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ABSTRACT

Distributed learning has emerged as a leading paradigm for training large machine
learning models. However, in real-world scenarios, participants may be unreliable
or malicious, posing a significant challenge to the integrity and accuracy of the
trained models. Byzantine fault tolerance mechanisms have been proposed to
address these issues, but they often assume full participation from all clients, which
is not always practical due to the unavailability of some clients or communication
constraints. In our work, we propose the first distributed method with client
sampling and provable tolerance to Byzantine workers. The key idea behind the
developed method is the use of gradient clipping to control stochastic gradient
differences in recursive variance reduction. This allows us to bound the potential
harm caused by Byzantine workers, even during iterations when all sampled clients
are Byzantine. Furthermore, we incorporate communication compression into the
method to enhance communication efficiency. Under general assumptions, we
prove convergence rates for the proposed method that match the existing state-of-
the-art (SOTA) theoretical results.

1 INTRODUCTION

Distributed optimization problems are a cornerstone of modern machine learning research. They
naturally arise in scenarios where data is distributed across multiple clients; for instance, this is
typical in Federated Learning (Konečný et al., 2016; Kairouz et al., 2021). Such problems require
specialized algorithms adapted to the distributed setup. Additionally, the adoption of distributed
optimization methods is motivated by the sheer computational complexity involved in training modern
machine learning models. Many models deal with massive datasets and intricate architectures,
rendering training infeasible on a single machine (Li, 2020). Distributed methods, by parallelizing
computations across multiple machines, offer a pragmatic solution to accelerate training and address
these computational challenges, thus pushing the boundaries of machine learning capabilities.

To make distributed training accessible to the broader community, collaborative learning approaches
have been actively studied in recent years (Kijsipongse et al., 2018a; Ryabinin & Gusev, 2020; Atre
et al., 2021; Diskin et al., 2021a). In such applications, there is a high risk of the occurrence of
so-called Byzantine workers (Lamport et al., 1982; Su & Vaidya, 2016)—participants who can violate
the prescribed distributed algorithm/protocol either intentionally or simply because they are faulty.
In general, such workers may even have access to some private data of certain participants and may
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collude to increase their impact on the training. Since the ultimate goal is to achieve robustness in the
worst case, many papers in the field make no assumptions limiting the power of Byzantine workers.
Clearly, in this scenario, standard distributed methods based on the averaging of received information
(e.g., stochastic gradients) are not robust, even to a single Byzantine worker. Indeed, such a worker
can send an arbitrarily large vector that can shift the method arbitrarily far from the solution. This
aspect makes it non-trivial to design distributed methods with provable robustness to Byzantines
(Baruch et al., 2019; Xie et al., 2020). Despite all the challenges, multiple methods are developed
and analyzed in the literature (Alistarh et al., 2018; Allen-Zhu et al., 2021; Wu et al., 2020; Zhu &
Ling, 2021; Karimireddy et al., 2021; 2022; Gorbunov et al., 2022; 2023; Allouah et al., 2023).

However, literally, all existing methods with provable Byzantine robustness require the full participa-
tion of clients. The requirement of full participation is impractical for modern distributed learning
problems since they can have millions of clients (Bonawitz et al., 2017; Niu et al., 2020). In such
scenarios, it is more natural to use sampling of clients to speed up the training. Moreover, some
clients can be unavailable at certain moments, e.g., due to a poor connection, low battery, or simply
because of the need to use the computing power for some other tasks. Although partial participation
of clients is a natural attribute of large-scale collaborative training, it is not studied under the presence
of Byzantine workers. Moreover, this question is highly non-trivial: the existing methods can fail
to converge if combined naïvely with partial participation since Byzantine can form a majority
during particular rounds and, thus, destroy the whole training with just one round of communications.
Therefore, the field requires the development of new distributed methods that are provably robust
to Byzantine attacks and can work with partial participation even when Byzantine workers form a
majority during some rounds.

1.1 OUR CONTRIBUTIONS

We develop Byzantine-tolerant Variance-Reduced MARINA with Partial Participation (Byz-VR-
MARINA-PP, Algorithm 1) – the first distributed method having Byzantine robustness and allowing
partial participation of clients. Our method uses variance reduction to handle Byzantine workers and
clipping of stochastic gradient differences to bound the potential harm of Byzantine workers even
when they form a majority during particular rounds of communication. To make the method even
more communication efficient, we add communication compression. We prove the convergence of
By-VR-MARINA-PP for general smooth non-convex functions and Polyak-Łojasiewicz functions.
In the special case of full participation of clients, our complexity bounds recover the ones for
Byz-VR-MARINA (Gorbunov et al., 2023) that are the current SOTA convergence results.

1.2 RELATED WORK

Below we overview closely related works. Additional discussion is deferred to Appendix B.

2 PRELIMINARIES

In this section, we formally introduce the problem, main definition, and assumptions used in the
analysis. That is, we consider finite-sum distributed optimization problem1

min
x∈Rd

{
f(x)

def
=

1

G

∑
i∈G

fi(x)

}
, fi(x)

def
=

1

m

m∑
j=1

fi,j(x) ∀i ∈ G, (1)

where G is a set of regular clients of size G def
= |G|. In the context of distributed learning, fi : Rd → R

corresponds to the loss function on the data of client i, and fi,j : Rd → R is the loss computed on
the j-th sample from the dataset of client i. Next, we assume that the set of all clients taking part in
the training is [n] = {1, 2, . . . , n} and G ⊆ [n]. The remaining clients B def

= [n] \ G are Byzantine
ones. We assume that B def

= |B| ⩽ δn, where 0 ⩽ δ < 1/2 since otherwise Byzantine workers form a
majority and problem equation 1 becomes impossible to solve in general.

1For simplicity, we assume that all regular workers have the same size of local datasets. Our analysis can
be easily generalized to the case of different sizes of local datasets: this will affect only the value of L± from
Assumption 6 for some sampling strategies.
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Notation. We use a standard notation for the literature on distributed stochastic optimization.
Everywhere in the text ∥x∥ denotes a standard ℓ2-norm of x ∈ Rd, ⟨a, b⟩ refers to the standard inner
product of vectors a, b ∈ Rd. The clipping operator is defined as follows: clipλ(x)

def
= min{1, λ/∥x∥}x

for x ̸= 0 and clipλ(0)
def
= 0. Finally, P{A} denotes the probability of event A, E[ξ] is the full

expectation of random variable ξ, E[ξ | A] is the expectation of ξ conditioned on the event A. We
also sometimes use Ek[ξ] to denote an expectation of ξ w.r.t. the randomness coming from step k.

Robust aggregator. We follow the definition from (Gorbunov et al., 2023) of (δ, c)-robust aggrega-
tion, which is a generalization of the definitions proposed by Karimireddy et al. (2021; 2022).
Definition 2.1 ((δ, c)-Robust Aggregator). Assume that {x1, x2, . . . , xn} is such that there exists a
subset G ⊆ [n] of size |G| = G ⩾ (1 − δ)n for δ ⩽ δmax < 0.5 and there exists σ ⩾ 0 such that

1
G(G−1)

∑
i,l∈G E

[
∥xi − xl∥2

]
⩽ σ2 where the expectation is taken w.r.t. the randomness of {xi}i∈G .

We say that the quantity x̂ is (δ, c)-Robust Aggregator (δ, c) -RAgg) and write x̂ = RAgg (x1, . . . , xn)
for some c > 0, if the following inequality holds:

E
[
∥x̂− x̄∥2

]
⩽ cδσ2, (2)

where x̄
def
= 1

|G|
∑

i∈G xi. If additionally x̂ is computed without the knowledge of σ2, we say that x̂ is
(δ, c)-Agnostic Robust Aggregator (δ, c) -ARAgg and write x̂ = ARAgg (x1, . . . , xn).

One can interpret the definition as follows. Ideally, we would like to filter out all Byzantine workers
and compute just an average x̄ over the set of good clients. However, this is impossible in general
since we do not know apriori who are Byzantine workers. Instead of this, it is natural to expect that
the aggregation rule approximates the ideal average up in a certain sense, e.g., in terms of the expected
squared distance to x̄. As Karimireddy et al. (2021) formally show, in terms of such criterion (E[∥x̂−
x̄∥2]), the definition of (δ, c) -RAgg cannot be improved (up to the numerical constant). Moreover,
standard aggregators such as Krum (Blanchard et al., 2017), geometric median, and coordinate-wise
median do not satisfy Definition 2.1 (Karimireddy et al., 2021), though another popular standard
aggregation rule called coordinate-wise trimmed mean (Yin et al., 2018) satisfies Definition 2.1 as
shown by Allouah et al. (2023) through the more general definition of robust aggregation. To address
this issue, Karimireddy et al. (2021) develop the aggregator called CenteredClip and prove that it fits
the definition of (δ, c) -RAgg. Karimireddy et al. (2022) propose a procedure called Bucketing that
fixes Krum, geometric median, and coordinate-wise median, i.e., with Bucketing Krum, geometric,
and coordinate-wise median become (δ, c) -ARAgg, which is important for our algorithm since the
variance of the vectors received from regular workers changes over time in our method. We notice
here that δ is a part of the input and can be used when we know apriori that the ratio of Byzantines is
smaller than δ; otherwise one can use δ = δmax.

Compression operators. In our work, we use standard unbiased compression operators with
relatively bounded variance (Khirirat et al., 2018; Horváth et al., 2023).
Definition 2.2 (Unbiased compression). Stochastic mapping Q : Rd → Rd is called unbiased
compressor/compression operator if there exists ω ⩾ 0 such that for any x ∈ Rd

E[Q(x)] = x, E
[
∥Q(x)− x∥2

]
⩽ ω∥x∥2.

For the given unbiased compressor Q(x), one can define the expected density2 as ζQ
def
=

supx∈Rd E [∥Q(x)∥0], where ∥y∥0 is the number of non-zero components of y ∈ Rd.

In this definition, parameter ω reflects how lossy the compression operator is: the larger ω the
more lossy the compression. For example, this class of compression operators includes random
sparsification (RandK) (Stich et al., 2018) and quantization (Goodall, 1951; Roberts, 1962; Alistarh
et al., 2017). For RandK compression ω = d

K −1, ζQ = K and for ℓ2-quantization ω =
√
d−1, ζQ =√

d, see the proofs in (Beznosikov et al., 2020).

Assumptions. Up to a couple of assumptions that are specific to our work, we use the same
assumptions as in (Gorbunov et al., 2023).

2This quantity is well-suited for sparsification-type compression operators like random sparsification (Stich
et al., 2018) and 1-level ℓ2-quantization (Alistarh et al., 2017). For other compressors, such as quantization with
more than one level (Goodall, 1951; Roberts, 1962), ζQ is not the main characteristic describing their properties.
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Algorithm 1 Byz-VR-MARINA-PP: Byzantine-tolerant VR-MARINA with Partial Participation

1: Input: starting point x0, stepsize γ, minibatch size b, probability p ∈ (0, 1], number of iterations
K, (δ, c)-ARAgg, clients’ sample size 1 ⩽ C ⩽ n, clipping coefficients {αk}k⩾1, direction g0

2: for k = 0, 1, . . . ,K − 1 do
3: Get a sample from Bernoulli distribution with parameter p: ck ∼ Be(p)
4: Sample the set of clients Sk ⊆ [n], |Sk| = C if ck = 0; otherwise Sk = [n]
5: Broadcast gk, ck to all workers
6: for i ∈ G ∩ Sk in parallel do
7: xk+1 = xk − γgk and λk+1 = αk+1∥xk+1 − xk∥

8: Set gk+1
i =

{
∇fi(x

k+1), if ck = 1,

gk + clipλk+1

(
Q
(
∆̂i(x

k+1, xk)
))

, otherwise,

where ∆̂i(x
k+1, xk) is a minibatched estimator of ∇fi(x

k+1)−∇fi(x
k),

Q(·) for i ∈ G ∩ Sk are computed independently
9: end for

10: if ck = 1 then
11: gk+1 = ARAgg

(
{gk+1

i }i∈[n]

)
12: else
13: gk+1 = gk + ARAgg

({
clipλk+1

(
Q

(
∆̂i(x

k+1, xk)
))}

i∈Sk

)
14: end if
15: end for
16: Return: x̂K chosen uniformly at random from {xk}K−1

k=0

We elaborate on additional assumptions in the Appendix.

3 NEW METHOD: Byz-VR-MARINA-PP

We propose a new method called Byzantine-tolerant Variance-Reduced MARINA with Partial Partici-
pation (Byz-VR-MARINA-PP, Algorithm 1). Our method extends Byz-VR-MARINA (Gorbunov
et al., 2023) to the partial participation case via the proper usage of the clipping operator. To illustrate
how Byz-VR-MARINA-PP works, we first consider a special case of full participation.

Special case: Byz-VR-MARINA. If all clients participate at each round (Sk ≡ [n]) and clipping
is turned off (λk ≡ +∞), then Byz-VR-MARINA-PP reduces to Byz-VR-MARINA that works
as follows. Consider the case when no compression is applied (Q(x) = x) and ∆̂i(x

k+1, xk) =
∇fi,jk(x

k+1) − ∇fi,jk(x
k), where jk is sampled uniformly at random from [m], i ∈ G. Then,

regular workers compute GeomSARAH/PAGE gradient estimator at each step: for i ∈ G

gk+1
i =

{
∇fi(x

k+1), with probability p,

gk +∇fi,jk(x
k+1)−∇fi,jk(x

k), otherwise

With small probability p, good workers compute full gradients, and with larger probability 1 − p
they update their estimator via adding stochastic gradient difference. To balance the oracle cost of
these two cases, one can choose p ∼ 1/m (for minibatched estimator – p ∼ b/m). Such estimators
are known to be optimal for finding stationary points in the stochastic first-order optimization (Fang
et al., 2018; Arjevani et al., 2023). Next, good workers send gk+1

i or ∇fi,jk(x
k+1)−∇fi,jk(x

k) to
the server who robustly aggregate the received vectors. Since estimators are conditionally biased,
i.e., E[gk+1

i | xk+1, xk] ̸= ∇fi(x
k+1), the additional bias coming from the aggregation does not

cause significant issues in the analysis or practice. Moreover, the variance of {gk+1
i }i∈G w.r.t. the

sampling of the stochastic gradients is proportional to ∥xk+1 − xk∥2 → 0 with probability 1 − p
(due to Assumption 6) that progressively limits the effect of Byzantine attacks. For a more detailed
explanation of why recursive variance reduction works better than SAGA/SVRG-type variance
reduction, we refer to (Gorbunov et al., 2023). Arbitrary sampling allows to improve the dependence
on the smoothness constants. Unbiased communication compression also naturally fits the framework
since it is applied to the stochastic gradient difference, meaning that the variance of {gk+1

i }i∈G w.r.t.
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the sampling of the stochastic gradients and compression remains proportional to ∥xk+1 − xk∥2 with
probability 1− p.

New ingredients: client sampling and clipping. The algorithmic novelty of Byz-VR-MARINA-PP
in comparison to Byz-VR-MARINA is twofold: with (typically large) probability 1 − p only C
clients sampled uniformly at random from the set of all clients participate at each round, and clipping
is applied to the compressed stochastic gradient differences. With a small probability p, a larger
number3 of clients Ĉ ⩽ n takes part in the communication. The main role of clipping is to ensure
that the method can withstand the attacks of Byzantines when they form a majority or, more precisely
when there are more than δmaxC Byzantine workers among the sampled ones. Indeed, without
clipping (or some other algorithmic changes) such situations are critical for convergence: Byzantine
workers can shift the method arbitrarily far from the solution, e.g., they can collectively send some
vector with the arbitrarily large norm. In contrast, Byz-VR-MARINA-PP tolerates any attacks even
when all sampled clients are Byzantine workers since the update remains bounded due to the clipping.
Via choosing λk+1 ∼ ∥xk+1 − xk∥ we ensure that the norm of transmitted vectors decreases with
the same rate as it does in Byz-VR-MARINA with full client participation. Finally, with probability
1− p regular workers can transmit just compressed vectors and leave the clipping operation to the
server since Byzantines can ignore clipping operation.

4 CONVERGENCE RESULTS

We define Gk
C = G ∩ Sk and Gk

C = |Gk
C | and

(
n
k

)
= n!

k!(n−k)! represents the binomial coefficient. We
also use the following probabilities:

pG
def
= P

{
Gk

C ⩾ (1− δmax)C
}
=

∑
⌈(1−δmax)C⌉⩽t⩽C

(
G
t

)(
n−G
C−t

)(
n
C

) ,

PGk
C

def
= P

{
i ∈ Gk

C | Gk
C ⩾ (1− δmax)C

}
=

C

npG
·

∑
⌈(1−δmax)C⌉⩽t⩽C

(
G−1
t−1

)(
n−G
C−t

)(
n−1
C−1

) .

These probabilities naturally appear in the analysis and statements of the theorems. When ck = 0,
then server samples C clients, and two situations can appear: either Gk

C is at least (1− δmax)C
meaning that the aggregator can ensure robustness according to Definition 2.1 or Gk

C < (1− δmax)C.
Probability pG is the probability of the first event, and the second event implies that the aggregation
can be spoiled by Byzantine workers (but one can bound the shift using clipping). Finally, we use
PGk

C
in the computation of some conditional expectations when the first event occurs.

The mentioned probabilities can be easily computed for some special cases. For example, if C = 1,
then pG = G/n and PGk

C
= 1/G; if C = 2, then pG = G(G−1)/n(n−1) and PGk

C
= 2/G; finally, if

C = n, then pG = 1 and PGk
C
= 1.

The next theorem is our main convergence result for general unbiased compression operators.

Theorem 4.1. Let Assumptions 1, 3, 4, 5, 6 hold and λk+1 = 2maxi∈G Li

∥∥xk+1 − xk
∥∥. Assume

that 0 < γ ⩽ 1/(L+
√
A), where constant A is defined as

A = A1L
2 +A2 max

i∈G
L2
i +A3L

2
± +A4

L2
±
b

, (3)

3As we show next, it is sufficient to take Ĉ ⩾ δn
δmax

similarly to (Data & Diggavi, 2021). However, in
contrast to the approach from Data & Diggavi (2021), Byz-VR-MARINA-PP requires such communications
only with small probability p.
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Figure 1: The optimality gap f(xk)− f(x∗) for 3 different scenarios. We use coordinate-wise mean
with bucketing equal to 2 as an aggregation and shift-back as an attack. We use the a9a dataset,
where each worker accesses the full dataset with 15 good and 5 Byzantine workers. We do not use
any compression. In each step, we sample 20% of clients uniformly at random to participate in the
given round unless we specifically mention that we use full participation. Left: Linear convergence
of Byz-VR-MARINA-PP with clipping versus non-convergence without clipping. Middle: Full
versus partial participation showing faster convergence with clipping. Right: Clipping multiplier λ
sensitivity, demonstrating consistent linear convergence across varying λ values.

where

A1 =
320

p2

pGPGk
C
(1− δ)n

C(1− δmax)
ω +

16

p2
(1− pG) +

640

p2
pGPGk

C
cδmaxω,

A2 =
64

p2
(1− pG)F

2
A,

A3 =
32

p2

pGPGk
C
(1− δ)n

C(1− δmax)
(10ω + 1) +

64

p2
pGPGk

C
cδmax(10ω + 1),

A4 =
320

p2

pGPGk
C
(1− δ)n

C(1− δmax)
(ω + 1) +

640

p2
pGPGk

C
cδmax(ω + 1),

Ĉ = 2
δmaxPGk

Ĉ

(1− δmax)
B(6cδmax + 1).

Then for all K ⩾ 0 the iterates produced by Byz-VR-MARINA-PP (Algorithm 1) satisfy

E
[∥∥∇f

(
x̂K
)∥∥2] ⩽ 2Φ0

γ(K + 1)
+

4Ĉζ2

p
, (4)

where x̂K is chosen uniformly at random from x0, x1, . . . , xK , and Φ0 = f
(
x0
)
− f∗ +

2γ
p

∥∥g0 −∇f
(
x0
)∥∥2. If, in addition, Assumption 8 holds and 0 < γ ⩽ 1/(L+

√
2A), then for all

K ⩾ 0 the iterates produced by Byz-VR-MARINA-PP (Algorithm 1) with ρ = min
{
γµ, p

8

}
satisfy

E
[
f
(
xK
)
− f (x∗)

]
⩽ (1− ρ)

K
Φ0 +

4Ĉζ2γ

pρ
, (5)

where Φ0 = f
(
x0
)
− f∗ + 4γ

p

∥∥g0 −∇f
(
x0
)∥∥2.

The above theorem establishes similar guarantees to the current SOTA ones obtained for Byz-VR-
MARINA. That is, in the general non-convex case, we prove O(1/K) rate, which is optimal (Arjevani
et al., 2023), and for PŁ-functions we derive linear convergence result to the neighborhood depending
on the heterogeneity. The size of this neighborhood matches the one derived for Byz-VR-MARINA
by Gorbunov et al. (2023). It is important to note that our result is obtained considering the scenario
of partial participation of clients that results in the more complicated constraints for the stepsize than
in (Gorbunov et al., 2023).

Further discussion is available in the appendix.
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5 NUMERICAL EXPERIMENTS

To demonstrate this experimentally, we consider the setup with 15 good workers and 5 Byzantines,
each worker can access the entire dataset, and the server uses coordinate-wise median with bucketing
as the aggregator (see also Appendix E). For the attack, we propose a new attack that we refer to as
the shift-back attack, which acts in the following way. If Byzantine workers are in the majority in the
current round k, then each Byzantine worker sends x0 − xk. Otherwise, they follow protocol and act
as benign workers.

For each experiment, we tune the step size using the following set of candidates {0.1, 0.01, 0.001}.
The step size is fixed. We do not use learning rate warmup or decay. We use batches of size 32 for all
methods. For partial participation, in each round, we sample 20% of clients uniformly at random.
For λk = λ∥xk − xk−1∥ used for clipping, we select λ from {0.1, 1., 10.}. Each experiment is run
with three varying random seeds, and we report the mean optimality gap with one standard error. The
optimal value is obtained by running gradient descent (GD) on the complete dataset for 1000 epochs.
Our implementation of attacks and robust aggregation schemes is based on the public implementation
from (Gorbunov et al., 2023).

We compare our Byz-VR-MARINA-PP with its version without clipping. We note that the setup
that we consider is the most favorable in terms of minimized variance in terms of data and gradient
heterogeneity. We show that even in this simplest setup, the method without clipping does not
converge since there is no method that can withstand the omniscient Byzantine majority. Therefore,
any more complex scenario would also fall short using our simple attack. On the other hand, we show
that once clipping is applied, Byz-VR-MARINA-PP is able to converge linearly to the exact solution,
complementing our theoretical results.

The main goal of our experimental evaluation is to showcase the benefits of employing clipping
to remedy the presence of Byzantine workers and partial participation. For this task, we consider
the standard logistic regression model with ℓ2-regularization, i.e., fi,j(x) = −yi,j log(h(x, ai,j))−
(1 − yi,j) log(1 − h(x, ai,j)) + η∥x∥2, where yi,j ∈ {0, 1} is the label, ai,j ∈ Rd represents the
feature vector, η is the regularization parameter, and h(x, a) = 1/(1+e−a⊤x). This objective is smooth,
and for λ > 0, it is also strongly convex, therefore, it satisfies the PŁ-condition. We consider the
a9a LIBSVM dataset (Chang & Lin, 2011) and set η = 0.01. In the experiments, we focus on an
important feature of Byz-VR-MARINA-PP: it has linear convergence for homogeneous datasets
across clients even in the presence of Byzantine workers and partial participation, as shown in
Theorem F.1.

Figure 1 showcases these observations. On the left, we can see Byz-VR-MARINA-PP converges
linearly to the optimal solution, while the version without clipping remains stuck at the starting point
since Byzantines are always able to push the solution back to the origin since they can create the
majority in some rounds. In the middle plot, we compare the full participation scenario in which
all the clients participate in each round that does not require clipping since, in each step, we are
guaranteed that Byzantines are not in the majority, to partial participation with clipping. We can see,
when we compare the total number of computations (measured in epochs), Byz-VR-MARINA-PP
leads to faster convergence even though we need to employ clipping. Finally, in the right plot, we
measure the sensitivity of clipping multiplier λ. We can see that Byz-VR-MARINA-PP is not very
sensitive to λ in terms of convergence, i.e., for all the values of λ, we still converge linearly. However,
the suboptimal choice of λ leads to slower convergence.

6 CONCLUSION AND FUTURE WORK

This work makes an important first step in the direction of achieving Byzantine robustness under
the partial participation of clients. However, some important questions remain open. First of all, it
will be interesting to understand whether the derived bounds can be further improved in terms of
the dependence on ω,m, and C. Next, one can try to apply the clipping technique to some other
Byzantine-robust methods such as SGD with client momentum (Karimireddy et al., 2021; 2022).
Finally, the study of other participation patterns (non-uniform sampling/arbitrary client participation)
is also a very prominent direction for future research.
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B RELATED WORK

Byzantine robustness. The primary vulnerability of standard distributed methods to Byzantine
attacks lies in the aggregation rule: even one worker can arbitrarily distort the average. Therefore,
many papers on Byzantine robustness focus on the application of robust aggregation rules, such as
the geometric median (Pillutla et al., 2022), coordinate-wise median, trimmed median (Yin et al.,
2018), Krum (Blanchard et al., 2017), and Multi-Krum (Damaskinos et al., 2019). However, simply
robustifying the aggregation rule is insufficient to achieve provable Byzantine robustness, as illustrated
by Baruch et al. (2019) and Xie et al. (2020), who design special Byzantine attacks that can bypass
standard defenses. This implies that more significant algorithmic changes are required to achieve
Byzantine robustness, a point also formally proven by Karimireddy et al. (2021), who demonstrate that
permutation-invariant algorithms – i.e., algorithms independent of the order of stochastic gradients at
each step – cannot provably converge to any predefined accuracy in the presence of Byzantines.

Wu et al. (2020) are the first who exploit variance reduction to tolerate Byzantine attacks. They
propose and analyze the method called Byrd-SAGA, which uses SAGA-type (Defazio et al., 2014)
gradient estimators on the good workers and geometric median for the aggregation. Gorbunov
et al. (2023) develop another variance-reduced method called Byz-VR-MARINA, which is based on
(conditionally biased) GeomSARAH/PAGE-type (Horváth et al., 2023; Li et al., 2021) gradient
estimator and any robust aggregation in the sense of the definition from (Karimireddy et al., 2021;
2022), and derive the improved convergence guarantees that are the current SOTA in the literature.
There are also many other approaches and we discuss some of them in Appendix B.

Partial participation and client sampling. In the context of Byzantine-robust learning, there exists
one work that develops and analyzes the method with partial participation (Data & Diggavi, 2021).
However, this work relies on the restrictive assumption that the number of participating clients at each
round is at least three times larger than the number of Byzantine workers. In this case, Byzantines
cannot form a majority, and standard methods can be applied without any changes. In contrast, our
method converges in more challenging scenarios, e.g., Byz-VR-MARINA-PP provably converges
even when the server samples one client, which can be Byzantine. The results from Data & Diggavi
(2021) have some other noticeable limitations that we discuss in Appendix B.

Further Comparison with Data & Diggavi (2021). As we mention in the main text, Data &
Diggavi (2021) assume that 3B is smaller than C. More precisely, Data & Diggavi (2021) assume
that B ⩽ ϵC, where ϵ ⩽ 1

3 − ϵ′ for some parameter ϵ′ > 0 that will be explained later. That is, the
results from Data & Diggavi (2021) do not hold when C is smaller than 3B, and, in particular, their
algorithm cannot tolerate the situation when the server samples only Byzantine workers at some
particular communication round. We also notice that when C ⩾ 4B, then existing methods such as
Byz-VR-MARINA (Gorbunov et al., 2023) or Client Momentum (Karimireddy et al., 2021; 2022)
can be applied without any changes to get a provable convergence.

Next, Data & Diggavi (2021) derive the upper bounds for the expected squared distance to the
solution (in the strongly convex case) and the averaged expected squared norm of the gradient (in
the non-convex case), where the expectation is taken w.r.t. the sampling of stochastic gradients
only and the bounds itself hold with probability at least 1− K

H exp
(
− ϵ′2(1−ϵ)C

16

)
, where H is the

number of local steps. For simplicity consider the best-case scenario: H = 1 (local steps deteriorate
the results from Data & Diggavi (2021)). Then, the lower bound for this probability becomes
negative when either C is not large enough or when K is large or when ϵ is close to 1

3 , e.g., for
K = 106, ϵ = ϵ′ = 1

6 , C = 5000 this lower bound is smaller than −720, meaning that in this case,
the result does not guarantee convergence. In contrast, our results have classical convergence criteria,
where the expectations are taken w.r.t. the all randomness.

Finally, the bounds from Data & Diggavi (2021) have non-reduceable terms even for homogeneous
data case: these terms are proportional to σ2

b , where σ2 is the upper bound for the variance of the
stochastic estimator on regular clients and b is the batchsize. In contrast, our results have only
decreasing terms in the upper bounds when the data is homogeneous.

Byzantine robustness. There exist various approaches to achieving Byzantine robustness (Lyu
et al., 2020). Alistarh et al. (2018); Allen-Zhu et al. (2021) rely on the concentration inequalities for
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the stochastic gradients with bounded noise to iteratively remove them from the training. Karimireddy
et al. (2021) formalize the definition of robust aggregation and propose the first provably robust
aggregation rule called CenteredClip and the first provably Byzantine robust method under bounded
variance assumption for homogeneous problems, i.e., when all good workers share one dataset. In
particular, the method from (Karimireddy et al., 2021) uses client momentum on the clients that helps
to memorize previous steps for good workers and withstand time-coupled attacks. This approach is
extended by He et al. (2022) to the setup of decentralized learning. Allouah et al. (2023) develop
an alternative definition for robust aggregation and propose a new aggregation rule satisfying their
definition. Karimireddy et al. (2022) generalize these results to the heterogeneous data case and derive
lower bounds for the optimization error that one can achieve in the heterogeneous case. Based on the
formalism from Karimireddy et al. (2021), Gorbunov et al. (2022) propose a server-free approach
that uses random checks of computations and bans of peers. This trick allows the elimination of all
Byzantine workers after a finite number of steps on average. There are also many other approaches,
e.g., one can use redundant computations of the stochastic gradients (Chen et al., 2018; Rajput et al.,
2019) or introduce reputation metrics (Rodríguez-Barroso et al., 2020; Regatti et al., 2020; Xu & Lyu,
2020) to achieve some robustness, see also a recent survey by Lyu et al. (2020).

Variance reduction. The literature on variance-reduced methods is very rich (Gower et al., 2020).
The first variance-reduced methods are designed to fix the convergence of standard Stochastic Gradient
Descent (SGD) and make it convergent to any predefined accuracy even with constant stepsizes. Such
methods as SAG (Schmidt et al., 2017), SVRG (Johnson & Zhang, 2013), SAGA (Defazio et al.,
2014) are developed mainly for (strongly) convex smooth optimization problems, while methods like
SARAH (Nguyen et al., 2017), STORM (Cutkosky & Orabona, 2019), GeomSARAH (Horváth
et al., 2023), PAGE (Li et al., 2021) are designed for general smooth non-convex problems. In
this paper, we use GeomSARAH/PAGE-type variance reduction as the main building block of the
method that makes the method robust to Byzantine attacks.

Partial participation and client sampling. In the context of Byzantine-robust learning, there exists
one work that develops and analyzes the method with partial participation (Data & Diggavi, 2021).
However, this work relies on the restrictive assumption that the number of participating clients at each
round is at least three times larger than the number of Byzantine workers. In this case, Byzantines
cannot form a majority, and standard methods can be applied without any changes. In contrast, our
method converges in more challenging scenarios, e.g., Byz-VR-MARINA-PP provably converges
even when the server samples one client, which can be Byzantine. The results from Data & Diggavi
(2021) have some other noticeable limitations that we discuss in Appendix B.

Communication compression. The literature on communication compression can be roughly
divided into two huge groups. The first group studies the methods with unbiased communication
compression. Different compression operators in the application to Distributed SGD/GD are studied
in (Alistarh et al., 2017; Wen et al., 2017; Khirirat et al., 2018). To improve the convergence rate by
fixing the error coming from the compression Mishchenko et al. (2019) propose to apply compression
to the special gradient differences. Multiple extensions and generalizations of mentioned techniques
are proposed and analyzed in the literature, e.g., see (Horváth et al., 2023; Gorbunov et al., 2021; Li
et al., 2020; Qian et al., 2021; Basu et al., 2019; Haddadpour et al., 2021; Sadiev et al., 2022; Islamov
et al., 2021; Safaryan et al., 2022).

Another large part of the literature on compressed communication is devoted to biased compression
operators (Ajalloeian & Stich, 2020; Demidovich et al., 2023). Typically, such compression operators
require more algorithmic changes than unbiased compressors since naïve combinations of biased
compression with standard methods (e.g., Distributed GD) can diverge (Beznosikov et al., 2020).
Error feedback is one of the most popular ways of utilizing biased compression operators in practice
(Seide et al., 2014; Stich et al., 2018; Vogels et al., 2019), see also (Richtárik et al., 2021; Fatkhullin
et al., 2021) for the modern version of error feedback with better theoretical guarantees for non-convex
problems.

In the context of Byzantine robustness, methods with communication compression are also studied.
The existing approaches are based on aggregation rules based on the norms of the updates (Ghosh
et al., 2020; 2021), SignSGD and majority vote (Bernstein et al., 2019), SAGA-type variance
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reduction coupled with unbiased compression (Zhu & Ling, 2021), and GeomSARAH/PAGE-type
variance reduction combined with unbiased compression (Gorbunov et al., 2023).

Gradient clipping. Gradient clipping has multiple useful properties and applications. Originally it
was used by Pascanu et al. (2013) to reduce the effect of exploding gradients during the training of
RNNs. Gradient clipping is also a popular tool for achieving provable differential privacy (Abadi
et al., 2016; Chen et al., 2020), convergence under generalized notions of smoothness (Zhang et al.,
2020a; Mai & Johansson, 2021) and better (high-probability) convergence under heavy-tailed noise
assumption (Zhang et al., 2020b; Nazin et al., 2019; Gorbunov et al., 2020; Sadiev et al., 2023; Nguyen
et al., 2023). In the context of Byzantine-robust learning, gradient clipping is also utilized to design
provably robust aggregation (Karimireddy et al., 2021). Our work proposes a novel useful application
of clipping, i.e., we utilize clipping to achieve Byzantine robustness with partial participation of
clients.
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C USEFUL FACTS

For all a, b ∈ Rd and α > 0, p ∈ (0, 1] the following relations hold:

2⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a− b∥2 (6)

∥a+ b∥2 ⩽ (1 + α)∥a∥2 +
(
1 + α−1

)
∥b∥2 (7)

−∥a− b∥2 ⩽ − 1

1 + α
∥a∥2 + 1

α
∥b∥2, (8)

(1− p)
(
1 +

p

2

)
⩽ 1− p

2
, p ⩾ 0 (9)

(1− p)
(
1 +

p

2

)(
1 +

p

4

)
⩽ 1− p

4
p ⩾ 0. (10)

Lemma C.1. (Lemma 5 from (Richtárik et al., 2021)). Let a, b > 0. If 0 ⩽ γ ⩽ 1√
a+b

, then

aγ2 + bγ ⩽ 1. The bound is tight up to the factor of 2 since 1√
a+b

⩽ min
{

1√
a
, 1
b

}
⩽ 2√

a+b
.
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D ASSUMPTIONS

Assumption 1 (Bounded ARAgg). We assume that the server applies aggregation rule A such that
A is (δ, c)-ARAgg and there exists constant FA > 0 such that for any inputs x1, . . . , xn ∈ Rd the
norm of the aggregator is not greater than the maximal norm of the inputs:

∥A (x1, . . . , xn)∥ ⩽ FA max
i∈[n]

∥xi∥.

The above assumption is satisfied for popular (δ, c)-robust aggregation rules presented in the literature
(Karimireddy et al., 2021; 2022). Therefore, this assumption is more a formality than a real limitation:
it is needed to exclude some pathological examples of (δ, c)-robust aggregation rules, e.g., for any A
that is (δ, c)-RAgg one can construct unbounded (δ, 2c)-RAgg as A = A+X , where X is a random
sample from the Gaussian distribution N (0, cδσ2).

Next, for part of our results, we also make the following assumption.

Assumption 2 (Bounded compressor (optional)). We assume that workers use compression operator
Q satisfying Definition 2.2 and bounded as follows:

∥Q(x)∥ ⩽ DQ∥x∥ ∀x ∈ Rd.

For example, RandK and ℓ2-quantization meet this assumption with DQ = d
K and DQ =

√
d

respectively. In general, constant DQ can be large (proportional to d). However, in practice, one can
use RandK with K = d

100 and, thus, have moderate DQ = 100. We also have the results without
Assumption 2, but with worse dependence on some other parameters, see the discussion in Section 4.

Next, we assume that good workers have ζ2-heterogeneous local loss functions.

Assumption 3 (ζ2-heterogeneity). We assume that good clients have ζ2-heterogeneous local loss
functions for some ζ ⩾ 0, i.e.,

1

G

∑
i∈G

∥∇fi(x)−∇f(x)∥2 ⩽ ζ2 ∀x ∈ Rd.

The above assumption is quite standard for the literature on Byzantine robustness (Wu et al., 2020;
Karimireddy et al., 2022; Gorbunov et al., 2023; Allouah et al., 2023). Moreover, some kind of
a bound on the heterogeneity of good clients is necessary since otherwise Byzantine robustness
cannot be achieved in general. In the appendix, all proofs are given under a more general version of
Assumption 3, see Assumption 9. Finally, the case of homogeneous data (ζ = 0) is also quite popular
for collaborative learning (Diskin et al., 2021b; Kijsipongse et al., 2018b).

The following assumption is classical for the literature on non-convex optimization.

Assumption 4 (L-smoothness). We assume that function f : Rd → R is L-smooth, i.e., for all
x, y ∈ Rd we have ∥∇f(x)−∇f(y)∥ ⩽ L∥x− y∥. Moreover, we assume that f is uniformly lower

bounded by f∗ ∈ R, i.e., f∗ def
= infx∈Rd f(x). In addition, we assume that fi is Li-smooth for all

i ∈ G, i.e., for all x, y ∈ Rd

∥∇fi(x)−∇fi(y)∥ ⩽ Li∥x− y∥. (11)

We notice here that equation 11 implies L-smoothness of f with L ⩽ 1
G

∑
i∈G Li, i.e., smoothness

constant of f can be better than the averaged smoothness constant of the local loss functions on the
regular clients.

Following Gorbunov et al. (2023), we consider refined assumptions on the smoothness.

Assumption 5 (Global Hessian variance assumption (Szlendak et al., 2022)). We assume that there
exists L± ⩾ 0 such that for all x, y ∈ Rd

1

G

∑
i∈G

∥∇fi(x)−∇fi(y)∥2 − ∥∇f(x)−∇f(y)∥2 ⩽ L2
±∥x− y∥2. (12)
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Assumption 6 (Local Hessian variance assumption (Gorbunov et al., 2023)). We assume that there
exists L± ⩾ 0 such that for all x, y ∈ Rd

1

G

∑
i∈G

E
∥∥∥∆̂i(x, y)−∆i(x, y)

∥∥∥2 ⩽
L2
±
b

∥x− y∥2,

where ∆i(x, y)
def
= ∇fi(x)−∇fi(y) and ∆̂i(x, y) is an unbiased mini-batched estimator of ∆i(x, y)

with batch size b.

We notice that equation 11 implies equation 12 with L± ⩽ maxi∈G Li. Szlendak et al. (2022) prove
that L± satisfies the following relation: L2

avg − L2 ⩽ L2
± ⩽ L2

avg, where L2
avg

def
= 1

G

∑
i∈G L2

i . In
particular, it is possible that L± = 0 even if the data on the good workers is heterogeneous.

This assumption incorporates considerations for the smoothness characteristics inherent in all func-
tions {fi,j}i∈G,j∈[m], the sampling policy, and the similarity among the functions {fi,j}i∈G,j∈[m].
Gorbunov et al. (2023) have demonstrated that, assuming smoothness of {fi,j}i∈G,j∈[m], Assump-
tion 6 holds for various standard sampling strategies, including uniform and importance samplings.

For part of our results, we also need to assume smoothness of all {fi,j}i∈G,j∈[m] explicitly.

Assumption 7 (Smoothness of fi,j (optional)). We assume that for all i ∈ G and j ∈ [m] there exists
Li,j ⩾ 0 such that fi,j is Li,j-smooth, i.e., for all x, y ∈ Rd

∥∇fi,j(x)−∇fi,j(y)∥ ⩽ Li,j∥x− y∥. (13)

Finally, we also consider functions satisfying Polyak-Łojasiewicz (PŁ) condition (Polyak, 1963;
Łojasiewicz, 1963). This assumption belongs to the class of assumptions on the structured non-
convexity that allows achieving linear convergence (Necoara et al., 2019).
Assumption 8 (PŁ condition (optional)). We assume that function f satisfies Polyak-Łojasiewicz

(PŁ) condition with parameter µ > 0, i.e., for all x ∈ Rd there exists f∗ def
= infx∈Rd f(x) such that

∥∇f(x)∥2 ⩾ 2µ (f(x)− f∗) .
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E JUSTIFICATION OF ASSUMPTION 1

Algorithm 2 Bucketing Algorithm (Karimireddy et al., 2022)

1: Input: {x1, . . . , xn}, s ∈ N – bucket size, Aggr – aggregation rule
2: Sample random permutation π = (π(1), . . . , π(n)) of [n]
3: Compute yi =

1
s

∑min{si,n}
k=s(i−1)+1 xπ(k) for i = 1, . . . , ⌈n/s⌉

4: Return: x̂ = Aggr(y1, . . . , y⌈n/s⌉)

Krum and Krum ◦ Bucketing. Krum aggregation rule is defined as

Krum(x1, . . . , xn) = argmin
xi∈{x1,...,xn}

∑
j∈Si

∥xj − xi∥2,

where Si ⊂ {x1, . . . , xn} is the subset of n − B − 2 closest vectors to xi. By definition,
Krum(x1, . . . , xn) ∈ {x1, . . . , xn} and, thus ∥Krum(x1, . . . , xn)∥ ⩽ maxi∈[n] ∥xi∥, i.e., As-
sumption 1 holds with FA = 1. Since Krum ◦ Bucketing applies Krum aggregation to aver-
ages yi over the buckets and ∥yi∥ ⩽ 1

s

∑min{si,n}
k=s(i−1)+1 ∥xπ(k)∥ ⩽ maxi∈[n] ∥xi∥, we have that

∥Krum ◦ Bucketing(x1, . . . , xn)∥ ⩽ maxi∈[n] ∥xi∥.

Geometric median (GM) and GM ◦ Bucketing. Geometric median is defined as follows:

GM(x1, . . . , xn) = argmin
x∈Rd

n∑
i=1

∥x− xi∥. (14)

One can show that GM(x1, . . . , xn) ∈ Conv(x1, . . . , xn)
def
= {x ∈ Rd | x =∑n

i=1 αixi for some α1, . . . , αn ⩾ 1 such that
∑n

i=1 αi = 1}, i.e., geometric median belongs to the
convex hull of the inputs. Indeed, let GM(x1, . . . , xn) = x = x̂+ x̃, where x̂ is the projection of x
on Conv(x1, . . . , xn) and x̃ = x− x̂. Then, the optimality condition implies that ⟨x̂− x, y− x̂⟩ ⩾ 0
for all y ∈ Conv(x1, . . . , xn). In particular, for all i ∈ [n] we have ⟨x̂− x, xi − x̂⟩ ⩾ 0. Since

⟨x̂− x, xi − x̂⟩ = ⟨x̃, x̂− xi⟩ =
1

2
∥x̃+ x̂− xi∥2 −

1

2
∥x̃∥2 − 1

2
∥x̂− xi∥2

=
1

2
∥x− xi∥2 −

1

2
∥x̃∥2 − 1

2
∥x̂− xi∥2

⩽
1

2
∥x− xi∥2 −

1

2
∥x̂− xi∥2,

we get that ∥x−xi∥ ⩾ ∥x̂−xi∥ for all i ∈ [n] and the equality holds if and only if x̃ = 0. Therefore,
argmin from equation 14 is achieved for x such that x = x̂, meaning that GM(x1, . . . , xn) ∈
Conv(x1, . . . , xn). Therefore, there exist some coefficients α1, . . . , αn ⩾ 0 such that

∑n
i=1 αi = 1

and GM(x1, . . . , xn) =
∑n

i=1 αixi, implying that

∥GM(x1, . . . , xn)∥ ⩽
n∑

i=1

αi∥xi∥ ⩽ max
i∈[n]

∥xi∥.

That is, GM satisfies Assumption 1 with FA = 1. Similarly to the case of Krum ◦ Bucketing, we
also have ∥GM ◦ Bucketing(x1, . . . , xn)∥ ⩽ maxi∈[n] ∥xi∥.

Coordinate-wise median (CM) and CM ◦ Bucketing. Coordinate-wise median (CM) is formally
defined as

CM(x1, . . . , xn) = argmin
x∈Rd

n∑
i=1

∥x− xi∥1, (15)

where ∥ · ∥1 denotes ℓ1-norm. This is equivalent to geometric median/median applied to vectors
x1, . . . , xn component-wise. Therefore, from the above derivations for GM we have

∥CM(x1, . . . , xn)∥∞ ⩽ max
i∈[n]

∥xi∥∞,

∥CM ◦ Bucketing(x1, . . . , xn)∥∞ ⩽ max
i∈[n]

∥xi∥∞,
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where ∥ · ∥∞ denotes ℓ∞-norm. Therefore, due to the standard relations between ℓ2- and ℓ∞-norms,
i.e., ∥a∥∞ ⩽ ∥a∥ ⩽

√
d∥a∥∞ for any a ∈ Rd, we have

∥CM(x1, . . . , xn)∥ ⩽
√
dmax

i∈[n]
∥xi∥,

∥CM ◦ Bucketing(x1, . . . , xn)∥ ⩽
√
dmax

i∈[n]
∥xi∥,

i.e., Assumption 1 is satisfied with FA =
√
d.
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F ADDITIONAL CONVERGENCE RESULTS

In particular, the expression for A has 4 terms that depend on different smoothness parameters, client
sampling (through C, pG,PGk

C
), ratio of Byzantine workers δ, δmax, overall number of clients, and

communication compression parameter ω. Moreover, parameter p also implicitly depends on the client
sampling and communication compression: to make the expected number of clients participating in
the communication round equal to O(C), to make the expected number of stochastic oracle calls equal
to O(b), and to make the expected number of transmitted components for each worker taking part in
the communication round equal O(ζQ), parameter p should be chosen as p = min{C/n, b/m, ζQ/d},
where the latter term in the minimum often equals to Θ(1/(ω+1)) (Gorbunov et al., 2021).

As we explain in the appendix (see the discussion after Theorem G.1), when ω = 0 (no compression),
the bound for A is proportional to 1/p2 in the case of Byz-VR-MARINA-PP even when C = Ĉ = n
(full participation) and δ = 0 (it is known apriori that there are no Byzantine workers). In contrast, a
similar quantity in the result for Byz-VR-MARINA (Gorbunov et al., 2023) is proportional to 1/p. In
this special case, we do not recover the result for Byz-VR-MARINA.

Such a complexity deterioration can be explained as follows: the presence of clipping introduces
additional technical difficulties in the analysis, resulting in a reduced step size compared to Byz-
VR-MARINA, even when C = n. To achieve a more favorable convergence rate, particularly in
scenarios of complete participation, we also establish the results under the assumptions detailed in
Assumption 2 below.
Theorem F.1. Let Assumptions 1, 2, 3, 4, 5, 6, 7 hold and λk+1 = DQ maxi,j Li,j

∥∥xk+1 − xk
∥∥.

Assume that 0 < γ ⩽ 1/(L+
√
A), where constant A equals

A = A1L
2 +A2 max

i,j
L2
i,j +A3L

2
± +

L2
±
b

,

A1 =
2pGPGk

C
(1− δ)n

pC(1− δmax)
ω +

8

p2
(1− pG)

+
16

p2
pGPGk

C
cδmaxω,

A2 =
8

p2
(1− pG)F

2
AD

2
Q,

A3 =
2pGPGk

C
(1− δ)n

pC(1− δmax)
(ω + 1)

+
16

p2
pGPGk

C
cδmax(ω + 1),

A4 =
2pGPGk

C
(1 + ω)cδmax

p

+
16

p2
pGPGk

C
(1 + ω)

(1− δ)n

C(1− δmax)

Ĉ = 2
δmaxPGk

Ĉ

(1− δmax)
B(6cδmax + 1)

Then for all K ⩾ 0 the iterates produced by Byz-VR-MARINA-PP (Algorithm 1) satisfy

E
[∥∥∇f

(
x̂K
)∥∥2] ⩽ 2Φ0

γ(K + 1)
+

2Ĉζ2

p
, (16)

where x̂K is choosen uniformly at random from x0, x1, . . . , xK , and Φ0 = f
(
x0
)
− f∗ +

γ
p

∥∥g0 −∇f
(
x0
)∥∥2 . If, in addition, Assumption 8 holds and 0 < γ ⩽ 1/(L+

√
2A), then for all

K ⩾ 0 the iterates produced by Byz-VR-MARINA-PP (Algorithm 1) satisfy with ρ = min
{
γµ, p

4

}
E
[
f
(
xK
)
− f (x∗)

]
⩽ (1− ρ)

K
Φ0 +

2Ĉζ2γ

pρ
, (17)

where Φ0 = f
(
x0
)
− f∗ + 2γ

p

∥∥g0 −∇f
(
x0
)∥∥2.
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With Assumptions 2 and 7, vectors {Q(∆̂i(x
k+1, xk))}i∈Gk

C
can be upper bounded by

DQ maxi,j Li,j

∥∥xk+1 − xk
∥∥. Using this fact, one can take the clipping level sufficiently large

such that it is turned off for the regular workers. This allows us to simplify the proof and remove
1/p factor in front of the terms not proportional to δmax or to 1 − pG in the expression for A that
can make the stepsize larger. However, the formula for the constant A also contains the term
8
p2 (1− pG)D

2
Q maxi,j L

2
i,j that is larger than the corresponding term from Theorem 4.1. When DQ

is large or when maxi,j Li,j is much greater than maxi Li, the stepsize from Theorem F.1 can be
even smaller than the one from Theorem 4.1. Therefore, the rates of convergence cannot be compared
directly. We also highlight that the clipping level from Theorem F.1 is in general larger than the
clipping level from Theorem 4.1 and, thus, it is expected that with participation Theorem F.1 gives
better results than Theorem 4.1: the bias introduced due to the clipping becomes smaller with the
increase of the clipping level. However, in the partial participation regime, the price for this is a
potential decrease of the stepsize to compensate for the increased harm from Byzantine workers in
the situations when they form a majority.
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G GENERAL ANALYSIS

Lemma G.1. Let X be a random vector in Rd and X̃ = clipλ(X). Assume that E[X] = x ∈ Rd

and ∥x∥ ⩽ λ/2, then

E
[
∥X̃ − x∥2

]
⩽ 10E ∥X − x∥2 .

Proof. The proof follows a similar procedure to that presented in Lemma F.5 from (Gorbunov et al.,
2020). To commence the proof, we introduce two indicator random variables:

χ = I{X:∥X∥>λ} =

{
1, if ∥X∥ > λ,
0, otherwise , η = I{X:∥X−x∥>λ

2 } =

{
1, if ∥X − x∥ > λ

2

0, otherwise
.

Moreover, since ∥X∥ ⩽ ∥x∥+ ∥X − x∥
∥x∥⩽λ/2

⩽ λ
2 + ∥X − x∥, we have χ ⩽ η. Using that we get

X̃ = min

{
1,

λ

∥X∥

}
X = χ

λ

∥X∥
X + (1− χ)X.

By Markov’s inequality,

E[η] = P
{
∥X − x∥ >

λ

2

}
= P

{
∥X − x∥2 >

λ2

4

}
⩽

4

λ2
E
[
∥X − x∥2

]
. (18)

Using ∥X̃ − x∥ ⩽ ∥X̃∥+ ∥x∥ ⩽ λ+ λ
2 = 3λ

2 , we obtain

E
[
∥X̃ − x∥2

]
= E

[
∥X̃ − x∥2χ+ ∥X̃ − x∥2(1− χ)

]
= E

[
χ

∥∥∥∥ λ

∥X∥
X − x

∥∥∥∥2 + ∥X − x∥2(1− χ)

]

⩽ E

[
χ

(∥∥∥∥ λ

∥X∥
X

∥∥∥∥+ ∥x∥
)2

+ ∥X − x∥2(1− χ)

]
∥x∥⩽λ

2

⩽

(
E

[
χ

(
3λ

2

)2

+ ∥X − x∥2
])

,

where in the last inequality we applied 1− χ ⩽ 1. Using (18) and χ ⩽ η we get

E
[
∥X̃ − x∥2

]
⩽

9λ2

4

(
2

λ

)2

E
[
∥X − x∥2

]
+ E

[
∥X − x∥2

]
⩽ 10E

[
∥X − x∥2

]
.

Lemma G.2 (Lemma 2 from Li et al. (2021)). Assume that function f is L-smooth (Assumption 4)
and xk+1 = xk − γgk. Then

f
(
xk+1

)
⩽ f

(
xk
)
− γ

2

∥∥∇f
(
xk
)∥∥2 − ( 1

2γ
− L

2

)∥∥xk+1 − xk
∥∥2 + γ

2

∥∥gk −∇f
(
xk
)∥∥2 .

Next, instead of Assumption 3, we consider a more generalized one.
Assumption 9 ((B, ζ2)-heterogeneity). We assume that good clients have

(
B, ζ2

)
-heterogeneous

local loss functions for some B ⩾ 0, ζ ⩾ 0, i.e.,
1

G

∑
i∈G

∥∇fi(x)−∇f(x)∥2 ⩽ B∥∇f(x)∥2 + ζ2 ∀x ∈ Rd

When B = 0, the above assumption recovers Assumption 3. However, it also covers some situations
when the model is over-parameterized (Vaswani et al., 2019) and can hold with smaller values of ζ2.
This assumption is also used in (Karimireddy et al., 2022; Gorbunov et al., 2023).
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Lemma G.3. Let Assumptions 4, 5, 6 hold and the Compression Operator satisfy Definition 2.2. Let
us define "ideal" estimator:

gk+1 =


1
Gk

c

∑
i∈Gk

c

∇fi(x
k+1), cn = 1, [1]

gk +∇f
(
xk+1

)
−∇f

(
xk
)
, cn = 0 and Gk

c < (1− δmax)C, [2]

gk + 1
Gk

c

∑
i∈Gk

C

clipλ

(
Q
(
∆̂i

(
xk+1, xk

)))
, cn = 0 and Gk

c ⩾ (1− δmax)C. [3]

Then for all k ⩾ 0 the iterates produced by Byz-VR-MARINA-PP (Algorithm 1) satisfy

A1 = E
[∥∥gk+1 −∇f

(
xk+1

)∥∥2]
⩽ (1− p)

(
1 +

p

4

)
E
[∥∥gk −∇f(xk)

∥∥2]+ p
δmax · PGk

Ĉ

(1− δmax)
E
[
B∥∇f(x)∥2 + ζ2

]
+ (1 − p)pG

(
1 +

4

p

) 2 · PGk
C
(1 − δ)n

C(1 − δmax)

(
10ωL

2
+ (10ω + 1)L

2
± +

10(ω + 1)L2
±

b

)
E
[
∥xk+1 − x

k∥2
]
,

where pG = Prob
{
Gk

C ⩾ (1− δmax)C
}

and PGk
C
= Prob

{
i ∈ Gk

C | Gk
C ⩾ (1− δmax)C

}
.

Proof. Let us examine the expected value of the squared difference between ideal estimator and full
gradient:

A1 = E
[∥∥gk+1 −∇f

(
xk+1

)∥∥2]
= E

[
Ek

[∥∥gk+1 −∇f
(
xk+1

)∥∥2]]
= (1− p) pGE

Ek


∥∥∥∥∥∥gk +

1

Gk
c

∑
i∈Gk

C

clipλ

(
Q
(
∆̂i

(
xk+1, xk

)))
−∇f

(
xk+1

)∥∥∥∥∥∥
2
 | [3]


+ (1− p)(1− pG)E

[
Ek

[∥∥gk −∇f(xk)
∥∥2] | [2]]+ pE


∥∥∥∥∥∥ 1
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Using (7) and ∇f
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−∇f

(
xk
)
= 0 we obtain

B1 = E

Ek


∥∥∥∥∥∥gk +

1

Gk
c

∑
i∈Gk

C

clipλ

(
Q
(
∆̂i

(
xk+1, xk

)))
−∇f

(
xk+1

)∥∥∥∥∥∥
2
 | [3]


= E

Ek


∥∥∥∥∥∥∥gk

+
1

Gk
c

∑
i∈Gk

C

clipλ

(
Q
(
∆̂i

(
x
k+1

, x
k
)))

− ∇f
(
x
k+1

)
+ ∇f

(
x
k
)
− ∇f

(
x
k
)∥∥∥∥∥∥∥

2 | [3]


(7)

⩽
(
1 +

p

4

)
E
[∥∥gk −∇f

(
xk
)∥∥2]

+
(
1 +

4

p

)
E

Ek


∥∥∥∥∥∥∥

1

Gk
c

∑
i∈Gk

C

clipλ

(
Q
(
∆̂i

(
x
k+1

, x
k
)))

−
(
∇f(x

k+1
) − ∇f(x

k
)
)∥∥∥∥∥∥∥

2 | [3]


=
(
1 +

p

4

)
E
[∥∥gk −∇f(xk)

∥∥2]
+

(
1 +

4

p

)
E

Ek


∥∥∥∥∥∥ 1

Gk
c

∑
i∈Gk

C

clipλ

(
Q
(
∆̂i

(
xk+1, xk

)))
−∆

(
xk+1, xk

)∥∥∥∥∥∥
2
 | [3]

 .

25



Published as a conference paper at ICLR 2024

Let us consider last part of the inequality:
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Note that Gk
C ⩾ (1− δmax)C in this case:
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where IGk
C

is an indicator function for the event
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Now we can continue with inequalities:
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Using Lemma G.1 we have
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Applying Definition 2.2 of Unbiased Compressor we have
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Now we combine terms and have
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Rearranging terms leads to
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Now we apply Assumptions 4, 5, 6:
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Let us plug obtained results:

B1 ⩽
(
1 +

p

4

)
E
[∥∥gk −∇f(xk)

∥∥2]
+

(
1 +

4

p

)
2 · PGk

C
·G

C(1− δmax)

(
10ωL2 + (10ω + 1)L2

± +
10(ω + 1)L2

±
b

)
E
[
∥xk+1 − xk∥2

]
.

Let us consider the term E
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Using Assumption 9 we get
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Lemma G.4. Let us define "ideal" estimator:
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Then for all k ⩾ 0 the iterates produced by Byz-VR-MARINA-PP (Algorithm 1) satisfy
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After simplification we get the following bound:

A2 ⩽ pE
[
Ek

[∥∥ARAgg (∇f1(x
k+1), . . . ,∇fĈ(x

k+1)
)
−∇f(xk+1)

∥∥2] | [1]]
+ (1− p)pGE

Ek


∥∥∥∥∥∥ 1

Gk
c

∑
i∈Gk

C

clipλ

(
Q
(
∆̂i

(
xk+1, xk

)))
− ARAggk+1

Q

∥∥∥∥∥∥
2

| [3]




+ (1− p)(1− pG)E
[
Ek

[∥∥∥∇f(xk+1)−∇f(xk)− ARAggk+1
Q

∥∥∥2 | [2]
]]

.

Lemma G.5. Let Assumptions 4 and 9 hold and Aggregation Operator (ARAgg) satisfy Definition 2.1.
Then for all k ⩾ 0 the iterates produced by Byz-VR-MARINA-PP (Algorithm 1) satisfy

T1 = E
[
Ek

[∥∥ARAgg (∇f1(x
k+1), . . . ,∇fĈ(x

k+1)
)
−∇f(xk+1)

∥∥2] | [1]]
⩽ 8

δnPGk
Ĉ

cδmax

(1− δmax)
δn

δmax

BE
[∥∥∇f

(
xk
)∥∥2]+ 8

δnPGk
Ĉ

cδmax

(1− δmax)
δn

δmax

BL2E
[∥∥xk+1 − xk

∥∥2]+ 4
δnPGk

Ĉ

cδmax

(1− δmax)
δn

δmax

ζ2.
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Proof. Using Definition of aggregation operator we have

T1 = E
[
Ek

[∥∥ARAgg (∇f1(x
k+1), . . . ,∇fĈ(x

k+1)
)
−∇f(xk+1)

∥∥2] | [1]]
(Def. 2.1)

⩽ E

 cδmax

Gk
Ĉ
(Gk

Ĉ
− 1)

∑
i,l∈Gk

Ĉ
i ̸=l

Ek

[∥∥∇fi
(
xk+1

)
−∇fl

(
xk+1

)∥∥2 | [1]
]

(7)

⩽ E

 cδmax

Gk
Ĉ
(Gk

Ĉ
− 1)

∑
i,l∈Gk

Ĉ
i ̸=l

E
[
2
∥∥∇fi

(
xk+1

)
−∇f

(
xk+1

)∥∥2 + 2
∥∥∇fl

(
xk+1

)
−∇f

(
xk+1

)∥∥2 | [1]
]

= E

cδmax

Gk
Ĉ

∑
i∈Gk

Ĉ

4Ek

[∥∥∇fi
(
xk+1

)
−∇f

(
xk+1

)∥∥2 | [1]
]

=
PGk

Ĉ

cδmax

(1− δmax)
δn

δmax

∑
i∈G

4Ek

[∥∥∇fi
(
xk+1

)
−∇f

(
xk+1

)∥∥2 | [1]
]

(As.9)
⩽

4δnPGk
Ĉ

cδmax

(1− δmax)
δn

δmax

(
BE

[∥∥∇f
(
xk+1

)∥∥2]+ ζ2
)

(7)

⩽ 8
4δnPGk

Ĉ

cδmax

(1− δmax)
δn

δmax

BE
[∥∥∇f

(
xk
)∥∥2]+ 8

4δnPGk
Ĉ

cδmax

(1− δmax)
δn

δmax

BE
[∥∥∇f

(
xk+1

)
−∇f

(
xk
)∥∥2]

+ 4
4δnPGk

Ĉ

cδmax

(1− δmax)
δn

δmax

ζ2

⩽
8δnPGk

Ĉ

cδmax

(1− δmax)
δn

δmax

BE
[∥∥∇f

(
xk
)∥∥2]+ 8δnPGk

Ĉ

cδmax

(1− δmax)
δn

δmax

BL2E
[∥∥xk+1 − xk

∥∥2]+ 4
δnPGk

Ĉ

cδmax

(1− δmax)
δn

δmax

ζ2.

Lemma G.6. Let Assumptions 4, 5, 6 hold and the Compression Operator satisfy Definition 2.2. Also
let us introduce the notation

ARAggk+1
Q = ARAgg

(
clipλk+1

(
Q
(
∆̂1(x

k+1, xk)
))

, . . . , clipλk+1

(
Q
(
∆̂C(x

k+1, xk)
)))

.

Then for all k ⩾ 0 the iterates produced by Byz-VR-MARINA-PP (Algorithm 1) satisfy

T2 = E

Ek


∥∥∥∥∥∥ 1

Gk
C

∑
i∈Gk

C

clipλ

(
Q
(
∆̂i

(
xk+1, xk

)))
− ARAggk+1

Q

∥∥∥∥∥∥
2

| [3]




⩽ 8PGk
C

(
10(1 + ω)

L2
±
b

+ (10ω + 1)L2
± + 10ωL2

)
cδmaxE

[
∥xk+1 − xk∥2

]
,

where PGk
C
= Prob

{
i ∈ Gk

C | Gk
C ⩾ (1− δmax)C

}
.
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Proof. Let us consider second term, since

T2 = E

Ek


∥∥∥∥∥∥ 1

Gk
C

∑
i∈Gk

C

clipλ

(
Q
(
∆̂i

(
xk+1, xk

)))
− ARAggk+1

Q

∥∥∥∥∥∥
2

| [3]




⩽ E

 cδmax

D2

∑
i,l∈Gk

C
i̸=l

Ek

[∥∥∥clipλ

(
Q
(
∆̂i

(
x
k+1

, x
k
)))

− clipλ

(
Q
(
∆̂l

(
x
k+1

, x
k
)))∥∥∥2 | [3]

],

where D2 = Gk
C(G

k
C − 1)

Let us consider pair-wise differences:

T ′
2(i, l) = Ek

[∥∥∥clipλ (Q(∆̂i

(
xk+1, xk

)))
− clipλ

(
Q
(
∆̂l

(
xk+1, xk

)))∥∥∥2 | [3]
]

(7)

⩽ 2Ek

[∥∥∥clipλ

(
Q
(
∆̂i

(
x
k+1

, x
k
)))

− ∆i

(
x
k+1

, x
k
)
+ ∆l

(
x
k+1

, x
k
)
− clipλ

(
Q
(
∆̂l

(
x
k+1

, x
k
)))∥∥∥2 | [3]

]

+ 2Ek

[∥∥∆i

(
xk+1, xk

)
−∆l

(
xk+1, xk

)∥∥2 | [3]
]

(7)

⩽ 4Ek

[∥∥∥clipλ (Q(∆̂i

(
xk+1, xk

)))
−∆i

(
xk+1, xk

)∥∥∥2 | [3]
]

+ 4Ek

[∥∥∥∆l

(
xk+1, xk

)
− clipλ

(
Q
(
∆̂l

(
xk+1, xk

)))∥∥∥2 | [3]
]

+ 2Ek

[∥∥∆l

(
xk+1, xk

)
−∆i

(
xk+1, xk

)∥∥2 | [3]
]
]

(7)

⩽ 4Ek

[∥∥∥clipλ (Q(∆̂i

(
xk+1, xk

)))
−∆i

(
xk+1, xk

)∥∥∥2 | [3]
]

+ 4Ek

[∥∥∥∆l

(
xk+1, xk

)
− clipλ

(
Q
(
∆̂l

(
xk+1, xk

)))∥∥∥2 | [3]
]

+ 4Ek

[∥∥∆l

(
xk+1, xk

)
−∆

(
xk+1, xk

)∥∥2 | [3]
]

+ 4Ek

[∥∥∆i

(
xk+1, xk

)
−∆

(
xk+1, xk

)∥∥2 | [3]
]
.
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Now we can combine all parts together:

T̂2 = E

 1

Gk
C(G

k
C − 1)

∑
i,l∈Gk

C
i̸=l

T ′
2(i, l)



⩽ E

 1

D2

∑
i,l∈Gk

C
i̸=l

4Ek

[∥∥∥clipλ (Q(∆̂i

(
xk+1, xk

)))
−∆i

(
xk+1, xk

)∥∥∥2 | [3]
]

+ E

 1

D2

∑
i,l∈Gk

C
i̸=l

4Ek

[∥∥∥∆l

(
xk+1, xk

)
− clipλ

(
Q
(
∆̂l

(
xk+1, xk

)))∥∥∥2 | [3]
]

+ E

 1

D2

∑
i,l∈Gk

C
i̸=l

4Ek

[∥∥∆l

(
xk+1, xk

)
−∆

(
xk+1, xk

)∥∥2 | [3]
]

+ E

 1

D2

∑
i,l∈Gk

C
i̸=l

4Ek

[∥∥∆i

(
xk+1, xk

)
−∆

(
xk+1, xk

)∥∥2 | [3]
] .

Combining terms together we have

T̂2 ⩽ E

 1

D2

∑
i,l∈Gk

C
i̸=l

8Ek

[∥∥∥clipλ (Q(∆̂i

(
xk+1, xk

)))
−∆i

(
xk+1, xk

)∥∥∥2 | [3]
]

+ E

 1

D2

∑
i,l∈Gk

C
i̸=l

8Ek

[∥∥∆i

(
xk+1, xk

)
−∆

(
xk+1, xk

)∥∥2 | [3]
] .

It leads to

T̂2 ⩽ E

 1

Gk
C

∑
i∈Gk

C

8Ek

[∥∥∥clipλ (Q(∆̂i

(
xk+1, xk

)))
−∆i

(
xk+1, xk

)∥∥∥2 | [3]
]

+ E

 1

Gk
C

∑
i∈Gk

C

8Ek

[∥∥∆i

(
xk+1, xk

)
−∆

(
xk+1, xk

)∥∥2 | [3]
]

⩽ E

 1

Gk
C

∑
i∈Gk

C

80Ek

[∥∥∥Q(∆̂i

(
xk+1, xk

))
−∆i

(
xk+1, xk

)∥∥∥2 | [3]
]

+ E

 1

Gk
C

∑
i∈Gk

C

8Ek

[∥∥∆i

(
xk+1, xk

)
−∆

(
xk+1, xk

)∥∥2 | [3]
] .
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Using variance decomposition we get

T̂2 ⩽ E

 1

Gk
C

∑
i∈Gk

C

80Ek

[∥∥∥Q(∆̂i

(
xk+1, xk

))∥∥∥2 | [3]
]

− E

 1

Gk
C

∑
i∈Gk

C

80Ek

[∥∥∆i

(
xk+1, xk

)∥∥2 | [3]
]

+ E

 1

Gk
C

∑
i∈Gk

C

8Ek

[∥∥∆i

(
xk+1, xk

)
−∆

(
xk+1, xk

)∥∥2 | [3]
] .

Using properties of unbiased compressors (Definition 2.2) we have

T̂2 ⩽ E

 1

Gk
C

∑
i∈Gk

C

80(1 + ω)Ek

[∥∥∥∆̂i

(
xk+1, xk

)∥∥∥2 | [3]
]

− E

 1

Gk
C

∑
i∈Gk

C

80Ek

[∥∥∆i

(
xk+1, xk

)∥∥2 | [3]
]

+ E

 1

Gk
C

∑
i∈Gk

C

8Ek

[∥∥∆i

(
xk+1, xk

)
−∆

(
xk+1, xk

)∥∥2 | [3]
] .

Also we have

T̂2 ⩽ E

 1

Gk
C

∑
i∈Gk

C

80(1 + ω)Ek

[∥∥∥∆̂i

(
xk+1, xk

)
−∆i

(
xk+1, xk

)∥∥∥2 | [3]
]

+ E

 1

Gk
C

∑
i∈Gk

C

80(1 + ω)Ek

[∥∥∆i

(
xk+1, xk

)∥∥2 | [3]
]

− E

 1

Gk
C

∑
i∈Gk

C

80Ek

[∥∥∆i

(
xk+1, xk

)∥∥2 | [3]
]

+ E

 1

Gk
C

∑
i∈Gk

C

8Ek

[∥∥∆i

(
xk+1, xk

)
−∆

(
xk+1, xk

)∥∥2 | [3]
] .

Let us simplify the inequality:

T̂2 ⩽ E

 1

Gk
C

∑
i∈Gk

C

80(1 + ω)Ek

[∥∥∥∆̂i

(
xk+1, xk

)
−∆i

(
xk+1, xk

)∥∥∥2 | [3]
]

+ E

 1

Gk
C

∑
i∈Gk

C

80ωEk

[∥∥∆i

(
xk+1, xk

)∥∥2 | [3]
]

+ E

 1

Gk
C

∑
i∈Gk

C

8Ek

[∥∥∆i

(
xk+1, xk

)
−∆

(
xk+1, xk

)∥∥2 | [3]
] .
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Using decomposition we have

T̂2 ⩽ E

 1

Gk
C

∑
i∈Gk

C

80(1 + ω)Ek

[∥∥∥∆̂i

(
xk+1, xk

)
−∆i

(
xk+1, xk

)∥∥∥2 | [3]
]

+ E

 1

Gk
C

∑
i∈Gk

C

80ωEk

[∥∥∆i

(
xk+1, xk

)
−∆

(
xk+1, xk

)∥∥2 | [3]
]

+ E

 1

Gk
C

∑
i∈Gk

C

8Ek

[∥∥∆i

(
xk+1, xk

)
−∆

(
xk+1, xk

)∥∥2 | [3]
]

+ E

 1

Gk
C

∑
i∈Gk

C

80ωEk

[∥∥∆ (xk+1, xk
)∥∥2 | [3]

] .

Using similar argument in previous lemma we obtain

T̂2 ⩽ E

[
PGk

C

G

∑
i∈G

80(1 + ω)Ek

[∥∥∥∆̂i

(
xk+1, xk

)
−∆i

(
xk+1, xk

)∥∥∥2 | [3]
]]

+ E

[
PGk

C

G

∑
i∈G

80ωEk

[∥∥∆i

(
xk+1, xk

)
−∆

(
xk+1, xk

)∥∥2 | [3]
]]

+ E

[
PGk

C

G

∑
i∈G

8Ek

[∥∥∆i

(
xk+1, xk

)
−∆

(
xk+1, xk

)∥∥2 | [3]
]]

+ E

[
PGk

C

G

∑
i∈G

80ωEk

[∥∥∆ (xk+1, xk
)∥∥2 | [3]

]]
.

Using Assumptions 4, 5, 6:

T̂2 ⩽ E
[
80(1 + ω)PGk

C

L2
±
b

∥xk+1 − xk∥2
]

+ E
[
8(10ω + 1)PGk

C
L2
±∥xk+1 − xk∥2

]
+ E

[
80PGk

C
ωL2∥xk+1 − xk∥2

]
.

Finally, we obtain

T2 = E

Ek


∥∥∥∥∥∥ 1

Gk
C

∑
i∈Gk

C

clipλ

(
Q
(
∆̂i

(
xk+1, xk

)))
− ARAggk+1

Q

∥∥∥∥∥∥
2

| [3]




⩽ 8PGk
C

(
10(1 + ω)

L2
±
b

+ (10ω + 1)L2
± + 10ωL2

)
cδmaxE

[
∥xk+1 − xk∥2

]
.

Lemma G.7. Let Assumptions 1 and 4 hold. Also let us introduce the notation

ARAggk+1
Q = ARAgg

(
clipλk+1

(
Q
(
∆̂1(x

k+1, xk)
))

, . . . , clipλk+1

(
Q
(
∆̂C(x

k+1, xk)
)))

.

Assume that λk+1 = αλk+1
∥xk+1 − xk∥. Then for all k ⩾ 0 the iterates produced by Byz-VR-

MARINA-PP (Algorithm 1) satisfy

T3 = E
[
Ek

[∥∥∥∇f(xk+1)−∇f(xk)− ARAggk+1
Q

∥∥∥2 | [2]
]]

⩽ 2(L2 + F 2
Aα

2
λk+1

)E
[∥∥xk+1 − xk

∥∥2]
35
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Proof.

T3 = E
[
Ek

[∥∥∥∇f(xk+1)−∇f(xk)− ARAggk+1
Q

∥∥∥2 | [2]
]]

(7)

⩽ E
[
Ek

[
2
∥∥∇f(xk+1)−∇f(xk)

∥∥2 + 2
∥∥∥ARAggk+1

Q

∥∥∥2 | [2]
]]

Using L-smoothness and Assumption 1 we have

T3

(7)

⩽ E
[
Ek

[
2L2

∥∥xk+1 − xk
∥∥2 + 2F 2

Aλ
2
k+1 | [2]

]]
⩽ E

[
Ek

[
2L2

∥∥xk+1 − xk
∥∥2 + 2F 2

Aα
2
λk+1

∥xk+1 − xk∥2 | [2]
]]

⩽ 2(L2 + F 2
Aα

2
λk+1

)E
[∥∥xk+1 − xk

∥∥2] .

Lemma G.8. Let Assumptions 1, 4, 5, 6, 9 hold and Compression Operator satisfy Definition 2.2.
Also let us introduce the notation

ARAggk+1
Q = ARAgg

(
clipλk+1

(
Q
(
∆̂1(x

k+1, xk)
))

, . . . , clipλk+1

(
Q
(
∆̂C(x

k+1, xk)
)))

.

Then for all k ⩾ 0 the iterates produced by Byz-VR-MARINA-PP (Algorithm 1) satisfy

E
[∥∥gk+1 −∇f

(
xk+1

)∥∥2] ⩽ (1− p

4

)
E
[∥∥gk −∇f

(
xk
)∥∥2]

+ 24cδBE
[∥∥∇f

(
xk
)∥∥2]+ 12cδζ2 +

pA

4
∥xk+1 − xk∥2,

where

A =
4

p

(
80

p

pGPGk
C
(1− δ)n

C(1− δmax)
ω + 24cδB +

4

p
(1− pG) +

160

p
pGPGk

C
cδmaxω

)
L2

+
4

p

(
8

p

pGPGk
C
(1− δ)n

C(1− δmax)
(10ω + 1) +

16

p
pGPGk

C
cδmax(10ω + 1)

)
L2
±

+
4

p

(
160

p
pGPGk

C
(1 + ω)cδmax +

80

p
pGPGk

C
(1 + ω)
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+
4

p

(
4
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2
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2
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)
,

and where pG = Prob
{
Gk

C ⩾ (1− δmax)C
}

and PGk
C
= Prob

{
i ∈ Gk

C | Gk
C ⩾ (1− δmax)C

}
.
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Proof. Let us combine bounds for A1 and A2 together:

A0 = E
[∥∥gk+1 −∇f

(
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)∥∥2]
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(
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p

2

)
E
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(
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p

)
E
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∥∥2]
⩽
(
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2
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(
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p
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⩽
(
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p

2
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(
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4

)
E
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2
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(
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2
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b
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E
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k∥2
]

+
(
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p

2

)
p

(
δmax · PGk

Ĉ
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E
[
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+

(
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2

p

)
pE
[
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[∥∥ARAgg (∇f1(x
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)
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+

(
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2

p

)
(1− p)pGE

Ek

∥∥∥∥∥∥ 1
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(
Q

(
∆̂i

(
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)))
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2
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[
Ek
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Q
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.

Finally, we obtain the following bound:
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Q
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Now we can apply Lemmas G.5, G.6, G.7 we have
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A0 = E
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(
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Finally, we have
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Once we simplify the equation, we obtain
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Theorem G.1. Let Assumptions 1, 4, 5, 6, 9 hold. Setting λk+1 = 2maxi∈G Li

∥∥xk+1 − xk
∥∥.

Assume that

0 < γ ⩽
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Then for all K ⩾ 0 the iterates produced by Byz-VR-MARINA (Algorithm 1) satisfy

E
[∥∥∇f

(
x̂K
)∥∥2] ⩽ 2Φ0

γ
(
1− 4B̂

p

)
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+
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,

where x̂K is choosen uniformly at random from x0, x1, . . . , xK , and Φ0 = f
(
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)
− f∗ +

2γ
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∥∥g0 −∇f
(
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Proof of Theorem G.1. For all k ⩾ 0 we introduce Φk = f
(
xk
)
− f∗ + 2γ
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∥∥gk −∇f
(
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)∥∥2.

Using the results of Lemmas G.8 and G.2, we derive

E
[
Φk+1

] (G.2)

⩽ E
[
f
(
xk
)
− f∗ −

(
1

2γ
− L

2

)∥∥xk+1 − xk
∥∥2 + γ

2

∥∥gk −∇f
(
xk
)∥∥2]

− γ

2
E
[∥∥∇f

(
xk
)∥∥2]+ 2γ

p
E
[∥∥gk+1 −∇f

(
xk+1

)∥∥2]
(G.8)

⩽ E
[
f
(
xk
)
− f∗ −

(
1

2γ
− L

2

)∥∥xk+1 − xk
∥∥2 + γ

2

∥∥gk −∇f
(
xk
)∥∥2]

− γ

2
E
[∥∥∇f

(
xk
)∥∥2]+ 2γ

p

(
1− p

4

)
E
[∥∥gk −∇f

(
xk
)∥∥2]

+
2γ

p

(
B̂E

[∥∥∇f
(
xk
)∥∥2]+ Ĉζ2 +
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Using choice of stepsize and second condition: 0 < γ ⩽ 1
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√
A
, 4B̂ < p and lemma C.1 we have
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Next, we have γ
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)
> 0 and Φk+1 ⩾ 0. Therefore, summing up the above inequality for

k = 0, 1, . . . ,K and rearranging the terms, we get
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Theorem G.2. Let Assumptions 1, 4, 5, 6, 9, 8 hold. Setting λk+1 = maxi∈G Li

∥∥xk+1 − xk
∥∥.

Assume that

0 < γ ⩽ min

{
1

L+
√
2A

}
, 8B̂ < p
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where
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.

Then for all K ⩾ 0 the iterates produced by Byz-VR-MARINA (Algorithm 1) satisfy
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Finally, we have
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Unrolling the recurrence with ρ = min
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Taking into account Φk ⩾ f
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− f (x∗), we get the result.
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H ANALYSIS FOR BOUNDED COMPRESSORS

Lemma H.1. Let Assumptions 4, 5, 6 and 2 hold and the Compression Operator satisfy Definition 2.2.
We set λk+1 = DQ maxi,j Li,j . Let us define "ideal" estimator:
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where pG = Prob
{
Gk

C ⩾ (1− δmax)C
}

and PGk
C
= Prob

{
i ∈ Gk

C | Gk
C ⩾ (1− δmax)C

}
.

Proof. Similarly to general analysis we start from conditional expectations:
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
= E

Ek


∥∥∥∥∥∥∥gk

+
1

Gk
c

∑
i∈Gk

C

clipλ

(
Q
(
∆̂i

(
x
k+1

, x
k
)))

− ∇f
(
x
k+1

)
+ ∇f

(
x
k
)
− ∇f

(
x
k
)∥∥∥∥∥∥∥

2 | [3]


Using λk+1 = DQ maxi,j Li,j∥xk+1 − xk∥ we can guarantee that clipping operator becomes
identical since we have∥∥∥Q(∆̂i

(
xk+1, xk

))∥∥∥ ⩽ DQ

∥∥∥∆̂i

(
xk+1, xk

)∥∥∥
⩽ DQ

∥∥∥∥∥∥1b
∑
j∈m

∇fi,j(x
k+1)−∇fi,j(x

k)

∥∥∥∥∥∥
⩽ DQ

1

b

∑
j∈m

∥∥∇fi,j(x
k+1)−∇fi,j(x

k)
∥∥

⩽ DQ max
j

Li,j

∥∥xk+1 − xk
∥∥

⩽ DQ max
i,j

Li,j

∥∥xk+1 − xk
∥∥ .
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Now we have

B1 = E

Ek


∥∥∥∥∥∥gk +

1

Gk
c

∑
i∈Gk

C

Q
(
∆̂i

(
xk+1, xk

))
−∇f

(
xk+1

)∥∥∥∥∥∥
2
 | [3]


= E

Ek


∥∥∥∥∥∥∥gk

+
1

Gk
c

∑
i∈Gk

C

Q
(
∆̂i

(
x
k+1

, x
k
))

− ∇f
(
x
k+1

)
+ ∇f

(
x
k
)
− ∇f

(
x
k
)∥∥∥∥∥∥∥

2 | [3]

.

In case without clipping we can avoid Young’s inequality and obtain

B1 ⩽ E
[∥∥gk −∇f

(
xk
)∥∥2]

+ E

Ek


∥∥∥∥∥∥∥

1

Gk
c

∑
i∈Gk

C

Q
(
∆̂i

(
x
k+1

, x
k
))

−
(
∇f(x

k+1
) − ∇f(x

k
)
)∥∥∥∥∥∥∥

2 | [3]


⩽ E

[∥∥gk −∇f(xk)
∥∥2]

+ E

Ek


∥∥∥∥∥∥ 1

Gk
c

∑
i∈Gk

C

Q
(
∆̂i

(
xk+1, xk

))
−∆

(
xk+1, xk

)∥∥∥∥∥∥
2
 | [3]

 .

Let us consider last part of the inequality. Note that Gk
c ⩾ (1− δmax)C in this case

B′
1 = E

Ek


∥∥∥∥∥∥ 1

Gk
c

∑
i∈Gk

C

Q
(
∆̂i

(
xk+1, xk

))
−∆

(
xk+1, xk

)∥∥∥∥∥∥
2
 | [3]


= E

ESk

Ek


∥∥∥∥∥∥ 1

Gk
c

∑
i∈Gk

C

Q
(
∆̂i

(
xk+1, xk

))
−∆

(
xk+1, xk

)∥∥∥∥∥∥
2
 | [3]




⩽
1

C(1− δmax)
E

ESk

 ∑
i∈Gk

C

Ek

[∥∥∥Q(
∆̂i

(
xk+1, xk

))
−∆

(
xk+1, xk

)∥∥∥2
]
| [3]


⩽

1

C(1− δmax)
E

[∑
i∈G

ESk

[
IGk

C

]
Ek

[∥∥∥Q(
∆̂i

(
xk+1, xk

))
−∆

(
xk+1, xk

)∥∥∥2
]
| [3]

]

=
1

C(1− δmax)
E

[∑
i∈G

PGk
C
· Ek

[∥∥∥Q(
∆̂i

(
xk+1, xk

))
−∆

(
xk+1, xk

)∥∥∥2
]
| [3]

]
, (20)

where IGk
C

is an indicator function for the event
{
i ∈ Gk

C | Gk
C ⩾ (1− δmax)C

}
and PGk

C
=

Prob
{
i ∈ Gk

C | Gk
C ⩾ (1− δmax)C

}
is probability of such event. Note that ESk

[
IGk

C

]
= PGk

C
. In

case of uniform sampling of clients we have

∀i ∈ G PGk
C
= Prob

{
i ∈ Gk

C | Gk
C ⩾ (1− δmax)C

}
=

C

n

1

pG
·

∑
(1−δmax)C⩽t⩽C

((
G− 1
t− 1

)(
n−G
C − t

)((
n− 1
C − 1

))−1
)
.
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Now we can continue with inequalities:

B′
1 ⩽

PGk
C

C(1− δmax)
E

[∑
i∈G

Ek

[∥∥∥clipλ

(
Q

(
∆̂i

(
xk+1, xk

)))
−∆

(
xk+1, xk

)∥∥∥2
]
| [3]

]

⩽
PGk

C

C(1− δmax)
E

[∑
i∈G

Ek

[
EQ

[∥∥∥Q(
∆̂i

(
xk+1, xk

))
−∆

(
xk+1, xk

)∥∥∥2
]]

| [3]

]

⩽
PGk

C

C(1− δmax)
E

[∑
i∈G

Ek

[
EQ

[∥∥∥Q(
∆̂i

(
xk+1, xk

))
−∆i

(
xk+1, xk

)∥∥∥2
]]

| [3]

]

+
PGk

C

C(1− δmax)
E

[∑
i∈G

Ek

[∥∥∆i

(
xk+1, xk

)
−∆

(
xk+1, xk

)∥∥2] | [3]] .
Using variance decomposition we have

B′
1 ⩽

PGk
C

C(1− δmax)
E

[∑
i∈G

Ek

[
EQ

[∥∥∥Q(
∆̂i

(
xk+1, xk

))∥∥∥2
]]

−
∑
i∈G

∥∥∥∆i

(
xk+1, xk

)∥∥∥2

| [3]

]

+
PGk

C

C(1− δmax)
E

[∑
i∈G

Ek

[∥∥∆i

(
xk+1, xk

)
−∆

(
xk+1, xk

)∥∥2] | [3]] .
Applying Definition of unbiased compressor we have

B′
1 ⩽

PGk
C

C(1− δmax)
E

[∑
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(1 + ω)Ek

∥∥∥∆̂i

(
xk+1, xk

)∥∥∥2 −∑
i∈G

∥∥∆i

(
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)∥∥2 | [3]

]

+
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C

C(1− δmax)
E

[∑
i∈G

∥∥∆i

(
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)
−∆

(
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]

⩽
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C
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E

[∑
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(1 + ω)Ek

∥∥∥∆̂i

(
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)
−∆i

(
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)∥∥∥2]

+
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C
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E
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(1 + ω)Ek

∥∥∆i

(
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)∥∥2 −∑
i∈G

Ek

∥∥∆i

(
xk+1, xk

)∥∥2 | [3]

]

+
PGk

C

C(1− δmax)
E

[∑
i∈G

∥∥∆i

(
xk+1, xk

)
−∆

(
xk+1, xk

)∥∥2 | [3]

]
.

Now we combine terms and have
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1 ⩽

PGk
C
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Ek
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(
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)
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(
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)∥∥∥2] | [3]]

+
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C

C(1− δmax)
ωE
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∥∥∆i

(
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)∥∥2 | [3]

]

+
PGk

C

C(1− δmax)
E

[∑
i∈G

∥∥∆i

(
xk+1, xk

)
−∆

(
xk+1, xk

)∥∥2 | [3]

]

=
PGk

C

C(1− δmax)
(1 + ω)E

[∑
i∈G

Ek

[∥∥∥∆̂i

(
xk+1, xk

)
−∆i

(
xk+1, xk

)∥∥∥2] | [3]]

+
PGk

C

C(1− δmax)
ωE

[∑
i∈G

∥∥∆i

(
xk+1, xk

)
−∆

(
xk+1, xk

)∥∥2 + ∥∆
(
xk+1, xk

)
∥2 | [3]

]

+
PGk

C

C(1− δmax)
E

[∑
i∈G

∥∥∆i

(
xk+1, xk

)
−∆

(
xk+1, xk

)∥∥2 | [3]

]
.
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Rearranging terms leads to

B′
1 ⩽

PGk
C

C(1− δmax)
(1 + ω)E

[∑
i∈G

Ek

[∥∥∥∆̂i

(
xk+1, xk

)
−∆i

(
xk+1, xk

)∥∥∥2] | [3]]

+
PGk

C

C(1− δmax)
(ω + 1)E

[∑
i∈G

∥∥∆i

(
xk+1, xk

)
−∆

(
xk+1, xk

)∥∥2 | [3]

]

+
PGk

C

C(1− δmax)
ωE

[∑
i∈G

∥∥∆ (xk+1, xk
)∥∥2 | [3]

]
.

Now we apply Assumptions 4, 5, 6:

B′
1 ⩽

PGk
C

C(1− δmax)
(1 + ω)E

[
G
L2
±
b

∥xk+1 − xk∥2
]

+
PGk

C

C(1− δmax)
(ω + 1)E

[
GL2

±∥xk+1 − xk∥2
]
+

PGk
C

C(1− δmax)
ωE
[
GL2

∥∥xk+1 − xk
∥∥2] .

Finally we have

B′
1 ⩽

PGk
C
·G

C(1− δmax)

(
ωL2 + (ω + 1)L2

± +
(ω + 1)L2

±
b

)
E
[
∥xk+1 − xk∥2

]
.

Let us plug obtained results:

B1 ⩽ E
[∥∥gk −∇f(xk)

∥∥2]
+

PGk
C
·G

C(1− δmax)

(
ωL2 + (ω + 1)L2

± +
(ω + 1)L2

±
b

)
E
[
∥xk+1 − xk∥2

]
.

Also we have

A1 = E
[∥∥gk+1 −∇f(xk+1)

∥∥2]
⩽ (1− p)pGB1 + (1− p)(1− pG)E

[∥∥gk −∇f(xk)
∥∥2]

⩽ (1− p)pGE
[∥∥gk −∇f(xk)

∥∥2]
+ (1− p)pG

PGk
C
·G

C(1− δmax)

(
ωL2 + (ω + 1)L2

± +
(ω + 1)L2

±

b

)
E
[
∥xk+1 − xk∥2

]
+ (1− p)(1− pG)E

[∥∥gk −∇f(xk)
∥∥2] .

Finally we get

A1 ⩽ (1− p)E
[∥∥gk −∇f(xk)

∥∥2]
+ (1− p)pG

PGk
C
(1− δ)n

C(1− δmax)

(
ωL2 + (ω + 1)L2

± +
(ω + 1)L2

±
b

)
E
[
∥xk+1 − xk∥2

]
.

Lemma H.2. Let Assumptions 4, 5, 6, 2 hold and the Compression Operator satisfy Definition 2.2.
Also let us introduce the notation

ARAggk+1
Q = ARAgg

(
clipλk+1

(
Q
(
∆̂1(x

k+1, xk)
))

, . . . , clipλk+1

(
Q
(
∆̂C(x

k+1, xk)
)))

.

Then for all k ⩾ 0 the iterates produced by Byz-VR-MARINA-PP (Algorithm 1) satisfy

T2 = E

Ek


∥∥∥∥∥∥ 1

Gk
C

∑
i∈Gk

C

clipλ

(
Q
(
∆̂i

(
xk+1, xk

)))
− ARAggk+1

Q

∥∥∥∥∥∥
2

| [3]




⩽ 4PGk
C

(
(1 + ω)

L2
±
b

+ (ω + 1)L2
± + ωL2

)
cδmaxE

[
∥xk+1 − xk∥2

]
,
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where PGk
C
= Prob

{
i ∈ Gk

C | Gk
C ⩾ (1− δmax)C

}
.

Proof. Let us consider second term, since

T2 = E

Ek


∥∥∥∥∥∥ 1

Gk
C

∑
i∈Gk

C
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(
Q
(
∆̂i

(
xk+1, xk

)))
− ARAggk+1

Q

∥∥∥∥∥∥
2

| [3]




⩽ E

 cδmax

D2

∑
i,l∈Gk

C
i̸=l
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[∥∥∥clipλ

(
Q
(
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(
x
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, x
k
)))

− clipλ

(
Q
(
∆̂l

(
x
k+1

, x
k
)))∥∥∥2 | [3]

],

where D2 = Gk
C(G

k
C − 1).

Using λk+1 = DQ maxi,j Li,j∥xk+1 − xk∥ we can guarantee that clipping operator becomes
identical since we have∥∥∥Q(∆̂i

(
xk+1, xk

))∥∥∥ ⩽ DQ

∥∥∥∆̂i

(
xk+1, xk

)∥∥∥
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∥∥∥∥∥∥1b
∑
j∈m

∇fi,j(x
k+1)−∇fi,j(x

k)

∥∥∥∥∥∥
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1

b

∑
j∈m

∥∥∇fi,j(x
k+1)−∇fi,j(x

k)
∥∥

⩽ DQ max
j

Li,j

∥∥xk+1 − xk
∥∥

Let us consider pair-wise differences:

T ′
2(i, l) = Ek

[∥∥∥clipλ (Q(∆̂i

(
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)))
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(
Q
(
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(
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[∥∥∥clipλ

(
Q
(
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(
x
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k
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− ∆i

(
x
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k
)
+ ∆l

(
x
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k
)
− clipλ

(
Q
(
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(
x
k+1

, x
k
)))∥∥∥2 | [3]

]

+ Ek

[∥∥∆i

(
xk+1, xk

)
−∆l

(
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)∥∥2 | [3]
]

(7)

⩽ 2Ek

[∥∥∥clipλ (Q(∆̂i

(
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)))
−∆i

(
xk+1, xk

)∥∥∥2 | [3]
]

+ 2Ek

[∥∥∥∆l

(
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)
− clipλ

(
Q
(
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(
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]
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[∥∥∆l

(
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)
−∆i

(
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]
]

(7)

⩽ 2Ek

[∥∥∥clipλ (Q(∆̂i

(
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−∆i
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]

+ 2Ek

[∥∥∥∆l

(
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)
− clipλ

(
Q
(
∆̂l

(
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+ 2Ek

[∥∥∆l

(
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)
−∆

(
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]

+ 2Ek

[∥∥∆i

(
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)
−∆

(
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)∥∥2 | [3]
]
.
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Now we can combine all parts together:

T̂2 = E

 1

Gk
C(G

k
C − 1)

∑
i,l∈Gk

C
i̸=l

T ′
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

⩽ E

 1
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C
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[∥∥∥clipλ (Q(∆̂i

(
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)))
−∆i

(
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+ E
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)
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(
Q
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(
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)
−∆

(
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)∥∥2 | [3]
]

+ E
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C
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2Ek
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(
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)
−∆

(
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Combining terms together we have
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Using variance decomposition we get
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Using properties of unbiased compressors we have

T̂2 ⩽ E

 1

Gk
C

∑
i∈Gk

C

4(1 + ω)Ek

[∥∥∥∆̂i

(
xk+1, xk

)∥∥∥2 | [3]
]

− E

 1

Gk
C

∑
i∈Gk

C

4Ek

[∥∥∆i

(
xk+1, xk

)∥∥2 | [3]
]

+ E

 1

Gk
C

∑
i∈Gk

C

4Ek

[∥∥∆i

(
xk+1, xk

)
−∆

(
xk+1, xk

)∥∥2 | [3]
]

⩽ E

 1

Gk
C

∑
i∈Gk

C

4(1 + ω)Ek

[∥∥∥∆̂i

(
xk+1, xk

)
−∆i

(
xk+1, xk

)∥∥∥2 | [3]
]

+ E

 1

Gk
C

∑
i∈Gk

C

4(1 + ω)Ek

[∥∥∆i

(
xk+1, xk

)∥∥2 | [3]
]

− E

 1

Gk
C

∑
i∈Gk

C

4Ek

[∥∥∆i

(
xk+1, xk

)∥∥2 | [3]
]

+ E

 1

Gk
C

∑
i∈Gk

C

4Ek

[∥∥∆i

(
xk+1, xk

)
−∆

(
xk+1, xk

)∥∥2 | [3]
] .

Let us simplify the inequality:

T̂2 ⩽ E

 1

Gk
C

∑
i∈Gk

C

4(1 + ω)Ek

[∥∥∥∆̂i

(
xk+1, xk

)
−∆i

(
xk+1, xk

)∥∥∥2 | [3]
]

+ E

 1

Gk
C

∑
i∈Gk

C

4ωEk

[∥∥∆i

(
xk+1, xk

)∥∥2 | [3]
]

+ E

 1

Gk
C

∑
i∈Gk

C

4Ek

[∥∥∆i

(
xk+1, xk

)
−∆

(
xk+1, xk

)∥∥2 | [3]
] .

Using decomposition we have

T̂2 ⩽ E

 1

Gk
C

∑
i∈Gk

C

4(1 + ω)Ek

[∥∥∥∆̂i

(
xk+1, xk

)
−∆i

(
xk+1, xk

)∥∥∥2 | [3]
]

+ E

 1

Gk
C

∑
i∈Gk

C

4ωEk

[∥∥∆i

(
xk+1, xk

)
−∆

(
xk+1, xk

)∥∥2 | [3]
]

+ E

 1

Gk
C

∑
i∈Gk

C

4Ek

[∥∥∆i

(
xk+1, xk

)
−∆

(
xk+1, xk

)∥∥2 | [3]
]

+ E

 1

Gk
C

∑
i∈Gk

C

4ωEk

[∥∥∆ (xk+1, xk
)∥∥2 | [3]

] .
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Using similar argument in previous lemma we obtain

T̂2 ⩽ E

[
PGk

C

G

∑
i∈G

4(1 + ω)Ek

[∥∥∥∆̂i

(
xk+1, xk

)
−∆i

(
xk+1, xk

)∥∥∥2 | [3]
]]

+ E

[
PGk

C

G

∑
i∈G

4ωEk

[∥∥∆i

(
xk+1, xk

)
−∆

(
xk+1, xk

)∥∥2 | [3]
]]

+ E

[
PGk

C

G

∑
i∈G

4Ek

[∥∥∆i

(
xk+1, xk

)
−∆

(
xk+1, xk

)∥∥2 | [3]
]]

+ E

[
PGk

C

G

∑
i∈G

4ωEk

[∥∥∆ (xk+1, xk
)∥∥2 | [3]

]]
.

Using Assumptions 4, 5, 6:

T̂2 ⩽ E
[
4(1 + ω)PGk

C

L2
±
b

∥xk+1 − xk∥2
]

+ E
[
4(ω + 1)PGk

C
ωL2

±∥xk+1 − xk∥2
]

+ E
[
4PGk

C
ωL2∥xk+1 − xk∥2

]
.

Finally, we obtain

T2 = E

Ek


∥∥∥∥∥∥ 1

Gk
C

∑
i∈Gk

C

clipλ

(
Q
(
∆̂i

(
xk+1, xk

)))
− ARAggk+1

Q

∥∥∥∥∥∥
2

| [3]




⩽ 4PGk
C

(
(1 + ω)

L2
±
b

+ (ω + 1)L2
± + ωL2

)
cδmaxE

[
∥xk+1 − xk∥2

]
.

Lemma H.3. Let Assumptions 1, 4, 5, 6, 9, 2 hold and Compression Operator satisfy Definition 2.2.
We set λk+1 = DQ maxi,j Li,j . Also let us introduce the notation

ARAggk+1
Q = ARAgg

(
clipλk+1

(
Q
(
∆̂1(x

k+1, xk)
))

, . . . , clipλk+1

(
Q
(
∆̂C(x

k+1, xk)
)))

.

Then for all k ⩾ 0 the iterates produced by Byz-VR-MARINA-PP (Algorithm 1) satisfy

E
[∥∥gk+1 −∇f

(
xk+1

)∥∥2] ⩽ (1− p

2

)
E
[∥∥gk −∇f

(
xk
)∥∥2]

+ B̂E
[∥∥∇f

(
xk
)∥∥2]+ Ĉζ2 +

pA

4
∥xk+1 − xk∥2,

A =
4

p

(
80

p

pGPGk
C
(1− δ)n

C(1− δmax)
ω + 24

δmaxPGk
Ĉ

cδmax

(1− δmax)
B +

4

p
(1− pG) +

160

p
pGPGk

C
cδmaxω

)
L2

+
4

p

(
8

p

pGPGk
C
(1− δ)n

C(1− δmax)
(10ω + 1) +

16

p
pGPGk

C
cδmax(10ω + 1)

)
L2
±

+
4

p

(
160

p
pGPGk

C
(1 + ω)cδmax +

80

p
pGPGk

C
(1 + ω)

(1− δ)n

C(1− δmax)

)
L2
±
b

+
4

p

(
4

p
(1− pG)F

2
A

(
max
i∈G

Li

)2
)
,

B̂ = 2
δmaxPGk

Ĉ

(1− δmax)
B(12cδmax + 1) Ĉ = 2

δmaxPGk
Ĉ

(1− δmax)
B(6cδmax + 1),

and where pG = Prob
{
Gk

C ⩾ (1− δmax)C
}

and PGk
C
= Prob

{
i ∈ Gk

C | Gk
C ⩾ (1− δmax)C

}
.
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Proof. Let us combine bounds for A1 and A2 together:

A0 = E
[∥∥gk+1 −∇f

(
xk+1

)∥∥2]
⩽
(
1 +

p

2

)
E
[∥∥gk+1 −∇f

(
xk+1

)∥∥2]+ (1 + 2

p

)
E
[∥∥gk+1 − gk+1

∥∥2]
⩽
(
1 +

p

2

)
A1 +

(
1 +

2

p

)
A2

⩽
(
1 +

p

2

)
(1− p)E

[∥∥gk −∇f(xk)
∥∥2]

+
(
1 +

p

2

)
(1 − p)pG

PGk
C
(1 − δ)n

C(1 − δmax)

(
ωL

2
+ (ω + 1)L

2
± +

(ω + 1)L2
±

b

)
E
[
∥xk+1 − x

k∥2
]
.

+

(
1 +

2

p

)
pE
[
Ek

[∥∥ARAgg (∇f1(x
k+1), . . . ,∇fn(x

k+1)
)
−∇f(xk+1)

∥∥2] | [1]]
+

(
1 +

2

p

)
(1− p)pGE

Ek

∥∥∥∥∥∥ 1

Gk
c

∑
i∈Gk

C

clipλ

(
Q

(
∆̂i

(
xk+1, xk

)))
− ARAggk+1

Q

∥∥∥∥∥∥
2

| [3]


+

(
1 +

2

p

)
(1− p)(1− pG)E

[
Ek

[∥∥∥∇f(xk+1)−∇f(xk)− ARAggk+1
Q

∥∥∥2 | [2]
]]

.

Using Lemmas H.2 and H.1 and previous lemmas from General Analysis we have

A0 = E
[∥∥gk+1 −∇f

(
xk+1

)∥∥2]
⩽
(
1− p

2

)
E
[∥∥gk −∇f

(
xk
)∥∥2]

+
(
1− p

2

)
pG

PGk
C
(1− δ)n

C(1− δmax)

(
ωL2 + (ω + 1)L2

± +
(ω + 1)L2

±
b

)
E
[
∥xk+1 − xk∥2

]
+ (p+ 2)

(
8

δnPGk
Ĉ

cδmax

(1− δmax)
δn

δmax

BE
[∥∥∇f

(
xk
)∥∥2]+ 8

δnPGk
Ĉ

cδmax

(1− δmax)
δn

δmax

BL2E
[∥∥xk+1 − xk

∥∥2]+ 4
δnPGk

Ĉ

cδmax

(1− δmax)
δn

δmax

ζ2.

)

+
2

p
pGE

[
4(1 + ω)PGk

C

L2
±
b

cδmax∥xk+1 − xk∥2
]

+
2

p
pGE

[
4(ω + 1)PGk

C
L2
±cδmax∥xk+1 − xk∥2

]
+

2

p
pGE

[
4PGk

C
ωL2cδmax∥xk+1 − xk∥2

]
+

2

p
(1− pG)2(L

2 + F 2
Aα

2
λk+1

)E
[∥∥xk+1 − xk

∥∥2] .
Finally, we have

E
[∥∥gk+1 −∇f

(
xk+1

)∥∥2] ⩽ (1− p

2

)
E
[∥∥gk −∇f

(
xk
)∥∥2]

+ B̂E
[∥∥∇f

(
xk
)∥∥2]+ Ĉζ2 +

pA

4
∥xk+1 − xk∥2,

where

A =
2

p

(
pGPGk

C
(1− δ)n

C(1− δmax)
ω + 24cδB +

4

p
(1− pG) +

8

p
pGPGk

C
cδmaxω

)
L2

+
2

p

(
pGPGk

C
(1− δ)n

C(1− δmax)
(ω + 1) +

8

p
pGPGk

C
cδmax(ω + 1)

)
L2
±

+
2

p

(
pGPGk

C
(1 + ω)cδmax +

8

p
pGPGk

C
(1 + ω)

(1− δ)n

C(1− δmax)

)
L2
±
b

+
2

p

(
4

p
(1− pG)F

2
A

(
DQ max

i,j
Li,j

)2
)
.
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Theorem H.1. Let Assumptions 1, 4, 5, 6, 9, 2 hold. Setting λk+1 = maxi,j Li,j

∥∥xk+1 − xk
∥∥.

Assume that
0 < γ ⩽

1

L+
√
A
, 4B̂ < p,

where where

A =
4

p

(
80

p

pGPGk
C
(1− δ)n

C(1− δmax)
ω + 24

δmaxPGk
Ĉ

cδmax

(1− δmax)
B +

4

p
(1− pG) +

160

p
pGPGk

C
cδmaxω

)
L2

+
4

p

(
8

p

pGPGk
C
(1− δ)n

C(1− δmax)
(10ω + 1) +

16

p
pGPGk

C
cδmax(10ω + 1)

)
L2
±

+
4

p

(
160

p
pGPGk

C
(1 + ω)cδmax +

80

p
pGPGk

C
(1 + ω)

(1− δ)n

C(1− δmax)

)
L2
±
b

+
4

p

(
4

p
(1− pG)F

2
A

(
max
i∈G

Li

)2
)
,

B̂ = 2
δmaxPGk

Ĉ

(1− δmax)
B(12cδmax + 1) Ĉ = 2

δmaxPGk
Ĉ

(1− δmax)
B(6cδmax + 1),

and

PGk
C
=

C

npG
·

∑
(1−δmax)C⩽t⩽C

((
G− 1
t− 1

)(
n−G
C − t

)((
n
C

))−1
)
,

pG = P
{
Gk

C ⩾ (1− δmax)C
}

=
∑

⌈(1−δmax)C⌉⩽t⩽C

((
G
t

)(
n−G
C − t

)(
n
C

)−1
)
,

Then for all K ⩾ 0 the iterates produced by Byz-VR-MARINA (Algorithm 1) satisfy

E
[∥∥∇f

(
x̂K
)∥∥2] ⩽ 2Φ0

γ
(
1− 4B̂

p

)
(K + 1)

+
2Ĉζ2

p− 4B̂
,

where x̂K is choosen uniformly at random from x0, x1, . . . , xK , and Φ0 = f
(
x0
)
− f∗ +

γ
p

∥∥g0 −∇f
(
x0
)∥∥2 .

Proof. The proof is analogous to proof of Theorem G.1.

Theorem H.2. Let Assumptions 1, 2, 4, 5, 6, 9, 8 hold. Setting λk+1 = maxi,j Li,j

∥∥xk+1 − xk
∥∥.

Assume that

0 < γ ⩽ min

{
1

L+
√
2A

}
, 8B̂ < p,

where where

A =
4

p

(
80

p

pGPGk
C
(1− δ)n

C(1− δmax)
ω + 24

δmaxPGk
Ĉ

cδmax

(1− δmax)
B +

4

p
(1− pG) +

160

p
pGPGk

C
cδmaxω

)
L2

+
4

p

(
8

p

pGPGk
C
(1− δ)n

C(1− δmax)
(10ω + 1) +

16

p
pGPGk

C
cδmax(10ω + 1)

)
L2
±

+
4

p

(
160

p
pGPGk

C
(1 + ω)cδmax +

80

p
pGPGk

C
(1 + ω)

(1− δ)n

C(1− δmax)

)
L2
±
b

+
4

p

(
4

p
(1− pG)F

2
A

(
max
i∈G

Li

)2
)
,
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B̂ = 2
δmaxPGk

Ĉ

(1− δmax)
B(12cδmax + 1) Ĉ = 2

δmaxPGk
Ĉ

(1− δmax)
B(6cδmax + 1),

and where pG = Prob
{
Gk

C ⩾ (1− δmax)C
}

and PGk
C
= Prob

{
i ∈ Gk

C | Gk
C ⩾ (1− δmax)C

}
.

Then for all K ⩾ 0 the iterates produced by Byz-VR-MARINA (Algorithm 1) satisfy

E
[
f
(
xK
)
− f (x∗)

]
⩽ (1− ρ)

K
Φ0 +

2Ĉζ2

pρ
,

where ρ = min
[
γµ
(
1− 8B̂

p

)
, p
4

]
and Φ0 = f

(
x0
)
− f∗ + 2γ

p

∥∥g0 −∇f
(
x0
)∥∥2.

Proof. The proof is analogous to proof of Theorem G.2.
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