserted↑	gap↓
	DiffusionDrive (Liao et al., 2025)	72.3	68.9	4.7%

A.3 THE USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we employed a large language model (LLM) solely as a writing assistance tool. Specifically, the LLM was used to polish and refine the grammar, style, and clarity of English sentences drafted by the authors. All research ideas, experimental design, analyses, and substantive writing were entirely conducted by the authors. The LLM did not contribute to research ideation, methodology, results, or conclusions.

A.4 ADDITIONAL SIMULATION RESULTS

We provide more detailed simulation videos in the supplementary materials. Please refer to **simulation.mp4** for the non-reactive, safety test, and multi-agent interaction simulation.