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Abstract

Despite their tremendous successes, convolutional neural networks (CNNs) incur
high computational/storage costs and are vulnerable to adversarial perturbations.
Recent works on robust model compression address these challenges by combining
model compression techniques with adversarial training. But these methods are
unable to improve throughput (frames-per-second) on real-life hardware while
simultaneously preserving robustness to adversarial perturbations. To overcome
this problem, we propose the method of Generalized Depthwise-Separable (GDWS)
convolution – an efficient, universal, post-training approximation of a standard 2D
convolution. GDWS dramatically improves the throughput of a standard pre-trained
network on real-life hardware while preserving its robustness. Lastly, GDWS is
scalable to large problem sizes since it operates on pre-trained models and doesn’t
require any additional training. We establish the optimality of GDWS as a 2D
convolution approximator and present exact algorithms for constructing optimal
GDWS convolutions under complexity and error constraints. We demonstrate
the effectiveness of GDWS via extensive experiments on CIFAR-10, SVHN, and
ImageNet datasets. Our code can be found at https://github.com/hsndbk4/
GDWS.

1 Introduction

Nearly a decade of research after the release of AlexNet [18] in 2012, convolutional neural networks
(CNNs) have unequivocally established themselves as the de facto classification algorithm for various
machine learning tasks [11, 38, 4]. The tremendous success of CNNs is often attributed to their
unrivaled ability to extract correlations from large volumes of data, allowing them to surpass human
level accuracy on some tasks such as image classification [11].

Today, the deployment of CNNs in safety-critical Edge applications is hindered due to their high
computational costs [11, 30, 31] and their vulnerability to adversarial samples [37, 5, 16]. Tradi-
tionally, those two problems have been addressed in isolation. Recently, very few bodies of works
[19, 35, 42, 6, 34, 7] have addressed the daunting task of designing both efficient and robust CNNs.
A majority of these methods focus on model compression, i.e. reducing the storage requirements of
CNNs. None have demonstrated their real-time benefits in hardware. For instance, Fig. 1a shows
recent robust pruning works HYDRA [34] and ADMM [42] achieve high compression ratios (up to
97×) but either fail to achieve high throughput measured in frames-per-second (FPS) or compromise
significantly on robustness. Furthermore, the overreliance of current robust complexity reduction
techniques on adversarial training (AT) [45, 21] increases their training time significantly (Fig. 1b).
This prohibits their application to complex ImageNet scale problems with stronger attack models,
such as union of norm-bounded perturbations [22]. Thus, there is critical need for methods to
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Figure 1: Performance of existing robust pruning works (HYDRA [34] and ADMM [42]) and the
proposed GDWS with VGG-16 on CIFAR-10, captured by: (a) robust accuracy against `∞-bounded
perturbations vs frames-per-second measured on an NVIDIA Jetson Xavier, and (b) total time required
to implement these methods measured on a single NVIDIA 1080 Ti GPU. To ensure a fair comparison,
the same AT baseline (obtained from [34]) is used for all methods. The compression ratio of each
method, highlighted in parenthesis, is with respect to the AT baseline.

design deep nets that are both adversarially robust and achieve high throughput when mapped to real
hardware.

To address this need, we propose Generalized Depthwise-Separable (GDWS) convolutions, a
universal post-training approximation of a standard 2D convolution that dramatically improves
the real hardware FPS of pre-trained networks (Fig. 1a) while preserving their robust accuracy.
Interestingly, we find GDWS applied to un-pruned robust networks simultaneously achieves higher
FPS and higher robustness than robust pruned models obtained from current methods. This in
spite of GDWS’s compression ratio being smaller than those obtained from robust pruning methods.
Furthermore, GDWS easily scales to large problem sizes since it operates on pre-trained models and
doesn’t require any additional training.

Our contributions:

1. We propose GDWS, a novel convolutional structure that can be seamlessly mapped onto
off-the-shelf hardware and accelerate pre-trained CNNs significantly while maintaining
robust accuracy.

2. We show that the error-optimal and complexity-optimal GDWS approximations of any
pre-trained standard 2D convolution can be obtained via greedy polynomial time algorithms,
thus eliminating the need for any expensive training.

3. We apply GDWS to a variety of networks on CIFAR-10, SVHN, and ImageNet to simultane-
ously achieve higher robustness and higher FPS than existing robust complexity reduction
techniques, while incurring no extra training cost.

4. We demonstrate the versatility of GDWS by using it to design efficient CNNs that are robust
to union of (`∞, `2, `1) perturbation models. To the best of our knowledge, this is the first
work that proposes efficient and robust networks to the union of norm-bounded perturbation
models.

2 Background and Related Work

The problem of designing efficient and robust CNNs, though crucial for safety-critical Edge
applications, is not yet well understood. Very few recent works have addressed this problem
[19, 35, 42, 6, 34, 7]. We cluster prior works into the following categories:
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Quantization Reducing the complexity of CNNs via model quantization in the absence of any
adversary is a well studied problem in the deep learning literature [30, 31, 2, 44, 14, 26, 3]. The
role of quantization on adversarial robustness was studied in Defensive Quantization (DQ) [19]
where it was observed that conventional post-training fixed-point quantization makes networks
more vulnerable to adversarial perturbations than their full-precision counterparts. EMPIR [35] also
leverages extreme model quantization (up to 2-bits) to build an ensemble of efficient and robust
networks. However, [40] broke EMPIR by constructing attacks that fully leverage the model structure,
i.e., adaptive attacks. In contrast, GDWS is an orthogonal complexity reduction technique that
preserves the base model’s adversarial robustness and can be applied in conjunction with model
quantization.

Pruning The goal of pruning is to compress neural networks by zeroing out unimportant weights
[10, 8, 46, 41]. The structured pruning method in [42] combines the alternating direction method of
multipliers (ADMM) [46] for parameter pruning within the AT framework [21] to design pruned and
robust networks. The flexibility of ADMM enables it to achieve a high FPS on Jetson (as seen in
Fig. 1a) but suffers from a significant drop in robustness. ATMC [6] augments the ADMM framework
[42] with model quantization and matrix factorization to further boost the compression ratio. On
the other hand, unstructured pruning methods such as HYDRA [34] prunes models via important
score optimization [25]. However, HYDRA’s high pruning ratios (> 90%) doesn’t translate into
real-time FPS improvements on off-the-shelf hardware and often requires custom hardware design to
fully leverage their capabilities [9]. GDWS is complementary to unstructured pruning methods, e.g.,
when applied to HYDRA, GDWS boosts the achievable FPS and achieves much higher robustness at
iso-FPS when compared to structured (filter) pruning ADMM.

Neural Architecture Search Resource-efficient CNNs can be designed by exploiting design in-
tuitions such as depthwise separable (DWS) convolutions [12, 32, 13, 47, 15, 38]. While neural
architecture search (NAS) [48, 27] automates the process, it requires massive compute resources,
e.g., thousands of GPU hours for a single network. Differentiable NAS [20] and one-shot NAS [1]
drastically reduce the cost of this search. In [7], a one-shot NAS framework [1] is combined with
the AT framework [21] to search for robust network architectures, called RobNets. RobNets achieve
slightly higher robustness than existing networks with less storage requirements. In this work, we
show that applying GDWS to existing architectures, e.g., WideResNet-28-4, achieves significantly
higher FPS than RobNet, at iso-robustness and model size.

3 Generalized Depthwise-Separable Convolutions

In this section, we introduce GDWS convolutions and develop error-optimal and complexity-optimal
GDWS approximations of standard 2D convolution. These optimal approximations are then employed
to construct GDWS networks from any pre-trained robust CNN built from standard 2D convolutions.

Notation: A (C,K,M) standard 2D convolution operates on an input feature map X ∈ RC×H×W
via M filters (also referred to as kernels or output channels) each consisting of C channels each of
dimension K ×K to generate an output feature map Y ∈ RM×H′×W ′

.

2D Convolution as Matrix Multiplication: The M filters can be viewed as vectors {wi}Mi=1 ∈
RCK2

obtained by vectorizing the K2 elements within a channel and then across the C channels.
The resulting weight matrix W ∈ RM×CK2

is constructed by stacking these filter vectors, i.e.,
W = [w1|w2|...|wM ]T.

From an operational viewpoint, the matrix W can be used to compute the 2D convolution via Matrix
Multiplication (MM) with the input matrix X = Ψ(X) ∈ RCK2×H′W ′

:

Y = WX = WΨ(X) (1)

where Ψ is an unrolling operator that generates all H ′W ′ input feature map slices and stacks them in
matrix format. The resultant output matrix Y ∈ RM×H′W ′

can be reshaped via the operator Φ to
retrieve Y = Φ(Y). The computational complexity of (1) in terms of multiply-accumulate (MAC)
operations is given by:

H ′W ′MCK2 (2)

The reshaping operators Φ and Ψ are only for notational convenience and are computation-free.
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input feature map GDW filters output feature map

Figure 2: The (C,K,g) generalized depthwise (GDW) convolution operation. A standard depthwise
(DW) convolution is obtained by setting gc = 1 ∀c ∈ [C].

3.1 GDWS Formulation

Definition: A (C,K,g,M) GDWS convolution is parameterized by the channel distribution vector
g ∈ ZC+ in addition to the parameters (C,K,M) of a standard 2D convolution. A GDWS convolution
is composed of a (C,K,g) Generalized Depthwise (GDW) convolution and a (G, 1,M) standard
pointwise (PW) convolution where G =

∑
gc with c ∈ [C]1.

A (C,K,g) GDW convolutional layer (Fig. 2) operates on an input feature map X ∈ RC×H×W by
convolving the cth channel with gc ∈ Z+ depthwiseK×K filters to produce a total ofG intermediate
output channels each of size H ′ ×W ′. The (G, 1,M) PW layer operates on the intermediate output
feature map by convolving it with M filters of size 1 × 1, thus producing the output feature map
Y ∈ RM×H′×W ′

.

Relation to DWS: Setting gc = 1 ∀c ∈ [C] reduces the GDWS convolution to the standard DWS
convolution popularized by [12]. Thus, GDWS generalizes DWS by allowing for more than one
(gc ≥ 1) depthwise filters per channel. This simple generalization relaxes DWS’s highly constrained
structure enabling accurate approximations of the 2D convolution. Thus, GDWS when applied
to pre-trained models preserves its original behavior and therefore its natural and robust accuracy.
Furthermore, GDWS achieves high throughput since it exploits the same hardware features that
enable networks with DWS to be implemented efficiently. One might ask: why not use DWS on
pre-trained models? Doing so will result in very high approximation errors. In fact, in Section 4.2,
we show that applying GDWS to a pre-trained complex network such as ResNet-18 achieves better
robust accuracy than MobileNet trained from scratch, while achieving similar FPS.

GDWS Complexity: The total number of MAC operations required by GDWS convolutions is:

H ′W ′
( C∑
c=1

gc(K
2 +M)

)
= H ′W ′G(K2 +M) (3)

Thus, replacing standard 2D convolutions with GDWS convolutions results in a complexity reduction
by a factor of G(K2+M)

CK2M .

3.2 Properties of GDWS Convolutions

We present properties of the GDWS weight matrix W that will be vital for developing the optimal
approximation procedures.

Property 1. The weight matrix W ∈ RM×CK2

of a (C,K,g,M) GDWS convolution can be
expressed as:

W = WPW D (4)

where WP ∈ RM×G and WD ∈ RG×CK2

are the weight matrices of the PW and GDW convolutions,
respectively.

Property 1 implies that any GDWS convolution has an equivalent 2D convolution whose weight
matrix is the product of WP and WD, where WP is a regular convolution weight matrix with K = 1
and WD has the following property:

1we use the notation [C] = {1, 2, ..., C} for brevity.
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Figure 3: The weight matrix representation of a GDW convolution operation. All the vi,j vectors are
row vectors with K2 elements.

Property 2. The weight matrix WD ∈ RG×CK2

of a (C,K,g) GDW convolution has a block-
diagonal structure. Specifically, WD is a concatenation of C sub-matrices where each sub-matrix
WD,c ∈ RG×K2

has at most gc non-zero consecutive rows, starting at row index 1 +
∑c−1
k=1 gk as

shown in Fig. 3.

This structure is due to the fact that input channels are convolved independently with at most gc
depthwise filters per channel. Finally, let W = [W1|W2|...|WC ] be represented as the concatenation
of C sub-matrices, then combining Properties 1 & 2 establishes the following lemma:

Lemma 1. The weight matrix of a (C,K,g,M) GDWS convolution can be expressed as the con-
catenation of C sub-matrices Wc where rank(Wc) ≤ min(gc,K

2) ∀c ∈ [C].

The reason for this is that each sub-matrix Wc can be expressed as the sum of gc rank 1 matrices of
size M ×K2. A detailed proof of Lemma 1 can be found in the Appendix. A major implication of
Lemma 1 is that any 2D standard convolution is equivalent to a GDWS convolution with gc = K2

∀c2. Hence, in the rest of this paper we will assume gc ≤ K2 when we approximate 2D convolutions
with GDWS.

3.3 Optimal GDWS Approximation Methods

We wish to approximate a standard 2D convolution with weight matrix W ∈ RM×CK2

with a
GDWS convolution with weight matrix Q ∈ RM×CK2

to minimize the weighted approximation
error defined as:

e(W,Q,α) =

√√√√ C∑
c=1

αc||Wc −Qc||2F (5)

where ||.||F denotes the Frobenius norm of a matrix and α ∈ RC+ is a vector of positive weights.
Setting αc = 1 ∀c simplifies (5) to the Frobenius norm of the error matrix W −Q. Furthermore,
from (3), one can upper bound the complexity of the GDWS approximation Q via an upper bound on
G =

∑
gc where the gc’s are obtained from Lemma 1.

Based on the GDWS properties and Lemma 1, we state the following error-optimal approximation
theorem:

Theorem 1. Given a (C,K,M) standard 2D convolution with weight matrix W, the (C,K,g,M)

GDWS approximation with weight matrix Ŵ that minimizes the error in (5) subject to
∑
gc = G ≤ γ

(for some γ ∈ Z+), can be obtained in polynomial time via Algorithm 1.

That is:
Ŵ = arg min

Q: G≤γ
e(W,Q,α) (6)

can be solved for any weight error vector α ∈ RC+ in polynomial time. While Theorem 1 shows that
the optimal GDWS approximation under a complexity constraint can be solved efficiently, a similar
result can be obtained for the reverse setting shown next.

2Typical CNNs satisfy K2 < M , e.g., K = 3 and M ≥ 16
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Theorem 2. Given a (C,K,M) standard 2D convolution with weight matrix W, the (C,K,g,M)

GDWS approximation with weight matrix Ŵ that minimizes the complexity in (3) subject to
e(W,Q,α) ≤ β (for some β ≥ 0), can be constructed in polynomial time via Algorithm 2.

That is:

Ŵ = arg min
Q: e(W,Q,α)≤β

C∑
c=1

gc (7)

can be solved for any weight error vector α ∈ RC+ in polynomial time. Proofs of Theorems 1 & 2
can be found in the Appendix.

Algorithm 1: (MEGO) Minimum Error
Complexity-constrained GDWS Optimal
Approximation
Input: A (C,K,M) convolution W,

weight error vector α, and
constraint γ ∈ Z+.

Output: A (C,K,g,M) GDWS
convolution Ŵ, satisfying∑
gc ≤ γ.

1 Compute SVDs of
Wc =

∑rc
i=1 σi,cui,cv

T
i,c

2 Initialize g = 0
3 while

∑
gc < γ do

4 c′ = arg maxc αcσ
2
gc+1,c // gc < rc

5 gc′ ← gc′ + 1

6 Compute Ŵc via truncated SVD of Wc

with rank gc: Ŵc =
∑gc
i=1 σi,cui,cv

T
i,c

7 Construct Ŵ = [Ŵ1|...|ŴC ]

Algorithm 2: (LEGO) Least Complex Error-
constrained GDWS Optimal Approximation
Input: A (C,K,M) convolution W,

weight error vector α, and constraint
β ≥ 0.

Output: A (C,K,g,M) GDWS
convolution Ŵ, satisfying e ≤ β.

1 Compute SVDs of Wc =
∑rc
i=1 σi,cui,cv

T
i,c

2 Initialize gc = rc, b = 0,
c′ = arg minc αcσ

2
rc,c, h = αc′σ

2
rc′ ,c

′

3 while b+ h < β do
4 b← b+ h and gc′ ← gc′ − 1
5 c′ = arg minc αcσ

2
gc,c // gc > 1

6 h = αc′σ
2
rc′ ,c

′

7 Compute Ŵc via truncated SVD of Wc

with rank gc: Ŵc =
∑gc
i=1 σi,cui,cv

T
i,c

8 Construct Ŵ = [Ŵ1|...|ŴC ]

3.4 Constructing GDWS Networks

When confronted with a CNN with L convolutional layers, the question arises: How to assign
resources (in terms of complexity) amongst the L layers such that the robustness of the CNN is
minimally compromised? To answer this question, we compute per-layer weight error vectors αl,
such that the computed error in (5) weighs how different sub-matrices affect the final output of the
CNN.

Let f : RD → RN be a pre-trained CNN for an N -way classification problem with L convolutional
layers parameterizd by weight matrices W(l) ∈ RMl×ClK

2
l . The CNN f operates on aD-dimensional

input vector x to produce a vector z = f(x) of soft outputs or logits. Denote by nx ∈ [N ] the
predicted class label associated with x, and define δx,j = zj − znx to be the soft output differences
∀j ∈ [N ] \ {nx}.
Inspired by [30, 31], we propose a simple yet effective method for computing the per-layer weight
error vectors as follows:

αc,l =
1

MlK2
l

E

 N∑
j=1
j 6=nx

||D(c,l)
x,j ||2F

2δ2x,j

 ∀l ∈ [L], ∀c ∈ [Cl] (8)

where D(c,l)
x,j ∈ RMl×K2

l is the derivative of δx,j w.r.t. the sub-matrix W
(l)
c . The expectation is taken

over the input vector x. Equation (8) can be thought of as the expected noise gain from a particular
channel in a particular layer to the network output required to flip its decision. The Appendix provides
a detailed rationale underlying (8).

Computation of (8) can be simplified by obtaining an estimate of the mean over a small batch of
inputs sampled from the training set and by leveraging software frameworks such as PyTorch
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[24] that automatically take care of computing D
(c,l)
x,j . Algorithm 3 summarizes the steps re-

quired to approximate any pre-trained CNN with an equivalent CNN utilizing GDWS convo-
lutions. Unless specified otherwise, all the results in this paper are obtained via Algorithm 3.

Algorithm 3: Constructing GDWS networks

Input: CNN f with convolutional layers {W(l)}, {αl} computed via (8), and constraint
β ≥ 0.

Output: CNN f̂ with GDWS convolutions {Ŵ(l)}
1 f̂ = f // Initialize f̂
2 for l ∈ {1, ..., L} do
3 Ŵ(l) = LEGO(W(l),αl, β) // solve via Algorithm 2

4 Decompose Ŵ(l) into GDW and PW convolutions via Property 1 and Lemma 1
5 Replace the lth convolution layer in f̂ with GDW and PW convolutions

4 Experiments

4.1 Evaluation Setup

We measure the throughput in FPS by mapping the networks onto an NVIDIA Jetson Xavier via
native PyTorch [24] commands. We experiment with VGG-16 [36], ResNet-183 [11], ResNet-50,
and WideResNet-28-4 [43] network architectures, and report both natural accuracy (Anat) and robust
accuracy (Arob). Following standard procedure, we report Arob against `∞ bounded perturbations
generated via PGD [21] with standard attack strengths: ε = 8/255 with PGD-100 for both CIFAR-10
[17] and SVHN [23] datasets, and ε = 4/255 with PGD-50 for the ImageNet [29] dataset. Section 4.3
studies union of multiple perturbation models (`∞, `2, `1). In the absence of publicly released pre-
trained models, we establish strong baselines using AT [21] following the approach of [28] which
utilizes early stopping to avoid robust over-fitting. Details on the training/evaluation setup can be
found in the Appendix.

Table 1: Comparison between RobNet [7] and GDWS on the CIFAR-10 dataset. GDWS is applied to
standard pre-trained models.

Models Anat [%] Arob [%] Size [MB] FPS
RobNet [7] 82.72 52.23 20.8 5

ResNet-50 84.21 53.05 89.7 16
+ GDWS (β = 0.001) 83.72 52.94 81.9 37
WRN-28-4 84.00 51.80 22.3 17
+ GDWS (β = 1× 10−5) 83.27 51.70 18.9 65
ResNet-18 82.41 51.55 42.6 28
+ GDWS (β = 0.005) 81.17 50.98 29.1 104
VGG-16 77.49 48.92 56.2 36
+ GDWS (β = 0.25) 77.17 49.56 28.7 129

4.2 Results

Ablation Study: We first show the effectiveness of GDWS on the CIFAR-10 datasets using four
network architectures. Table 1 summarizesAnat andArob as well as FPS and model size. It is clear that
GDWS networks preserve robustness as bothAnat andArob are always within∼1% of their respective
baselines. The striking conclusion is that in spite of GDWS offering modest reductions in model
size, it drastically improves the FPS of the base network across diverse architectures. For instance, a
ResNet-18 utilizing GDWS convolutions is able to run at 104 FPS compared to the baseline’s 28 FPS
(>250% improvement) without additional training and without compromising on robust accuracy.
In the Appendix, we explore the benefits of applying GDWS using both Algorithms 1 & 2, provide
more detailed results on CIFAR-10 and show that similar gains are observed with SVHN dataset.

3For CIFAR-10 and SVHN, we use the standard pre-activation version of ResNets.
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GDWS vs. RobNet: In Table 1, we also compare GDWS networks (obtained from standard networks)
with a publicly available pre-trained RobNet model, the robust network architecture designed via
the NAS framework in [7]. Note that RobNet utilizes DWS convolutions which precludes the use of
GDWS. However, despite the efficiency of DWS convolutions in RobNet, its irregular cell structure
leads to extremely poor mapping on the Jetson as seen by its low 5 FPS. For reference, a standard
WideResNet-28-4 (WRN-28-4) runs at 17 FPS with similar robustness and model size. Applying
GDWS to the WideResNet-28-4 further increases the throughput to 65 FPS which is a 1200%
improvement compared to RobNet while maintaining robustness. This further supports our assertion
that model compression alone does not lead to enhanced performance on real hardware.

Table 2: Comparison between GDWS and lightweight net-
works on the CIFAR-10 dataset. The GDWS numbers are
from Table 1.

Models Anat [%] Arob [%] Size [MB] FPS
ResNet-18 + GDWS 81.17 50.98 29.1 104
VGG-16 + GDWS 77.17 49.56 28.7 129

MobileNetV1 79.92 49.08 12.3 125
MobileNetV2 79.59 48.55 8.5 70
ResNet-18 (DWS) 80.12 48.52 5.5 120
ResNet-20 74.82 47.00 6.4 125

GDWS vs. Lightweight Networks:
A natural question that might arise
from this work: why not train
lightweight networks utilizing DWS
convolutions from scratch instead of
approximating pre-traind complex net-
works with GDWS? In Table 2, we
compare the performance of GDWS
networks (obtained from Table 1) vs.
standard lightweight networks: Mo-
bileNetV1 [12], MobileNetV2 [32],
and ResNet-20 [11], as well as a
DWS-version of the standard ResNet-
18 trained from scratch on the CIFAR-
10 dataset. We find that applying GDWS to a pre-trained complex network such as ResNet-18
achieves better Anat and Arob than all lightweight networks, while achieving DWS-like FPS and
requiring no extra training despite offering modest reductions in model size. The only benefit of
using lightweight networks is the much smaller model size compared to GDWS networks.

Table 3: Comparison between ADMM [42] and GDWS using
VGG-16 and ResNet-18 on CIFAR-10.

Models Anat [%] Arob [%] Size [MB] FPS
VGG-16 (AT from [42]) 77.45 45.78 56.2 36
+ GDWS (β = 0.5) 76.40 46.28 38.8 119
VGG-16 (p = 25%) 77.88 43.80 31.6 26
VGG-16 (p = 50%) 75.33 42.93 14.0 113
VGG-16 (p = 75%) 70.39 41.07 3.5 174

ResNet-18 (AT from [42]) 80.65 47.05 42.6 28
+ GDWS (β = 0.75) 79.13 46.15 30.4 105
ResNet-18 (p = 25%) 81.61 42.67 32.1 31
ResNet-18 (p = 50%) 79.42 42.23 21.7 60
ResNet-18 (p = 75%) 74.62 43.23 11.2 74

GDWS vs. Structured Pruning: In
Table 3, we compare GDWS with
the robust structured pruning method
ADMM [42] on CIFAR-10, using two
networks: VGG-16 and ResNet-18.
Due to the lack of publicly available
pre-trained models, we use their re-
leased code to reproduce both the
AT baselines, and the corresponding
pruned models at different pruning ra-
tios. The nature of structured pruning
allows ADMM pruned networks (p ≥
50%) to achieve both high compres-
sion ratios and significant improve-
ment in FPS over their un-pruned
baselines but at the expense of robust-
ness and accuracy. For instance, a ResNet-18 with 75% of its channels pruned results in a massive
7% (4%) drop in Anat (Arob) compared to the baseline even though it achieves a 160% improvement
in FPS. In contrast, a post-training application of GDWS to the same ResNet-18 baseline results in a
massive 275% improvement in FPS while preserving both Anat and Arob within 1% of their baseline
values. Thus, despite achieving modest compression ratios compared to ADMM, GDWS achieves
comparable improvements in FPS without compromising robustness.

GDWS vs. Unstructured Pruning: We compare GDWS with HYDRA [34] which is an unstructured
robust pruning method, on both CIFAR-10 and ImageNet datasets. We use the publicly released
HYDRA models as well as their AT baselines, and apply GDWS to both the un-pruned and pruned
models. Table 4 summarizes the robustness and FPS of HYDRA and GDWS networks on CIFAR-10.
HYDRA pruned models have arbitrarily sparse weight matrices that cannot be leveraged by off-the-
shelf hardware platforms immediately. Instead, we rely on the extremely high sparsity (99%) of these
matrices to emulate channel pruning whereby channels are discarded only if all filter weights are zero.
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This explains why, despite their high compression ratios, HYDRA models do not achieve significant
improvements in FPS compared to their baselines.

Table 4: Comparison between HYDRA [34] and GDWS
using VGG-16 and WRN-28-4 on CIFAR-10.

Models Anat [%] Arob [%] Size [MB] FPS
VGG-16 (AT from [34]) 82.72 51.93 58.4 36
+ GDWS (β = 0.5) 82.53 50.96 50.6 102
VGG-16 (p = 90%) 80.54 49.44 5.9 36
+ GDWS (β = 0.1) 80.47 49.52 31.5 93

VGG-16 (p = 95%) 78.91 48.74 3.0 36
+ GDWS (β = 0.1) 78.71 48.53 18.3 106

VGG-16 (p = 99%) 73.16 41.74 0.6 41
+ GDWS (β = 0.02) 72.75 41.56 2.9 136

WRN-28-4 (AT from [34]) 85.35 57.23 22.3 17
+ GDWS (β = 1) 84.17 55.87 20.5 68
WRN-28-4 (p = 90%) 83.69 55.20 2.3 17
+ GDWS (β = 0.125) 83.38 54.79 11.9 59

WRN-28-4 (p = 95%) 82.68 54.18 1.1 17
+ GDWS (β = 0.005) 82.59 54.22 7.2 60

WRN-28-4 (p = 99%) 75.62 47.21 0.2 28
+ GDWS (β = 0.0025) 75.36 47.04 1.2 68

For instance, a 99% HYDRA pruned
WideResNet model achieves a mas-
sive∼100× compression ratio and im-
proves the FPS from 17 to 28, but suf-
fers from a large ∼10% drop in both
Anat and Arob. In contrast, GDWS
applied to the same un-pruned base-
line preserves robustness and achieves
significantly better throughput of 68
FPS, even though the model size re-
duction is negligible. Interestingly, we
find that applying GDWS directly to
HYDRA pruned models results in net-
works with high compression ratios
with no robustness degradation and
massive improvements in FPS com-
pared to the pruned baseline. For ex-
ample, applying GDWS to the same
99% HYDRA pruned WideResNet
achieves a ∼20× compression ratio
and improves the throughput from 28
FPS to 68 FPS while preserving Anat
and Arob of the pruned baseline. This
synergy between HYDRA and GDWS is due to the fact that highly sparse convolution weight matrices
are more likely to have low-rank and sparse sub-matrices. This implies that, using Lemma 1, sparse
convolutions can be transformed to sparse GDWS versions with negligible approximation error. We
explore this synergy in detail in the Appendix. Table 5 shows that GDWS benefits also show up in
ImageNet using ResNet-50.

Table 5: Comparison between HYDRA [34] and GDWS using ResNet-50 on ImageNet.

Models top-1 / 5 Anat [%] top-1 / 5 Arob [%] Size [MB] FPS
ResNet-50 (AT from [34]) 60.25 / 82.39 31.94 / 61.13 97.5 15
+ GDWS (β = 50) 58.04 / 80.56 30.22 / 58.48 86.2 19
ResNet-50 (p = 95%) 44.60 / 70.12 19.53 / 44.28 5.1 15
+ GDWS (β = 0.5) 43.91 / 69.46 19.27 / 43.58 12.6 19

ResNet-50 (p = 99%) 27.68 / 52.55 11.32 / 28.83 1.2 17
+ GDWS (β = 0.5) 26.27 / 50.90 10.92 / 27.55 2.9 25

4.3 Defending against Union of Perturbation Models

Recent work has shown that adversarial training with a single perturbation model leads to classifiers
vulnerable to the union of (`∞, `2, `1)-bounded perturbations [33, 39, 22]. The method of multi
steepest descent (MSD) [22] achieves state-of-the-art union robust accuracy (AU

rob) against the union
of (`∞, `2, `1)-bounded perturbations. We demonstrate the versatility of GDWS by applying it to a
publicly available [22] robust pre(MSD)-trained ResNet-18 model on CIFAR-10. Following the setup
in [22], all attacks were run on a subset of the first 1000 test images with 10 random restarts with the
following attack configurations: ε∞ = 0.03 with PGD-100 , ε2 = 0.5 with PGD-500, and ε1 = 12
with PGD-100. Table 6 shows that applying GDWS with β = 0.01 to the pre-trained ResNet-18
incurs a negligible (<∼1%) drop in Anat and AU

rob while improving the throughput from 28 FPS to
101 FPS (> 250% improvement).
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Table 6: Benefits of GDWS when evaluated against union of perturbation models on CIFAR-10. AU
rob

is the fraction of test images that are simultaneously resistant to all perturbation models.

Models Anat [%] A∞rob [%] A1
rob [%] A2

rob [%] AU
rob [%] FPS

ResNet-18 (AT from [22]) 81.74 47.50 53.60 66.10 46.10 28
+ GDWS (β = 0.0025) 81.67 47.60 53.60 66.00 46.30 87
+ GDWS (β = 0.005) 81.43 47.30 52.60 65.60 45.70 92
+ GDWS (β = 0.01) 81.10 47.20 52.20 65.00 45.20 101

5 Discussion

We have established that the proposed GDWS convolutions are universal and efficient approximations
of standard 2D convolutions that are able to accelerate any pre-trained CNN utilizing standard 2D
convolution while preserving its accuracy and robustness. This facilitates the deployment of CNNs in
safety critical edge applications where real-time decision making is crucial and robustness cannot be
compromised. One limitation of this work is that GDWS alone does not achieve high compression
ratios compared to pruning. Combining unstructured pruning with GDWS alleviates this problem to
some extent. Furthermore, GDWS cannot be applied to CNNs utilizing DWS convolutions, such as
RobNet for instance. An interesting question is to explore the possibility of training GDWS-structured
networks from scratch. Another possible direction is fine-tuning post GDWS approximation to recover
robustness, which we explore in the Appendix.

In summary, a GDWS approximated network inherits all the properties, e.g., accuracy, robustness,
compression and others, of the baseline CNN while significantly enhancing its throughput (FPS) on
real hardware. Therefore, the societal impact of GDWS approximated networks are also inherited
from those of the baseline CNNs.
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