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Abstract
Modeling human decision-making is central to
applications such as recommendation, prefer-
ence learning, and human-AI alignment. While
many classic models assume context-independent
choice behavior, a large body of behavioral re-
search shows that preferences are often influenced
by the composition of the choice set itself—a phe-
nomenon known as the context effect or Halo
effect. Recent models that attempt to capture such
effects either focus on the featureless setting or, in
the feature-based setting, rely on restrictive inter-
action structures or entangle interactions across
all orders, limiting interpretability. In this work,
we propose DeepHalo, a neural modeling frame-
work that incorporates features while enabling
explicit control over interaction complexity and
principled interpretation of context effects. Our
model enables systematic identification of inter-
action effects by order and serves as a universal
approximator of context-dependent choice func-
tions when specialized to featureless setting. Ex-
periments on synthetic and real-world datasets
demonstrate strong predictive performance while
providing greater transparency into the drivers of
choice.

1 Introduction
Choice modeling (McFadden, 2001) provides a principled
framework for capturing and predicting human preferences,
making it central to human-in-the-loop systems. It enables
personalized recommendations in online platforms (Resnick
& Varian, 1997), preference inference in inverse reinforce-
ment learning (Zeng et al., 2025), and reward alignment
in large language models (Rafailov et al., 2023). Across
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these applications, choice models offer a structured way
to integrate human decision patterns into machine learning
systems.

Traditional choice models often assume that each alterna-
tive’s utility is independent of the others, implying sta-
ble preferences unaffected by context. However, human
decisions frequently exhibit the context-dependent effect,
also known as the Halo effect (Thorndike et al., 1920) in
cognitive science, where the composition of the choice
set influences preferences. For example, dominated op-
tions can increase the appeal of dominating ones (decoy
effect (Huber et al., 1982)), extreme options can shift pref-
erence toward intermediates (compromise effect (Simonson
& Tversky, 1992)), and similar alternatives can cannibalize
each other’s appeal (similarity effect (Tversky & Simonson,
1993)). Such effects violate core assumptions of random
utility models and call for more flexible approaches that
capture interactions among alternatives.

While there have been choice models aiming to cap-
ture context effects, they often face structural limitations.
Many rely on one-hot encodings and ignore rich feature
information, and restrict interactions to first-order (pair-
wise) terms (Maragheh et al., 2018; Seshadri et al., 2019;
Yousefi Maragheh et al., 2020; Seshadri et al., 2020; Ko &
Li, 2023). On the other hand, Neural models offer flexibility
and can incorporate features (Wong & Farooq, 2021; Wang
et al., 2023), but their complex architectures hinder inter-
pretability by entangling lower- and higher-order effects. As
a result, existing methods often face a trade-off between ex-
pressiveness and transparency in modeling context-sensitive
choice.

To bridge this gap, we propose a modeling framework that
is both expressive enough to capture complex higher-order
interactions among alternatives with features, and struc-
tured enough to systematically disentangle and interpret
these effects. We begin by decomposing utility into inter-
pretable, feature-based components—base utility, pairwise
interactions, and higher-order effects—and characterize the
associated permutation equivariance properties. This de-
composition informs the design of a neural architecture with
inductive biases aligned with the combinatorial structure
of context effects. When specialized to the classic feature-
less setting, our model serves as a universal approximator
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of context-dependent choice functions. Additionally, we
introduce a principled method for identifying interaction
effects by order. We evaluate the model on hypothetical,
synthetic, and real-world datasets—with and without alter-
native features—and show that it matches or exceeds the
predictive performance of state-of-the-art baselines while
providing greater interpretability and insight into the under-
lying drivers of choice behavior.

1.1 Literature Review

A substantial body of early work in marketing and cogni-
tive science has examined context-dependent effects (Si-
monson, 1989; Tversky & Simonson, 1993; Simonson &
Tversky, 1992; Tversky & Kahneman, 1991; Huber et al.,
1982). Rieskamp et al. (2006) provides a comprehensive re-
view of empirical findings that challenge the assumptions of
rational choice theory. The universal logit model—also
known as the mother logit—was introduced by McFad-
den et al. (1977) and shown to approximate any discrete
choice probability function (McFadden, 1984) by allowing
for context-dependent utilities. Batsell & Polking (1985)
further specified this framework as a high-order interaction
utility model. Besides, various context-dependent models
have been proposed. These include models with menu-
dependent consideration sets (Brady & Rehbeck, 2016),
stochastic preference structures (Berbeglia & Venkatara-
man, 2018), pairwise utility formulations (Ragain & Ugan-
der, 2016), contextual ranking models (Seshadri et al., 2020;
Bower & Balzano, 2020; Makhijani & Ugander, 2019), and
welfare-based frameworks that capture substitutability and
complementarity (Feng et al., 2018).

This work takes (Batsell & Polking, 1985) as a conceptual
starting point. While theoretically expressive, this model
presents significant estimation challenges, as the number of
interaction terms can grow exponentially with the size of
the choice set. To address tractability, much of the existing
literature focuses on first-order context effects, which offer
a compromise between interpretability and computational
efficiency. These models are typically applied in featureless
settings with small item universes, as their complexity still
scales quadratically with the number of alternatives. The
first-order interaction model—also known as the context
logit or Halo model—has been explored in Maragheh et al.
(2018), Seshadri et al. (2019), and Yousefi Maragheh et al.
(2020). To capture low-rank structures, Li et al. (2021) and
Ko & Li (2023) incorporate self-attention mechanisms into
the Halo model. Separately, column generation approaches
have been proposed for estimating generalized stochastic
preference models (Berbeglia & Venkataraman, 2018), as
in Jena et al. (2022). Tomlinson & Benson (2021) extends
the Halo model to incorporate features, but its reliance on a
linear context structure limits its capacity to capture richer
interactions in high-dimensional settings.

To address scalability and capture richer nonlinear context
effects, recent work has explored deep learning architec-
tures. Deep Sets (Zaheer et al., 2017), which ensure per-
mutation invariance, have been adapted to choice model-
ing through set-dependent aggregation mechanisms (Rosen-
feld et al., 2020), though primarily in featureless settings.
Pfannschmidt et al. (2022) propose two neural architectures
that incorporate features, one limited to first-order effects
and the other entangling all higher-order interactions, mak-
ing interpretation difficult. Residual net-based (Wong &
Farooq, 2021) transformer-based (Wang et al., 2023; Peng
et al., 2024) models integrate residual connection and/or at-
tention mechanisms, improving predictive performance but
often at the expense of interpretability, with all-order inter-
actions entangled. In contrast, our model retains deep archi-
tectures’ expressiveness while enabling explicit control over
interaction order, yielding a transparent and interpretable
framework for context-dependent choice.

Several related approaches address choice modeling from
different angles. Context-independent models such as RUM-
net (Aouad & Désir, 2022) and TasteNet (Han et al., 2020)
assume stable alternative utilities across choice sets. Graph-
based models (Tomlinson & Benson, 2024; Zhang et al.,
2024) capture alternative interactions using Graph Neural
Network. Context-dependent models have also been ex-
plored in tasks like choice-set optimization (Tomlinson &
Benson, 2020).

2 Preliminaries

2.1 Choice Model

Let S denote a finite universe of alternatives. A choice
set is any non-empty subset S ⊆ S, and a choice model
specifies a probability distribution Pj(S) over the elements
of S. That is, for any j ∈ S, Pj(S) denotes the probability
that alternative j is chosen from the set S.

A general and expressive framework for modeling such prob-
abilities is McFadden’s universal logit model (McFadden
et al., 1977; McFadden, 1984). For each j ∈ S, define a
utility function uj(T ), which represents the utility of alter-
native j when the context is the subset T ⊆ S \ {j}. Given
a choice set S, the probability of choosing alternative j ∈ S
is defined as

Pj(S) =
exp (uj(S))∑

k∈S exp (uk(S))
.

This formulation is called the universal logit model because
it can approximate any choice function by defining the util-
ity function uj(S) as the logarithm of the probability of
choosing j from the set S. It generalizes the Multinomial
Logit model, which assumes that uj(S) = υj is constant
and independent of the choice set.
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2.2 Context Effects

In general, the utility of an alternative j ∈ S can depend
not only on its own characteristics but also on the specific
composition of the choice set S ⊆ S in which it appears.
That is, the presence or absence of other alternatives in
S may influence the perceived attractiveness of j. This
phenomenon, known as the Halo effect or context effect
(Tversky & Simonson, 1993), represents a departure from
classical assumptions in discrete choice modeling, such as
the Independence of Irrelevant Alternatives, which posit
that utility is context-independent.

In the literature, context effect is typically discussed in the
featureless setting, where each alternative has no features
and is represented by a one-hot vector. To formally charac-
terize context effects, we consider the following inclusion-
exclusion-style decomposition of the utility function uj(S)
(Batsell & Polking, 1985; Seshadri et al., 2019):

uj(S) = vj(∅)+
∑

j1∈S\{j}

vj({j1})+
∑
j1 ̸=j2
∈S\{j}

vj({j1, j2})

+ · · ·+ vj(S \ {j}) (1)

where the set function vj(·) represents the marginal contri-
bution of a subset T ⊆ S \ {j} to the utility of alternative
j. In this decomposition, vj(∅) denotes the intrinsic or
context-independent utility of j; vj({j1}) captures first-
order (pairwise) effect, such as how the presence of a single
other alternative j1 influences the utility of j; vj({j1, j2})
captures second-order effects, reflecting how pairs of alter-
natives jointly influence the utility of j; and so on up to
vj(S \ {j}), which encodes the full high-order effect of all
remaining alternatives.

The decomposition (1) makes it possible to disentangle
the utility impact of different interaction levels, allowing
us to model subtle behavioral phenomena that cannot be
captured by additive or context-independent utility spec-
ifications. If all first-order and above terms vanish (i.e.,
vj(T ) = 0 for all |T | ≥ 1), the model reduces to a context-
independent utility framework. Many well-documented be-
havioral choice anomalies can be understood as manifesta-
tions of non-zero context effects. We follow the framework
of Yousefi Maragheh et al. (2020) to reinterpret common
effects:

• Decoy effect: The presence of a clearly dominated alter-
native k increases the utility of a dominating option j,
reflected in vj({k}) > 0.

• Similarity effect: The utility of alternative j decreases
due to the presence of a similar option k, indicated by a
negative first-order term vj({k}) < 0.

• Compromise effect: The presence of extreme options
k and l enhances the attractiveness of an intermediate
option j, modeled by a positive second-order interaction
vj({k, l}) > 0.

3 Modeling the Context Effects in the
Presence of Features

We now formalize our modeling framework of context ef-
fects in the settings where each alternative is associated with
a feature vector. Let S be the universe of all alternatives,
and suppose that each item j ∈ S is described by a feature
vector xj ∈ Rdx . Throughout, we assume the size of any
choice set S is upper bounded by J . To maintain a consis-
tent domain for the utility function uj(·), we assume the
choice set S is always padded (if necessary) to a fixed size
J using placeholder or null alternatives. Equivalently, when
|S| < J , one may define uj = −∞ for j = |S|+ 1, . . . , J ,
implying that the choice probability is zero for these al-
ternatives. The value of the utility function is taken from
the extended real line R̄ = R ∪ {−∞}. In actual imple-
mentation, we apply a binary mask µ ∈ {0, 1}J to ensure
numerical stability. Our goal is to model the utility of each
alternative j ∈ S as a function of its feature vectors, in
a way that accounts for context-dependent effects among
alternatives.

3.1 Utility Decomposition and Permutation
Equivariance

Observe that the summation in (1) is over unordered sub-
sets S, thereby the utility function uj(S) is invariant to
permutations of the other alternatives in S. Extending to
the feature-based setting, this means the utility assigned to
alternative j depends only on the feature vectors of S \ {j}
and not on the order in which the alternatives appear. On
the other hand, to facilitate neural network parameterization
that will be discussed in the next subsection, we treat the
choice set S as an ordered tuple of indices (1, . . . , |S|), and
represent the corresponding input feature matrix as

XS := [x1, . . . , x|S|, OJ−|S|] ∈ Rd×J ,

where OJ−|S| is a d × (J − |S|) zero matrix to pad the
feature matrix to a fixed size d× J . This ordering enables
the use of standard neural net architectures that operate over
fixed-format inputs. However, since the true choice behavior
is inherently invariant to the ordering of alternatives, it is
critical that the model respects this symmetry. This moti-
vates the explicit incorporation of such invariance into the
model design.

To formalize this idea, with slight abuse of notation, we
denote the utility function as uj(XS) to emphasize that it is
a function of the feature matrix XS , which is ordered by the
indices of the alternatives in S. We require that the utility
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function uj(XS) satisfies the property of permutation equiv-
ariance with respect to the choice set S. Recall a function
f : Rd×J → R̄J is permutation equivariant (Zaheer et al.,
2017) if

fj(xπ(1), . . . , xπ(J)) = fπ(j)(x1, . . . , xJ), ∀j = 1, . . . , J,

for any permutation π of the indices 1, . . . , J . This
means that if the input feature vectors are permuted from
(x1, . . . , xJ) to (xπ(1), . . . , xπ(J)), the output of the func-
tion is permuted accordingly. We have the following result.

Proposition 3.1. Every utility function u : Rdx×J → R̄J

that is permutation equivariant can be decomposed as

uj(XS) =
∑

T⊂S\{j}

vj(XT∪{j}), (2)

where vj is a function over subsets of feature vectors that
includes xj and is itself permutation equivariant in its argu-
ments.

Here, XT∪{j} ∈ Rdx×J denotes the matrix formed by
replacing the feature vectors not in the subset T ∪ {j}
with zero. Proposition 3.1 shows that any permutation-
equivariant utility function admits a representation as a sum
over permutation-equivariant functions of subsets of feature
vectors. This formulation mirrors the featureless decompo-
sition in (1), but with utility now defined as functions of
feature vectors. In particular, if each alternative is repre-
sented by a one-hot vector, then vj(·) becomes a table over
discrete subsets and (2) reduces to the original context-effect
decomposition (1) without features. Intuitively, the function
vj(XT∪{j}) captures the contribution to utility from the in-
teraction between xj and each subset T of the remaining
alternatives. In our constructive proof, we define vj as

vj(XT∪{j}) :=
∑
R⊂T

(−1)|T |−|R|uj(xj , XR). (3)

This provides an explicit decomposition form for the
First-Evaluation-Then-Aggregate (FETA) approach in
Pfannschmidt et al. (2022), which only focuses on the
first-order effect due to scalability limitations in modeling
higher-order interactions; whereas their First-Aggregate-
Then-Evaluation (FATE) architecture entangles all higher-
order effects. In contrast, our explicit decomposition allows
us to construct neural architectures that capture higher-order
effects and systematically identify them, as detailed in the
sections that follow.

3.2 Neural Net Parameterization

Based on the discussion above, we can now construct a
neural network architecture, termed as DeepHalo, to param-
eterize the utility function uj(XS) in a way that captures

context effects of varying orders. Using (2), we rewrite the
utility function as

uj(XS) =

|S|−1∑
p=0

∑
T⊂S\{j},|T |=p

vj(XT∪{j}).

The inner sum is over all subsets T of size p from the set
S \{j}, capturing the contribution of p-th order interactions.
The outer sum is over all possible orders of interactions,
from 0 to |S| − 1. We now describe a neural architecture
that parameterizes uj(XS) as a sum of interaction terms of
increasing order.

Pairwise Interactions We start with the first-order inter-
action:

u
(1)
j (XS) :=

∑
T⊂S\{j},|T |=1

vj(XT∪{j}) =
∑

k∈S\{j}

vj(X{j,k}).

One way to model the pairwise terms {vj(X{j,k})}j∈S is
to use a multi-layer perceptron (MLP) that maps the con-
catenation [xj ;xk] to a vector in R|S| (Pfannschmidt et al.,
2022). While expressive, this approach can be computa-
tionally expensive and does not scale well to higher-order
interactions. To address this, we propose a more efficient
form.

Let z0 := [χ(xj)]j∈S , where χ : Rdx → Rd0 is a shared
nonlinear embedding function applied to each alternative.
The use of a shared transformation ensures permutation
equivariance. We define a context summary vector by lin-
early aggregating the embedded representations of all alter-
natives:

Z̄1 :=
1

S

∑
k∈S

W 1z0k ∈ RH ,

where W 1 ∈ RH×d is a shared linear projection across
alternatives. Here, H denotes the number of interaction
heads, analogous to the number of channels or attention
heads, and thereby controls the diversity of the interaction
patterns. Let ϕ1

h : Rd → Rd, h = 1, . . . ,H , be nonlinear
transformations applied to each embedded alternative. For
each j ∈ S, define

z1j := z0j +
1

H

H∑
h=1

Z̄1
h · ϕ1

h(z
0
j ),

where the aggregated context Z̄1
h is modulated by a nonlin-

ear transformation of the base embedding z0j . This operation
introduces first-order interactions, allowing the representa-
tion of alternative j to depend on the presence of other alter-
natives in the set. The resulting utility u

(1)
j (XS) = β⊤z1j

can be interpreted as the utility of alternative j when consid-
ering the first-order interactions with all other alternatives
in the choice set.
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Higher-order Interactions We now extend the above
structure to capture higher-order interactions. For each
l = 2, . . . , L, we recursively define

Z̄l :=
1

S

∑
k∈S

W lzl−1
k , (4)

zlj := zl−1
j +

1

H

H∑
h=1

Z̄l
h · ϕl

h(z
0
j ), (5)

where W l ∈ RH×d and ϕl
h : Rd → Rd are head-specific

nonlinear transformations applied to the base embedding.
This recursive formulation incrementally increases the order
of interactions. The context summary Z̄l aggregates global
information from the previous layer, while the nonlinear
transformations of the base embedding modulate how this
summary influences each alternative. As a result, each layer
introduces an additional higher-order interaction, while the
residual connection preserves the lower-order effects accu-
mulated from previous layers. Finally, we set

uj(XS) = β⊤zLj .

Permutation equivariance is maintained at each layer
through symmetric aggregation in (4) (Zaheer et al., 2017).
The layered residual structure (5) builds the utility represen-
tation step by step, with the l-th layer capturing interaction
effects up to order l. Compared to prior neural choice mod-
els (Wong & Farooq, 2021; Pfannschmidt et al., 2022; Wang
et al., 2023; Peng et al., 2024), which entangle all interaction
orders through deeply nested nonlinearities, our architecture
incrementally and explicitly controls the interaction order
at each layer. This yields both interpretability and architec-
tural modularity, allowing practitioners to tailor the model’s
complexity to the degree of the context effects.

4 Discussions
In this section, we present alternative architectures for Deep-
Halo, establish its universal approximation property in the
classic featureless setting, and discuss the identification of
context effects; additional details are provided in the supple-
mental material.

4.1 Residual Connection for Large Choice Sets

The recursive structure defined in (4) uses exactly l layers
to capture l-th order interactions. When the choice set S
contains a large number of alternatives, the maximum in-
teraction order |S| − 1 may be large, leading to very deep
architectures. To improve computational efficiency while
retaining expressiveness, we can consider a polynomial ag-
gregation in place of (4):

Z̄l =
1

S

∑
k∈S

W lσ(zl−1
k ), (6)

where σ is an element-wise polynomial activation, and con-
sider a more flexible residual function:

zlj = zl−1
j +

1

H

H∑
h=1

Φl
h

(
Z̄l
h, ϕ

l
h(z

0
j )
)
, (7)

where Φl
h is a polynomial function on R× R. For example,

setting σ to be quadratic and Φl
h to be a linear transformation

of the second argument, we get a ResNet-like structure

zlj = zl−1
j +

1

S

S∑
k=1

W lσ(zl−1
k ). (8)

4.2 Specialization to the Featureless Setting

A special case of our framework arises in the featureless set-
ting, where each alternative is identified solely by a unique
index in the finite universe S = {1, . . . , J}. In this case,
the feature vector of the j-th alternative, denoted by 1S

j ,
is a one-hot vector of dimension J with a one in the j-th
position if j ∈ S and zero elsewhere. Denote by ej the j-th
unit vector in RJ , and by eS =

∑
j∈S ej be the indicator

vector of the set S.Identifying eS with the set S, the utility
decomposition (1) can be viewed as a degree-(J − 1) multi-
variate polynomial uj(eS) =

∑J−1
p=0 wp(eS), where wp(eS)

is a degree-p polynomial of eS . We now show how our
recursive architecture naturally expresses such polynomials.
Suppose the base embedding function χ is the identity map
and let the interaction modulator ϕl

h(1
S
j ) = qlhjej if j ∈ S

and zero otherwise, where ql := [qlhj ]hj ∈ RH×J is a learn-
able parameter matrix.Under this setup, the recursion (4)(5)
becomesz1j = z0j + 1

HS

∑H
h=1

(∑
k∈S W 1

hk

)
· q1hjej

zlj = zl−1
j + 1

HS

∑H
h=1

(∑
k∈S W l

h,·z
l−1
k

)
· qlhjej ,

(9)

where l = 2, . . . , L, and W l
h,· ∈ R1×J denotes the

h-th row of the matrix W l ∈ RH×J . Define a matrix
Θl := 1

HS

∑H
h=1(q

l
h,·)

⊤W l
h,· ∈ RJ×J , which has rank

at most H . Let yl :=
∑J

j=1 z
l
j ∈ RJ denote the aggregate

representation at layer l. Then, with y0 = eS , the recursion
(9) implies

yl = yl−1 +Θl(yl−1 ⊙ eS), l = 1, . . . , L,

where ⊙ denotes the Hadamard product, and the utility of
alternative j is given by uj(S) = yLj .

Thus, our model reduces to an L-layer residual network
with residual connections between the input layer and each
subsequent layer, where each layer applies a rank-H linear
transformation to a masked (context-aware) version of the
previous layer’s output. By induction, each yl is an (l + 1)-
degree polynomial of eS . When L = 1, this model reduces
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to the lower-rank context-dependent random utility model of
Seshadri et al. (2019) of the low-rank Halo MNL model (Ko
& Li, 2023). When L = 1 and H = J , it recovers the full-
rank context-dependent random utility model of (Seshadri
et al., 2019) or the contextual MNL (CMNL) model of
Yousefi Maragheh et al. (2020).

More generally, following Section 4.1, if we use an element-
wise quadratic activation σ(·) = (·)2, the recursion becomes

yl = yl−1 +Θlσ(yl−1), l = 1, . . . , L. (10)

Under this formulation, it takes at most ⌈log2(J−2)⌉ layers
to capture all orders of interactions of the J alternatives.

4.3 Estimating the Context Effects

Observe that due to the translation invariance of the softmax
function, the context effect coefficients vj(T ), T ⊂ S \{j},
in (1) are not directly identifiable from the choice proba-
bilities unless additional linear constraints are imposed on
these coefficients (Seshadri et al., 2019). Nonetheless, the
following quantity, which we call the relative context effect,
is identifiable (see also Park & Hahn (1998)):

αjk(T ) =
(
vj(T ) + vj(T ∪ {k})

)
−
(
vk(T ) + vk(T ∪ {j})

)
(11)

where j, k ∈ S \ T . It captures the marginal effect of the
subset T on the utility difference between alternatives j and
k. To estimate αjk(T ), it suffices to first evaluate our neural
network on subsets R ∪ {j, k} for all R ⊂ T , and then use
the formula (3) to compute the four terms in (11) to obtain
the desired quantity.

5 Empirical Study
In this section, we conduct experiments to evaluate the pro-
posed model. Detailed experimental settings are provided
in the supplementary material.

5.1 Featureless Datasets

Hypothetical Data with Halo Effects To demonstrate
our model’s efficacy in capturing and recovering context
effects, we use a hypothetical beverage market share dataset,
originally employed by Batsell & Polking (1985) and Park
& Hahn (1998). Suppose we have four products—Pepsi,
Coke, 7-Up, and Sprite—in the universe, denoted as S =
{1, 2, 3, 4}, respectively. Assume the market shares for all
possible choice sets are as listed in Table 1, and follow
the hypothetical behavioral rules: (a) consumers view the
products primarily as a choice between a cola and a non-
cola; (b) they almost always choose Pepsi over Coke when
both are available and a cola is desired; and (c) they almost

Table 1: Beverage market share across different choice sets.

Choice Set 1 2 3 4

(1,2) 0.98 0.02 – –
(1,3) 0.50 – 0.50 –
(1,4) 0.50 – – 0.50
(2,3) – 0.50 0.50 –
(2,4) – 0.50 – 0.50
(3,4) – – 0.90 0.10

(1,2,3) 0.49 0.01 0.50 –
(1,2,4) 0.49 0.01 – 0.50
(1,3,4) 0.50 – 0.45 0.05
(2,3,4) – 0.50 0.45 0.05

(1,2,3,4) 0.49 0.01 0.45 0.05
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Figure 1: Visualization of the relative Halo effect among
beverages.

always choose 7-Up over Sprite when both are available and
a non-cola is desired.

For each conceivable choice set, we generate 2000 samples,
where each choice outcome is drawn according to the market
share as the choice probability. We then fit a quadratic-
activated DeepHalo model with depth L = 2, as specified
in Section 4.2. Subsequently, we recover the identifiable
relative context effects following the procedure in Section
4.3 and visualize them as a heatmap in Figure 1. Each
colored cell represents the marginal influence of a source
set T on the relative utility between a product pair (j, k).
The column labeled by the empty set (∅) corresponds to the
zero-order relative Halo effect between alternatives j and k.

This visualization highlights the interpretability of our
model. For example, in the first column, the red cells for
pairs (2, 3) and (2, 4) indicate that, the presence of product 1
(Pepsi) lowers the utility of product 2 (Coke) relative to prod-
ucts 3 and 4 (7-Up and Sprite), making Coke less likely to
be chosen. This exactly reflects the “Pepsi-over-Coke” pref-
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erence captured by logic rule (b) above. A similar pattern
appears in the top-right corner of the heatmap, where prod-
uct 1 consistently has higher zero-order utility than product
2, reaffirming that Pepsi is inherently more preferred than
Coke, regardless of context.

Synthetic Data with High-order Effects To empirically
assess how model depth influences expressiveness under a
fixed parameter budget, we construct a synthetic dataset with
a universe of alternatives S = {1, . . . , 20} and choice sets
of fixed cardinality 15. For each such choice set, we sample
a choice probability vector uniformly from the probability
simplex on R15 and generate 80 i.i.d. choice observations.
This results in a dataset with 1,240,320 training samples and
can implicitly incorporate higher-order interactions up to
14-th order. We report the training root mean squared error
(RMSE) of the predicted choice probabilities in Figure 2
and Figure 3.
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Figure 2: Effect of model depth on approximation error
(RMSE).
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Figure 3: Training loss curve across epochs.

Recall from Section 4.2 that with quadratic activations, an L-

layer network can represent interactions up to 2L−1-th order.
In Figure 2, we observe that when the number of parameters
is fixed (either 200k or 500k), RMSE decreases significantly
as depth increases up to 5, beyond which 25−1 exceeds the
choice set size of 15. For deeper models (L ≥ 6), further
performance gains are marginal. At fixed depth, models
with more parameters perform slightly better, as expected,
but increasing width alone does not compensate for insuffi-
cient depth. These results confirm that model expressiveness
scales exponentially with depth and that depth is the domi-
nant factor for capturing high-order interactions in choice
behavior.

Real Data To investigate the necessity of modeling high-
order context effects, we evaluate the empirical performance
of our featureless model on three real-world datasets: Ho-
tel (Bodea et al., 2009), SFOwork and SFOshop (Seshadri
et al., 2019). The Hotel dataset records bookings from five
continental hotels. Following the preprocessing steps in
Berbeglia et al. (2022), we focus on the second hotel, where
each assortment includes up to 11 alternatives (including a
“leave” option). We use 1,845 observations for training and
465 for testing; due to the limited sample size, no separate
validation split is held out. The SFOwork and SFOshop
datasets contain travel mode choices in the San Francisco
Bay Area, with the former focused on work trips and the
latter on shopping trips. SFOwork provides 5,029 observa-
tions with up to 6 alternatives per choice set, and SFOshop
provides 3,157 observations with up to 8 alternatives. Both
datasets are partitioned into training, validation, and test
sets in an 8:1:1 ratio. All models are trained and evaluated
using the negative log-likelihood (NLL), and results are
reported in Table 2, alongside baseline methods including
Multinomial Logit (MNL), Multilayer Perceptron (MLP),
and Contextual MNL (CMNL) (Yousefi Maragheh et al.,
2020). Across all three datasets, DeepHalo achieves the
lowest NLL among the compared models. This consistent
performance highlights the value of modeling deep Halo
effects: MNL and MLP do not account for context effects,
and CMNL captures only first-order interactions.

5.2 Datasets with Features

We experiment on two real-world datasets of different scales:
the smaller LPMC transportation dataset (Hillel et al., 2018)
with 81,086 observations and the larger Expedia Hotel
Choice dataset (Adam et al., 2013) with 275,609 transac-
tions. The LPMC dataset, based on the London Travel De-
mand Survey, captures travel mode choices among walking,
cycling, public transport, and driving, with each alternative
described by 8 item-specific features and 17 shared fea-
tures (e.g., cost, travel time, gender, and age). The Expedia
dataset contains hotel search and booking records. After pre-
processing, each choice set includes up to 38 hotels, with 35

7
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Table 2: Negative log-likelihood (NLL) on the Hotel, SFOshop, and SFOwork datasets

Model Hotel SFOshop SFOwork

Train Test Train Test Train Test

MNL 0.7743 0.7743 1.7281 1.7262 0.9423 0.9482
MLP 0.7569 0.7523 1.5556 1.5523 0.8074 0.8120
CMNL 0.7566 0.7561 1.5676 1.5686 0.8116 0.8164
DeepHalo (Ours) 0.7479 0.7483 1.5385 1.5263 0.8040 0.8066

Table 3: Negative log–likelihood (NLL) on the LPMC and Expedia datasets (computed from detailed results).

Dataset Split MNL MLP TasteNet RUMnet DLCL ResLogit FateNet TCNet DeepHalo (Ours)

LPMC Train 0.8813 0.7036 0.7140 0.6923 0.7148 0.7080 0.6765 0.6744 0.6427
Test 0.8637 0.6870 0.6963 0.6779 0.6988 0.6915 0.6619 0.6577 0.6407

Expedia Train 2.6272 2.5693 2.5623 2.5565 2.5624 2.5540 2.5460 2.4965 2.5086
Test 2.6245 2.5805 2.5766 2.5782 2.5621 2.5692 2.5548 2.5343 2.5288

item-specific and 56 shared features (e.g., price, star rating,
destination).

We compare our model against a range of representative
feature-based baselines, including classic models such as
MNL and MLP, and recent neural approaches like Tas-
teNet (Han et al., 2020), RUMnet(Aouad & Désir, 2022),
ResLogit (Wong & Farooq, 2021), DLCL (Tomlinson &
Benson, 2021), FateNet (Pfannschmidt et al., 2022), and TC-
Net (Wang et al., 2023). Expressive models that account for
context effects, including DeepHalo, FateNet, and TCNet,
consistently outperform context-independent approaches
(MNL, MLP, TasteNet, and RUMnet) and the remaining
less expressive context-dependent ones on both datasets,
highlighting the importance of modeling contextual interac-
tions with sufficient flexibility in choice behavior. Among
them, DeepHalo generalizes the best consistently while of-
fering favorably improved interpretability compared to other
deep neural network models.

6 Conclusion
We proposed a neural framework for context-dependent
choice modeling that enables controlled modeling of inter-
action effects by order. While we focused on one specific
parameterization of higher-order effects, the broader frame-
work admits many alternatives. Exploring such variants of-
fers a promising direction for developing interpretable high-
capacity models with downstream applications in building
AI systems that reason about and adapt to human behavior.
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A Proofs and Derivations

A.1 Proof of Proposition 3.1

Proof. Consider the following form of v:

vj(XT∪{j}) :=
∑
R⊂T

(−1)|T |−|R|uj(xj , XR). (12)

Thanks to the permutation equivariance of uj , the function vj given by (3) is permutation equivariant. Indeed, for every
permutation π on T ∪ {j}, it holds that

vj(Xπ(T∪{j})) =
∑

Q⊂π(T )

(−1)|π(T )|−|Q|uj(XQ∪π(j))

=
∑
R⊂T

(−1)|T |−|R|uπ(j)(XR∪{j})

= vπ(j)(XT∪{j}),

where the second equality follows from the change of variable R = π−1(Q).

Next, let us verify that the function v given in (3) can express the utility function uj(XS). Indeed, for every S and
j = 1, . . . , |S|, using (3) we write

∑
T⊂S\{j} v(xj , XT ) as∑

T⊂S\{j}

∑
R⊂T

(−1)|T |−|R|u(xj , XR).

By switching the order of summation, this equals∑
R⊂S\{j}

u(xj , XR)
∑

T⊃R,T⊂S\{j}

(−1)|T |−|R|.

When R = S \ {j}, the inner sum is 1. Otherwise, the inner sum equals

|S|−1−|R|∑
k=0

(−1)k
(
|S| − 1− |R|

k

)
= 0|S|−1−|R| = 0.

This shows that ∑
T⊂S\{j}

v(xj , XT ) = uj(XS),

which completes the proof.

A.2 Derivation in Section 4.2

A.2.1 RECURSION FOR yl

Let us first write yl =
∑J

j=1 z
l
j with y0 = eS where zl is defined in (9). Since y0 = eS =

∑J
j=1 ej =

∑J
j=1 z

0
j , it implies

χ(x) = x being an identity mapping such that z0j = ej . Recall

Θl =
1

HS

H∑
h=1

(qlh,·)
⊤W l

h,·, Θl
jk =

1

HS

H∑
h=1

qlhjW
l
hk.

We write

z1j = ej +
1

HS

H∑
h=1

(∑
k∈S

W 1
hk

)
· q1hjej = ej +

∑
k∈S

Θ1
jkej .
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It follows that

y1 =

J∑
j=1

ej +

J∑
j=1

∑
k∈S

Θ1
jkej =

J∑
j=1

ej +

J∑
j=1

∑
k∈S

Θ1
jkekej = y0 +Θ1(eS ⊙ eS) = y0 +Θ1(y0 ⊙ eS).

For l = 2, . . . , L,

yl =

J∑
j=1

zl−1
j +

J∑
j=1

1

HS

H∑
h=1

(∑
k∈S

W l
h,·z

l−1
k

)
· qlhjej

=yl−1 +

J∑
j=1

1

HS

H∑
h=1

J∑
k=1

W l
hkq

l
hjy

l−1
k ej

=yl−1 +

J∑
j=1

J∑
k=1

Θl
jky

l−1
k ej

=yl−1 +Θl(yl−1 ⊙ eS)

as desired.

A.2.2 UNIVERSAL APPROXIMATION

We consider a flexible model by setting yl ∈ RJ′
with J ′ > J . Let Θ1 ∈ RJ′×J , Θl ∈ RJ′×J′

for l = 2, . . . , L and
W l ∈ RJ×J′

. {
y1 = Θ1eS ,

yl = yl−1 +Θl
(
yl−1 ⊙ y1

)
, l = 2, . . . , L.

We show inductively that there exists W l ∈ RJ×J′
such that W lyl can represent any up to l-th order interactions.

We first consider the base case l = 1. By definition of y1,

y1j =

J∑
k=1

Θ1
jkI(k ∈ S).

For j ∈ S, we can further write

y1j =Θ1
jjI(j ∈ S) +

J∑
k=1:k ̸=j

Θ1
jkI(k ∈ S)

=v1j (∅)I(j ∈ S) +

J∑
k=1:k ̸=j

v1j ({k})I(k ∈ S),

where v1j (∅) =: Θ1
jj , v1j ({k}) := Θ1

jk. For j > J , it can be set to any function value parameterized by Θ1
j,·eS provided

that S is not empty, which is independent of other yl−1
j ’s with j ≤ J . Without loss of generality, we can simply set

W 1 = [IJ ; 0] ∈ RJ×J′
to output W 1y1 = {y1j }j∈S , which represent any first-order interaction model.

Now suppose W l−1yl−1
j can represent any interaction model up to (l − 1)-th order with W l−1 = [IJ ; 0] ∈ RJ×J′

, which
means for any j = 1, . . . , J ,

yl−1
j =

∑
T⊆{1,...,J},|T |≤l−1

vl−1
j (T )

∏
k∈T

I(k ∈ S).

and for any j > J , yl−1
j can be set to any function value independent of other yl−1

j ’s with j ≤ J .
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For j = 1, . . . , J ′,

ylj =yl−1
j +

J′∑
j′=1

Θl
jj′y

l−1
j′

J∑
k=1

Θ1
j′kI(k ∈ S)

=yl−1
j +

J′∑
j′=1

Θl
jj′

∑
T⊆{1,...,J},|T |≤l−1

vl−1
j (T )

∏
k∈T

I(k ∈ S)

J∑
k′=1

Θ1
j′k′I(k′ ∈ S)

=ȳl−1
j +

∑
|T |⊆{1,...,J},k′∈{1,...,J},|T |∪{k}=l

J′∑
j′=1

Θl
jj′Θ

1
j′k′vl−1

j (T )
∏

k∈T∪{k′}

I(k′ ∈ S),

where ȳl−1
j is another function that can capture any up to l − 1-th order interaction by combining original yl−1

j with
the terms in the summation where k ∈ T . Since Θl

jj′ is independent of vl−1
j (T ), we can identify v̂lj(T ∪ {k}) =∑J′

j′=1 Θ
l
jj′Θ

1
j′k′v

l−1
j (T ) for any T ∪ {k} = l, which use J ′ basis to approximate any l-th order interaction. Thus

ylj = ȳl−1
j +

∑
T⊆{1,...,J},|T |=l

v̂lj(T )
∏
k∈T

I(k ∈ S).

With W l = [IJ ; 0] ∈ RJ×J′
, W lyl = [ylj ]j∈S approximate any up to l-th order interactions. By induction, yLj can capture

up to L-th order interaction with sufficiently large J ′, where WL can be set to [IJ ; 0] ∈ RJ×J′
without loss of generality.

A.2.3 QUADRATIC ACTIVATION

Here we explain why the formulation (10) needs at most ⌈1 + log2(J − 1)⌉ layers to capture all orders of interactions of the
J alternatives.

Starting l = 1, given y0 = eS ,
y1 = eS +Θ1(eS ⊙ eS) = eS +Θ1eS ,

thus

y1j = I(j ∈ S) +

J∑
k=1

Θ1
jkI(k ∈ S) =: v1j (∅)I(j ∈ S) +

J∑
k=1:k ̸=j

v1j ({k})I(k ∈ S),

which contains up to first-order interaction.

Now consider l = 2, . . . , L. Assume yl−1 contains up to p-th order interaction such that

yl−1
j := vl−1

j (∅)I(j ∈ S) +
∑

{j1}⊆S\{j}

vl−1
j ({j1})I(j1 ∈ S) + . . .

+
∑

{j1,...,jp}⊆S\{j}

vl−1
j ({j1, . . . , jp})

p∏
i=1

I(ji ∈ S).

Then the term

ylj = yl−1
j +

J∑
k=1

Θl
jk(y

l−1
j )2.

can contain a high-order term for j′1 ̸= . . . ̸= j′p ̸= j′1 ̸= . . . ̸= j′p,

J∑
k=1

Θl
jkvj({j1, . . . , jp})vj({j′1, . . . , j′p})

p∏
i=1

(
I(ji ∈ S)I(j′i ∈ S)

)
,

which is a 2p-th order interaction. By induction, with L recursion, the model contains up to 2L−1-th order interactions.
Therefore, to represent the full order interaction for J products with up to J − 1-th order interaction, we need at most
⌈1 + log2(J − 1)⌉ recursions.
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A.3 Derivation in Section 4.3

In this section, we derive the identifiability property for the parameter α as defined in (11). Recall S denotes the full set of
products. Suppose for a fixed product pair {i, j} ⊆ S , the dataset contains observed market shares for all choice sets in the
collection

E = {{i, j} ∪B : B ⊆ S \ {i, j}} .

We claim that the system of equations defined by (1) is square and full-rank such that the relative halo effect parameters
{αjk(T )}B⊆S\{i,j} are uniquely identifiable from the observed data.

To prove this claim, we need to prove that the number of new variables, denoted as Nα, is the same as the number of
equations associated with them (from the choice probability of each choice set), denoted as Nep, and

Nep =

n∑
q=2

(
n

q

)
× (q − 1). (13)

Note that the summation
∑n

q=2

(
n

n−q

)
=

∑n
q=2

(
n
q

)
is the number of subset of all items whose size is smaller than n− 2.

These sets can be the source set T of halo effect difference α, since there is at least one pair of items out of these sets.
Suppose the number of items in the subsets is q. We only need q − 1 halo effect differences to calculate all pair-wise
differences within q items. Therefore,

Nα = Nep =

n∑
q=2

(
n

q

)
× (q − 1). (14)

Furthermore, prior work such as Batsell & Polking (1985) and Park & Hahn (1998) has shown that the corresponding
coefficient matrix is full-rank, as the system represents a saturated model. This guarantees the linear independence of
equations, and hence, the parameters α are identifiable.

B Implementation Details

B.1 Featureless Models

Model Width In our formulation (Equation 9 and Equation 10), we initially constrain the model width to match the size
of the item universe J , setting the shape of Θl to RJ×J . This aligns our model with prior work, such as the low-rank Halo
MNL model (Ko & Li, 2023) and contextual MNL (Yousefi Maragheh et al., 2020).

While a width of J suffices to capture zeroth- and first-order Halo effects, it is inefficient for higher-order interactions. As
the number of possible interactions grows exponentially with order, deeper layers must activate and compose increasingly
complex patterns from lower-order terms. However, under a fixed width, scaling model capacity necessitates increasing
depth, which complicates optimization and training stability.

To alleviate this limitation, we expand the width of the first layer to Θ1 ∈ RJ′×J , and all subsequent layers to Θl ∈ RJ′×J′

for l ≥ 2. After the final layer, we project yL back to dimension J using a linear transformation WL ∈ RJ×J′
. By choosing

J ′ > J , we effectively increase model capacity. We refer to J ′ as the model width. In essence, this over-parametrizes
lower-order representations to better facilitate the modeling of higher-order effects. We refer the readers to more details
about this in Appendix A.2.2.

B.2 Feature-based Models

Non-Linear Embedding χ In our implementation, the non-linear embedding function χ is defined as a three-layer
multilayer perceptron (MLP) with ReLU activations after each hidden layer and a final layer normalization. The network
maps the input x ∈ Rdx to an embedding space of dimension d:

χ(x) = LayerNorm (W3 · ReLU (W2 · ReLU (W1x+ b1) + b2) + b3) , x ∈ Rdx (15)

where W1 ∈ Rd×dx , W2,W3 ∈ Rd×d, and b1, b2, b3 ∈ Rd. This embedding function is shared by all items in the choice set.
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Head-specific Nonlinear Transformations ϕl
h We implement the head-specific non-linear transformation ϕl

h as a two-
layer MLP. The first layer is specific to each head h, while the second (output) layer is shared across all heads. A LayerNorm
is applied after the second layer to stabilize training.

ϕl
h(z

0
j ) = LayerNorm

(
W l

shared · ReLU(W l
hz

0
j + blh) + blshared

)
, z0j ∈ Rd (16)

where z0j = χ(xj) ∈ Rd, W l
h ∈ Rd×d, W l

shared ∈ Rd×d, and blh, b
l
shared ∈ Rd.

Dummy Items To enable parallel computation and efficient model training, all choice sets are padded to a uniform size.
We pad dummy items using zero vectors in the input space, i.e., 0dx , and explicitly enforce their latent representations to
remain inactive throughout the network. Specifically, after each residual layer, we reset Zl

j = 0d for any dummy item j,
ensuring that dummy items do not accumulate or propagate any signal across layers. Since σ is defined as an element-wise
polynomial activation function, it satisfies σ(0) = 0, ensuring that the aggregation process Equation 6 remains unaffected by
dummy items. In the final softmax mapping, we set all dummy items’ utility value to be −inf . This mechanism guarantees
that dummy items do not affect contextual aggregation or final predictions, thereby preserving the integrity of the learned
representations.

C Empirical Study Details

C.1 Featureless Experiments

C.1.1 SYNTHETIC DATA EXPERIMENTS

Data Generation In this experiment, we directly sample the choice probability vector uniformly from the 15-dimensional
probability simplex R15, rather than sampling each individual halo effect from a distribution—such as the standard
normal—and then computing the corresponding choice probabilities. While the latter approach may seem more intuitive or
realistic, it would require evaluating the choice probabilities exponentially many times due to the complex structure of the
choice sets, making it computationally inefficient. Importantly, any choice data can be represented by an appropriate system
of halo effects (Batsell & Polking, 1985), implying that it is not necessary to explicitly specify the underlying halo effects.
This justifies the feasibility and practicality of our direct sampling approach.

Experiments Setup We conduct two sets of experiments under parameter budgets of 200k and 500k, respectively. For
each budget, we vary the model depth from 3 to 7. The batch size and learning rate are fixed to be 1024 and 1× 10−4. All
models are trained for 500 epochs. The detailed configurations and corresponding training results are summarized below
(see Table 4). All experiments, including hypothetical data experiments, are conducted on a single Google Colab T4 GPU
with Adam optimizer.

Table 4: Model configurations with depth, width, parameter count, and in-sample training RMSE.

Group Depth Width Param Count Training RMSE

200k

3 306 200.736k 0.0434
4 251 200.298k 0.0243
5 218 200.124k 0.0202
6 195 199.290k 0.0188
7 179 200.838k 0.0183

500k

3 489 499.758k 0.0419
4 401 500.448k 0.0156
5 348 500.424k 0.0140
6 312 501.384k 0.0131
7 285 501.030k 0.0130

In these experiments, we use the mean squared error (MSE) between the predicted choice probabilities and the ground-truth
one-hot choice vectors as the training objective. This allows us to use training RMSE as a proxy for evaluating the model’s
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approximation error. Note that the training RMSE reported in Table 4 and Figure 3 is not computed directly from the loss.
Instead, for each choice set, we first compute the empirical choice frequency vector and then measure the RMSE between
this vector and the model’s predicted choice probabilities. A perfect fit would result in an RMSE of zero. This evaluation
method highlights the expressiveness of the model, as it directly reflects how well the predicted distributions capture the
underlying variability in observed choices, beyond merely fitting to individual samples.

C.1.2 REAL DATASET EXPERIMENTS

Hotel From our experimental results, the contextual effects are more pronounced in the second hotel, suggesting that user
choices in this setting are more strongly influenced by the composition of the choice set. As a result, we select the second
hotel as a case study to compare our method against baseline models, in order to better evaluate their ability to capture such
contextual dependencies.

SFOwork and SFOshop The SFOwork dataset includes six transportation modes: driving alone, shared ride (2), shared
ride (3+), bike, transit, and walk. The SFOshop dataset comprises eight transportation modes: SharedRide (2+) and
DriveAlone, SharedRide (2/3+), DriveAlone, SharedRide (3+), walk, transit, SharedRide (2), and bike. These datasets
originate from Koppelman & Bhat (2006), and we use the preprocessed versions provided by Seshadri et al. (2019).

Table 5: DeepHalo hyper-parameters and training settings for experiments on Hotel, SFOshop, and SFOwork datasets.

Hyper-parameter Hotel SFOshop SFOwork

Model Width J ′ 3 20 20
Layers L 4 5 5
Polynomial Activation σ Quadratic Quadratic Quadratic
Batch size Full Batch 256 256
Learning Rate 1× 10−3 1× 10−4 1× 10−4

Experiments Setup For the HOTEL dataset, due to its small size and the absence of a dedicated validation split, we train
the model using a full-batch setting for 300 epochs without early stopping. To mitigate overfitting, we adopt a compact
model configuration with reduced width and fewer parameters. In contrast, for experiments on the SFO datasets (SFOSHOP
and SFOWORK), we tune the number of layers L ∈ {4, 5} and the intermediate width J ′ ∈ {10, 20} based on validation
performance. Early stopping is applied with a patience of 10 epochs to prevent overfitting. All experiments are conducted
on a single Google Colab T4 GPU with Adam optimizer.

Reproducibility Remark We observe that across all three datasets, the experimental results are highly stable: the standard
deviations of both NLL and accuracy over 5 runs are consistently close to zero. Moreover, top-1 accuracy, while intuitive,
shows limited sensitivity in reflecting model performance differences due to the relative simplicity of the tasks. Therefore,
for brevity and clarity, we omit the full multi-run result tables from the appendix. We have, however, ensured that all
reported findings are representative and reproducible.

C.2 Feature-based Experiments

C.2.1 DATASETS DETAILS

Expedia Dataset For data preprocessing, we generally follow the procedures outlined in Aouad & Désir (2022). Specifi-
cally, we one-hot encode the categorical features site id, visitor location country id, prop country id,
and srch destination id, grouping all categories with fewer than 1,000 occurrences into a special category labeled
-1. Continuous features such as price usd and srch booking window are filtered to remove unrealistic values: we
retain only searches with hotel prices between $10 and $1,000 and booking windows shorter than one year. A logarithmic
transformation is applied to both features to reduce skewness. Missing values across the dataset are imputed using the
placeholder value -1.

We further filter out all records where no hotel was chosen, as such cases are not informative for modeling discrete choice
and constitute a large portion of the raw data. To handle dummy items introduced for padding, we assign all input features
of these items to zero vectors. After preprocessing, we obtain a dataset consisting of 275,609 transaction observations, each
described by 35 item-specific features and 56 shared features.
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LPMC Dataset The LPMC dataset is preprocessed by constructing both item-specific and item-shared features for the
four available transportation modes: walk, cycle, public transit, and drive. Each alternative is represented by a 4-dimensional
item-specific feature vector that includes duration (e.g., walking time, cycling time, or transit access/rail/bus/interchange
time for public transit), cost (such as fuel prices, transit fare, or congestion charges), number of interchanges (for transit),
and a congestion level indicator (for driving).

In addition, we incorporate a set of shared features that are common across all items within a choice set. These include
numerical variables such as straight-line distance, user age, gender (binary), driver’s license status (binary), and the number
of cars owned. Categorical variables like day of the week and trip purpose are encoded using one-hot representations. After
preprocessing, the final dataset includes 8 item-specific features and 17 shared features for each sample.

C.2.2 EXPERIMENTS DETAILS

Experiments Setup We tune the hyperparameters of DeepHalo based on validation performance. Specifically, we search
the number of layers L ∈ {4, 5}, embedding dimensions d ∈ {32, 64}, and hidden dimensions H ∈ {8, 16}. For all
configurations, we adopt early stopping with a patience of 10 epochs to prevent overfitting. On the LPMC dataset, we further
employ a learning rate scheduling strategy: training is first conducted with a learning rate of 10−3, and then fine-tuned using
a smaller rate of 10−4. This two-phase training helps improve convergence stability and final model performance. More
details are shown in Table.6. All experiments are conducted on a single Google Colab T4 GPU with Adam optimizer.

Table 6: DeepHalo hyper-parameters and training settings on Expedia and LPMC Experiments.

Hyper-parameter Expedia LPMC

Embedding dimension d 32 32
Hidden size H 8 8
Layers L 5 4
Polynomial Activation σ Hadamard product Hadamard product
Batch size 256 256
Learning Rate 1× 10−3 1× 10−3/1× 10−4

Baseline Information We summarize below the key configurations and model architectures for each baseline used in our
experiments.

TCNet adopts a single-layer Transformer encoder-decoder architecture with multi-head self-attention and feedforward layers.
Both the source and target inputs are linear projections of item features. For the LPMC dataset, we use an embedding
dimension of d = 36 and K = 6 attention heads; for the Expedia dataset, we set d = 64 and K = 8. The decoder output for
each item is passed through a final linear layer to obtain utility scores.

RUMnet models sequential utility construction using a GRU that processes items in their presented order within each choice
set. At each timestep, the GRU updates a latent preference state, from which the utility for the current item is computed
using a linear transformation. Additionally, an item-specific bias term, learned from raw features, is added to the final score.
The hidden size of the GRU is set to 96 for LPMC and 128 for Expedia to accommodate the respective feature complexities.

TasteNet implements a latent factor model with learned item and user representations. Both the item encoder and the
user encoder are two-layer multilayer perceptrons (MLPs) with a hidden size of 128 and output dimension 128. The user
embedding is obtained by averaging valid item feature vectors within a choice set. Final utilities are computed as dot
products between item and user embeddings, with an item-specific bias added.

FATEnet uses a DeepSet architecture where the embedding dimension matches the input size dx. Both the embedding
network and the pairwise utility network are implemented as five-layer MLPs with 64 hidden units per layer and ReLU
activations. The pairwise utility network outputs a scalar utility score for each item-context pair.

MLP is a simple three-layer MLP with ReLU activations and a default hidden width of dembed = 128. It maps each item
feature vector to a scalar utility, followed by a masked softmax normalization over available alternatives. The model does
not include any residual connections or context aggregation mechanisms.

ResLogit encodes each item through a three-layer MLP with embedding dimension d = 32, using ReLU activations and
dropout. The encoded features are passed through a layer normalization layer and then linearly projected via a learned
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coefficient vector β ∈ Rd. The resulting utility scores are refined through a 10-layer residual network consisting of nonlinear
residual blocks based on softplus activations, followed by masked softmax.

DLCL is a context-aware linear model in which item utilities are computed via a learned matrix B modulated by context-
dependent adjustments from a second matrix A, based on the average feature vector of the entire choice set. The outputs from
different feature dimensions are combined using a set of learnable mixture weights to produce the final utility distribution.

Detailed Results We run each experiment with different random seeds and report the mean and standard deviation of the
evaluation metrics from 5 repetitions. This improves statistical robustness and accounts for variance due to initialization
and stochastic training dynamics. We evaluate model performance using negative log-likelihood (NLL) and top-1 accuracy,
where accuracy is defined as the proportion of cases where the model assigns the highest predicted probability to the actually
chosen item. The summary of detailed results is shown in Table 7 and Table 8.

Table 7: Expedia Detailed Results

Model Train Validation Test
Loss Acc Loss Acc Loss Acc

DeepHalo 2.5086 ± 0.0051 0.2501 ± 0.0011 2.5216 ± 0.0025 0.2474 ± 0.0007 2.5288 ± 0.0026 0.2442 ± 0.0009
TCnet 2.4965 ± 0.0125 0.2519 ± 0.0034 2.5260 ± 0.0051 0.2476 ± 0.0006 2.5343 ± 0.0041 0.2423 ± 0.0005
MLP 2.5693 ± 0.0030 0.2362 ± 0.0008 2.5695 ± 0.0011 0.2371 ± 0.0009 2.5805 ± 0.0015 0.2304 ± 0.0011
FATEnet 2.5460 ± 0.0067 0.2407 ± 0.0015 2.5440 ± 0.0046 0.2421 ± 0.0008 2.5548 ± 0.0057 0.2365 ± 0.0008
ResLogit 2.5540 ± 0.0044 0.2401 ± 0.0015 2.5577 ± 0.0015 0.2396 ± 0.0011 2.5692 ± 0.0028 0.2342 ± 0.0008
RUMnet 2.5565 ± 0.0041 0.2397 ± 0.0016 2.5685 ± 0.0011 0.2358 ± 0.0009 2.5782 ± 0.0026 0.2308 ± 0.0021
TasteNet 2.5623 ± 0.0081 0.2383 ± 0.0016 2.5675 ± 0.0036 0.2374 ± 0.0007 2.5766 ± 0.0040 0.2326 ± 0.0008
DLCL 2.5624 ± 0.0009 0.2357 ± 0.0002 2.5546 ± 0.0010 0.2391 ± 0.0005 2.5621 ± 0.0010 0.2307 ± 0.0002
MNL 2.6272 ± 0.0001 0.2260 ± 0.0002 2.6160 ± 0.0001 0.2275 ± 0.0002 2.6245 ± 0.0001 0.2210 ± 0.0003

Table 8: LPMC Detailed Results

Model Train Validation Test
Loss Acc Loss Acc Loss Acc

DeepHalo 0.6427 ± 0.0122 0.7527 ± 0.0037 0.6412 ± 0.0053 0.7576 ± 0.0028 0.6407 ± 0.0045 0.7552 ± 0.0022
TCnet 0.6744 ± 0.0098 0.7422 ± 0.0036 0.6581 ± 0.0096 0.7500 ± 0.0038 0.6577 ± 0.0076 0.7468 ± 0.0023
MLP 0.7036 ± 0.0034 0.7333 ± 0.0019 0.6855 ± 0.0029 0.7402 ± 0.0019 0.6870 ± 0.0049 0.7367 ± 0.0030
FATEnet 0.6765 ± 0.0042 0.7413 ± 0.0015 0.6583 ± 0.0046 0.7508 ± 0.0018 0.6619 ± 0.0043 0.7457 ± 0.0029
ResLogit 0.7080 ± 0.0047 0.7293 ± 0.0025 0.6926 ± 0.0057 0.7348 ± 0.0022 0.6915 ± 0.0052 0.7370 ± 0.0017
RUMnet 0.6923 ± 0.0074 0.7378 ± 0.0017 0.6754 ± 0.0079 0.7460 ± 0.0025 0.6779 ± 0.0067 0.7411 ± 0.0020
TasteNet 0.7140 ± 0.0056 0.7292 ± 0.0031 0.6976 ± 0.0056 0.7356 ± 0.0032 0.6963 ± 0.0068 0.7348 ± 0.0035
DLCL 0.7148 ± 0.0027 0.7151 ± 0.0013 0.6978 ± 0.0016 0.7266 ± 0.0018 0.6988 ± 0.0026 0.7218 ± 0.0011
MNL 0.8813 ± 0.0000 0.6312 ± 0.0002 0.8621 ± 0.0000 0.6426 ± 0.0003 0.8637 ± 0.0001 0.6441 ± 0.0002
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