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Abstract

State-of-the-art multi-robot kinodynamic motion planners
struggle to handle more than a few robots due to high com-
putational burden, which limits their scalability and results in
slow planning time. In this work, we combine the scalability
and speed of modern multi-agent path finding (MAPF) al-
gorithms with the dynamic-awareness of kinodynamic plan-
ners to address these limitations. To this end, we propose
discontinuity-Bounded LaCAM (db-LaCAM), a planner that
utilizes a precomputed set of motion primitives that respect
robot dynamics to generate horizon-length motion sequences,
while allowing a user-defined discontinuity between succes-
sive motions. The planner db-LaCAM is resolution-complete
with respect to motion primitives and supports arbitrary
robot dynamics. Extensive experiments demonstrate that db-
LaCAM scales efficiently to scenarios with up to 50 robots,
achieving up to ten times faster runtime compared to state-
of-the-art planners, while maintaining comparable solution
quality. The approach is validated in both 2D and 3D envi-
ronments with dynamics such as the unicycle and 3D double
integrator. We demonstrate the safe execution of trajectories
planned with db-LaCAM in two distinct physical experiments
involving teams of flying robots and car-with-trailer robots.

1 Introduction
Kinodynamic motion planning addresses the problem of
finding collision-free trajectories that are dynamically fea-
sible between start and goal states. This formulation makes
it more challenging than geometric planning since it requires
accounting for robot dynamics and actuation limits. For in-
stance, when car dynamics are neglected, the resulting state
sequences may be physically infeasible. A car cannot rotate
in place and must translate while steering to change its head-
ing, making arbitrary state transitions impossible.

In multi-robot settings, the planner must not only enforce
each robot’s dynamics, but also ensure collision avoidance
among robots. The problem is more challenging if robots op-
erate in close proximity to each other in a cluttered space. To
date, various approaches have been proposed to incorporate
robot dynamics into multi-robot planning (Kottinger, Al-
magor, and Lahijanian 2022; Tajbakhsh, Biegler, and John-
son 2024; Moldagalieva et al. 2024). Although these ap-
proaches can handle robots with complex dynamics (Molda-
galieva, Ortiz-Haro, and Hönig 2025), they remain compu-
tationally expensive and do not scale well to large teams.

In parallel, multi-robot motion planning, in its simpli-
fied form, can be formulated as a Multi-Agent Path Find-
ing (MAPF) problem. In the MAPF domain, the world is
represented as a graph, where robots move between vertices
in one step. Over the years, remarkable progress has been
achieved in developing efficient and scalable solutions to
MAPF problems (Sharon et al. 2015; Barer et al. 2014; Oku-
mura et al. 2022; Okumura 2023b). While these methods can
handle thousands of robots (Okumura 2023b,a), they neglect
robot dynamics, modeling robots as 2D points that move in
a discrete grid world. As a result, planned trajectories are not
executable on real robot platforms.

This work integrates the scalability and efficiency of
MAPF algorithms with the dynamic-awareness of kinody-
namic planners. At its core lies the discontinuity-bounded
principle (Hönig, Ortiz-Haro, and Toussaint 2022), which
relaxes strict continuity between consecutive motion prim-
itives. Allowing bounded discontinuity when selecting suc-
cessor motions makes the search tractable by enabling prim-
itive reuse and maintaining a finite set of states. By com-
bining this idea with lightweight MAPF coordination, we
propose discontinuity-Bounded LaCAM (db-LaCAM), a
dynamics-agnostic multi-robot motion planner capable of
generating dynamically feasible and collision-free trajecto-
ries efficiently.

The proposed planner db-LaCAM is a search-based plan-
ner that extends LaCAM (Okumura 2023b) to the contin-
uous domain. As LaCAM is built upon PIBT (Okumura
et al. 2022), db-LaCAM incorporates its dynamic counter-
part, db-PIBT, to produce feasible motion sequences over a
fixed-length horizon. This integration enables db-LaCAM to
leverage db-PIBT for efficient local coordination while per-
forming long-horizon search to avoid livelocks and improve
scalability. The heuristic guidance within db-LaCAM re-
lies on a hierarchical Expansive Space Tree (EST) (Phillips,
Bedrossian, and Kavraki 2004) that approximates the cost-
to-go in continuous, dynamically-aware settings.

Theoretically, db-LaCAM is resolution-complete with re-
spect to motion primitives. Empirically, we show that db-
LaCAM can solve challenging multi-robot motion planning
problems efficiently, see Fig. 1. For instance, db-LaCAM
solves a 50 unicycle robots-instance in 20 s, whereas state-
of-the-art planners db-CBS (Moldagalieva et al. 2024), db-
ECBS (Moldagalieva, Ortiz-Haro, and Hönig 2025) fail.
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Figure 1: Performance and demonstration of db-LaCAM. Example problem setups (top and third rows) and corresponding
quantitative comparisons (second row) over 35 instances grouped into ten representative environments (alternating shaded
regions) over 10 trials. Each point represents a single trial outcome, while panels show failure rate, runtime, and normalized cost,
respectively. Labels denote the evaluated environments: (a) alcove, (b) at goal, (c) circle-n10, (d) random-n8, (e) random-n8-
us, (f) passage-n6, (g) door-n4, (h) forest-n10, (i) swap-hetero-n8, (j) random-hetero-n8. Example random-hetero-n8 denotes
a random problem with a heterogeneous team of eight robots. Instances (f–i) correspond to 3D environments. The bottom row
illustrates real-world demonstrations with a team of ten flying robots and four car-like robots with trailers.

2 Related Work
This section reviews related work in multi-agent path finding
(MAPF) and multi-robot kinodynamic motion planning.

Multi-Agent Path Finding MAPF assumes a discrete
state space represented as a graph. A robot can move from
one vertex along an edge to an adjacent neighbor in one
step; robots cannot occupy the same vertex or traverse the
same edge at the same time step. Solving MAPF optimally
is NP-hard (Yu and LaValle 2013); therefore, optimal solvers
struggle with scalability (Sharon et al. 2015). Several alter-
native methods have been suggested to address this scalabil-
ity issue, including suboptimal alternative methods (Barer
et al. 2014; Okumura et al. 2022; Okumura 2023b). Exist-
ing MAPF solvers are highly scalable and provide solutions
efficiently, yet they ignore robot dynamics. As a result, their
solutions can be infeasible to deploy on real robot platforms.

Multi-Robot Kinodynamic Motion Planning For multi-
robot kinodynamic motion planning, single-robot planners
applied to the joint space can be used (Li, Littlefield, and
Bekris 2016), but do not scale well beyond a few robots.

Better scalability can be achieved by adapting MAPF op-
timal solvers (Sharon et al. 2015) to kinodynamic mo-
tion planning by combining them with Model Predictive
Control (Tajbakhsh, Biegler, and Johnson 2024), integrat-
ing them with sampling-based planners (Kottinger, Al-
magor, and Lahijanian 2022), or incorporating motion prim-
itives (Moldagalieva et al. 2024; Moldagalieva, Ortiz-Haro,
and Hönig 2025; Shankar, Okumura, and Prorok 2025; Guo
and Yu 2024). In the latter case, hand-designed primitives
can fail to generalize to complex robot dynamics and do
not cover the full set of feasible motions, which can reduce
planning efficiency (Shankar, Okumura, and Prorok 2025;
Guo and Yu 2024). Additionally, these methods incur a high
computational burden, leading to slow runtimes. An efficient
planner can be achieved by combining Mixed-Integer Lin-
ear Programs with control theory (Chen et al. 2021). This
approach needs safe regions around computed trajectories,
so the controller can track them. These safe regions can be
large, which makes the method incomplete. Overall, exist-
ing multi-robot kinodynamic planners remain slow and scale
poorly as the number of robots increases.



3 Preliminaries
In this section, we first formally define the problem and its
objective considered in this work (Sec. 3.1). We then briefly
review MAPF algorithms that form the basis of our approach
(Sec. 3.2) and define the notion of a motion primitive, a key
component of our planning framework (Sec. 3.3).

3.1 Problem Definition
We consider a team of N heterogeneous robots. The state
of the ith robot is given as x(i) ∈ X (i) ⊂ Rd

x(i) , which is
actuated by controlling actions u(i) ∈ U (i) ⊂ Rd

u(i) . The
workspace the robots operate in isW ⊆ Rdw (dw ∈ {2, 3}),
the collision-free space isWfree ⊆ W .

We assume that each robot i ∈ {1, . . . , N} has dynamics
ẋ(i) = f (i)(x(i),u(i)). With zero-order hold discretization,
motion can be framed as

x
(i)
k+1 ≈ step(x

(i)
k ,u

(i)
k ) ≡ x

(i)
k + f (i)(x

(i)
k ,u

(i)
k )∆t, (1)

where ∆t is sufficiently small to ensure that the Euler inte-
gration holds.

We denote by X(i) = ⟨x(i)
0 ,x

(i)
1 , . . . ,x

(i)

K(i)⟩ the se-
quence of states of the ith robot sampled at times
0,∆t, . . . ,K(i)∆t and by U(i) = ⟨u(i)

0 ,u
(i)
1 , . . . ,u

(i)

K(i)−1
⟩

the sequence of actions applied to the ith robot for times
[0,∆t), [∆t, 2∆t), . . . , [(K(i) − 1)∆t,K(i)∆t).

Our goal is to move a team of N robots from their start
states x

(i)
s ∈ X (i) to their goal states x

(i)
g ∈ X (i) as fast

as possible while avoiding collisions and respecting robot
dynamics. This problem can be formulated as:

min
{X(i)},{U(i)},{K(i)}

N∑
i=1

K(i) (2)

s.t.



x
(i)
k+1 = step(x

(i)
k ,u

(i)
k ) ∀i ∀k,

u
(i)
k ∈ U (i), x

(i)
k ∈ X (i) ∀i ∀k,

B(i)(x(i)
k ) ∈ Wfree ∀i ∀k,

B(i)(x(i)
k ) ∩ B(j)(x(j)

k ) = ∅ ∀i ̸= j ∀k,
x
(i)
0 = x

(i)
s , x

(i)

K(i) = x
(i)
g ∀i,

where B(i) : X (i) → 2W is a function that maps the state
of the ith robot to a collision shape. The objective is to min-
imize the sum of the arrival times of all robots.
Example 1. Consider a car with trailer robot with state
x = [x, y, θ1, θ2]

⊤ ∈ R2 × (S1)2, where (x, y) is the
car position, θ1 is the car orientation and θ2 is the trailer
orientation. The control is u = [v, ϕ]⊤ ∈ U ⊂ R2,
with linear velocity v and steering angle ϕ. Let L be the
car wheelbase and Lh the hitch length. The dynamics are
ẋ = [v cos(θ1), v sin(θ1),

v
L tanϕ, v

Lh
sin(θ1 − θ2)]

⊤.

3.2 PIBT and LaCAM
PIBT (priority inheritance with backtracking) (Okumura
et al. 2022) is a scalable and suboptimal MAPF algorithm.
The method performs one-timestep planning among agents
following the priority of the agents. In each timestep, agents

update priorities, and the planner assigns next positions se-
quentially to avoid conflicts with high-prioritized agents.
When there is no location left for a lower-prioritized agent,
then priority inheritance takes place, enforcing the higher-
prioritized robot to move out of the way. PIBT is a greedy al-
gorithm, which is guided by cost-to-go heuristics. Its greedy
nature can cause deadlocks, making the planner incomplete.

The complete planner LaCAM (lazy constraints addi-
tion search) (Okumura 2023b) addresses these limitations
of PIBT. LaCAM is a search-based MAPF solver that works
in two levels. At the high level, LaCAM searches over con-
figurations of all agents. At the low level, it generates con-
straints for each high-level node. Constraints are used to
specify which locations are occupied by which agent in the
next configuration. The high-level search is guided by PIBT
and proceeds lazily: instead of generating all valid succes-
sors, it only generates one feasible successor each time the
high-level node is invoked.

The scalability and speed of PIBT and LaCAM moti-
vate extending them to kinodynamic motion planning. Such
an extension introduces new challenges: continuous state
spaces, constraints from robot dynamics, and harder heuris-
tic computation, as Euclidean distance no longer reflects true
cost-to-go. The proposed planner, db-LaCAM, addresses
these challenges via motion primitives, enabling efficient,
constraint-respecting planning in the continuous domain.

3.3 Motion Primitive
A motion primitive is a sequence of states and controls that
fulfill the dynamics of the system given in Eq. (1). Formally,
Definition 1. A motion primitive is a tuple ⟨X,U,K⟩, con-
sisting of state sequences X = ⟨x0, ...,xK⟩ and control
sequences U = ⟨u0, ...,uK−1⟩ which obey the dynamics
xk+1 = step(xk,uk).

Motion primitives can be generated by discretizing the
state space of the robot (Shankar, Okumura, and Prorok
2025; Hou et al. 2025), or by solving a two-point boundary
value problem with nonlinear optimization (Hönig, Ortiz-
Haro, and Toussaint 2022).

4 Approach
We begin by describing db-PIBT (Sec. 4.1), the core compo-
nent of our planner db-LaCAM. We then present db-LaCAM
(Sec. 4.2), followed by the techniques developed for heuris-
tic estimation (Sec. 4.3), motion clustering (Sec. 4.4), live-
lock detection and resolution (Sec. 4.5), and finally discuss
the properties of db-LaCAM (Sec. 4.6).

4.1 db-PIBT
Kinodynamic motion planner db-PIBT extends PIBT (Oku-
mura et al. 2022) to the continuous domain. The planner
db-PIBT (Alg. 1) searches over motion primitives to plan
a fixed-horizon state sequence and supports arbitrary robot
dynamics with pre-computed primitives; major changes are
marked in blue.

At a high level, db-PIBT incrementally assigns dynami-
cally feasible motion segments to robots in descending pri-
ority order (Line 3), ensuring that each selected motion re-



mains collision-free with respect to already planned trajec-
tories. The priority order of robots is based on the distance
to the goal, with the farthest receiving the highest priority.
Here, we rely on a user-defined metric d : X × X → R to
measure the distance between two states.

Within this high-level loop, a recursive procedure is called
for each robot. The procedure db-PIBT explores the set of
valid motion primitives Mi for the given robot i (Line 6)
to select feasible successors. Each candidate motion m is
checked for potential conflicts: (i) collisions with high-
priority robot motions (Line 7); (ii) collisions with lower-
priority robots that are not yet planned (Line 11). For the
second case, we assume that each lower-priority robot j has
a set of valid motion primitives Mj (Line 10). When the
candidate motion m conflicts with any motion inMj , then
db-PIBT recursively invokes itself (Line 12) to tentatively
assign a valid motion to robot j. This recursive call checks
whether a consistent set of motions can be found for both
robots. If no valid combination exists, the candidate motion
m is discarded, and the algorithm proceeds to test the next
motion inMi. Once a valid motion primitive is found, db-
PIBT updates the reserved motions vector T with the found
motion for robot i (Line 9) and returns VALID (Line 14).

While db-PIBT is effective, its greedy nature can lead to
livelocks in tightly constrained scenarios, highlighting the
need for long-term planning, which db-LaCAM provides.

Algorithm 1: db-PIBT

1: input: robots N , motion sets M = (M1, . . . ,MN )
2: output: motions T (each element is initialized with ⊥)
3: for i ∈ N do; if T [i] = ⊥ then db-PIBT(i,M , T )
4: return T
5: procedure DB-PIBT(i,M , T )
6: for m ∈Mi do ▷ loop over sorted motions
7: if ∃mk ∈ T s.t. Collide(m,mk) then
8: continue ▷ collision with planned robot
9: T [i]← m ▷ reserve the motion

10: forMj ∈M do
11: if ∃mj ∈Mj s.t. Collide(m,mj) then
12: if db-PIBT(j,M , T ) = INVALID then
13: continue ▷ priority-inheriting robot failed
14: return VALID
15: return INVALID

4.2 db-LaCAM
The planner db-LaCAM is a search-based kinodynamic
planner that builds on LaCAM (Okumura 2023b) and db-
PIBT to account for robot dynamics. The high-level search
of db-LaCAM is given in Alg. 2. The algorithm can work
with arbitrary robot dynamics. Its major changes compared
to LaCAM are marked in blue.

The planner db-LaCAM starts the search by creating two
sets: Open that stores nodes to be expanded, and Explored
to keep track of already expanded nodes (Line 4). The ini-
tial node, given as Qinit, is initialized with a set of start-
ing states for all robots, an empty set of constraints, and

xx

Figure 2: Visual representation of motion primitive samples.
Given state x, applicable motions (black edges) start within
a discontinuity lower than αδ (gray circumference). Mo-
tions in collision with the environment are discarded (dashed
edges). The action sequences of applicable motion primi-
tives are used to forward-propagate the state x.

motion primitives (Line 6). At each iteration, the top node
from Open is removed and expanded. If the state of this
node is within the user-defined δg distance to goal states,
the solution is recovered by backtracking each node’s stored
motion primitives and returned (Line 12). Otherwise, the
search proceeds by querying a set of valid motion prim-
itives via Process_Motions. Motions generated with
Process_Motions update the constraint tree of the cur-
rent node Q with Set_Constraint_Tree (Line 16).
Each constraint defines which motion is selected for each
robot in the subsequent planning horizon (details are in
the appendix). The db-PIBT then assigns priorities to
robots and sequentially plans for each robot, using the up-
dated constraint tree to guide motion selection and maintain
inter-robot consistency as shown in Alg. 1. The output of
db-PIBT is a next horizon, collision-free sequence of states
for each robot (Line 17). If all robots move successfully, then
this configuration creates a new high-level node Q′ (Line 21)
and adds it to the Open set (Line 22) After each successful
high-level search iteration, the robots are optionally checked
for livelock (Line 23).

The Process_Motions procedure is a key component
of the algorithm and also its most computationally expen-
sive step. It involves several subroutines for generating, val-
idating, and ranking motion candidates as shown in Alg. 2.
First, it finds applicable motions. A motion m is considered
applicable at state x if its start state m.xs is within αδ away
from it, where α is a user-defined parameter and δ is the dis-
continuity bound (Line 27). For efficient search, we adopt a
k-d tree, Tm, to index the start states of all provided motion
primitives (Line 3). Once applicable motions are selected,
their action sequences are applied to the current states to per-
form forward propagation (Line 28). An example of result-
ing motions is illustrated in Fig. 2. Second, it computes the
cost-to-go h(m.xf ) for each rolled-out motion m (Line 29);
details are in Sec. 4.3. Finally, it performs a motion cluster-
ing (Line 30), as described in Sec. 4.4.

4.3 Heuristics Estimation
The core component of db-LaCAM, db-PIBT, requires an
accurate estimation of the cost-to-go h for each motion to
guide the search towards the goal. In the discrete domain,
PIBT uses the shortest path length to compute the h for each



Algorithm 2: db-LaCAM

1: input: robots N , starting states {x(i)
s }, goal states

{x(i)
g }, motion set M

2: params: goal threshold δg
3: Tm ← Nearest_Neighbor_Init(M) ▷ use start

states of motions
4: Initialize Open, Explored
5: Cinit ← ⟨ parent : ⊥, who : ⊥, where :
⊥,motion : {} ⟩ ▷ no constraint

6: Qinit ← ⟨state : xs, tree : Cinit, motions : {}⟩
7: Open.push(Qinit); Explored[xs]← Qinit
8: while Open ̸= ∅ do
9: Q← Open.top() ▷ high-level node

10: x← Q.state ▷ starting state for the horizon
11: if distance(x,xg) ≤ δg then
12: return backtrack(Q)
13: if Q.tree = ∅ then Open.pop(); continue
14: C ← Q.tree.pop() ▷ constraint tree
15: M ′ ← Process_Motions(x,xg, Tm)
16: Set_Constraint_Tree(Q) ▷ update Q.tree
17: T ′ ← db-PIBT(N,M ′) ▷ Alg. 1
18: x′ ← T ′.x.back() ▷ final state for the horizon
19: if x′ = ⊥ then continue
20: if Explored[x′] ̸= ⊥ then continue
21: Q′ ← ⟨state : x′, tree : Cinit, motions : T ′⟩
22: Open.push(Q′); Explored[x′]← Q′

23: Livelock_Detection(Q) ▷ optional step
24: return NO_SOLUTION
25: procedure PROCESS_MOTIONS(x,xg, Tm)
26: for i ∈ N do
27: Mi ← Nearest_Neighbor_Query(T i

m,xi)
▷ applicable motions with discontinuity up to αδ

28: Mi
r ← Rollout_Motions(xi,Mi)

29: HEST(xi
g,Mi

r) ▷ compute heuristics Sec. 4.3
30: Mi

c ← Cluster_Motions(Mi
r) ▷ Sec. 4.4

returnMc ▷ clustered motions for each robot

grid cell. However, in a continuous domain where robots ex-
hibit different dynamics, this metric can no longer provide
a reliable cost-to-go estimate. The h can be pre-computed
using a single robot planner in a reverse manner from the
goal state towards the start state. This method has two limita-
tions. First, it requires inverse dynamics, which are often in-
tractable to compute since the system is forward-propagated
via actions, and recovering actions backward from the final
state would need inverting the dynamics model. Second, it
is computationally expensive – especially in large environ-
ments, as it explores large portions of the environment that
are often irrelevant for finding a solution.

Hierarchical EST We propose the Hierarchical Expan-
sive Spaces Trees (HEST) for efficient estimation of
h. HEST adapts Guided EST (Phillips, Bedrossian, and
Kavraki 2004), a single-robot sampling-based planner that
iteratively expands the most promising state until the goal
state is reached.

HEST implements a nearest-neighbor table of explored
states with their cost-to-go values for efficient h-value re-
trieval during expansions. It operates on two hierarchical
levels. At the high level, it runs Guided EST in reverse from
the goal to the start to obtain a coarse estimate of the heuris-
tic h. At the low level, it conducts a forward search with
Guided EST from a given state towards the goal, using the
high-level estimate to prioritize expansions.

Alg. 3 computes motion-wise heuristic estimates for robot
i using precomputed nearest-neighbor tables. For each mo-
tion inMi (Line 5), the algorithm queries the reverse search
table Hi

r to find the closest stored state (Line 6). If no nearby
state exists within threshold ∆, it performs a forward estima-
tion using EST (Line 8) and updates the forward table Hi;
otherwise, it reuses the nearest neighbor’s heuristic value
(Line 10). This structure enables HEST to focus computa-
tion where it matters most–refining heuristics locally while
reusing information from high-level exploration. An abla-
tion study in Sec. 5.3 examines heuristic methods.

Algorithm 3: HEST for a single robot i

1: input: goal state xi
g , motionsMi

2: output: heuristic values h for each motion inMi

3: params: distance threshold ∆
4: global: Hi

r, H
i ▷ Nearest-neighbor table for reverse

and forward searches
5: for m ∈Mi do
6: xn ← Nearest_Neighbor_Query(m.xf ,Hi

r)
7: if xn = ∅ ∨ distance(m.xf ,xn) > ∆ then
8: h(m.xf )← EST(m.xf ,xg,Hi) ▷ update Hi

9: else
10: h(m.xf )← h(xn) ▷ assign nearest neighbor’s h

4.4 Motion Primitives Clustering
Let Mi = ⟨m1, m2, . . . mM ⟩ be a set of valid motions
for the robot i. As the number of motions inMi grows, the
search in db-PIBT becomes less efficient and slows down. A
straightforward approach to reduce the size is to sort motions
in ascending order of their heuristic h values and select the
top n motions. However, this can lead to a set of motions
that are very similar to each other, which might hinder the
planner. Based on the motion primitives design, we develop
two clustering techniques to have diverse motions.

Goal-Oriented Clustering (GOC) GOC aims to sort mo-
tions in an ascending order of h-values h1 ≤ h2 ≤ · · · ≤
hM . For a cluster K starting at hl, it includes all motions
m ∈Mi that satisfy |h−hl| ≤ ι, where ι = ρ·(hmax−hmin)
and ρ is a hyperparameter. Once clusters are formed, n
elements per cluster are chosen using one of: (i) vanilla
selection–all elements; (ii) deterministic selection–top n el-
ements; (iii) weighted selection–sampling with probability
proportional to their values. This clustering strategy enables
fast goal attainment but may cause livelock when robots
must pass closely near their goals. As shown in Fig. 3 (bot-
tom), both robots may prefer forward motions with lower h
values, blocking each other.
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Figure 3: Top row: motion primitive clusters — middle:
original motions, left: GOC, right: SC-GOC, with colors for
each cluster. Motions toward left and right have similar dis-
tance to the goal state, yielding close h-values. Bottom row:
example livelock between two robots.

Space-Cover and Goal-Oriented Clustering (SC-GOC)
SC-GOC aims to provide a set of diverse motions for a
better space cover. It first forms multiple intermediate clus-
ters Kint based on spatial proximity. Specifically, it picks
the motion mr from Mi with the minimum h-value and
sets it as the reference motion. Then, it computes the dis-
tance between the last states of each motion m ∈ Mi to
the mr as d(m.xf ,mr.xf ). An intermediate cluster Kint

is generated by including all motions that have a distance
lower than the threshold τ . The value of τ is a hyperpa-
rameter. After, within each cluster, trajectories are sorted
by h-value, and element selection can be performed using
the same strategies ((i-iii)) used for GOC. Selected n mo-
tions are then reordered in an inside-out sequence, starting
from the middle element and alternating outward toward
the ends: ⟨m⌈n/2⌉, m⌈n/2⌉−1, m⌈n/2⌉+1, . . . ⟩. Gener-
ated motion clusters for GOC (left) and SC-GOC (right) are
shown in Fig. 3. Analysis of db-LaCAM’s performance us-
ing different clustering methods is presented in Sec. 5.3.

4.5 Livelock Behavior
PIBT suffers from deadlock/livelock due to its short-horizon
nature. One example is illustrated in Fig. 3 (bottom row). In
MAPF settings, the livelock problem can be resolved by in-
troducing special techniques like swap (Okumura 2023a), or
by backtracking recent agent-wise state histories (Jain et al.
2025). Using the same techniques in the continuous domain
is not trivial. For instance, a unicycle robot might return
to the same position with a different orientation, which is
treated as a new state distinct from previously visited states.

Detection and Recovery We resolve livelock as follows:
(i) identifying robots that have oscillations in their motions;
(ii) using state-aware motion clustering to provide a better
space cover. For (i), each time a new motion is generated
in Alg. 2, each robot’s heuristic history is backtracked to
check for oscillations. A robot is considered to be in a live-
lock if the change ∆h between consecutive high-level nodes
alternates in sign. Once robots are identified, we break the

livelock behavior by providing more diverse motions to the
search with SC-GOC. The intuition is that with a diverse
set of motions—including different orientations—robots are
more likely to take sideway motions, effectively breaking
potential livelocks. As discussed in Sec. 4.4, SC-GOC pro-
vides a good cover of the space by clustering motions based
on spatial proximity.

A visual representation of the final clustering results us-
ing GOC and SC-GOC is given in Fig. 3 (top row). Here,
although m1 is the best option to reach the goal, it triggers
livelock unless one of the robots decides to move sideways.
However, sideway motions (m2,m3) have a higher h-value,
so can never be taken by db-PIBT. Moreover, with the GOC
clustering technique, motions m2,m3 can be grouped in one
cluster due to their similar distances to the goal state xg .
In Sec. 5.3, we analyze motion clustering methods.

4.6 Properties
The planner db-LaCAM is probabilistic resolution-complete
(PRC; for any fixed resolution, the probability of finding a
solution, if one exists at that resolution, approaches 1).

Theorem 1. The db-LaCAM motion planner in Alg. 2 is
probabilistically resolution-complete when elements in each
cluster are selected probabilistically based on their weights.

Proof Sketch: Db-LaCAM is probabilistically com-
plete up to the resolution of the implicit graph defined by the
chosen motion primitives. With an exhaustive search over
the finite search space, it eventually finds a solution if one
exists. Because motion clustering involves stochastic sam-
pling, there exists a non-zero probability that db-LaCAM
selects the correct motion.

We consider the time complexity of db-PIBT in Alg. 1.

Proposition 1. The time complexity of db-PIBT for a sin-
gle fixed-length horizon planning is O(N2M2), where N is
the number of robots, M is the maximum number of motion
primitives.

Details of Theorem 1 and the proof of Proposition 1 are
provided in the appendix.

5 Experimental Evaluation
For benchmarking we consider robot dynamics like unicycle
(1(st)-order), double integrator 3D, see (Hönig, Ortiz-Haro,
and Toussaint 2022) for dynamics and bounds.

In each environment, we test db-LaCAM with db-
PIBT, Discontinuity-bounded CBS (db-CBS) (Moldagalieva
et al. 2024), its suboptimal variant db-ECBS (Moldagalieva,
Ortiz-Haro, and Hönig 2025). We analyze the success rate,
computational time until the first solution is found, and so-
lution cost. The cost is a time, which is equal to the sum of
control duration over all single-robot paths (Eq. (2)).

Our planner db-LaCAM is implemented in C++. For db-
CBS and db-ECBS, we use the respective publicly avail-
able implementations from the authors. All planners rely on
FCL (Flexible Collision Library) (Pan, Chitta, and Manocha
2012) for collision checking. The experiments are run on a
workstation (AMD Ryzen Threadripper PRO 5975WX @
3.6 GHz, 64 GB RAM, Ubuntu 22.04).



5.1 Benchmarking
Motion primitives are pre-computed offline by solving two-
point boundary value problems with random start and goal
configurations with nonlinear optimization (Ortiz-Haro et al.
2024). Motion clustering uses deterministic selection to
choose elements per cluster. The used hyperparameter val-
ues are listed in the appendix. An instance is not solved suc-
cessfully if no solution is found after the timelimit.

Environments Problem instance visualizations are given
in Fig. 1. The timelimit for all instances is 60 s. We consider
five types of scenarios as follows:

• Canonical 2D examples include problems like alcove,
atgoal, where one of the robots is forced to move to
the alcove or aside to let the other robot reach its goal
(Fig. 1a–b).

• Circle 2D example has from N = 2 up to N = 10 unicy-
cle robots operating in 11×11 environment, where robots
need to swap to reach their goals (Fig. 1c).

• Random 2D instances feature randomly placed obstacles
and randomly assigned start and goal states for N = 8
unicycle robots operating in a 10 × 10 environment. Of
these, 10 instances use box-shaped robots (Fig. 1d), and
the other 10 use spherical robots with a radius of 20 cm
(Fig. 1e).

• Problems 3D comprise compact environments with
moderate obstacle density, including narrow corridors
and cluttered spaces (Fig. 1f–h). The environments mea-
sure up to approximately 4× 6× 1.5, and the number of
robots ranges from four to ten.

• Heterogeneous Robots problems involve teams of ten
robots (e.g., unicycle, 3D double integrator) in environ-
ments with and without obstacles. Some instances re-
quire robot swapping (Fig. 1i), while others feature ran-
dom start and goal states (Fig. 1j)

Results Overall, db-CBS performs poorly in 2D environ-
ments with frequent close-proximity interactions, such as
those involving large or spherical robots, where numerous
inter-robot conflicts lead to extended runtimes and low suc-
cess rates (around 30%). In contrast, db-ECBS handles these
scenarios more effectively, achieving success rates up to
90% by leveraging its conflict-guided heuristic to focus the
low-level search. The planner db-LaCAM consistently out-
performs all other planners, solving every instance rapidly
(below 3 s even in the most cluttered setups) and maintain-
ing high success across all environment types.

In 3D environments, db-LaCAM achieves the lowest run-
time consistently across all instances. Planners db-CBS and
db-ECBS perform reasonably well in compact environments
such as forest, door, but their efficiency degrades as the en-
vironment size and search space grow. In larger 3D setups
like passage, both planners often fail to compute solutions
within the timelimit due to the high computational cost of
the reverse-search heuristic.

With heterogeneous robots instances, db-LaCAM consis-
tently solves all problems with the lowest runtime. Planners
db-CBS and db-ECBS achieve only around 60% success, as

the optimization component often fails to converge, though
the discrete search produces a solution.

Physical Robots We demonstrate the safe execution of
db-LaCAM trajectories on real robot platforms. The real-
world experiments are conducted inside a 7 × 4 × 2.5m3

room equipped with a motion capture system with twelve
Optitrack cameras. We use Sanity custom drones for flying
robots (Woo et al. 2025), and Polulu 3pi+ 2040 differential-
drive robots for ground robots. Pictures of the deployed plat-
forms are illustrated in Fig. 1 (bottom row). In the first sce-
nario, we test the forest example with ten flying robots mod-
eled as 3D double integrator dynamics. In the second sce-
nario, four ground robots modeled as cars with trailers are
tasked to swap their positions. Experiments with physical
robots are available in the supplemental video.

5.2 Scalability Test
We consider teams of N = 10, 20, 30, 40, 50 unicycle robots
operating in 20 × 20 size environment (Fig. 4). Start, goal
states for each robot are generated randomly in each in-
stance. We set the timelimit to 5 min, since baselines like
db-CBS, db-ECBS require a longer time to find a solution
for cases with N > 10 robots.

Results Scalability test results with increasing number of
robots are shown in Fig. 4. The planner db-LaCAM consis-
tently solves all instances with low runtime across different
team sizes. For large teams (N ≥ 40), both db-CBS and db-
ECBS frequently fail, highlighting db-LaCAM’s robustness
in dense and challenging environments.
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Figure 4: Runtime required to find a feasible solution over
different numbers of robots.

5.3 Ablation Study
Computation time analysis We evaluate how much com-
putational time is spent on some key components of db-
LaCAM. and discuss how it varies with the increasing num-
ber of robots. Time statistics for key components of db-
LaCAM while solving the circle 2D example are given
in Fig. 5. The total time is mainly occupied by the heuristics
h estimation, which will be discussed in detail in the fol-
lowing paragraph. The second most expensive operation is



the collision checking against the potential motions of low-
priority neighboring robots that have no plans yet. Motion
clustering is another time-consuming component, though it
is relatively insensitive to the number of robots. Finally, col-
lision with high-priority robots and motion rollout opera-
tions exhibit similar runtime across all instances.

Analysis of Heuristic Look-up Table Estimation We
discuss two methods for heuristic value h computation
from Sec. 4.3: (i) a single-robot kinodynamic planner db-A*
(Discontinuity-Bounded A*) (Hönig, Ortiz-Haro, and Tous-
saint 2022) run in a reverse manner from xg to xs; (ii) HEST.
We analyze how the choice of the heuristic estimation affects
the runtime of the planner. The summary of results is given
in Fig. 5. HEST-based heuristic estimation method runs sig-
nificantly faster compared to db-A*-based reverse search.
This is due to the db-A*-based method exploring unneces-
sary parts of the environment as shown in Fig. 7 in the ap-
pendix. Whereas, HEST-based method explores only the rel-
evant part of the environment. This happens because HEST
explores nodes on demand, when the lookup table does not
contain a nearby state and fails to return a h-value.
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Figure 5: Computation time analysis for db-LaCAM. Upper
row: two different methods for the heuristics h computation.
Bottom row: analysis of time spent on some key components
of db-LaCAM. Experiments are conducted using circle 2D
example with varying numbers of robots as labeled.

Analysis of Motion Primitive Clustering We evaluate
two methods for clustering applicable motion primitives dis-
cussed in Sec. 4.4: (i) motions are grouped based on their
heuristic value h, thus goal reaching is faster (GOC); (ii)
motions are grouped based on relative distance and heuris-
tic value h enabling a better cover of the space (SC-GOC).
Both methods employ weighted selection to choose ele-
ments from each cluster. We compare the impact of the two
methods on the solution cost of db-LaCAM. Results are
summarized in Fig. 6.

Instances are designed to have close-proximity interaction
between robots to produce livelock cases. In these cases,

db-LaCAM with GOC performs poorly because it always
prioritizes goal-oriented motions. In contrast, SC-GOC re-
solves these instances faster by favoring sideway motions,
which break livelock and improve solution quality (Fig. 6).
For these instances, db-LaCAM with vanilla selection of el-
ements per cluster fails to find a solution within the time-
limit. This is because the motion set contains many similar
motions as described in Sec. 4.4; since db-LaCAM performs
an exhaustive search, it explores all possible motion combi-
nations, resulting in longer runtimes.
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Figure 6: Analysis of two different methods for motion clus-
tering: GOC and SC-GOC. Evaluation is performed with
a random problem instance with eight unicycle robots of
spherical shape with radius 20 cm over 70 instances with
varying settings.

6 Conclusion

We introduce db-LaCAM, a planner that combines the scal-
ability of discrete MAPF techniques with the dynamic fea-
sibility of kinodynamic planning. By allowing bounded dis-
continuities between motion primitives, db-LaCAM enables
efficient and flexible trajectory generation for multi-robot
systems of arbitrary dynamics. Built upon the coordination
mechanism of db-PIBT, it combines local dynamic feasibil-
ity with long-horizon search, achieving order-of-magnitude
speedups over existing kinodynamic planners while main-
taining comparable solution quality. The successful deploy-
ment of flying and car-with-trailer robots highlights the ap-
proach’s potential for real-world multi-robot coordination.

Limitations and Future Work Our planner db-LaCAM
is an informed search-based planner guided by a heuristic
h. If the heuristic is imprecise, the planner can get stuck in
local minima. While using the hierarchical EST to estimate
h works well for the dynamics considered here, it struggles
with more complex systems such as cars with trailers—for
example, computing h for the swap problem with four car-
with-trailer robots takes 6.40 s of a total 6.47 s runtime,
as HEST must run for nearly all expanded nodes. More-
over, the current approach is centralized and not designed
for real-time execution. Future work will explore learning-
based heuristics for better efficiency, as in MAPF (Jain et al.
2025) and enabling real-time, decentralized execution.
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Appendix
A Remarks for Thrm. 1
LaCAM is a complete algorithm for MAPF, i.e., if a solution exists, it will find it (Okumura 2023b). LaCAM relies on the
argument that, for completeness, the search explores all states that could contain a solution; no potential solution paths are
pruned. For kinodynamic motion planning problems, continuous time and space render full enumeration proofs infeasible,
as the set of possible states is infinite. Instead, we consider resolution-completeness (RC; if a solution exists at the chosen
resolution, the algorithm is guaranteed to find it) and probabilistic-completeness(PC; the probability of finding a solution if one
exists is 1).

Table 1 summarizes properties for db-LaCAM based on the motion clustering technique and set of motion primitives.

Remark 1. By relaxing clustering conditions, such as disabling clustering in Alg. 2, db-LaCAM can achieve RC with respect
to motion primitives.

Remark 2. With an iterative run of db-LaCAM, where with each iteration more motion primitives are added to the set M,
db-LaCAM can achieve PC. A growing set of motion primitivesM results in a larger search graph, enabling exploration of all
reachable states within the closed search space.

Motion Clustering Method Fixed Motion Set Incremental Motion Set

No Cluster RC PC
Deterministic Incomplete Incomplete
Probabilistic PRC PC

Table 1: Summary of properties of db-LaCAM.

B Proof of Proposition 1
Proof Sketch: For each fixed-horizon planning, the procedure db-PIBT is called N times, once for each robot. This is

because, db-PIBT(i, ..) is called if and only if the robot i has no reserved motion for the next horizon (Line 3). The collision
checking between considered motion and high-priority robot motions is O(N) in the worst case (Line 7), resulting in O(MN)
for the loop (Line 6-Line 14). The collision checking against potential motions of low-priority robots can be O(MNMmax)
(Line 11), where Mmax is the maximum number of motions among all robots. Combining these two operations givesO(NM2),
assuming all robots have the same number of motions.

C Procedure Set_Constraint_Tree in Alg. 2
Unlike LaCAM, where constraints correspond to occupied vertices, db-LaCAM defines constraints as valid motions. Alg. 4
illustrates how the constraint tree of a high-level node Q is updated given a set of valid motions M . Constraints are assigned to
robots according to their priority order (Line 6). Once a robot is identified, the algorithm loops over its valid motions (Line 8),
creating a new constraint tree Cnew for each motion (Line 10). Each newly created constraint tree is then added to the constraint
trees of Q. If this high-level node Q is picked in further iterations of db-LaCAM (Alg. 2, Line 9), these constraints are respected
during motion generation with db-PIBT (Alg. 2, Line 17).

Algorithm 4: Set_Constraint_Tree

1: input: motions M , high-level node Q, constraint tree C
2: output: updated constraint tree for Q
3: N = |Q.state| ▷ Number of robots
4: if depth(C) ≤ N then
5: Q.order = Get_Order(Q) ▷ assign robot priority order
6: i← Q.order[depth(C)]
7: Mi = M [i] ▷ get valid motions
8: for m ∈Mi do ▷ each valid motion as constraint
9: x = m.xf

10: Cnew ← ⟨ parent : C,who : i, where : x,motion : m ⟩
11: Q.tree.push(Cnew)



D Details of Hierarchical EST from Sec. 4.3
.

As can be seen in Fig. 7(left), reverse search with db-A* can lead to exhaustive exploration of states that are irrelevant for
finding a solution. In contrast, HEST explores states that can be used to find a solution from the start to the goal state efficiently.

Figure 7: Visualization of state expansions for heuristic h computation: reverse search from goals to starts using db-A*, and
forward search with EST. Each robot’s start and goal are marked by crosses and stars; explored states are shown as colored dots
per robot.

E Hyperparameter values for Benchmarking (Sec. 5)
The number of motion primitives used for the search is identical for all problem instances and equal to 300. The value of the
discontinuity bound δ is 0.5 for all instances. The value of the distance threshold ∆ for the lookup table is 1.0 for all dynamics.
The range value for the GOC clustering method is 0.05 for unicycle dynamics, 1.0 for 3D double integrator, and the car with
trailer. The distance threshold τ for the SC-GOC clustering method is set to 1.0 for all dynamics.


