

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING EXPOSURE MAPPING FUNCTIONS FOR INFERRING HETEROGENEOUS PEER EFFECTS

Anonymous authors

Paper under double-blind review

ABSTRACT

Peer effect refers to the difference in counterfactual outcomes for a unit resulting from different levels of peer exposure, the extent to which the unit is exposed to the treatments, actions, or behaviors of its peers. Peer exposure is typically captured through an explicitly defined exposure mapping function that aggregates peer treatments and outputs peer exposure. Exposure mapping functions range from simple functions like the number or fraction of treated friends to more sophisticated functions that allow for different peers to exert different degrees of influence. However, the true function is rarely known in practice and when the function is misspecified, this leads to biased causal effect estimation. To address this problem, the focus of our work is to move away from the need to explicitly define an exposure mapping function and instead introduce a framework that allows learning this function automatically. We develop EGONETGNN, a graph neural network (GNN), for heterogeneous peer effect estimation that automatically learns the appropriate exposure mapping function and allows for complex peer exposure mechanisms that involve not only peer treatments but also attributes of the local neighborhood, including node, edge, and structural attributes. We theoretically and empirically show that GNN models that use peer exposure based on the number or fraction of treated peers or learn peer exposure naively face difficulty accounting for such influence mechanisms. Our evaluation on synthetic and semi-synthetic network data shows that our method is more robust to different unknown underlying influence mechanisms when compared to state-of-the-art baselines.

1 INTRODUCTION

In networked environments, the outcome of a unit can be influenced by the treatments or outcomes of other units, a phenomenon known as interference. For example, in a contact network, the smoking habits of peers may affect an individual’s respiratory health, and in a social network the political affiliations of peers may influence one’s stance on a policy issue like immigration. Peer effects capture this influence by comparing an individual’s outcomes under different peer network conditions (e.g., having no smoker peers versus some smoker peers, or observed peer political affiliations versus counterfactual, flipped affiliations). Peer effect estimation is important for policy-making and targeted intervention design in many domains, including healthcare (Barkley et al., 2020), online advertisement (Nabi et al., 2022), and education (Patacchini et al., 2017).

Peer network conditions are typically captured through an *explicitly defined* exposure mapping function (Aronow and Samii, 2017) that summarizes the peer treatments and peer network and outputs peer exposure, which is the equivalent to a composite peer treatment value. The peer effect is defined as the difference in outcomes under two distinct levels of peer exposure. Different peer exposure mapping functions capture different possible underlying influence mechanisms. Typically, domain experts define exposure mapping functions appropriate to the causal question and domain of interest. The advantage of exposure mapping functions is that they reduce the high dimensionality of peer network attributes and that they are invariant to irrelevant contexts (e.g., permutation of peers).

Figure 1 presents examples of prominent exposure mapping functions and the resulting peer exposure values for a toy peer network. The first graph shows Gaby’s peer network along with the observed (i.e., factual) treatments for Gaby’s peers. The second graph shows hypothetical (i.e., counterfactual) treatments for the peers. The peers in the treatment group (e.g., smokers) and control group (e.g.,

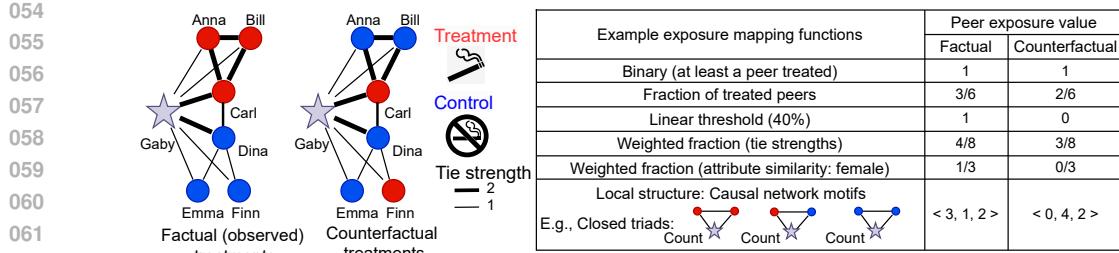


Figure 1: Illustration of different possible peer exposure representations for a node (Gaby) in a toy peer network. Red nodes represent peers in the treatment group, and blue nodes represent peers in the control group. Gray star node represents the node that has a fixed treatment.

non-smokers) are depicted as red and blue nodes, respectively. The edge weights capture the tie strengths in the network. Binary peer exposure mapping is the simplest and it summarizes peer treatments to 0 or 1, e.g., whether any peers have been treated (Bargagli-Stoffi et al., 2025) or whether the weighted treatment of peers has reached a linear threshold (Tran and Zheleva, 2022). Some exposure mapping functions assume that all peers influence equally (e.g., fraction of treated peers (Hudgens and Halloran, 2008; Jiang and Sun, 2022)), while others consider that different peers can exert different degrees of influence (e.g., weighted fraction (Forastiere et al., 2021) or sum (Zhao et al., 2024) of treated peers). Peer exposure has also been modeled with counts of different causal network motifs, i.e., recurrent subgraphs in a unit’s peer network with treatment assignments as attributes (Yuan et al., 2021). We discuss the related work in more detail in the Appendix A.2.

A key challenge in peer effect estimation is that the true exposure mapping function is rarely known in practice and when the function is misspecified, this leads to biased causal effect estimation. The focus of this paper is to move away from the need to explicitly define an exposure mapping function and instead learn this function automatically from data. This has the advantage of reducing subjectivity and allowing for automated representation of peer exposure under unknown and complex peer influence mechanisms. More specifically, we study the problem of exposure mapping function learning in the context of heterogeneous peer effect estimation. Heterogeneous peer effects (HPE) denote variation in peer effects across individuals that may originate from personal attributes or from characteristics of their peer networks. For example, while having a friend who smokes may have a negative effect on health for some people, it may make no difference for others.

We propose EGO NET GNN, a novel graph neural network (GNN) architecture, that automatically learns a relevant exposure mapping function under appropriate identifiability assumptions. EGO NET GNN allows for complex peer influence mechanisms that, in addition to peer treatments, can involve the local neighborhood structure, node, and edge attributes. Our work builds upon the success of utilizing neural networks (NNs) (Shalit et al., 2017; Im et al., 2021; Shi et al., 2019) and, recently, graph neural networks (GNNs) (Jiang and Sun, 2022; Cai et al., 2023; Chen et al., 2024; Khatami et al., 2024) for end-to-end learning of counterfactual outcome models or causal effect estimators. Few studies have utilized GNNs to learn the exposure mapping function (Mao et al., 2025; Wu et al., 2025) or to derive peer exposure embedding by aggregating feature embeddings and peer treatments (Adhikari and Zheleva, 2025; Zhao et al., 2024). However, these works use off-the-shelf GNNs like GCN (Kipf and Welling, 2016) or GIN (Xu et al., 2018) and prior work (Chen et al., 2020) has shown such architectures lack expressiveness for counting subgraphs with cycles and for capturing mechanisms involving local neighborhood structure. On the other hand, counts of such subgraphs, like causal network motifs, are rich features for capturing local structural contexts (Yuan et al., 2021), but they are expensive to compute, inflexible, and may not capture every local structural context (e.g., edge weights).

One of the biggest strengths of EGO NET GNN is the ability to capture the exposure mapping functions studied in previous works, including finding relevant causal network motifs and scaling to higher-order motifs. To add robustness to the downstream peer effect estimation task, EGO NET GNN is designed to learn the exposure mapping function to produce representation that is *expressive* to differentiate between different peer exposure conditions and *invariant* to irrelevant contexts. Moreover, EGO NET GNN is designed to promote bounded representation with substantial coverage of possible peer exposure values. Figure 2 shows an overview of EGO NET GNN. While most peer effect estimation frameworks contain a feature mapping and a counterfactual outcome model component,

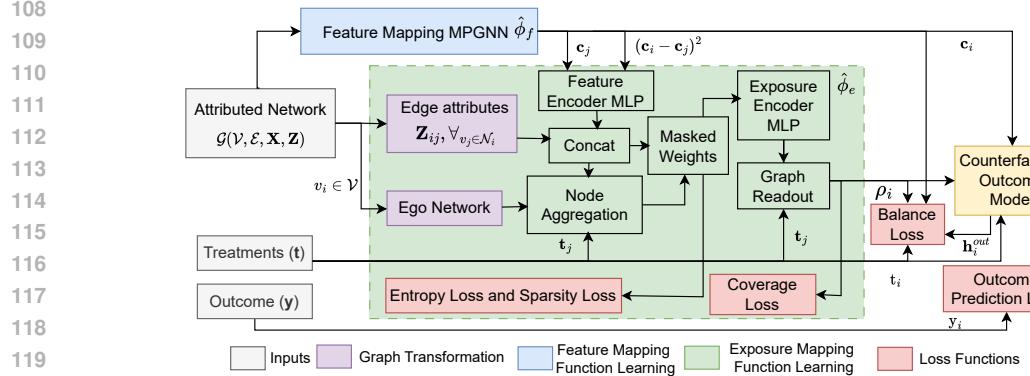


Figure 2: An overview of the proposed EGONETGNN model to learn exposure mapping function for peer effect estimation. EGONETGNN extracts ego networks, for each node v_i , with peer treatments along with feature embedding and its edge attributes as node attributes. Then, node-level aggregations are performed to capture local neighborhood contexts. These contexts are passed through a masked weight layer and encoded by an multi-layer perceptron (MLP) to learn relevant influence mechanisms and summarized with graph-level aggregation. The learned peer exposure embeddings (ρ_i), along with the feature embeddings (\mathbf{c}_i), and treatment (t_i) are passed to a counterfactual outcome model that is used to infer peer effects. The graph transformation ensures expressiveness, while balance, coverage, entropy, and sparsity losses promote the robustness of the peer exposure representation.

the novel additional component in ours is the custom-designed exposure mapping function learning (marked in green in the figure). We design this component to excel in counting attributed subgraphs, such as causal network motifs, enhancing its expressiveness to capture unknown underlying peer exposure mechanisms. We theoretically and empirically show that, unlike EGONETGNN, existing GNN-based approaches that solely rely on homogeneous peer exposure or learn heterogeneous peer exposure naively lack expressiveness in capturing heterogeneous peer influence mechanisms based on local neighborhood structure.

2 CAUSAL INFERENCE PROBLEM SETUP

Notations. We represent the network as an undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with a set of $n = |\mathcal{V}|$ nodes, a set of edges \mathcal{E} , node attributes \mathbf{X} , and edge attributes \mathbf{Z} . Let $\mathbf{t} = \langle t_1, \dots, t_i, \dots, t_n \rangle$ be a random variable comprising the treatment variables t_i for each node $v_i \in \mathcal{V}$ in the network and y_i be a random variable for v_i 's outcome. Let $\boldsymbol{\pi} = \langle \pi_1, \dots, \pi_i, \dots, \pi_n \rangle$ be an assignment to \mathbf{t} with $\pi_i \in \{0, 1\}$ assigned to t_i . Let $\mathbf{t}_{-i} = \mathbf{t} \setminus t_i$ and $\boldsymbol{\pi}_{-i} = \boldsymbol{\pi} \setminus \pi_i$ denote random variable and its value for treatment assignment to other units except v_i , which we refer to as peer treatments for convenience.

Peer exposure reflects how much a unit is exposed to peer treatments and is defined as follows.

Definition 1 (Peer exposure and exposure mapping function). Peer exposure for unit v_i is defined as $\rho_i \in [0, 1]^d = \phi_e(\boldsymbol{\pi}_{-i}, \mathcal{G}, \mathbf{X}, \mathbf{Z})$, where ϕ_e is the *exposure mapping function* that maps high-dimensional contexts $\{\boldsymbol{\pi}_{-i}, \mathcal{G}, \mathbf{X}, \mathbf{Z}\}$ to a d -dimensional peer exposure representation bounded between 0 and 1 such that $y_i(t_i = \pi_i, \mathbf{t}_{-i} = \boldsymbol{\pi}_{-i})|\{\mathcal{G}, \mathbf{X}, \mathbf{Z}\} = y_i(t_i = \pi_i, \mathbf{p}_i = \rho_i)|\{\mathcal{G}, \mathbf{X}, \mathbf{Z}\}$.

Definition 1 maps peer treatments $\mathbf{t}_{-i} = \boldsymbol{\pi}_{-i}$ and peer network contexts $\{\mathcal{G}, \mathbf{X}, \mathbf{Z}\}$ to peer exposure $\mathbf{p}_i = \rho_i$ in terms of equivalence of counterfactual outcomes $y_i(t_i = \pi_i, \mathbf{t}_{-i} = \boldsymbol{\pi}_{-i})$ and $y_i(t_i = \pi_i, \mathbf{p}_i = \rho_i)$. Here, $y_i(t_i = \pi_i, \mathbf{p}_i = \rho_i)$, captures that, in interference settings, the counterfactual outcome of a unit v_i is influenced by both unit's treatment $t_i = \pi_i$ and peer exposure $\mathbf{p}_i = \rho_i$. Note that the exposure mapping function could map different contexts to the same peer exposure.

Peer effect refers to the difference in counterfactual outcomes for different values of peer exposure. Heterogeneous peer effects (HPE) refers to different units having different peer effects dependent on their contexts. For any given unit v_i , its heterogeneous peer effect is described through its context, i.e., for peer exposures $\mathbf{p}_i = \rho_i$ versus $\mathbf{p}_i = \rho'_i$ and unit's treatment $t_i = \pi_i$ conditioned on the unit's contexts \mathbf{c}_i , it is defined as:

$$\delta_i(\rho_i, \rho'_i) = \mathbb{E}[y_i(t_i = \pi_i, \mathbf{p}_i = \rho_i)|\mathbf{c}_i] - \mathbb{E}[y_i(t_i = \pi_i, \mathbf{p}_i = \rho'_i)|\mathbf{c}_i], \quad (1)$$

where expectation is over units with similar contexts \mathbf{c}_i , referred to as *effect modifiers* (e.g., unit's degree or node attributes), defined by a feature mapping function of contexts $\{\mathcal{G}, \mathbf{X}, \mathbf{Z}\}$ from v_i 's

162 perspective, i.e., $\mathbf{c}_i = \phi_f(v_i, \mathcal{G}, \mathbf{X}, \mathbf{Z})$. Substituting peer exposures ρ_i and ρ'_i with corresponding
163 exposure mapping functions for two peer treatment assignments π_{-i} versus π'_{-i} in Eq. 1, we get:

$$\delta_i(\pi_{-i}, \pi'_{-i}) = \mathbb{E}[y_i(t_i = \pi_i, \mathbf{p}_i = \phi_e(\pi_{-i}, \mathcal{G}, \mathbf{X}, \mathbf{Z})) | \mathbf{c}_i] - \mathbb{E}[y_i(t_i = \pi_i, \mathbf{p}_i = \phi_e(\pi'_{-i}, \mathcal{G}, \mathbf{X}, \mathbf{Z})) | \mathbf{c}_i]. \quad (2)$$

166 **Causal identification.** Now, we discuss the identification of peer effects that involves expressing
167 counterfactual outcomes in terms of observational and/or interventional distributions.

168 Next, we make two commonly adopted assumptions in network interference settings.

170 **Assumption 1** (Pre-treatment network). The network \mathcal{G} along with node attributes \mathbf{X} and edge
171 attributes \mathbf{Z} are measured before treatment assignments $\mathbf{t} = \pi$ and treatments are not mutable.

172 **Assumption 2** (Neighborhood Interference). The counterfactual outcome of a unit depends only on
173 its immediate neighborhood treatments, i.e., $y_i(t_i = \pi_i, \mathbf{t}_{-i} = \pi_{-i}) | \mathbf{c}_i = y_i(t_i = \pi_i, \mathbf{t}'_{-i} = \pi'_{-i}) | \mathbf{c}_i =$
174 $y_i(t_i = \pi_i, \mathbf{p}_i = \phi_e(\pi'_{-i}, \mathcal{G}, \mathbf{X}, \mathbf{Z})) | \mathbf{c}_i$, where $\mathcal{N}_i = \{j : (v_i, v_j) \in \mathcal{E}\}$, $\mathbf{t}'_{-i} = \mathbf{t}_{-i} \cap \{t_j : j \in \mathcal{N}_i\}$, and
175 $\pi'_{-i} = \pi_{-i} \cap \{\pi_j : j \in \mathcal{N}_i\}$ denote neighborhood set, treatments, and assignments, respectively.

176 Assumption 1 is a general assumption in experimental and observational studies, and Assumption
177 2 is a common simplifying assumption that presumes network influence is mediated by immediate
178 neighbors but our work could be extended to consider interference from multiple-hop neighborhoods.
179 For ease of exposition, we drop the superscript \mathcal{N}_i in neighborhood treatments and assignments.

181 For causal identification, we assume unconfoundedness, similar to previous work (Ma et al., 2022;
182 Wu et al., 2025):

183 **Assumption 3** (Unconfoundedness). For all unit treatment $\pi_i \in \{0, 1\}$ and peer treatment assignments
184 $\pi_{-i} \in \{0, 1\}^{n-1}$, there exists a feature mapping function $\phi_f \in \Phi_f$ and an exposure mapping function
185 $\phi_e \in \Phi_e$ such that the counterfactual outcome is independent of unit treatment and peer exposure
186 conditions given the context $\mathbf{c}_i = \phi_f(v_i, \mathcal{G}, \mathbf{X}, \mathbf{Z})$, i.e., $y_i(t_i = \pi_i, \mathbf{p}_i = \phi_e(\pi_{-i}, \mathcal{G}, \mathbf{X}, \mathbf{Z})) \perp \{t_i, \mathbf{p}_i\} | \mathbf{c}_i$.

187 Assumption 3 implies that the observed network context is sufficient for controlling for confounding,
188 and there are functions able to represent it compactly. Under this assumption, it is still possible to
189 learn a feature mapping and exposure mapping functions that do not approximate the true functions
190 which leads to a misspecification error. Therefore, it is important to learn an expressive function
191 (e.g., a GNN) that is able to capture a wide range of possible functions. We also assume the standard
192 *consistency* (Assumption 4) and *positivity* (Assumption 5), described in more detail in Appendix A.3.
193 Next, we present the causal identification conditions and formally define the problem of exposure
194 mapping function learning in the context of peer effect estimation.

195 **Proposition 1.** With Assumptions 1-5, the HPE δ_i in Eq. A.3 can be estimated from experimental or
196 observational data as

$$\delta_i(\pi_{-i}, \pi'_{-i}) = \mathbb{E}[y_i | t_i = \pi_i, \mathbf{p}_i = \phi_e(\pi_{-i}, \mathcal{G}, \mathbf{X}, \mathbf{Z}), \mathbf{c}_i] - \mathbb{E}[y_i | t_i = \pi_i, \mathbf{p}_i = \phi_e(\pi'_{-i}, \mathcal{G}, \mathbf{X}, \mathbf{Z}), \mathbf{c}_i]. \quad (3)$$

199 The proof presented in Appendix A.3 stems from consistency and unconfoundedness assumptions.

200 **Problem 1** (Exposure mapping function learning). Given network contexts $\{\mathcal{G}, \mathbf{X}, \mathbf{Z}\}$, treatments \mathbf{t} ,
201 and outcomes \mathbf{y} of n units, estimate the feature and exposure mapping functions $\hat{\phi}_f$ and $\hat{\phi}_e$ along
202 with counterfactual outcome model \hat{f}_y such that mean squared error between true heterogeneous peer
203 effect (HPE) δ_i and estimated HPE $\hat{\delta}_i$, i.e., $\frac{1}{n} \sum_{i=1}^n (\delta_i - \hat{\delta}_i)^2$, is minimized, where $\hat{\delta}_i = \hat{f}_y(\pi_i, \hat{\rho}_i, \hat{\mathbf{c}}_i) -$
204 $\hat{f}_y(\pi_i, \hat{\rho}'_i, \hat{\mathbf{c}}_i)$ with $\hat{\rho}_i = \phi_e(\pi_{-i}, \mathcal{G}, \mathbf{X}, \mathbf{Z})$, $\hat{\rho}'_i = \phi_e(\pi'_{-i}, \mathcal{G}, \mathbf{X}, \mathbf{Z})$, and $\hat{\mathbf{c}}_i = \hat{\phi}_f(v_i, \mathcal{G}, \mathbf{X}, \mathbf{Z})$.

206 The true HPE is unknown, but due Proposition 1, the factual outcomes can be utilized to jointly
207 estimate $\hat{\phi}_f$, $\hat{\phi}_e$, and \hat{f}_y as discussed in the next section.

209 3 EGO NETGNN: LEARNING EXPOSURE MAPPING FUNCTION WITH GNNS

212 Figure 2 shows an overview of the proposed EGO NETGNN model to simultaneously learn exposure
213 mapping function $\hat{\phi}_e$, feature mapping function $\hat{\phi}_f$, and counterfactual outcome model \hat{f}_y for peer
214 effect estimation. We aim to learn exposure mapping function $\hat{\phi}_e$ with three key properties: 1)
215 expressiveness, 2) invariance, and 3) bounded and balanced representation. The expressiveness
property ensures the peer exposure representation ρ_i returned by the function $\hat{\phi}_e$ is unique for

216 different relevant contexts, while the invariance property assures the representation ρ_i does not
 217 vary due to irrelevant contexts. For example, in Figure 1, if the underlying peer influence depends
 218 on clustering coefficients among treated, the function $\hat{\phi}_e$ is expressive if it can capture the first
 219 closed triad substructure. The standard message passing GNNs (e.g., GCN, GIN, etc) cannot capture
 220 essential causal network motifs like closed triads (i.e., triangular motifs) (Chen et al., 2020). The
 221 graph transformation and automated exposure mapping function learning in our EGONETGNN model
 222 are designed to ensure that the peer exposure representation is at least as expressive as or superior
 223 to the approach of feature extraction by counting causal network motifs. In the above example, the
 224 function $\hat{\phi}_e$ is invariant to irrelevant contexts if the difference in other features like node attributes
 225 and edge weights do not change the learned representation ρ_i . To satisfy the property of bounded
 226 representation, the learned representation ρ_i should be bounded, e.g., between 0 and 1, to reflect
 227 no exposure and maximum exposure. Moreover, the representation ρ_i should have a substantial
 228 coverage, which means it should be distributed across the possible range of exposure. Next, we
 229 describe our feature mapping, exposure mapping, and counterfactual outcome model in detail.

230 3.1 ARCHITECTURE OF EGONETGNN

232 EGONETGNN first maps the attributed network to feature embedding using a MPGNN and extracts
 233 ego networks for each node v_i , incorporating peer treatments, node features, and edge attributes.
 234 It performs node-level aggregation to capture local context, which is processed through a masked
 235 weight layer and an MLP followed by graph-level aggregation to learn peer exposure representation.

236 **Feature mapping MPGNN.** The feature mapping module aims to capture contexts that are potentially
 237 confounders or effect modifiers. Let Θ denote a multi-layer perceptron (MLP) and \parallel denote a
 238 concatenation operator. The feature embedding c_i is obtained for l -th layer as:

$$239 \quad c_i = \Theta_0(\mathbf{X}_i) \parallel \mathbf{h}_i^l \text{ and } \mathbf{h}_i^l = \mathbf{h}_i^{l-1} + \sum_{j \in \mathcal{N}_i} \Theta_l \mathbf{h}_j^{l-1}, \quad (4)$$

241 where $\mathbf{h}_j^0 = \mathbf{X}_j \parallel \mathbf{Z}_{ij}$, and $\mathbf{h}_i^0 = 0$ are initial conditions and \mathcal{N}_i denote neighbors of node v_i . This
 242 MPGNN architecture incorporates edge attributes \mathbf{Z}_{ij} while disentangling the hidden representation
 243 of the unit's own attributes $\Theta_0(\mathbf{X}_i)$ from that of aggregated peer and edge attributes \mathbf{h}_i^l .

245 **Ego network construction.** To learn an exposure mapping function that is as least as expressive as
 246 or superior to the approach of feature extraction by counting network motifs, we transform the node
 247 regression task to graph regression by extracting ego networks for each unit. In an ego network, the
 248 triangle structures involving an ego node are transformed as edges, which mitigates the limitation of
 249 GNNs to capture closed triad motifs. The ego network $\bar{\mathcal{G}}_i(\bar{\mathcal{V}}_i, \bar{\mathcal{E}}_i)$ is extracted from $\mathcal{G}(\mathcal{V}, \mathcal{E})$ for each
 250 node v_i such that node set $\bar{\mathcal{V}}_i$ consists neighbors of v_i , i.e., $\bar{\mathcal{V}}_i = \{v_j : e_{ij} \in \mathcal{E} \wedge v_j \in \mathcal{V}\}$ and edge set
 251 $\bar{\mathcal{E}}_i$ consists edges between neighbors of v_i , i.e., $\bar{\mathcal{E}}_i = \{e_{jk} : e_{jk} \in \mathcal{E} \wedge v_j \in \bar{\mathcal{V}}_i \wedge v_k \in \bar{\mathcal{V}}_i\}$.

252 **Feature encoder and node aggregation.** Feature encoder module takes relevant peer feature
 253 embeddings and the distance between ego and peer feature embeddings, i.e., $c_{ij} = \Theta_{feat}(c_j \parallel (c_i -$
 $c_j)^2)$, to capture peer influence mechanisms involving peer attributes and feature similarity between
 254 ego and peers. Then, we transform an ego v_i 's edge attributes \mathbf{Z}_{ij} to node attributes, i.e., $\bar{\mathbf{X}}_j = \mathbf{Z}_{ij}$,
 255 in the ego network $\bar{\mathcal{G}}_i(\bar{\mathcal{V}}_i, \bar{\mathcal{E}}_i)$ because the ego v_i itself is not present in the ego network. The node
 256 aggregation for each node v_j in the ego network $\bar{\mathcal{G}}_i$ considers neighbors' node attributes $\bar{\mathbf{X}}_k$, feature
 257 encoding c_{ik} , edge attributes \mathbf{Z}_{jk} , and peer treatments t_k , and is defined for l^{th} layer as follows:

$$258 \quad \mathbf{h}_j^l = \mathbf{h}_j^{l-1} + \sum_{k \in \mathcal{N}_j} \mathbf{h}_k^{l-1}, \text{ with } \mathbf{h}_k^0 = t_k \parallel \bar{\mathbf{X}}_k \parallel c_{ik} \parallel \mathbf{Z}_{jk} \text{ and } \mathbf{h}_j^0 = 0. \quad (5)$$

260 **Masked weights and exposure encoder.** Masked weights promotes representation that is invariant
 261 to irrelevant contexts and feeds the concatenation of node attributes and hidden state after L layers of
 262 node aggregation, i.e., $\mathbf{h}_j^{agg} = \bar{\mathbf{X}}_j \parallel c_{ij} \parallel \mathbf{h}_j^L$, through a *masked fully connected* layer as follows:

$$263 \quad \mathbf{h}_j^{mask} = \text{ReLU}((\sigma(\mathbf{W}_{mask}) \odot \mathbf{W}_{agg}) \mathbf{h}_j^{agg} + \mathbf{b}_{agg}), \quad (6)$$

265 where ReLU and σ are a rectified linear unit and sigmoid activation functions, \odot indicates element-
 266 wise product, \mathbf{W}_{mask} and \mathbf{W}_{agg} are the weight matrices, and \mathbf{b}_{agg} is the bias vector. The masked
 267 hidden representation \mathbf{h}_j^{mask} is passed into an exposure encoder MLP to extract a low dimensional em-
 268 bedding. The goal of this module is to capture complex mechanisms based on the local neighborhood
 269 and reduce dimensionality. Formally, the output embedding \mathbf{h}_j^{exp} is obtained as follows:

$$270 \quad \mathbf{h}_j^{exp} = \text{ReLU}(\Theta_{exp}(\ln(\text{ReLU}(\Theta_{enc}(\mathbf{h}_j^{mask}))) + 1))), \quad (7)$$

270 Θ_{enc} and Θ_{exp} are two MLPs and \ln denotes log transformation that offers the benefit of rescaling
 271 features with large values that are significant in scale-free networks (e.g., online social networks) and
 272 introduces inductive bias to capture mechanisms involving ratios.

273 **Graph readout.** Finally, the peer exposure embedding ρ_i for node v_i is obtained by aggregating
 274 the representation \mathbf{h}_j^{exp} for all $v_j \in \bar{\mathcal{V}}_i$ on the entire ego network $\bar{\mathcal{G}}_i(\bar{\mathcal{V}}_i, \bar{\mathcal{E}}_i)$ as $\rho_i =$
 275 $\sum_j (t_j \times \mathbf{h}_j^{exp}) / \sum_j \mathbf{h}_j^{exp} || 1 - e^{-\sum_j (t_j \times \mathbf{h}_j^{exp})}$. We consider two aggregations such that the peer exposure
 276 embedding is bounded between 0 and 1, with 0 being the case of no peer exposure. The first aggregation captures proportion similar to the fraction of treated peers, but we weight each peer
 277 by $\mathbf{h}_j^{exp} / \sum_j \mathbf{h}_j^{exp}$ learned by the preceding layer. The second aggregation captures scale and is
 278 analogous to the number of treated peers, except that each peer is weighted by \mathbf{h}_j^{exp} .
 279

280 3.2 END-TO-END LEARNING OF EGO NET GNN

281 The resulting peer exposure embeddings (ρ_i) and the feature embeddings (c_i) from the above module
 282 along with unit treatment (π_i) are passed to a counterfactual outcome model $f_y(t_i = \pi_i, \mathbf{p}_i =$
 283 $\rho_i, \mathbf{c}_i = c_i)$ to obtain conditional counterfactual outcome $\mathbb{E}[y_i(t_i = \pi_i, \mathbf{p}_i = \rho_i) | \mathbf{c}_i = c_i] =$
 284 $\mathbb{E}[y_i | t_i = \pi_i, \mathbf{p}_i = \rho_i, \mathbf{c}_i = c_i]$ (Eq. 3). We adapt the Treatment Agnostic Representation Network
 285 (TARNet) and Counterfactual Regression (CFR) models (Shalit et al., 2017) as the counterfactual
 286 outcome model \hat{f}_y . The TARNet architecture consists of a single embedding MLP and two prediction
 287 heads to estimate counterfactual outcomes with unit treatment $t_i = 1$ and $t_i = 0$, i.e.,
 288

$$289 \mathbf{h}_i^{emb} = \Theta_{emb}(\mathbf{c}_i) || \rho_i, \quad \hat{y}_i(0) = \Theta_{y_0}(\mathbf{h}_i^{emb}), \quad \hat{y}_i(1) = \Theta_{y_1}(\mathbf{h}_i^{emb}). \quad (8)$$

290 Our **CFR⁺** architecture is similar except for an autoencoder to produce the embeddings, i.e.,
 291 $\mathbf{h}_i^{emb} = \Theta_{emb}(\mathbf{c}_i || \rho_i)$ and $\mathbf{h}_i^{out} = \Theta_{dec}(\mathbf{h}_i^{emb})$. Note that, unlike the original CFR, our CFR⁺ utilizes
 292 an autoencoder because it, along with reconstruction loss, helps mitigate the potential loss in ex-
 293 pressiveness while balancing representations across treatment groups. The CFR⁺ or TARNet model
 294 $\hat{f}_y(\pi_i, \rho_i, \mathbf{c}_i)$ predicts outcome $\hat{y}_i = \hat{y}_i(1)$ if $\pi_i = 1$ and $\hat{y}_i = \hat{y}_i(0)$ if $\pi_i = 0$. The unit-level factual
 295 prediction loss \mathcal{L}_{y_i} is defined as
 296

$$297 \mathcal{L}_{y_i} = loss(y_i, \hat{f}_y(t_i = \pi_i, \hat{\mathbf{p}}_i = \hat{\phi}_e(\pi_{-i}, \mathcal{G}, \mathbf{X}, \mathbf{Z}; \Theta_e), \hat{\mathbf{c}}_i = \hat{\phi}_f(v_i, \mathcal{G}, \mathbf{X}, \mathbf{Z}; \Theta_f); \Theta_y)), \quad (9)$$

298 where $loss$ is an appropriate loss function (e.g., square error loss) based on data type of the outcome
 299 and $\Theta = \{\Theta_e, \Theta_f, \Theta_y\}$ are learning parameters to be optimized for exposure mapping function $\hat{\phi}_e$,
 300 feature mapping function $\hat{\phi}_f$, and counterfactual outcome model \hat{f}_y , respectively.

301 **Balance loss.** The **CFR⁺** architecture uses autoencoder reconstruction loss and the Integral Probability
 302 Metric (IPM) (Shalit et al., 2017) measure of distance between treatment and control groups using
 303 Wasserstein (Cuturi and Doucet, 2014; Arjovsky et al., 2017), jointly referred to as balance loss, i.e.,
 304

$$305 \mathcal{L}_{bal} = \mathbf{1}_{\lambda_{bal} > 0} \times \frac{1}{n} \sum_i (\mathbf{h}_i^{out} - \mathbf{c}_i || \rho_i)^2 + \lambda_{bal} \times IPM(\{\mathbf{h}_i^{emb} : t_i = 1\}, \{\mathbf{h}_i^{emb} : t_i = 0\}), \quad (10)$$

306 where $\lambda_{bal} \geq 0$ is a hyperparameter and $IPM(\cdot)$ balances the distribution $\mathbb{P}(\mathbf{c}, \mathbf{p} | t = 0)$ and
 307 $\mathbb{P}(\mathbf{c}, \mathbf{p} | t = 1)$, where $\mathbb{P}(\mathbf{c}, \mathbf{p} | t)$ is equivalent to $\mathbb{P}(\mathbf{p} | t) \mathbb{P}(\mathbf{c} | \mathbf{p}, t)$. Intuitively, \mathcal{L}_{bal} balances peer
 308 exposure distribution \mathbf{p} between treatment groups and covariate distribution \mathbf{c} across peer exposure
 309 conditions and treatment groups while maintaining expressiveness due to the autoencoder component.
 310 Although the ideal objective would be to balance representation across any exposure conditions, i.e.,
 311 $\mathbb{P}(\mathbf{c} | \mathbf{p}, t) \approx \mathbb{P}(\mathbf{c} | \mathbf{p}', t')$, our balancing technique is still a computation-friendly and useful heuristic.
 312 We discuss more on the practical infeasibility of implementing the ideal objective in the Appendix.

313 For the end-to-end learning of $\hat{\phi}_e$, $\hat{\phi}_f$, and \hat{f}_y , we introduce three custom loss functions designed for
 314 EGO NET GNN: coverage loss, sparsity loss, and entropy loss. These custom loss functions serve as
 315 priors to make the learned exposure mapping function stable and reliable.

316 **Coverage loss.** We use a prior that encourages the bounded peer exposure embedding to have
 317 substantial coverage. This loss function checks how far the learned peer embedding distribution is
 318 from a continuous uniform distribution between 0 and 1, i.e., $L_{cov} = (mean(\rho) - 0.5)^2 + (var(\rho) -$
 319 $\frac{1}{12})^2 + (range(\rho) - 1)^2$. Here, we consider mean squared error of mean, variance, and range of
 320 learned embedding ρ against corresponding value of the uniform distribution.

321 **Entropy loss and sparsity loss.** Entropy loss encourages mask weights, i.e., $p := \sigma(\mathbf{W}_{mask})$ to take
 322 values toward 0 or 1 and sparsity loss pushes for a few weights with high values. Formally, we define
 323 entropy loss and sparsity loss as $\mathcal{L}_{ent} = mean(-p \log(p) - (1 - p) \log(1 - p))$ and $\mathcal{L}_{sp} = mean(p)$.

324 **Overall loss.** We obtain the overall loss function \mathcal{L} as
 325

$$326 \quad \mathcal{L} = \frac{1}{n} \sum_i \mathcal{L}_{y_i} + \mathcal{L}_{bal} + \lambda_{cov} \times \mathcal{L}_{cov} + \lambda_{ent} \times \mathcal{L}_{ent} + \lambda_{sp} \times \mathcal{L}_{sp} + \lambda_{L1} \times \|\Theta_{gnn}\|_1, \quad (11)$$

328 where λ_{cov} , λ_{ent} , and λ_{sp} are the hyperparameters and Θ_{gnn} denote overall parameters in $\hat{\phi}_f$ and $\hat{\phi}_e$,
 329 and the last term is L_1 loss to promote invariance to irrelevant contexts by preferring sparse weights.
 330

331 **Inference.** The peer effect is obtained as $\hat{\delta}_i(\boldsymbol{\pi}_{-i}, \boldsymbol{\pi}'_{-i}) = \hat{f}(\boldsymbol{\pi}_i, \boldsymbol{\pi}_{-i}, \mathcal{G}, \mathbf{X}, \mathbf{Z}) - \hat{f}(\boldsymbol{\pi}_i, \boldsymbol{\pi}'_{-i}, \mathcal{G}, \mathbf{X}, \mathbf{Z}) =$
 332 $\hat{f}_y(\boldsymbol{\pi}_i, \boldsymbol{\rho}_i, \mathbf{c}_i) - \hat{f}_y(\boldsymbol{\pi}_i, \boldsymbol{\rho}'_i, \mathbf{c}_i)$, where \hat{f} is the end-to-end EGO NETGNN.
 333

334 3.3 THEORETICAL ANALYSES OF EGO NETGNN

335 **Expressiveness.** We perform a theoretical analysis of the expressive power of graph neural networks
 336 (GNNs) in capturing the causal network motifs proposed in the Yuan et al. (2021) paper. Building
 337 on previous research regarding the capacity of GNNs to count substructures (Chen et al., 2020),
 338 we demonstrate that existing message-passing GNN methods are not expressive enough to capture
 339 all causal network motifs. In contrast, our method is expressive to capture relevant causal network
 340 motifs. We defer the detailed theoretical framework and results, along with the relevant background,
 341 to Appendix A.4. We state our main result here.
 342

343 **Proposition 2** (Expressiveness of EGO NETGNN). EGO NETGNN is expressive enough to capture all
 344 dyad, open triad, closed triad, and open tetrad causal network motifs.
 345

346 We sketch the proof by dividing the statement into following two claims. The details of the proofs of
 347 these claims are in Appendix A.4.

348 *Claim 1.* EGO NETGNN is as expressive as standard MPGNNS in capturing dyad, open triad, and open
 349 tetrad causal network motifs.
 350

351 *Claim 2.* EGO NETGNN also captures closed triad causal network motifs.
 352

353 **Time complexity.** Our analysis of runtime complexity included in Appendix A.4.3 shows our method
 354 is, roughly on average, $\rho_{\mathcal{E}} \times \text{avg}(\mathbf{d})$ times more computationally expensive than standard MPGNNS,
 355 where $\rho_{\mathcal{E}}$ is the average edge density and $\text{avg}(\mathbf{d})$ is the average degree.
 356

357 **Misspecification errors.** We extend Shalit et al. (2017)’s analyses of theoretical counterfactual predic-
 358 tion error bounds for the CFR model to study misspecification errors in the end-to-end EGO NETGNN
 359 using the sequential error decomposition trick in Appendix A.4.4. By focusing on learning the
 360 expressive exposure mapping function, we are reducing its misspecification error directly.
 361

4 EXPERIMENTS AND RESULTS

362 4.1 EXPERIMENTAL SETUP

364 **Dataset.** Similar to other works in causal inference, we rely on synthetic and semi-synthetic data.
 365 We consider three synthetic network models with a fixed number of nodes ($N = 3000$) with different
 366 data generating parameters and edge densities: (1) the Watts Strogatz (WS) network (Watts and
 367 Strogatz, 1998), which models small-world phenomena, (2) the Barabási Albert (BA) network (Albert
 368 and Barabási, 2002), which models preferential attachment phenomena, and (3) the Stochastic Block
 369 Model (SBM) that models community structures. We control the density of edges for BA and WS
 370 networks and the number of communities in the SBM network. We also use two real-world social
 371 networks, BlogCatalog and Flickr, with more realistic topology and attributes to generate treatments
 372 and outcomes. We defer additional details on data generation to Appendix A.5.
 373

374 **Evaluation metrics.** To evaluate the performance of heterogeneous peer effect (HPE) estimation, we
 375 use the *Precision in the Estimation of Heterogeneous Effects* (ϵ_{PEHE}) (Hill, 2011) metric defined
 376 as $\epsilon_{PEHE} = \sqrt{\frac{1}{n} \sum_i (\delta_i(\boldsymbol{\pi}_{-i}, \boldsymbol{\pi}'_{-i}) - \hat{\delta}_i(\boldsymbol{\pi}_{-i}, \boldsymbol{\pi}'_{-i}))^2}$, where $\delta_i(\boldsymbol{\pi}_{-i}, \boldsymbol{\pi}'_{-i})$ is true HPE and $\hat{\delta}_i(\boldsymbol{\pi}_{-i}, \boldsymbol{\pi}'_{-i})$
 377 is the estimated HPE, where $\boldsymbol{\pi}'_{-i}$ denotes a counterfactual scenario where treatments of peers are
 378 flipped. ϵ_{PEHE} (lower better) measures the deviation of estimated HPEs from true HPEs. For each
 379 experimental result, we report the mean and standard deviation of ϵ_{PEHE} for 5 different simulations,
 380

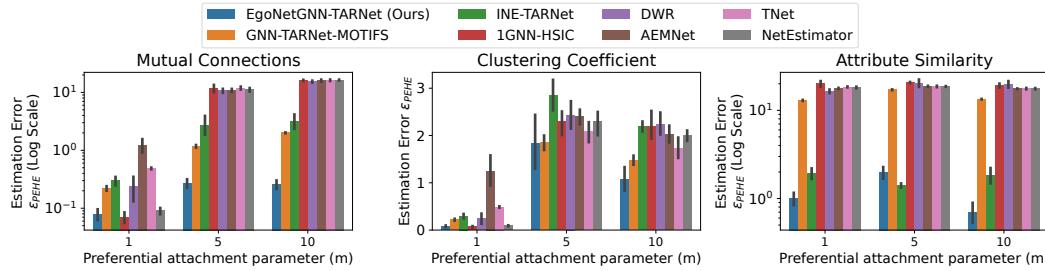


Figure 3: Peer effect estimation error for **Barabasi Albert** network when true peer exposure depends on mutual connections, clustering coefficient, and attribute similarity. Our method shows robust performance across different underlying peer influence mechanisms and edge densities (low to high).

Table 1: Mean and standard deviation (across 5 data simulations with 3 random model initializations each) of peer effect estimation error (ϵ_{PEHE}) for different methods in BlogCatalog (BC) dataset for four settings when true peer exposure mechanisms depend on clustering coefficients, connected components, mutual connections, and attribute similarity.

Mechanisms	Ours-TARNet	Ours-CFR ⁺	GNN-Motifs	INE-TARNet	1GNN-HSIC	DWR	AEMNet	TNet	NetEst	CauGramer
Clus. Coef.	2.13 ± 1.9	0.95 ± 0.5	2.39 ± 1.2	2.35 ± 0.7	6.21 ± 3.7	7.49 ± 4.6	7.53 ± 6.0	9.52 ± 10.5	4.53 ± 1.5	6.16 ± 2.1
Con. Comp.	1.47 ± 0.9	1.50 ± 0.7	4.98 ± 1.6	4.78 ± 1.1	6.78 ± 1.9	7.68 ± 1.6	11.27 ± 9.0	9.98 ± 8.3	8.56 ± 0.7	7.07 ± 1.2
Mut. Con.	2.86 ± 1.3	2.24 ± 1.6	2.81 ± 1.3	2.50 ± 0.9	10.30 ± 6.0	8.72 ± 2.8	13.33 ± 9.0	11.17 ± 8.5	5.34 ± 1.3	5.18 ± 2.0
Attr. Sim.	3.95 ± 2.7	3.65 ± 2.4	4.64 ± 2.1	3.59 ± 1.8	15.25 ± 4.7	17.96 ± 3.7	14.10 ± 5.0	14.60 ± 5.0	11.71 ± 2.2	14.45 ± 5.7

Table 2: Mean and standard deviation (across 5 data simulations with one model initialization) HPE estimation error (ϵ_{PEHE} metric) for three variants of our method (original, without mask, and without feature encoder and mask) in the BlogCatalog (BC), Barabasi Albert (BA), and Watts Strogatz (WS) datasets for three true peer exposure mechanisms.

Mechanism Network Model Variants	Mutual Connections			Clustering Coefficient			Attribute Similarity			WS
	BC	BA	WS	BC	BA	WS	BC	BA	WS	
Ours-TARNet	2.61 ± 1.0	0.20 ± 0.1	0.30 ± 0.1	1.71 ± 1.2	0.99 ± 0.9	1.18 ± 0.8	4.79 ± 3.2	1.23 ± 0.7	1.09 ± 1.1	
Ours (w/o mask)	2.97 ± 1.8	0.21 ± 0.1	0.35 ± 0.2	2.54 ± 1.8	1.01 ± 0.8	1.20 ± 0.4	5.18 ± 3.1	2.37 ± 2.2	1.29 ± 1.8	
Ours (w/o feat&mask)	2.07 ± 1.3	0.27 ± 0.2	0.31 ± 0.1	2.11 ± 0.8	0.97 ± 0.7	1.91 ± 1.3	3.18 ± 1.9	13.73 ± 2.8	13.85 ± 4.0	

i.e., data generation with different seeds. Evaluation across multiple simulations aims to demonstrate robustness across various possible patterns of peer treatment assignments or exposure conditions. For most experiments on semi-synthetic data, we use 3 random model initializations for each simulation.

Baselines. We compare EGONETGNN with state-of-the-art (SOTA) peer estimation methods. NetEst (Jiang and Sun, 2022) and TNet (Chen et al., 2024) use the fraction of treated peers as peer exposure, but the estimator is based on adversarial learning and the doubly robust method, respectively, for robustness. DWR (Zhao et al., 2024) learns attention weights based on attribute similarity, and 1GNN-HSIC (Ma and Tresp, 2021) uses GNNs to summarize peer treatments as heterogeneous contexts while using homogeneous exposure. We also use the recently proposed GNN- and autoencoder-based automated exposure mapping approach (AEMNet) (Mao et al., 2025) and GNN- and transformer-based CauGramer (Wu et al., 2025) as baselines for estimating peer effects in our setup. We also consider INE-TARNet (Adhikari and Zheleva, 2025) adapted for peer effect estimation as a baseline, although it was developed for direct effect estimation. We include the GNN-TARNet-Motifs approach that considers manually extracted causal network motifs (Yuan et al., 2021) as peer exposure and TARNet as estimator (Shalit et al., 2017) as a strong baseline. We discuss hyperparameter tuning and model selection in Appendix A.6.

4.2 RESULTS

Next, we present results for experimental setups designed to answer **five** research questions (RQs). **RQ1. How well do methods for peer effect estimation perform when peer exposure mechanisms depend on local neighborhood conditions?** In this setup, we evaluate the performance of peer effect estimators when the underlying peer exposure mechanism is unknown. We generate treatments and outcomes such that there is confounding due to a subset of node attributes and mean peer attributes. For the outcome generation, we consider five mechanisms for true peer exposure conditions where

432
 433 Table 3: Evaluation of exposure representation, in terms of absolute correlation, in BlogCatalog data
 434 with no effect modification. The results for the learned peer exposure representation by our method is
 435 better (higher is better). We use the fraction of treated friends z_i as baseline and the dimension of
 436 $\hat{\rho}, \hat{\rho}' \in [0, 1]^{d-2}$ with highest correlation is shown.

Corr.	Clus. Coef.	Con. Comp.	Mut. Con.	Attr. Sim.	Corr.	Clus. Coef.	Con. Comp.	Mut. Con.	Attr. Sim.
$r(\hat{\rho}, \rho)$	0.81 ± 0.1	0.34 ± 0.3	0.73 ± 0.2	0.29 ± 0.2	$r(\hat{\rho}', \rho')$	0.85 ± 0.02	0.30 ± 0.2	0.74 ± 0.1	0.50 ± 0.1
$r(z_i, \rho)$	0.17 ± 0.1	0.12 ± 0.1	0.09 ± 0.03	0.28 ± 0.2	$r(z'_i, \rho')$	0.41 ± 0.2	0.14 ± 0.1	0.09 ± 0.1	0.61 ± 0.1

440
 441 peer exposure is given by 1) the clustering coefficient between the treated peers, 2) the number of
 442 connected components among treated peers, and weighted fraction of treated peers with weights
 443 as 3) the square root of number of mutual connections, 4) attribute similarity, and 5) tie strength.
 444 Here, the unit’s treatment acts as an effect modifier, where the peer exposure is doubled if the unit is
 445 treated. Figure 3 shows peer effect estimation error (y-axis), [across five data simulations with fixed](#)
 446 [model initialization](#), when true peer exposure mechanisms depend on mutual connections, clustering
 447 coefficient, and attribute similarity in Barabasi Albert networks with three network generation
 448 parameters (x-axis), resulting in different edge densities (low to high). The preferential attachment
 449 parameter $m = 1$ produces a sparse star-topology network, lacking cycles or triangular structures. In
 450 this setting, all methods perform relatively well when peer exposure mechanisms depend on local
 451 structure because MPGNs are expressive enough to capture star-shaped motifs. However, with
 452 increased edge density and more complex network topology, unlike our method, the baselines are
 453 not sufficiently expressive to capture underlying mechanisms and suffer significantly. The GNN-
 454 TARNet-Motifs (GTM) approach is expressive in capturing clustering coefficients, and both GTM
 455 and INE-TARNet approximate mutual connections. This is reflected in the performance, where
 456 GTM is competitive for the clustering coefficient peer exposure mechanism. EGONETGNN-TARNet
 457 outperforms the baselines except for INE-TARNet, which is competitive in a setting with the peer
 458 exposure mechanism dependent on attribute similarity. Figure 3 and other results in Appendix A.7
 459 show that for unknown peer exposure mechanisms, our method is as expressive as or superior to the
 460 strongest baseline with significantly better performance for denser networks.

461 **RQ2. How reliable are the models for heterogeneous peer effect estimation in more realistic**
 462 **scenario?** RQ2 investigates the performance of the models using more realistic semi-synthetic
 463 networks and node attributes. In addition to confounding and heterogeneous peer influence, there
 464 is a more complex peer effect modification depending on whether the unit is treated and the values
 465 of the unit’s attributes. Table 1 shows the mean and standard deviation of peer effect estimation
 466 error (ϵ_{PEHE}), [across five data simulations with three model initializations each](#), for different
 467 methods in the BlogCatalog (BC) dataset for four settings when true peer exposure mechanisms
 468 depend on clustering coefficients, connected components, mutual connections, and attribute similarity.
 469 The results show the robustness of EGONETGNN in a more realistic setting, where the variants
 470 of EGONETGNN are mostly the best performing ones. The baseline INE-TARNet is the most
 471 competitive, exhibiting slightly better performance than ours for the attribute similarity mechanism.
 472 However, like other methods, it still struggles when the underlying mechanisms involve complex
 473 local structures. In this setup, peer effects are heterogeneous due to the interaction of peer exposure
 474 conditions and effect modifiers, and our method is able to approximate them better than the baselines.
 475 Appendix A.8 presents additional experiments for this setup, including results for the Flickr dataset
 476 (Table 4), which is more challenging for the baselines. [Table 9 in the Appendix shows that the variance](#)
 477 [in the results is primarily due to differences in data simulations rather than model initializations](#), as
 478 peer exposures resulting from some patterns of neighborhood treatment assignments can be easily
 479 captured by the models, while others cannot.

480 **RQ3. How do the components of EGONETGNN contribute to its robustness in estimating peer**
 481 **effects?** We conduct ablation studies to assess the contributions of masked weights and the feature
 482 encoder MLP. Table 2 displays the performance of three variants of EGONETGNN-TARNet (original,
 483 without the masked weights, and without the feature encoder and masked weights) across BlogCatalog
 484 (BC), Barabasi Albert (BA), and Watts-Strogatz (WS) datasets. The results show that excluding
 485 masked weights can bias peer effect estimates due to the model’s sensitivity to irrelevant contexts.
 486 Removing the feature encoder MLP limits EgoNetGNN’s ability to capture mechanisms based on
 487 attribute similarity. [Interestingly, for the semi-synthetic network, removing features produced even](#)
 488 [better results, most likely due to homophily, which results in attribute similarity that is almost](#)
 489 [homogeneous. As expected, for the peer exposure mechanisms relying on local structures, the model](#)

486 performs better when irrelevant features are ignored. Overall, these findings demonstrate that the
 487 feature encoder MLP enhances expressiveness, while masked weights promote invariance to irrelevant
 488 contexts. **Table 10 in the Appendix** shows that the autoencoder component in our CFR⁺ module
 489 preserves expressiveness and promotes robustness by comparing its performance with that of the
 490 original CFR, which does not include an autoencoder. Additionally, we analyze the EGO NET GNN’s
 491 sensitivity to the choices of peer exposure embedding dimension, coverage loss coefficient, and noisy
 492 networks in Appendix A.9 and **sensitivity to balance loss coefficient in Appendix A.10 (Table 11)**.

493 To mitigate the issue where peer exposure embedding ($\hat{\phi}_e$) captures a correlated pattern rather than
 494 the underlying mechanism, we perform model selection based on prediction loss and coverage loss
 495 in a 20% validation dataset. The idea is that choosing a correlated pattern rather than a true one
 496 is akin to overfitting. In Table 12, we evaluate this model selection strategy against the one based
 497 on prediction loss only. The results show model selection utilizing coverage loss is more robust,
 498 which could be because the coverage loss aims to prevent the equivalent of *mode collapse*, where the
 499 distribution of output peer exposure representation is limited.

500 **RQ4. How well are the underlying mechanisms captured by the learned exposure mapping**
 501 **function?** In Table 3, we directly compare the (absolute) Pearson correlation coefficient r (higher
 502 is better) between the learned peer exposure representation, $\hat{\rho}$ and $\hat{\rho}'$, and the actual peer exposure
 503 under four different mechanisms. Compared to the commonly used fraction of treated friends
 504 baseline, learned peer exposures are informative of true peer exposures for mechanisms involving
 505 local structure.

506 **RQ5. How well does EGO NET GNN perform under homogeneous exposure and imperfect**
 507 **conditions when the model assumptions are violated?** First, we evaluate the models in the simplest
 508 setting, where all baselines make the correct exposure mapping function assumption, i.e., true
 509 peer exposure depends on the fraction of treated peers. Table 13 shows that variants of our model
 510 remain superior to the baselines even when they make correct assumptions about the underlying peer
 511 exposure mechanisms, as they struggle in settings such as complex effect modifications and arbitrary
 512 counterfactual spaces (i.e., flipped counterfactuals). We show the trade-off between computation
 513 time, memory requirement, and performance for this simple setting in Table 14 to show how our
 514 method gains robustness with extra but manageable computation time.

515 Second, we evaluate the models in the setting with censored or noisy features by randomly zeroing
 516 out 10% of the features and adding Gaussian noise. Finally, we evaluate the models in the presence of
 517 confounding and interference from two-hop neighbors to examine how our model performs when its
 518 assumptions are violated. Tables 15 and 16 show that, although the magnitude of error are increased,
 519 our methods are competitive with or better than the prominent baselines in such imperfect settings.

521 5 DISCUSSION, LIMITATIONS & FUTURE WORK

522 Our work motivates the problem of learning exposure mapping function for peer effect estimation
 523 and proposes EGO NET GNN for addressing unknown peer influence mechanisms involving local
 524 neighborhood conditions. Our theoretical analysis and experimental results demonstrate increased ex-
 525 pressiveness of EGO NET GNN to capture complex local neighborhood exposure conditions. We have
 526 designed EGO NET GNN to promote invariance to irrelevant contexts, and output a low-dimensional
 527 peer exposure embedding with bounded and balanced representation to partially mitigate issue of
 528 potential violation of the positivity assumption with continuous treatment or exposure. The empirical
 529 results have shown the effectiveness of EGO NET GNN in many peer effect estimation settings.

530 **Limitations & Future Work.** Ensuring theoretical bounds for variance with complex GNNs for
 531 heterogeneous causal effect estimation is still a developing research area (Khatami et al., 2024) and
 532 important future direction, but it is not within the scope of our current work. This work can be
 533 extended to incorporate other network effects like direct effects and total effects. The increased
 534 expressiveness and robust peer effect estimates of our model come with the trade-off of a slightly
 535 longer runtime to process ego networks. Future work could consider relaxing the assumption of
 536 interference from immediate peers while addressing the scalability. Our work relies upon a reliable
 537 attributed network as input, but future research should consider capturing expressive representations in
 538 noisy networks. Appendix A.1 discusses societal impacts, scalability, and plausibility of assumptions.

540 REPRODUCIBILITY STATEMENT
541

542 To support reproducibility, we release the complete codebase and experimental procedures. For all the
543 experiments, we have repeated them at least *five* times. We provide the details of the data generation
544 process (Sec. 4.1 and Appendix A.5). Appendix starts with an anonymous repository link containing
545 the full source code. We provide the details of the configurations and setups for replicating our results
546 in Appendix A.6.

547 REFERENCES
548

549 Shishir Adhikari and Elena Zheleva. 2025. Inferring Individual Direct Causal Effects Under Hetero-
550 geneous Peer Influence. *Machine Learning Journal* (2025).

551 Réka Albert and Albert-László Barabási. 2002. Statistical mechanics of complex networks. *Reviews*
552 *of modern physics* 74, 1 (2002), 47.

553 Joshua D Angrist, Guido W Imbens, and Donald B Rubin. 1996. Identification of causal effects using
554 instrumental variables. *Journal of the American statistical Association* 91, 434 (1996), 444–455.

555 David Arbour, Dan Garant, and David Jensen. 2016. Inferring network effects from observational
556 data. In *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery*
557 *and Data Mining*. 715–724.

558 Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein generative adversarial
559 networks. In *International conference on machine learning*. PMLR, 214–223.

560 Peter M Aronow and Cyrus Samii. 2017. Estimating average causal effects under general interference,
561 with application to a social network experiment. *The Annals of Applied Statistics* 11, 4 (2017),
562 1912–1947.

563 Eric Auerbach, Jonathan Auerbach, and Max Tabord-Meehan. 2024. Exposure effects are not
564 automatically useful for policymaking. *arXiv preprint arXiv:2401.06264* (2024).

565 Falco J Bargagli-Stoffi, Costanza Tortú, and Laura Forastiere. 2025. Heterogeneous treatment and
566 spillover effects under clustered network interference. *The annals of applied statistics* 19, 1 (2025),
567 28.

568 Brian G Barkley, Michael G Hudgens, John D Clemens, Mohammad Ali, and Michael E Emch.
569 2020. Causal inference from observational studies with clustered interference, with application to
570 a cholera vaccine study. *Annals of Applied Statistics* 14, 3 (2020), 1432–1448.

571 Derrick Blakely, Jack Lanchantin, and Yanjun Qi. [n. d.]. Time and space complexity of graph
572 convolutional networks. [https://qdata.github.io/deep2Read/talks-mb2019/
573 Derrick_201906_GCN_complexityAnalysis-writeup.pdf](https://qdata.github.io/deep2Read/talks-mb2019/Derrick_201906_GCN_complexityAnalysis-writeup.pdf).

574 David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent dirichlet allocation. *Journal of*
575 *machine Learning research* 3, Jan (2003), 993–1022.

576 Ruichu Cai, Zeqin Yang, Weilin Chen, Yuguang Yan, and Zhifeng Hao. 2023. Generalization bound
577 for estimating causal effects from observational network data. In *CIKM*. 163–172.

578 Weilin Chen, Ruichu Cai, Zeqin Yang, Jie Qiao, Yuguang Yan, Zijian Li, and Zhifeng Hao. 2024.
579 Doubly Robust Causal Effect Estimation under Networked Interference via Targeted Learning. In
580 *Forty-first International Conference on Machine Learning*.

581 Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. 2020. Can graph neural networks count
582 substructures? *Advances in neural information processing systems* 33 (2020), 10383–10395.

583 Marco Cuturi and Arnaud Doucet. 2014. Fast computation of Wasserstein barycenters. In *International*
584 *conference on machine learning*. PMLR, 685–693.

585 Laura Forastiere, Edoardo M Airoldi, and Fabrizia Mealli. 2021. Identification and estimation of
586 treatment and interference effects in observational studies on networks. *J. Amer. Statist. Assoc.*
587 116, 534 (2021), 901–918.

594 Jennifer L Hill. 2011. Bayesian nonparametric modeling for causal inference. *Journal of Computational and Graphical Statistics* 20, 1 (2011), 217–240.

595

596

597 Michael G Hudgens and M Elizabeth Halloran. 2008. Toward causal inference with interference. *J. Amer. Statist. Assoc.* 103, 482 (2008), 832–842.

598

599 Daniel Jiwoong Im, Kyunghyun Cho, and Narges Razavian. 2021. Causal effect variational autoencoder with uniform treatment. *arXiv preprint arXiv:2111.08656* (2021).

600

601

602 Song Jiang and Yizhou Sun. 2022. Estimating Causal Effects on Networked Observational Data via Representation Learning. In *Proceedings of the 31st ACM International Conference on Information & Knowledge Management*. 852–861.

603

604

605 Seyedeh Baharan Khatami, Harsh Parikh, Haowei Chen, Sudeepa Roy, and Babak Salimi. 2024. Graph Machine Learning based Doubly Robust Estimator for Network Causal Effects. *arXiv:2403.11332 [cs.LG]* <https://arxiv.org/abs/2403.11332>

606

607

608

609 Thomas N Kipf and Max Welling. 2016. Semi-Supervised Classification with Graph Convolutional Networks. In *International Conference on Learning Representations*.

610

611

612 Michael P Leung and Pantelis Loupos. 2022. Unconfoundedness with network interference. *arXiv preprint arXiv:2211.07823* 6 (2022).

613

614 Xiaofeng Lin, Guoxi Zhang, Xiaotian Lu, Han Bao, Koh Takeuchi, and Hisashi Kashima. 2023. 615 Estimating Treatment Effects Under Heterogeneous Interference. In *Joint European Conference on 616 ML and KDD*. Springer, 576–592.

617

618 Xiaofeng Lin, Guoxi Zhang, Xiaotian Lu, and Hisashi Kashima. 2024. Treatment Effect Estimation 619 Under Unknown Interference. In *Pacific-Asia Conference on Knowledge Discovery and Data 620 Mining*. Springer, 28–42.

621

622 Jing Ma, Mengting Wan, Longqi Yang, Jundong Li, Brent Hecht, and Jaime Teevan. 2022. Learning 623 causal effects on hypergraphs. In *Proceedings of the 28th ACM SIGKDD Conference on Knowledge 624 Discovery and Data Mining*. 1202–1212.

625

626 Yunpu Ma and Volker Tresp. 2021. Causal inference under networked interference and intervention 627 policy enhancement. In *International Conference on Artificial Intelligence and Statistics*. PMLR, 628 3700–3708.

629

630 Yunxin Mao, Haotian Wang, Yishuai Cai, Minglong Li, Ji Wang, and Wenjing Yang. 2025. Automated 631 Exposure Mapping for Networked Interference. In *ICASSP 2025-2025 IEEE International Conference 632 on Acoustics, Speech and Signal Processing (ICASSP)*. IEEE, 1–5.

633

634 Wang Miao, Xu Shi, Yilin Li, and Eric J Tchetgen Tchetgen. 2024. A confounding bridge approach 635 for double negative control inference on causal effects. *Statistical Theory and Related Fields* 8, 4 636 (2024), 262–273.

638

639 Razieh Nabi, Joel Pfeiffer, Denis Charles, and Emre Kıcıman. 2022. Causal inference in the presence 640 of interference in sponsored search advertising. *Frontiers in big Data* 5 (2022).

641

642 Elizabeth L Ogburn, Oleg Sofrygin, Ivan Diaz, and Mark J Van der Laan. 2022. Causal inference for 643 social network data. *J. Amer. Statist. Assoc.* (2022), 1–15.

644

645 Eleonora Patacchini, Edoardo Rainone, and Yves Zenou. 2017. Heterogeneous peer effects in 646 education. *Journal of Economic Behavior & Organization* 134 (2017), 190–227.

647

648 Judea Pearl. 2009. *Causality*. Cambridge university press.

649

650 Zhaonan Qu, Ruoxuan Xiong, Jizhou Liu, and Guido Imbens. 2021. Efficient Treatment Effect 651 Estimation in Observational Studies under Heterogeneous Partial Interference. *arXiv preprint 652 arXiv:2107.12420* (2021).

653

654 Fredrik Sävje. 2024. Causal inference with misspecified exposure mappings: separating definitions 655 and assumptions. *Biometrika* 111, 1 (2024), 1–15.

648 Uri Shalit, Fredrik D Johansson, and David Sontag. 2017. Estimating individual treatment effect:
 649 generalization bounds and algorithms. In *International Conference on Machine Learning*. PMLR,
 650 3076–3085.

651

652 Claudia Shi, David Blei, and Victor Veitch. 2019. Adapting neural networks for the estimation of
 653 treatment effects. *Advances in neural information processing systems* 32 (2019).

654

655 Eric J Tchetgen Tchetgen, Andrew Ying, Yifan Cui, Xu Shi, and Wang Miao. 2020. An introduction
 656 to proximal causal learning. *arXiv preprint arXiv:2009.10982* (2020).

657

658 Christopher Tran and Elena Zheleva. 2022. Heterogeneous Peer Effects in the Linear Threshold
 659 Model. *Proceedings of the AAAI Conference on Artificial Intelligence* (2022).

660

661 Johan Ugander, Brian Karrer, Lars Backstrom, and Jon Kleinberg. 2013. Graph cluster randomization:
 662 Network exposure to multiple universes. In *Proceedings of the 19th ACM SIGKDD international
 663 conference on Knowledge discovery and data mining*. 329–337.

664

665 Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of ‘small-world’ networks. *nature*
 666 393, 6684 (1998), 440–442.

667

Anpeng Wu, Haiyi Qiu, Zhengming Chen, Zijian Li, Ruoxuan Xiong, Fei Wu, and Kun Zhang. 2025.
 Causal Graph Transformer for Treatment Effect Estimation Under Unknown Interference. In *The
 Thirteenth International Conference on Learning Representations*.

668

669 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How Powerful are Graph Neural
 670 Networks?. In *International Conference on Learning Representations*.

671

672 Yuan Yuan, Kristen Altenburger, and Farshad Kooti. 2021. Causal Network Motifs: Identifying
 673 Heterogeneous Spillover Effects in A/B Tests. In *Proceedings of the Web Conference 2021*. 3359–
 3370.

674

675 Ziyu Zhao, Yuqi Bai, Ruoxuan Xiong, Qingyu Cao, Chao Ma, Ning Jiang, Fei Wu, and Kun Kuang.
 676 2024. Learning Individual Treatment Effects under Heterogeneous Interference in Networks. *ACM
 677 Trans. Knowl. Discov. Data* 18, 8, Article 199 (Aug. 2024), 21 pages. <https://doi.org/10.1145/3673761>

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702
703

A APPENDIX

704
705 Source code and documentation are available at: [https://anonymous.4open.science/r/
706 EgoNetGNN-8D5C/](https://anonymous.4open.science/r/EgoNetGNN-8D5C/)707
708

A.1 DISCUSSION

709
710 **Societal impacts.** The implications of our work include identifying unit-level peer effects and
711 discovering subpopulations with heterogeneous peer effects. The potential societal impacts could
712 include the development of targeted interventions or the identification of policies that enhance desired
713 outcomes in social networks.714 **Plausibility of neighborhood interference assumption.** Neighborhood interference (Assumption
715 2 in Sec. 2) is a common simplifying assumption and can be realistic in situations where peer
716 interference is mediated by immediate neighbors or diminishes quickly for non-immediate neighbors.
717 However, there could be some situations where interference could occur between peers beyond
718 immediate neighbors. If we assume such interference is mediated via immediate neighbors, then we
719 could model it by stacking multiple exposure mapping function learning layers, where the subsequent
720 layers would summarize the exposures of neighbors. Another alternative is to use the K-hop ego
721 network with edge existence and/or hop distance as additional node features. The former approach
722 may be more scalable than the latter one because the K-hop neighborhood can grow rapidly. Ideas
723 from recent works to infer unknown interference structure (Wu et al., 2025; Lin et al., 2024) could
724 be adopted in conjunction with our approach of learning expressive peer exposure representations.
725 Our method can be extended to integrate attention or transformer-based mechanisms in either feature
726 mapping learning or exposure mapping learning by replacing/modifying MPGNN architectures.
727 While we assume a reliable network structure is provided as input, our experiments with noisy
728 networks reveal that EGO NETGNN performs reliably well with imperfect data.729 **Plausibility of unconfoundedness assumption.** Following existing work in the intersection of
730 causal reasoning and representation learning (Shalit et al., 2017; Shi et al., 2019; Ma et al., 2022;
731 Wu et al., 2025), we assume causal identification conditions are met and focus on expressive rep-
732 resentation learning to mitigate model misspecification errors. Unconfoundedness is a strong and
733 uncontrollable assumption and requires sufficiency of observed network contexts and expressiveness of
734 their representation. While we assume the sufficiency of observed contexts, we make an effort to
735 satisfy the expressiveness of representation by considering all network contexts, like node attributes,
736 edge attributes, and network structure. If the presence of unobserved confounding cannot be ruled
737 out, alternative causal identification approaches like proximal causal inference (Tchetgen et al., 2020)
738 or double negative controls (Miao et al., 2024), front-door criteria (Pearl, 2009), and instrumental
739 variables (Angrist et al., 1996) should be considered. Although a randomized experiment can remove
740 unobserved confounding between unit treatments and the outcome, peer exposure conditions may not
741 be randomized directly, and confounding could exist even for experiments unless the unconfounded-
742 ness assumption is made and observed network contexts are controlled for. So, an interesting future
743 direction could be to explore alternative identification conditions.744 **Scalability.** Although EGO NETGNN is more expressive, it has additional computational costs. A few
745 ways to address large runtime and/or memory usage could be sampling ego networks to reduce the
746 training set or sampling the neighborhood within a K-hop ego network. In Appendix A.8 (Table 6),
747 our experiments with a randomly augmented network show that the performance does not degrade
748 significantly for our method with the removal of edges. From an implementation point of view, we
749 can parallelize our framework easily to exploit the power of GPUs. More specifically, there are
750 two components in our framework. The feature mapping GNN takes the entire network at once to
751 learn an embedding with an L-layer GNN. Subsequently, EgoNetGNN batches B nodes with their
752 neighbor nodes and a mapping of which edges belong to which node in the batch. This batching can
753 be parallelized to improve the overall efficiency.754 **Representation balancing in CFR.** We note that explicitly enforcing IPM balancing (using ap-
755 proaches such as the Wasserstein distance) for the ideal condition, $\mathbb{P}(c|p, t) \approx \mathbb{P}(c|p', t')$, is non-
756 trivial at best and computationally infeasible at worst. The challenges arise primarily because the peer
757 exposures (p versus p') are multi-dimensional continuous values. There may be several exposure
758 conditions with mostly limited samples, which complicates the calculation of the Wasserstein distance

(optimal transport) and may render it difficult or unreliable, even when using modern methods. Our balancing technique is a computation-friendly and useful heuristic approach (as evidenced by the experiments), where for each stratum of peer exposure condition, we want balanced covariates across different treatment groups. It does not perform the ideal balancing scenario. However, even in network experiments where treatments are randomized, such balancing is not possible because peer exposure conditions depend not only on peer treatments but also on other covariates; therefore, the randomization for peer exposures is not achieved. We instead control for different possible network contexts (derived from the observational attributed network), similar to regression adjustment, to deal with the imbalance of peer exposure conditions.

Theoretical guarantees and confidence intervals with complex GNNs. While complex GNN and transformer architectures are very powerful in capturing confounding variables, effect modifications, and unknown influence mechanisms in complex network data, they lack interpretability and theoretical guarantees of consistency or convergence. As discussed in our paper, theoretical properties of complex GNNs have been shown in simpler settings where there is a homogeneous exposure mapping function and for average treatment effects (Khatami et al., 2024; Chen et al., 2024). Establishing theoretical guarantees in the setting with unknown exposure mapping functions and heterogeneous effects is an important future direction, but it is outside the scope of our paper. Instead, our main theoretical results in this paper are on the expressiveness of the GNN to capture complex underlying influence mechanisms. In this work, we focus on point estimates without confidence intervals. For real-world data, techniques like bootstrapping and random model initializations could be used to obtain a measure of uncertainty similar to confidence intervals. Like ours, other works have used point estimates to present empirical evidence to support robustness in complex interference settings, such as using GNN on hypergraphs to model group interactions (Ma et al., KDD 2022) and using Graph Transformers to model unknown interference structure (e.g., CauGramer (Wu et al., ICLR 2025)), leaving theoretical results on error bounds with complex models to future work. We hope our work could spur future research directions and collaborations to address these limitations. Our framework is flexible enough to be adapted to utilize unbiased estimators like the Horvitz-Thompson (HT) estimator or the Targeted Maximum Likelihood Estimation (TMLE) estimator for causal estimation, making it still appealing for practitioners.

A.2 RELATED WORK

Research in causal inference under interference has focused on estimating three main causal effects of interest, referred to as network effects: direct effects induced by a unit’s own treatment, peer effects induced by treatment of other units, and total effects induced by both the unit’s and others’ treatment (Hudgens and Halloran, 2008). These network effects are estimated as average effects (e.g., (Arbour et al., 2016; Ugander et al., 2013)) for the entire population or as heterogeneous effects (e.g., (Forastiere et al., 2021; Bargagli-Stoffi et al., 2025)) for specific subpopulations or contexts. Our work focuses on heterogeneous peer effect estimation. Most methods for estimating heterogeneous or individual-level causal effects under interference, including peer effects, assume peer exposure is binary (Bargagli-Stoffi et al., 2025) or homogeneous, e.g., based on fraction of treated peers (Jiang and Sun, 2022; Ogburn et al., 2022; Cai et al., 2023; Chen et al., 2024). These methods assume a homogeneous or known exposure mapping function and focus on enhancing network effect estimation by adapting techniques like adversarial training (Jiang and Sun, 2022), propensity score reweighting (Cai et al., 2023), double machine learning (Khatami et al., 2024), doubly robust estimation (Leung and Loupos, 2022), targeted maximum likelihood estimate (Ogburn et al., 2022), and targeted learning (Chen et al., 2024).

Recent research has looked into more complex functions of peer exposure, allowing for heterogeneous peer influence, in which different peers can have varying degrees of influence. Some of these works refer to heterogeneous peer influence as heterogeneous interference (Qu et al., 2021; Zhao et al., 2024; Lin et al., 2023). Forastiere et al. (2021) considered peer exposure as a weighted fraction of treated peers using known edge attributes as weights. Lin et al. (2023) consider heterogeneity due to multiple entities types and Qu et al. (2021) considered heterogeneity due to known node attributes for defining peer exposure. Tran and Zheleva (2022) studied peer effect estimation with linear threshold peer exposure model but different unit-level threshold could be vary for different units capturing heterogeneous susceptibilities to the influence. Zhao et al. (2024) used attention weights derived based on the similarities of the units’ covariates to determine peer exposure as the weighted sum of treated peers. Yuan et al. (2021) capture peer exposure with features based on counts of different

810 causal network motifs, i.e., recurrent subgraphs in a unit’s ego network with treatment assignments as
 811 attributes. Ma and Tresp (2021) consider homogeneous peer exposure based on fraction of treated
 812 peers but they summarize the covariates of treated peers using a graph neural network (GNN) to
 813 capture heterogeneous contexts involving treatment assignments. Unlike our work, none of these
 814 studies has explicitly studied the issue of automatically learning the exposure mapping functions to
 815 define peer exposure representation while capturing the underlying influence mechanisms.

816 Ma and Tresp (2021) learn heterogeneous contexts based on peer treatments but not the exposure
 817 mapping function or the peer exposure representation. Zhao et al. (2024) obtain single-dimension peer
 818 exposure embedding using a weighted sum of treated peers with attention weights derived from the
 819 cosine similarity of feature embeddings. Although Zhao et al. (2024) use attention weights to define
 820 peer exposure, they assume a specific exposure mapping function, and it cannot adapt according
 821 to the underlying peer influence mechanism. Adhikari and Zheleva (2025) use GNNs to learn peer
 822 exposure embedding by addressing unknown peer influence mechanisms, but their scope is limited to
 823 direct effect estimation, i.e., the effect of a unit’s own treatment. Specifically, Adhikari and Zheleva
 824 (2025) learn a multi-dimensional peer exposure embedding using a weighted fraction of treated peers
 825 with feature embeddings and a second-order adjacency matrix as weights. Ma et al. (2022) employ
 826 similar method like Ma and Tresp (2021) for hypergraphs to model heterogeneity due to model
 827 group interactions. The idea is to learn a summary function and representation equivalent to the
 828 exposure mapping function and peer exposure using a hypergraph convolution network and attention
 829 mechanism. However, they assume the learned representation is expressive enough to capture the
 830 underlying influence mechanism. In this work, we do not make such an assumption and evaluate how
 831 well the learned peer exposure representation captures the underlying influence mechanisms.

832 Neural networks (NNs) (Shalit et al., 2017; Im et al., 2021; Shi et al., 2019) and, recently, graph neural
 833 networks (GNNs) (Jiang and Sun, 2022; Cai et al., 2023; Chen et al., 2024; Khatami et al., 2024) have
 834 been widely utilized for end-to-end learning of *feature mapping function* and *counterfactual outcome*
 835 *model* or *effect estimator*. A feature mapping function maps raw features to feature embedding to
 836 capture potential confounders and effect modifiers. A counterfactual outcome model (Shalit et al.,
 837 2017; Ma and Tresp, 2021) predicts counterfactual outcomes for different levels of treatment, while
 838 an effect estimator (Shi et al., 2019; Chen et al., 2024) directly learns the causal effect of interest.
 839 Only a few studies have considered learning the exposure mapping function (Mao et al., 2025) or
 840 peer exposure embedding (Adhikari and Zheleva, 2025; Zhao et al., 2024). Lin et al. (2024) consider
 841 a setting with an unknown network and interference structure and propose an approach to first infer
 842 network structure and represent peer exposure for direct effect estimation. Unlike their work, our
 843 settings focus on peer effect estimation with observed network structure but unknown peer exposure
 844 mechanisms that manifest due to local neighborhood contexts.

845 Sävje (2024) advocates for interpretable but possibly misspecified exposure mappings and character-
 846 izes causal estimation errors due to misspecified exposure mappings, but follow-up research (Auer-
 847 bach et al., 2024) has highlighted the importance of capturing underlying interference mechanisms in
 848 policymaking. More recently, Mao et al. (2025) have explored the use of GNNs with autoencoders
 849 and clustering to learn discrete exposure conditions and their probabilities, aiming to estimate overall
 850 causal effects in networks. Similarly, Wu et al. (2025) utilize GNNs with Transformers to model
 851 unknown interference from K-hop neighborhood. Their identifiability assumption relies on captur-
 852 ing unit and peer covariates, while our identifiability assumption relies on capturing all attributed
 853 network contexts, including structure and edge attributes. These works use off-the-shelf message
 854 passing GNNs (like GCN and GIN) and lack expressiveness to capture mechanisms involving local
 855 neighborhood structure. Prior research (Xu et al., 2018; Chen et al., 2020) on the expressiveness
 856 of GNNs has shown that popular GNN architectures lack expressiveness to count subgraphs. On
 857 the other hand, counts of subgraphs like causal network motifs are rich features that could capture
 858 underlying influence mechanisms due to local neighborhood structure (Yuan et al., 2021). Counting
 859 such subgraphs can be computationally expensive, and they may not be able to capture every local
 860 structure. We design EGO NET GNN to excel in counting attributed triangle subgraphs, enhancing its
 861 expressiveness to capture underlying mechanisms involving neighborhood contexts.

862 A.3 CAUSAL INFERENCE ASSUMPTIONS AND IDENTIFICATION OF PEER EFFECTS

863 A fundamental prerequisite for causal identification is the consistency assumption, which enables
 864 equivalence among counterfactual, interventional, and factual outcomes.

864 **Assumption 4** (Consistency under interference). The underlying outcome generation is independent
 865 of the treatment assignment mechanisms (i.e., hypothetical, experimental, or natural). For a unit v_i , if
 866 $t_i = \pi_i$ and $\mathbf{t}_{-i} = \boldsymbol{\pi}_{-i}$, then $y_i(t_i = \pi_i, \mathbf{t}_{-i} = \boldsymbol{\pi}_{-i}) = y_i$.
 867

868 Positivity is another standard assumption in causal inference that requires every unit v_i to have
 869 non-zero probability of being assigned every possible unit treatment and peer exposure conditions.
 870

871 **Assumption 5** (Positivity). There is a non-zero probability of unit treatment and peer exposure
 872 conditions for all possible contexts \mathbf{c}_i , i.e., $\mathbb{P}(t_i, \mathbf{p}_i | \mathbf{c}_i) > 0$, for every level of t_i and \mathbf{p}_i , where \mathbb{P} is
 873 the probability density function.
 874

875 The proof of Proposition 1 is as follows.
 876

877 *Proof.* Our causal estimand of interest (Eq. 2) is as follows:
 878

$$877 \quad \delta_i(\boldsymbol{\pi}_{-i}, \boldsymbol{\pi}'_{-i}) = \mathbb{E}[y_i(t_i = \pi_i, \mathbf{p}_i = \phi_e(\boldsymbol{\pi}_{-i}, \mathcal{G}, \mathbf{X}, \mathbf{Z})) | \mathbf{c}_i] - \mathbb{E}[y_i(t_i = \pi_i, \mathbf{p}_i = \phi_e(\boldsymbol{\pi}'_{-i}, \mathcal{G}, \mathbf{X}, \mathbf{Z})) | \mathbf{c}_i].$$

879 Due to unconfoundedness assumption (Assumption 3), unit treatment and peer exposure conditions
 880 are independent of counterfactual outcome conditioned on network contexts \mathbf{c}_i . This allows us to
 881 rewrite the estimand as:
 882

$$882 \quad \delta_i(\boldsymbol{\pi}_{-i}, \boldsymbol{\pi}'_{-i}) = \mathbb{E}[y_i(t_i = \pi_i, \mathbf{p}_i = \phi_e(\boldsymbol{\pi}_{-i}, \mathcal{G}, \mathbf{X}, \mathbf{Z})) | t_i = \pi_i, \mathbf{p}_i = \phi_e(\boldsymbol{\pi}_{-i}, \mathcal{G}, \mathbf{X}, \mathbf{Z}), \mathbf{c}_i] - \\ 883 \quad \mathbb{E}[y_i(t_i = \pi_i, \mathbf{p}_i = \phi_e(\boldsymbol{\pi}'_{-i}, \mathcal{G}, \mathbf{X}, \mathbf{Z})) | t_i = \pi_i, \mathbf{p}_i = \phi_e(\boldsymbol{\pi}_{-i}, \mathcal{G}, \mathbf{X}, \mathbf{Z}), \mathbf{c}_i].$$

884 Here, Assumption 1 ensures introducing new terms related to treatment and peer exposure in the
 885 conditional does not affect existing set of contexts because they are measured pre-treatment. Similarly,
 886 Assumption 2 makes the sufficiency of learned representation requirement in unconfoundedness
 887 assumption more plausible. Next, the consistency assumption allows replacing the counterfactual
 888 outcome with observed outcome, i.e.,
 889

$$890 \quad \delta_i(\boldsymbol{\pi}_{-i}, \boldsymbol{\pi}'_{-i}) = \mathbb{E}[y_i | t_i = \pi_i, \mathbf{p}_i = \phi_e(\boldsymbol{\pi}_{-i}, \mathcal{G}, \mathbf{X}, \mathbf{Z}), \mathbf{c}_i] - \mathbb{E}[y_i | t_i = \pi_i, \mathbf{p}_i = \phi_e(\boldsymbol{\pi}_{-i}, \mathcal{G}, \mathbf{X}, \mathbf{Z}), \mathbf{c}_i].$$

891 Assumption 1 also ensures consistency assumption is satisfied because the treatments are not mutable.
 892 This estimation above is tractable from observational or experimental data because of positivity
 893 assumption and the causal effects can be identified. \square
 894

895 A.4 THEORETICAL ANALYSES OF EGONETGNN

896 A.4.1 PRELIMINARIES

897 **Causal network motifs.** Yuan et al. (2021) proposed causal network motifs as important features
 898 to capture peer exposure accounting for local neighborhood conditions. Causal network motifs are
 899 attributed subgraphs with peer treatments as attributes. Figure 4 shows four categories of causal
 900 network motifs: dyads, open triads, closed triads, and open tetrads. In the figure, stars represent ego
 901 nodes and circles represent their peers. The red circles indicate treated nodes and blue circles indicate
 902 control nodes. The gray shapes indicate nodes that could either be treated or control.
 903

904 **Message passing graph neural networks (MPGNNs).** The message-passing graph neural network
 905 (MPGNN) is a generic GNN model that incorporates several standard GNN architectures and relies
 906 on local aggregations of information within graphs (Chen et al., 2020). For a graph $G(V, E, \mathbf{X}, \mathbf{Z})$,
 907 an MPGNN with L layers is defined iteratively with aggregate function AGG^l and update function
 908 U^l as follows:
 909

$$909 \quad h_i^l = U^l(h_i^{l-1}, AGG_{j \in \mathcal{N}_i}^l(\Theta^l(h_j^{l-1}, h_i^{l-1}, Z_{ij}))), \quad (12)$$

910 where \mathcal{N}_i denotes neighbors of unit v_i and Θ^l denote learnable parameters like multi-layer perceptron.
 911 To obtain the hidden state at the l^{th} layer, a local aggregation of the previous layer's hidden states
 912 (h_j^{l-1} and h_i^{l-1}) and, optionally, edge attributes Z_{ij} is performed and then combined with h_i^{l-1} . The
 913 hidden states are initialized as node attributes, i.e., $h_i^0 = X_i$. Typically, in various GNN architectures,
 914 the update and aggregation functions are chosen as part of architecture design.
 915

916 **Expressiveness of MPGNNs in counting substructures.** Here, we summarize the results obtained
 917 by Chen et al. (2020) that are relevant to our theoretical analysis. We list their findings after defining
 918 relevant concepts.

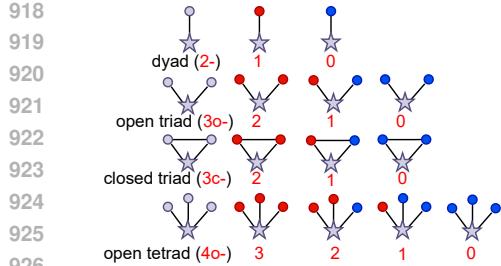


Figure 4: Example causal network motifs considered by Yuan et al. (2021). Stars represent ego nodes and circles represent their peers. The red circles indicate treated nodes and blue circles indicate control nodes. The gray shapes indicate nodes that could either be treated or control. Here, the characters in red indicate a particular causal network motif (e.g., 3c-2 indicate closed triad with 2 treated peers).

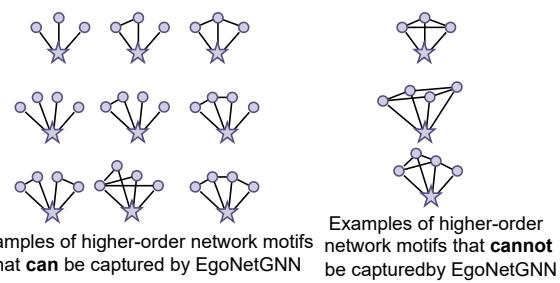


Figure 5: Examples of higher-order network motifs with four and five nodes. Stars represent ego nodes and circles represent their peers. The gray shapes indicate nodes with any treatment assignment. If the subgraph of a network motif, after removing edges connected to the ego node, forms a tree, then our model is expressive enough to capture the network motif and the corresponding causal network motifs. A network motif is a subgraph without any attributes, whereas a causal network motif is a subgraph that includes peer treatment assignments as attributes.

Definition 2 (Subgraph). A *subgraph* $G^{[S]}(V^{[S]}, E^{[S]})$ of a graph $G(V, E)$ consists of subsets of its nodes, i.e., $V^{[S]} \subseteq V$ and edges, i.e., $E^{[S]} \subseteq E$.

Definition 3 (Induced subgraph). A *induced subgraph* $G^{[S']}(V^{[S']}, E^{[S']})$ of a graph $G(V, E)$ consists of subset of its nodes, i.e., $V^{[S']} \subseteq V$ and all edges between nodes $V^{[S']}$, i.e., $E^{[S']} = E \cap V^{[S']}$.

All induced subgraphs are subgraphs but reverse is not true. For example, all causal network motifs are induced subgraphs (and subgraphs) of the original graph. An open triad motif is a subgraph, but not an induced subgraph, of a closed triad motif.

Definition 4 (Star-shaped pattern). A pattern $G^{[P]}(V^{[P]}, E^{[P]})$ is a star-shaped pattern if it can be represented by a tree structure.

Definition 5 (Connected pattern). A pattern $G^{[P]}(V^{[P]}, E^{[P]})$ is a connected pattern if it **cannot** be represented by a tree structure.

For example, a closed triad motif is a connected pattern and dyads, open triads, and open tetrads are star-shaped patterns.

Chen et al. (2020) obtain the following results on the expressiveness of MPGNNS for counting substructures.

Corollary 3.4. (Chen et al., 2020) MPGNNS cannot *induced-subgraph-count* any *connected pattern* with 3 or more nodes.

Theorem 3.5. (Chen et al., 2020) MPGNNS can perform *subgraph-count of star-shaped patterns*.

A.4.2 EXPRESSIVENESS OF EGO NETGNN

Here, we demonstrate that standard MPGNNS lack the expressiveness to capture closed triad motifs, and our model addresses this limitation.

Without loss of generality, assume node attributes for each node v_i are $\langle 1, T_i \rangle$ and constant edge attributes $\langle 1 \rangle$.

Definition 6 (Expressiveness in counting causal network motifs). Let \mathcal{G} be a space of graphs. A representation by an MPGNNS f is expressive in counting causal network motif $G^{[P]}$ if, for all ego networks $G^{[1]}, G^{[2]} \in \mathcal{G}$, distinct counts, i.e., $C_I(G^{[1]}, G^{[P]}) \neq C_I(G^{[2]}, G^{[P]})$, get distinct representations, i.e., $f(G^{[1]}) \neq f(G^{[2]})$, where C_I returns induced-subgraph-count of pattern $G^{[P]}$.

972 **Restating Proposition 2 (Expressiveness of EGO NETGNN):** EGO NETGNN is expressive enough
 973 to capture all dyad, open triad, closed triad, and open tetrad causal network motifs.
 974

975 *Proof.* We proceed the proof by dividing the statement into following two claims.
 976

977 **Restating Claim 1:** EGO NETGNN is as expressive as standard MPGNN in capturing dyad, open
 978 triad, and open tetrad causal network motifs.
 979

980 *Proof.* The dyad, open triad, and open tetrad causal network motifs are star-shaped patterns, and
 981 these patterns can be counted by standard MPGNNs (Chen et al. (2020)’s Theorem 3.5.). Our model
 982 employs MPGNN (refer Eq. 5 and Figure 2) on a transformed graph, where all edges connected to the
 983 ego node are removed, and the corresponding edge attributes from the removed edges are included
 984 as node attributes in the transformed graph. We need to show that this transformation preserves the
 985 expressiveness to capture dyad, open triad, and open tetrad causal network motifs. The dyad, open
 986 triad, and open tetrad causal network motifs are transformed into subgraphs with isolated one, two,
 987 and three nodes, respectively, in the transformed ego network. MPGNN in the transformed graph can
 988 perform a subgraph count of patterns with k isolated nodes because they are subgraphs of star-shaped
 989 patterns with an empty set of edges. Furthermore, the addition of new attributes does not affect the
 990 expressiveness because these attributes are added as additional feature dimensions. Hence, our model
 991 is as expressive as standard MPGNN for capturing dyad, open triad, and open tetrad causal network
 992 motifs. \square

993 **Restating Claim 2:** EGO NETGNN also captures closed triad causal network motifs.
 994

995 *Proof.* The closed triad causal network motifs are connected patterns of three nodes and these patterns
 996 cannot be counted by standard MPGNNs (Chen et al. (2020)’s Corollary 3.4.). Due to the construction
 997 of the ego network, all the edges with the ego node are removed, and the closed triads are transformed
 998 to dyads in the transformed ego network. These dyads can be counted by node aggregation (refer Eq.
 999 5), which is an MPGNN employed in the ego network. Therefore, EGO NETGNN captures closed
 1000 triad causal network motifs. \square

1001 \square
 1002 **Higher-order causal network motifs and attributed causal network motifs.** Here, we show how
 1003 our model is superior to the approach of counting predetermined causal network motifs by discussing
 1004 EGO NETGNN’s ability to capture relevant causal network motifs including higher-order and attributed
 1005 causal network motifs. Proposition 2 showed our model is as expressive as the approach of counting
 1006 predetermined causal network motifs considered by Yuan et al. (2021). In general, if the subgraph of
 1007 a network motif, after removing edges connected to the ego node, forms a tree, then EGO NETGNN is
 1008 expressive enough to capture the network motif and the corresponding causal network motifs. Figure
 1009 5 depicts some examples of higher-order motifs with four and five nodes. EGO NETGNN, with depths
 1010 of $L = 2$ and $L = 3$ (refer Eq. 5), is expressive enough to capture most higher-order motifs with four
 1011 and five nodes, respectively. Only if the network motifs consist of a cycle without the involvement
 1012 of the ego node, then EGO NETGNN is not expressive enough to capture it. Furthermore, compared
 1013 to predetermined causal network motifs, EGO NETGNN can accommodate motifs with additional
 1014 node and edge attributes. Incorporating node and edge attributes will not reduce the expressiveness
 1015 of counting original causal network motifs because these attributes are added as additional feature
 1016 dimensions.
 1017

1018 A.4.3 TIME COMPLEXITY OF EGO NETGNN-TARNET

1019 Typically, the complexity of a standard MPGNN (e.g. GCN), is $O(NLF^2 + L|E|F)$, where N , $|E|$,
 1020 L , and F are the number of nodes, edges, GNN layers, and the dimensionality of feature embeddings,
 1021 respectively (Blakely et al., [n. d.]). In our model, the feature mapping MPGNN (refer to Eq. 4) has
 1022 the time complexity of $O(d_\Theta NF_x^2)$ for ego feature embedding module $\Theta_0(\mathbf{X}_i)$, where d_Θ is the
 1023 depth of MLP and F_x is the dimensionality of node feature embedding, and $O(Ld_\Theta|E|F^2 + L|E|F)$
 1024 for peer feature embedding and aggregation, where $F = F_x + F_z$ is the dimensionality of node and
 1025 edge feature embeddings. For node aggregation (refer to Eq. 5), we extract ego network for each
 1026 node and perform neighborhood aggregation. Therefore, the time complexity is $O(NL|\bar{E}_{max}|F)$,
 1027

1026 where $|\bar{E}_{max}|$ is the number of maximum edges in the ego network. For subsequent masking and
 1027 exposure encoding MLP, the time complexity is $O(Nd_{MLP}|\bar{E}_{max}|F^2)$, where d_{MLP} is the depth
 1028 considering overall MLPs.

1029 Assuming a single-layer MPGNN with $F << N < |E|$, for simplicity, a standard MPGNN scales
 1030 linearly with the number of edges, i.e., $O(|E|)$ or $O(N \times avg(D))$, where $avg(D)$ is the average
 1031 degree. Similarly, for EGO NET GNN the time complexity simplifies to $O(N \times |\bar{E}_{max}|)$. In the
 1032 worst case, $|\bar{E}_{max}| = max(D)^2$, where $max(D)$ is the maximum degree in the network $G(V, E)$.
 1033 However, since networks are generally sparse, the approximate runtime complexity for networks
 1034 with uniform degree (e.g., Watts Strogatz network or Stochastic Block Model network) is $O(N \times
 1035 P_e \times avg(D)^2)$, where P_e is density of edges. So, our method is approximately $P_e \times avg(D)$ times
 1036 more computationally expensive than standard MPGNNs. On the other hand, the time complexity
 1037 for counting predetermined causal network motifs with K nodes is $O(Nmax(D)^{K-1})$, assuming
 1038 access to $O(1)$ adjacency set and adjacency matrix. This approach scales poorly with higher-order
 1039 motifs and EGO NET GNN mitigates the problem by capturing most higher-order motifs with the same
 1040 computational cost.

1041 A.4.4 COUNTERFACTUAL OUTCOME PREDICTION ERROR BOUNDS FOR EGO NET GNN

1042 Our work utilizes Shalit et al. (2017)’s TARNet and CFR estimators, adapted to network settings, for
 1043 estimating heterogeneous peer effects in both observational and experimental data. Their analysis
 1044 shows the $PEHE$ metric is bounded by factual (F), i.e., supervised learning and counterfactual
 1045 (CF) prediction error, i.e., $\epsilon_{PEHE}(\hat{f}_y) \leq 2(\epsilon_{CF}(\hat{f}_y) + \epsilon_F(\hat{f}_y) - 2\sigma_y^2)$, where σ_y^2 is the variance
 1046 of the outcome. These prediction errors or biases incorporate Sävje (2024)’s definition of exposure
 1047 mapping specification errors along with feature representation errors and outcome prediction errors.

1048 Moreover, Shalit et al. (2017) show that the bound for counterfactual prediction error (which cannot
 1049 be measured in the real world) depends on the Integral Probability Metric (IPM) measure of distance
 1050 between treatment and control group distribution, which implies $\epsilon_{PEHE}(\hat{f}_y) \leq 2(\epsilon_F^{t_i=1}(\hat{f}_y) +$
 1051 $\epsilon_F^{t_i=0}(\hat{f}_y) + \alpha IPM(\{\mathbf{h}_i^{emb} : t_i = 1\}, \{\mathbf{h}_i^{emb} : t_i = 0\}) - 2\sigma_y^2)$, where $t_i = \pi_i$ denotes conditioning,
 1052 $\mathbf{h}_i^{emb} = \Theta_{emb}(\hat{\mathbf{c}}_i || \hat{\rho}_i)$, and $||$ denotes concatenation. To study how misspecification errors of
 1053 EgoNetGNN propagate to the factual prediction error, we can substitute the oracle values and
 1054 estimated values (denoted with hat) and further decompose the errors by using sequential error
 1055 decomposition trick, i.e.,

$$\begin{aligned} \epsilon_F^{t_i=\pi_i}(\hat{f}_y) &= \mathbb{E}[(\hat{y}_i - y_i)^2] \\ \hat{y}_i - y_i &= \hat{f}_y(\pi_i, \hat{\rho}_i, \hat{\mathbf{c}}_i) - f_y(\pi_i, \rho_i, \mathbf{c}_i) \end{aligned}$$

1056 $\hat{y}_i - y_i = \epsilon_y + \epsilon_e + \epsilon_f$, where ϵ_y captures error due to learned outcome prediction module using
 1057 learned representations, i.e.,

$$\epsilon_y := \hat{f}_y(\pi_i, \hat{\rho}_i, \hat{\mathbf{c}}_i) - f_y(\pi_i, \hat{\rho}_i, \hat{\mathbf{c}}_i),$$

1058 ϵ_e captures error due to exposure mapping misspecification using learned feature representation but
 1059 true outcome prediction module, i.e.,

$$\epsilon_e := f_y(\pi_i, \hat{\rho}_i, \hat{\mathbf{c}}_i) - f_y(\pi_i, \rho_i, \mathbf{c}_i),$$

1060 and, finally, ϵ_f captures error due to feature mapping misspecification but true exposure and outcome
 1061 prediction function, i.e.,

$$\epsilon_f := f_y(\pi_i, \rho_i, \mathbf{c}_i) - f_y(\pi_i, \rho_i, \mathbf{c}_i).$$

1062 By plugging these decomposed errors in the factual prediction loss, we get,

$$\begin{aligned} \epsilon_F^{t_i=\pi_i}(\hat{f}_y) &= \mathbb{E}[(\epsilon_y + \epsilon_e + \epsilon_f)^2] \\ &= \mathbb{E}[\epsilon_y^2] + \mathbb{E}[\epsilon_e^2] + \mathbb{E}[\epsilon_f^2] + 2(\mathbb{E}[\epsilon_y \epsilon_e] + \mathbb{E}[\epsilon_e \epsilon_f] + \mathbb{E}[\epsilon_f \epsilon_y]). \end{aligned}$$

1063 By automatically learning relevant exposure mapping function, we aim to directly minimize the error
 1064 terms involving ϵ_e and the downstream error ϵ_y . Other estimators (e.g., Doubly robust or orthogonal
 1065 learning after handling unknown exposure mapping function) can be employed in future work for
 1066 more tight error bounds.

1080
1081

A.5 DATASET GENERATION

1082
1083
1084
1085
1086
1087
1088
1089
1090

For the Barabasi Albert (BA) model, the preferential attachment parameter $m \in [1, 5, 10]$ is used to generate sparse to dense networks, where a new node connects to p_{ba} existing nodes to form the network. For the Watts Strogatz (WS) model, we set mean degree parameters $k \in \{0.002N, 0.005N, 0.01N\}$ with fixed rewiring probability of 0.5, similar to prior works (Yuan et al., 2021; Adhikari and Zheleva, 2025). For the Stochastic Block Model (SBM) model, we use the number of blocks parameters $b \in \{500, 200, 100\}$ with randomly generated edge probabilities within and across communities. We also use two real-world social networks BlogCatalog and Flickr with more realistic topology and attributes to generate treatments and outcomes. We use LDA (Blei et al., 2003) to reduce the dimensionality of raw features to 50.

1091
1092
1093
1094
1095
1096

Treatment model. The treatment assignments could depend on the unit's covariates as well as peer covariates and some edge attribute. We generate treatment T_i for a unit v_i as $T_i \sim \theta(a(\tau_c \mathbf{W}_T \times \frac{\sum_{j \in \mathcal{N}_i} \mathbf{X}^c_j}{\sum_{j \in \mathcal{N}_i} Z_{ij}^c}) + (1 - \tau_c) \mathbf{W}_T \cdot \mathbf{X}^c_i)$, where θ denotes Bernoulli distribution, $a : \mathbb{R} \mapsto [0, 1]$ is an activation function, $\tau_c \in [0, 1]$ controls spillover influence from unit v_i 's peers, $\mathbf{X}^c \subset \mathbf{X}$ is a subset of node attributes, $Z^c \in \mathbf{Z}$ is an edge attribute, and \mathbf{W}_T is a weight matrix.

1097
1098
1099

Outcome model. The outcomes depend on unit's treatment, peer treatments based on the local neighborhood condition, the confounders, and the effect modifiers. We generate outcome Y_i for a unit v_i as:

1100
1101
1102

$$Y_i = (\delta_{exp} + \delta_{em} \times T_i) \times \phi_e(G, \mathbf{X}, \mathbf{Z}, T_{-i}) + \tau_d + \tau_{em} \times \phi_{em}(G, \mathbf{X}, \mathbf{Z}) \times T_i + g(\mathbf{X}_c, Z_c, G) + \epsilon. \quad (13)$$

1103
1104
1105
1106
1107
1108
1109
1110
1111

Here, the first term $(\delta_{exp} + \delta_{em} \times T_i) \times \phi_e(G, \mathbf{X}, \mathbf{Z}, T_{-i})$ captures peer effects, where $\phi_e(G, \mathbf{X}, \mathbf{Z}, T_{-i})$ captures true peer exposure that depends on local neighborhood condition (e.g., the number of mutual connections between treated peers and ego unit or attribute similarity) and δ_{exp} and δ_{em} are coefficients controlling magnitude/direction of peer effects. The term $g(\mathbf{X}_c, Z_c, G)$ captures confounding and $\epsilon \sim \mathcal{N}(0, 1)$ is random noise. The remaining term captures direct effect due to unit's own treatment with effect modification by some contexts. For semi-synthetic data, to generate heterogeneous peer effects, we use additional effect modification due to a unit's covariates, i.e., $\delta_{em} \times T_i \times \phi_v(\mathbf{X}_{em})$, where $\mathbf{X}_{em} \subset \mathbf{X}$ and ϕ_v is a weighted mean function with randomly generated weights. Please refer to the source code in anonymous repository for detailed implementation of data generation.

1112
1113

A.6 ADDITIONAL EXPERIMENTAL SETTINGS

1114
1115
1116
1117
1118
1119
1120

Model implementation, hyperparameters, and model selection. We have used $\lambda_{ent}, \lambda_{sp}, \lambda_{bal}, \lambda_{cov}, \lambda_{L1}$ as hyperparameters in our loss function. For a set of hyperparameters, we choose reasonable values and for the rest we use Python's "Ray Tune" framework for hyperparameter tuning. Although ground truth causal effects are unavailable to truly tune hyperparameters, our error analysis (extended from Shalit et al. (2021)'s work) shows that error in factual outcome prediction (and IPM distance metric) can be used as a proxy for hyperparameter tuning.

1121
1122

First, we describe the choice of values for regularization hyperparameters $\lambda_{ent}, \lambda_{sp}$, and λ_{L1} .

1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

- Entropy regularization coefficient $\lambda_{ent} = 1$ to promote mask weights $\mathbf{W}_{mask} \in [0, 1]$ approaching 0 or 1 such that average entropy is low. An extremely low value does not enable the intended behavior of the soft switch for enabling or disabling certain features, and a large value could interfere with other loss terms.
- Sparsity regularization coefficient $\lambda_{sp} = 0.1$ to encourage sparse mask weights i.e., a few weights approaching 1. In conjunction with entropy loss, a value that is too high could lead all weights toward zero, and a value that is too low could produce non-sparse weights.
- L1-regularization coefficient $\lambda_{L1} = 1$ for low-dimensional synthetic data to encourage highly sparse model parameters and $\lambda_{L1} = 0.1$ for comparatively higher-dimensional semi-synthetic data to encourage sparse model parameters.

We tune the coverage parameter $\lambda_{cov} \in \{0.01, 0.1\}$ for semi-synthetic data but choose a conservative $\lambda_{cov} = 0.01$ for synthetic data for efficiency. We choose the covariate-balancing hyperparameter

1134 $\lambda_{bal} = 0.8$ based on the analysis of the original paper (Shalit et al., 2017). We set the output
 1135 embedding dimension of the exposure encoder MLP to 3, giving a 6-dimensional peer exposure repre-
 1136 sentation. We use $1 - layer$ deep MPGNNs for feature and exposure mapping functions. Moreover,
 1137 we perform grid search hyperparameter tuning by varying GNN learning rate $\{0.1, 0.04, 0.02, 0.01\}$,
 1138 and setting TARNet learning rate to 0.01. We use Adam optimizer with weight decay of 10^{-5} and the
 1139 learning rate is decayed by 50% after 50 epochs. A 20% held-out dataset is used for model selection,
 1140 where model with lowest outcome prediction loss L_{Y_i} is chosen for reporting. We employ model
 1141 checkpointing every other epoch to select the best performing model in a total of 100 epochs. Our
 1142 implementation is similar to Adhikari and Zheleva (2025)'s INE-TARNet (also known as IDE-Net
 1143 in original paper) in terms of MLP with residual network architecture, parameter tuning and model
 1144 selection, and data generation.

1145 The baselines INE-TARNet and GNN-TARNet-Motifs are also tuned similarly to our method by
 1146 conducting grid search of the GNN's learning rate with $\{0.2, 0.02\}$ and variance smoothing regular-
 1147 ization hyperparameter with $\{0.1, 1\}$, keeping TARNet's learning rate 0.02 and other hyperparameters
 1148 default. DWR is calibrated for 5 epochs to balance representation. For other baselines, we use default
 1149 hyperparameters.

1150 **Implementation of baselines.** We use publicly available code shared for the baselines INE-
 1151 TARNet (Adhikari and Zheleva, 2025), TNet (Chen et al., 2024), NetEstimator (Jiang and Sun,
 1152 2022), and CauGramer (Wu et al., 2025). We adapt the code provided by authors to extend it
 1153 for peer effect estimation for AEMNet (Mao et al., 2025). We implement 1GNN-HSIC (Ma and
 1154 Tresp, 2021) and DWR (Zhao et al., 2024) ourselves following the paper as closely as possible.
 1155 GNN-TARNet-MOTIFS is available as a baseline of INE-TARNet.

1156 **Computational resources.** All the experiments are performed in a machine with the following
 1157 resources.

- 1158 • CPU: AMD EPYC 7662 64-Core Processor (128 CPUs)
- 1159 • Memory: 256 GB RAM
- 1160 • Operating system: Ubuntu 20.04.4 LTS
- 1161 • GPU: NVIDIA RTX A5000 (24 GB)
- 1162 • CUDA Version: 11.4

1163 As discussed in Section A.4, the runtime of computation depends on the number of nodes and the
 1164 number of edges in the ego networks along with the feature dimension. Here, we report execution
 1165 time per iteration for training, evaluating, and checkpointing our model for synthetic and semi-
 1166 synthetic network data. For the Barabasi Albert network with 3000 nodes, which is sparser, it takes
 1167 approximately 2.1 seconds per iteration, whereas, for a Stochastic Block Model (SBM) with 3000
 1168 nodes, which is denser, it takes approximately 3.3 seconds per iteration. For the BlogCatalog network
 1169 with 5196 nodes and 50-dimensional features, it takes around 5.7 seconds per iteration.

1170 A.7 SYNTHETIC DATA EXPERIMENTS AND RESULTS

1171 Figures 6 to 10 show the performance of our method and baselines for three synthetic networks when
 1172 the underlying peer exposure mechanisms depend on clustering coefficient, connected components,
 1173 number of mutual connections, tie strengths, and attribute similarity. The results discussed in the
 1174 main paper apply to additional peer exposure mechanisms and data generation conditions.

1175 A.8 SEMI-SYNTHETIC DATA EXPERIMENTS AND RESULTS

1176 First, we present results for RQ2 for the Flickr dataset in Table 4. Either EGO NETGNN-CFR or
 1177 EGO NETGNN-TARNet is still the best performing model in all settings. For mechanisms involving
 1178 attribute similarity and clustering coefficient, EGO NETGNN-TARNet is slightly better than EGO NET-
 1179 GNN-CFR, most likely due to EGO NETGNN-CFR's sensitivity to hyperparameter. INE-TARNet is
 1180 the baseline with competitive performance.

1181 Next, we utilize EGO NETGNN's feature mapping MPGNN $\hat{\phi}_f$ and outcome prediction model \hat{f}_Y in
 1182 the leading two baselines: GNN-TARNet-MOTIFS and INE-TARNet. The goal of this experiment

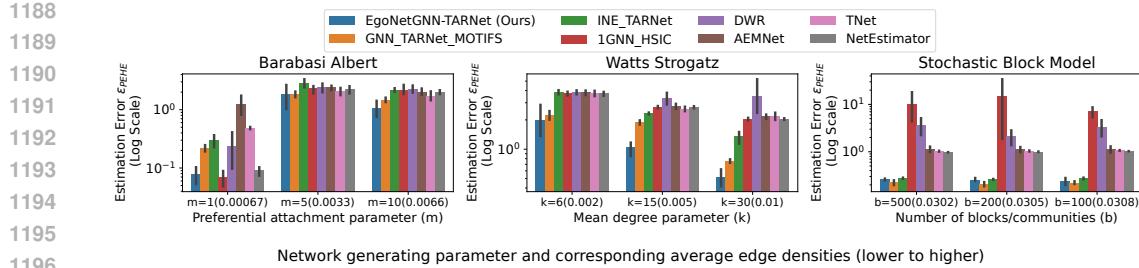


Figure 6: Peer effect estimation error when true peer exposure depends on clustering coefficient among treated peers. Our method is better than or competitive to baseline using predetermined causal network motif counts when the underlying peer exposure mechanism can be explained by causal network motif counts.

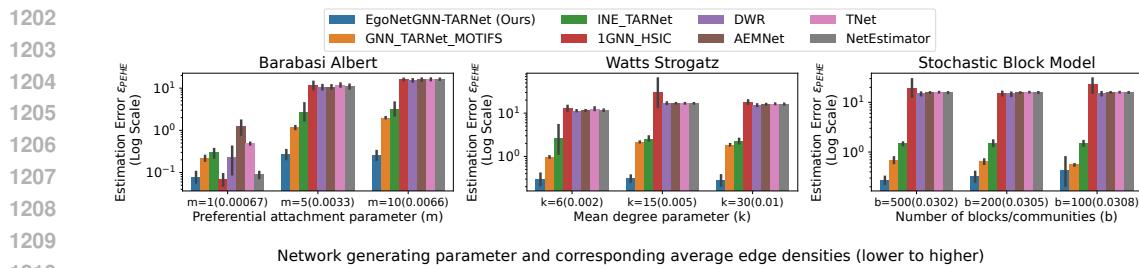


Figure 7: Peer effect estimation error when true peer exposure depends on number of mutual connections with the ego. Our method significantly outperforms all baselines showing its capability to count closed triad network motifs (i.e., triangle substructures) in the ego network.

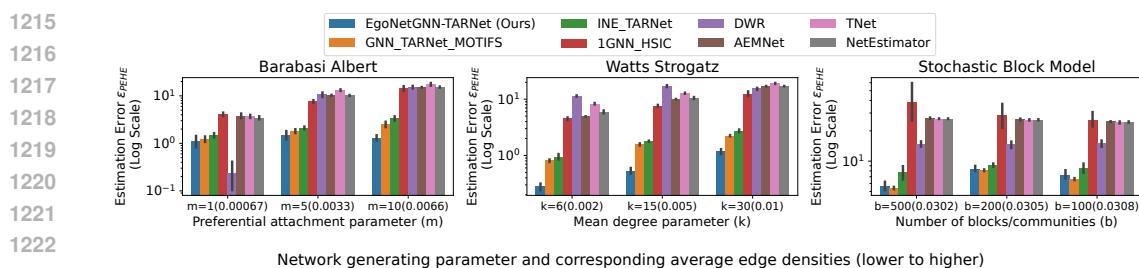


Figure 8: Peer effect estimation error when true peer exposure depends on connected components among treated peers. Our method performs well compared to all baselines when underlying peer exposure mechanism cannot be explained totally with causal network motif structures only.

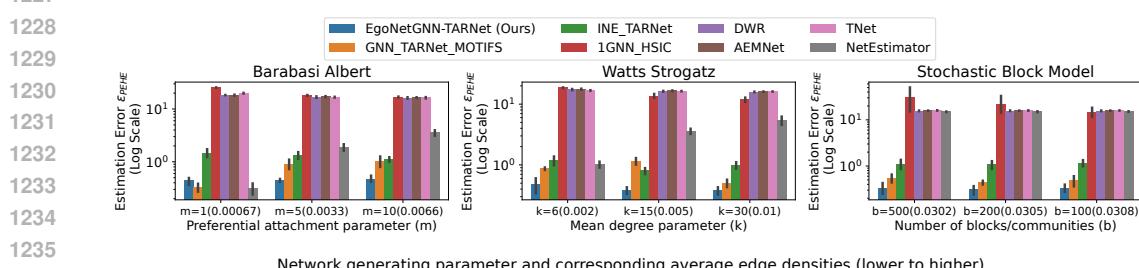


Figure 9: Peer effect estimation error when true peer exposure depends on tie strengths between ego and treated peers. Our method consistently outperforms all baselines because it can incorporate edge attributes and learn if those attributes are relevant for underlying peer exposure mechanisms.



Figure 10: Peer effect estimation error when true peer exposure depends on attribute similarity between ego and treated peers. Our method consistently outperforms all baselines because it can capture and learn if attribute similarity are relevant for underlying peer exposure mechanisms.

Table 4: Mean and standard deviation of peer effect estimation error (ϵ_{PEHE}) for different methods in BlogCatalog (BC) dataset for four settings when true peer exposure mechanisms depend on clustering coefficients, connected components, mutual connections, and attribute similarity. Either EGONETGNN-TARNet or EGONETGNN-CFR outperforms all other baselines across multiple settings.

Mechanisms	Ours-TARNet	Ours-CFR	GNN-Motifs	INE-TARNet	1GNN-HSIC	DWR	AEMNet	TNet	NetEst	CauGramer
Clus. Coef.	4.93\pm1.6	5.12 \pm 1.8	5.34 \pm 1.5	5.26 \pm 1.6	9.56 \pm 4.9	9.51 \pm 2.2	8.05 \pm 5.5	9.75 \pm 4.6	7.57 \pm 1.3	7.84 \pm 0.7
Con. Comp.	<u>1.83\pm0.6</u>	1.40\pm0.5	2.80 \pm 1.2	1.85 \pm 0.7	3.36 \pm 0.8	2.75 \pm 0.6	4.69 \pm 1.7	2.94 \pm 0.9	2.67 \pm 0.5	2.84 \pm 0.6
Mut. Con.	2.38 \pm 1.3	1.99\pm1.2	2.55 \pm 0.5	2.36\pm0.6	4.03 \pm 1.6	3.57 \pm 1.7	10.95 \pm 12.3	10.96 \pm 17.2	4.24 \pm 1.8	4.34 \pm 1.9
Attr. Sim.	11.32\pm6.6	13.06 \pm 12.7	13.15 \pm 10.8	<u>12.17\pm8.8</u>	16.94 \pm 8.1	18.03 \pm 9.7	17.43 \pm 10.0	23.09 \pm 20.3	16.87 \pm 7.8	20.38 \pm 11.6

is to ascertain the contribution of EGONETGNN-TARNet’s exposure mapping function $\hat{\phi}_e$. Table 5 shows the mean and standard deviation of peer effect estimation error (ϵ_{PEHE}) for EGONETGNN and these baselines in BlogCatalog (BC) dataset for four settings when true peer exposure mechanisms depend on clustering coefficients, connected components, mutual connections, and attribute similarity. The results show our method still performs better than the baselines, verifying the contribution of the learned exposure mapping function.

Table 5: Mean and standard deviation of peer effect estimation error (ϵ_{PEHE}) for EGONETGNN and top baselines using EGONETGNN’s feature mapping and outcome prediction in BlogCatalog (BC) dataset for four settings when true peer exposure mechanisms depend on clustering coefficients, connected components, mutual connections, and attribute similarity.

Method Mechanism	EgoNetGNN-TARNet	GNN-TARNet-MOTIFS	INE-TARNet
Clustering Coefficient	1.59\pm0.4	2.09 \pm 1.2	2.73 \pm 0.6
Connected Components	2.98\pm0.8	4.08 \pm 1.0	4.52 \pm 1.0
Mutual Connections	2.90\pm1.1	3.50 \pm 0.7	4.66 \pm 2.1
Attribute Similarity	5.65\pm0.7	6.95 \pm 0.9	5.86 \pm 2.1

A.9 ABLATION STUDIES AND HYPERPARAMETER SENSITIVITY

Table 6 presents the performance of EGONETGNN without balance loss, i.e., $\lambda_{bal} = 0$, and with two different coefficients of balance loss, i.e., $\lambda_{bal} = 0.01$ and $\lambda_{bal} = 0.1$ for four settings when true peer exposure mechanisms depend on clustering coefficients, connected components, mutual connections, and attribute similarity. In general, using balance loss with a small coefficient results in a more robust performance. EGONETGNN performs well for more complex peer influence mechanisms in the absence of balance loss. However, the performance for other mechanisms is comparatively poor in the absence of balance loss.

1296
 1297 Table 6: Performance of EGO NETGNN in BlogCatalog Data for different coefficients of balance loss
 1298 for four settings when true peer exposure mechanisms depend on clustering coefficients, connected
 1299 components, mutual connections, and attribute similarity.

λ_{bal} Mechanism	0.00	0.01	0.10
Clustering Coefficient	1.96 ± 1.1	1.59 ± 0.4	1.33 ± 0.3
Connected Components	2.90 ± 0.8	2.98 ± 0.8	3.08 ± 1.0
Mutual Connections	3.35 ± 0.7	2.90 ± 1.1	2.92 ± 0.7
Attribute Similarity	5.54 ± 0.6	5.65 ± 0.7	5.77 ± 0.6

1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308 Table 7: Performance of EGO NETGNN in BlogCatalog Data for different output dimension of peer
 1309 exposure embedding ρ_i for four settings when true peer exposure mechanisms depend on clustering
 1310 coefficients, connected components, mutual connections, and attribute similarity.

Output Dimension Mechanism	2	6	10
Clustering Coefficient	1.51 ± 0.5	1.59 ± 0.4	1.95 ± 1.4
Connected Components	3.35 ± 0.4	2.98 ± 0.8	3.03 ± 0.8
Mutual Connections	3.09 ± 1.1	2.90 ± 1.1	3.17 ± 0.9
Attribute Similarity	6.55 ± 1.8	5.65 ± 0.7	5.54 ± 0.7

1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319 Table 7 shows the performance of EGO NETGNN for different output dimension of peer exposure
 1320 embedding ρ_i for four settings when true peer exposure mechanisms depend on clustering coefficients,
 1321 connected components, mutual connections, and attribute similarity. As seen in the results, lower-
 1322 dimensional peer exposure embeddings could lose expressiveness, while higher dimensions could
 1323 introduce variance due to irrelevant contexts or violations of positivity. Lower-dimensional peer
 1324 exposure embedding has better performance for simpler peer exposure mechanism like clustering
 1325 coefficient and higher-dimensional peer exposure embedding has better performance for complex
 1326 peer exposure mechanism like attribute similarity.

1327 Table 8 shows the performance of EgoNetGNN and top baselines in the BlogCatalog Data when the
 1328 network is augmented to make it noisy by randomly removing or adding 10 and 20 percent of edges.
 1329 We expect the models to perform inconsistently or worse with higher noise. The results show that
 1330 for different noisy settings, our model is consistently better than the baselines. The results, however,
 1331 do not show an obvious trend of higher degradation in performance with high noise. This may be
 1332 because the augmentation by randomly adding or removing edges may still preserve the signal to
 1333 capture underlying peer exposure mechanisms.

1334
 1335 Table 8: Performance of EGO NETGNN and top baselines in the BlogCatalog Data when the network
 1336 is augmented to make it noisy by randomly removing or adding a certain percentage of edges.

Mechanism	Edge Augmentation Estimator	-20%	-10%	0%	10%	20%
Attribute Similarity	EgoNetGNN-TARNet	5.51 ± 1.0	6.03 ± 0.9	5.65 ± 0.7	5.67 ± 0.5	5.77 ± 0.5
	GNN-TARNet-MOTIFS	7.19 ± 2.1	6.74 ± 1.0	6.09 ± 0.2	6.66 ± 0.6	6.54 ± 1.1
	INE-TARNet	5.97 ± 1.2	5.88 ± 1.6	6.01 ± 2.0	5.86 ± 0.6	6.50 ± 0.8
Clustering Coefficient	EgoNetGNN-TARNet	1.55 ± 0.4	1.59 ± 0.3	1.59 ± 0.4	1.36 ± 0.4	2.14 ± 1.2
	GNN-TARNet-MOTIFS	2.19 ± 1.1	1.89 ± 0.6	2.04 ± 0.7	1.90 ± 0.5	1.94 ± 0.7
	INE-TARNet	1.79 ± 0.4	1.80 ± 0.4	2.24 ± 0.6	1.78 ± 0.4	1.95 ± 0.5
Mutual Connections	EgoNetGNN-TARNet	3.09 ± 0.3	3.00 ± 0.5	2.90 ± 1.1	3.32 ± 0.9	2.85 ± 0.5
	GNN-TARNet-MOTIFS	4.00 ± 1.2	3.67 ± 0.6	3.83 ± 0.7	4.57 ± 2.3	4.23 ± 2.5
	INE-TARNet	3.41 ± 0.6	3.08 ± 0.7	4.58 ± 2.0	3.61 ± 1.5	3.60 ± 1.2

1350
1351 A.10 ADDITIONAL ANALYSES
1352

1353 **Study of variance due to data simulation and random model initializations.** We study the variation
1354 in performance of our models and prominent baselines for BlogCatalog data, where true peer exposure
1355 depends on mutual connections. We use three different random initializations of the models for
1356 the same data-generating process simulation to see the variance due to model initializations. As
1357 expected, Table 9 shows that there is low variance due to model initializations and more variance due
1358 to data simulation. This is because peer exposure resulting from some configurations of neighborhood
1359 treatment may be inherently more difficult to capture than others. In this experiment, although explicit
1360 counting of graph motifs performs better in some simulations, EgoNetGNN-CFR⁺ exhibits the most
1361 robust performance across all simulations.

1362 Table 9: Performance (in BlogCatalog Data in terms of PEHE) of our models and prominent baselines,
1363 with true peer exposure mechanism depending on mutual connections, for each simulation (i.e., data
1364 generating process seed) and three random model initializations.

1365 Simulation	1366 EgoNetGNN-TARNet	1367 EgoNetGNN-CFR ⁺	1368 GNN-MOTIFS	1369 INE-TARNet	1370 CauGramer
1366 0	2.58±0.46	2.23±0.55	4.65±1.04	2.41±0.34	5.60±2.83
1367 1	1.63±1.27	0.72±0.31	2.03±0.12	1.98±0.06	3.83±0.05
1368 2	3.45±0.91	4.06±1.21	3.07±0.53	3.16±0.23	5.38±2.62
1369 3	3.49±0.46	3.51±0.78	3.04±0.16	3.68±0.49	5.85±2.22
1370 4	3.16±2.36	0.70±0.10	1.26±0.07	1.25±0.03	5.25±1.82
1371 Overall	2.86±1.31	2.24±1.55	2.81±1.26	2.50±0.92	5.18±1.96

1372 **Study of the contribution of the autoencoder variant of CFR compared to the original CFR.**
1373 Our EGONETGNN-CFR⁺ architecture implements an autoencoder architecture with reconstruction
1374 loss in addition to IPM balance loss, as this helps mitigate the potential loss in expressiveness while
1375 balancing representations across treatment groups. To test this, we run an experiment to compare
1376 the original CFR without an autoencoder to two variants of our method and the best baseline. The
1377 results in Table 10 show our variant with the autoencoder has almost always better performance than
1378 the original CFR without an autoencoder. The balancing approach without an autoencoder seems to
1379 degrade the performance, even compared to our model without balancing, because the expressive
1380 representation learned by earlier modules may not be preserved.

1381
1382 Table 10: Performance (in BlogCatalog Data in terms of ϵ_{PEHE}) of three variants of outcome models
1383 in our method: EgoNetGNN-TARNet (without balancing), EgoNetGNN-CFR (original CFR with
1384 balancing), and EgoNetGNN-CFR⁺ (CFR w/ autoencoder). Experiments are conducted for five
1385 different data simulations, each with three random model initializations.

1386 Mechanism	1387 EgoNetGNN-TARNet	1388 EgoNetGNN-CFR ⁺	1389 EgoNetGNN-CFR (Original)	1390 INE-TARNet
1387 Clustering Coefficient	2.13±1.88	0.95±0.54	2.03±1.56	2.35±0.71
1388 Structural Diversity	1.47±0.90	1.50±0.68	1.57±0.67	4.78±1.09
1389 Mutual Connections	2.86±1.31	2.24±1.55	4.32±2.32	2.50±0.92
1390 Attribute Similarity	3.95±2.66	3.65±2.40	4.14±1.84	3.59±1.83

1391 **Study of sensitivity to balance loss coefficient.** In our experiments, we selected the covariate-
1392 balancing hyperparameter $\lambda_{bal} = 0.8$ based on the analysis presented in the original paper (Shalit
1393 et al., 2017). We analyze the sensitivity of the λ_{bal} hyperparameter on performance. The results
1394 favor values of hyperparameter less than 1, but there is variance in the performance. Therefore, if
1395 computation resources and time are available, it is best to use hyperparameter tuning and model
1396 selection.

1397
1398 Table 11: Sensitivity analysis of hyperparameter λ_{bal} in BlogCatalog Data with attribute similarity as
1399 underlying peer influence mechanism. Experiments are conducted for five different data simulations,
1400 with a fixed model initialization.

1402 λ_{bal}	0.2	0.4	0.6	0.8	1.0
1403 Attribute Similarity	3.75±2.55	3.43±2.29	3.94±2.64	3.78±2.55	4.33±3.54

1404 **Study of the contribution of coverage loss in model selection for robust counterfactual prediction.**
1405
1406
14071408 **Table 12: Comparison of selection strategies using outcome-only features (L_y) vs. outcome +
1409 covariates ($L_y + L_{cov}$).**

1410	Simulation	Selection (L_y)	Selection ($L_y + L_{cov}$)
1411	0	2.23±0.55	2.23±0.55
1412	1	5.43±4.67	0.72±0.31
1413	2	10.31±4.59	4.06±1.21
1414	3	3.70±0.69	3.51±0.78
1415	4	4.10±5.39	0.70±0.10

1416
1417 **Study of performance under homogeneous peer exposure.** We ran additional experiments to show
1418 the performance of our methods and baselines in the BlogCatalog Dataset when the true peer exposure
1419 mechanism depends on the fraction of treated peers. This is the simplest setting in which all baselines
1420 make the right exposure mapping function assumption. When the baselines know what the true
1421 mechanism is, our method still performs better than or competitive with the baselines. Interestingly,
1422 even though the peer exposure mechanism is simple, the baselines suffer heavily. To investigate this
1423 further, we remove effect modification and flipped counterfactual settings and find that these factors
1424 impact the performance of the baselines. The variants of our model are still better even in the simple
1425 setting.

1426
1427 **Table 13: Performance in BlogCatalog Dataset in terms of PEHE metric (five data simulations with
1428 one model initialization) when true peer exposure mechanism depends on the fraction of treated peers.
1429 Comparison of various models with/without effect modifications and with flipped counterfactuals or
1430 without flipped, i.e., no neighbor treated, counterfactuals.**

	Ours-TARNet	Ours-CFR+	GNN-MOTIFS	INE_TARNet	1GNN_HSIC	DWR-5	AEMNet-CFR	TNet	NetEstimator	CauGramer
w/ EM	2.40±2.74	2.35±1.82	4.25±2.22	4.00±1.75	13.90±2.80	16.65±1.96	14.36±3.81	13.49±2.94	11.76±2.20	8.48±6.17
w/o EM	1.05±0.93	3.18±3.62	2.17±2.70	2.47±2.34	12.80±4.37	15.31±2.41	11.82±1.82	12.58±4.12	10.58±1.34	4.99±1.54
w/o EM & w/o flip	0.74±0.82	1.90±1.90	2.22±2.53	2.07±1.66	1.36±1.22	1.54±2.03	3.39±2.49	0.83±1.26	2.97±1.92	2.96±0.88

1431
1432
1433
1434 **Study of empirical runtime and memory requirements for the benchmark data.** Appendix A.4
1435 discussed the relative worst-case runtime complexity compared to approaches based on message
1436 passing GNN and an approach involving counting causal motifs. We include comparisons of rough
1437 time taken and memory usage to run experiments in the benchmark dataset BlogCatalog (5,196 nodes
1438 and 171,743 edges). We note that the implementations of our method and other baselines are not
1439 optimized for efficient memory usage, as they are designed with reproducibility and simplicity in
1440 mind (not production use). The results below support the theoretical analysis, where our runtime is
1441 slightly more than MPGNN-based approaches, but it is compensated for by a performance gain.

1442
1443 **Table 14: Runtime and memory requirements for experiment in BlogCatalog Data with homogeneous
1444 exposure as underlying mechanism.**

	EgoNetGNN-TARNet	EgoNetGNN-CFR+	GNN-MOTIFS	INE_TARNet	1GNN_HSIC	DWR-5	AEMNet-CFR	TNet	NetEstimator	CauGramer
training time (minutes)	10.44	10.78	12.5	0.8	0.12	0.47	1.29	9.21	4.28	1.28
GPU memory (GB)	2.8	2.9	2.0	2.6	2.2	2.3	2.0	2.1	2.1	4.3
ϵ_{PEHE}	2.40±2.74	2.35±1.82	4.25±2.22	4.00±1.75	13.90±2.80	16.65±1.96	14.36±3.81	13.49±2.94	11.76±2.20	8.48±6.17

1445
1446
1447
1448 **Study of performance under censored and noisy features.** We have already performed an exper-
1449 iment (Table 8 in the Appendix) with noisy networks by augmenting edges (i.e, randomly adding and
1450 removing 10% and 20% edges in the overall network), and our method’s performance is consistently
1451 better than the top-performing baselines. For the situation where some node features are missing,
1452 we expect the performance will be stable as long as these features are unrelated to the underlying
1453 mechanism of peer exposure or confounding. Similarly, if these missing features are correlated to
1454 other available features or network conditions, the performance is expected to have less of an impact.
1455 We performed an experiment with randomly censoring (setting to zero) 10% of the features and
1456 adding Gaussian noise $\mathcal{N}(0, 0.05)$ to the features in semi-synthetic BlogCatalog data with attribute
1457 similarity as the underlying mechanism to study the sensitivity to small measurement errors and
1458 missing features.

1458

1459 Table 15: Sensitivity to noisy and censored network attributes in terms of ϵ_{PEHE} metric in the
1460 BlogCatalog Data for attribute similarity as true peer exposure mechanism. Here, 10% node features
1461 are randomly set to 0 to simulate missing data and a noise is added to simulate measurement error.

	EgoNetGNN-TARNet	EgoNetGNN-CFR+	GNN_TARNet_MOTIFS	INE_TARNet	CauGramer
Attribute Similarity	3.53±1.49	<u>3.54±2.14</u>	4.19±1.75	3.69±1.94	10.77±1.71

1464

1465

1466 **Study of performance under violation of assumptions.** We add an experiment to test the sensitivity
1467 to violation of the confounding and interference assumption by generating data where there exists
1468 confounding and interference from two-hop neighbors. For confounding, both treatment assignments
1469 and outcome generation rely on aggregated neighbor attributes, with first-hop neighbors having a
1470 greater weight than second-hop neighbors. To model 2-hop interference, the outcome is influenced
1471 by the treatments of 2-hop neighbors, with the degree of influence depending on attribute similarity
1472 between the ego node and the neighbors. In the results below, although the magnitude of error has
1473 increased, our methods are competitive with or better than the prominent baselines.

1474

1475

1476 Table 16: Heterogeneous peer effect estimation error (ϵ_{PEHE}) when both confounding and inter-
1477 ference from two-hop neighbors are present in BlogCatalog Data, when the true peer exposure
1478 mechanism depends on attribute similarity. The reported results are for 5 data simulations with one
1479 fixed model initialization seed.

	EgoNetGNN-TARNet	EgoNetGNN-CFR+	GNN_TARNet_MOTIFS	INE_TARNet	CauGramer
Attribute Similarity	10.41±4.71	9.74±4.07	10.47±4.28	<u>10.22±4.30</u>	11.86±6.48

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511