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ABSTRACT

How humans can effectively and efficiently acquire images has always been a peren-
nial question. A classic solution is text-to-image retrieval from an existing database;
however, the limited database typically lacks creativity. By contrast, recent break-
throughs in text-to-image generation have made it possible to produce attractive and
counterfactual visual content, but it faces challenges in synthesizing knowledge-
intensive images. In this work, we rethink the relationship between text-to-image
generation and retrieval, proposing a unified framework for both tasks with one
single Large Multimodal Model (LMM). Specifically, we first explore the intrinsic
discriminative abilities of LMMs and introduce an efficient generative retrieval
method for text-to-image retrieval in a training-free manner. Subsequently, we
unify generation and retrieval autoregressively and propose an autonomous decision
mechanism to choose the best-matched one between generated and retrieved images
as the response to the text prompt. To standardize the evaluation of unified text-to-
image generation and retrieval, we construct TIGeR-Bench, a benchmark spanning
both creative and knowledge-intensive domains. Extensive experiments on TIGeR-
Bench and two retrieval benchmarks, i.e., Flickr30K and MS-COCO, demonstrate
the superiority of our proposed framework. The code, models, and benchmark are
available at https://anonymous.4open.science/r/TIGeR-1065.

1 INTRODUCTION
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Figure 1: TIGeR-ONE unifies T2I-G and T2I-R through one single LMM in a training-free au-
toregressive way, with a decision mechanism to adaptively select between generated and retrieved
images based on user prompts. Besides, we construct TIGeR-Bench, encompassing eight creative
and knowledge-intensive domains in total to facilitate a comprehensive evaluation of TIGeR.

The explosion of visual information on the Web significantly challenges human information access.
Text-to-Image Retrieval (T2I-R) (Radford et al., 2021; Yu et al., 2022; Li et al., 2023b) is one of
the main channels to obtain visual information given a text prompt. However, T2I-R is limited to
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retrieving existing images in the database, lacking flexibility and creativity. Furthermore, as the
database expands, retrieval costs increase significantly. Recent years have witnessed thrilling progress
in Text-to-Image Generation (T2I-G) (Ramesh et al., 2022; Rombach et al., 2022; Podell et al., 2023),
which directly generates new images to meet human visual information needs. However, T2I-G
struggles with knowledge-intensive concepts such as landmarks and natural species (see the right part
of Fig. 1), often resulting in hallucination issues (Kim et al., 2024; Huang et al., 2024b). In this light,
a single T2I-R or T2I-G model may not satisfy the diverse and evolving human information needs. It
is pivotal to unify both T2I-R and T2I-G within a framework for visual information delivery.

To this end, a straightforward solution is to empower discriminative models with the generation
ability. However, the early-stage trial (e.g., JEM (Grathwohl et al., 2019)) requires extra generative
training and may compromise the original discriminative power. Another solution adapts generative
models such as diffusion models (Podell et al., 2023) to achieve the discriminative tasks (Li et al.,
2023a; Clark & Jaini, 2023). Despite the significance, these methods are limited to diffusion models
and inevitably suffer from the notorious inefficiency problem caused by iterative denoising (Ho et al.,
2020). Moreover, diffusion models are usually tailored for simple discriminative tasks such as image
classification (Li et al., 2023a; He et al., 2023) and making them less suitable for processing complex
human prompts for large-scale retrieval in practical scenarios (Schuhmann et al., 2022).

Unlike diffusion models, Large Multimodal Models (LMMs) offer another form of generative
paradigm to solve broad vision-language problems, garnering significant attention for their powerful
language understanding and instruction following abilities (Ouyang et al., 2022; Touvron et al., 2023).
Recently, notable efforts in LMMs (Sun et al., 2023a; Ge et al., 2023; Dong et al., 2023) integrate
Large Language Models (LLMs) with external T2I-G models (Rombach et al., 2022) for image
synthesis. However, most studies focus solely on T2I-G, neglecting T2I-R. Even though GILL (Koh
et al., 2023) fuses an LLM and the image encoder & decoder to enable both generation and retrieval
in an ensemble strategy, it essentially incorporates an external retriever (i.e., CLIP (Radford et al.,
2021)) for dense retrieval in a dedicated embedding space. As such, GILL brings extra alignment
costs and still suffers from the inefficiency problem (discussed in Sec. 2 and Sec. 5.3) of the dense
retrieval paradigm, particularly in large-scale image retrieval scenarios (Tay et al., 2022).

To this end, we propose to unify Text-to-Image Generation and Retrieval (TIGeR) in this work, and
present a model-agnostic framework named TIGeR-ONE that achieves this unification within one
single LMM, enabling flexible and efficient image acquisition as shown in Fig. 1. We first delve into
the intrinsic bidirectional (i.e., text-to-image and image-to-text) discriminative abilities of LMMs in
Sec. 3.2. Specifically, we investigate three likelihood-based proxies to estimate cross-modal semantic
similarities. Based on these proxies, TIGeR-ONE adopts an efficient generative retrieval method
with forward beam search and reverse re-ranking as in Sec. 3.3, unifying both T2I-R and T2I-G
in an autoregressive generation manner. Moreover, TIGeR-ONE presents an autonomous decision
mechanism to adaptively select between retrieved and generated images based on user prompts.

Existing benchmarks (Saharia et al., 2022; Huang et al., 2023; Weyand et al., 2020) assess generation
and retrieval separately, with limited domain coverage. To comprehensively evaluate the performance
of LMMs on TIGeR, we build a benchmark called TIGeR-Bench (Sec. 4). It encompasses creative
images from the counterfactual world and imaginative scenarios (Kirstain et al., 2024), and knowledge-
intensive images from six diverse domains (e.g., logo, landmark, and natural species). We carry out
extensive experiments to assess the TIGeR performance of representative LMMs on TIGeR-Bench
and two T2I-R benchmarks, validating the effectiveness and efficiency of TIGeR-ONE. Overall, we
summarize the contributions into three points.

• Driven by the complementary roles of text-to-image generation and retrieval in visual informa-
tion access, we propose unifying both tasks to meet complex human information needs.

• We comprehensively inspect the intrinsic cross-modal discriminative abilities of LMMs and
propose TIGeR-ONE, a model-agnostic framework for the TIGeR task. TIGeR-ONE performs
text-to-image generation and retrieval in a training-free autoregressive manner, selecting the
best-matched result autonomously and efficiently.

• We construct a comprehensive image acquisition benchmark, TIGeR-Bench, to evaluate the
performance of TIGeR on LMMs in creative and knowledge-intensive domains. Extensive
experiments on TIGeR-Bench and two T2I-G benchmarks including Flickr30K (Young et al.,
2014) and MS-COCO (Lin et al., 2014) verify the effectiveness of TIGeR-ONE.
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2 RELATED WORK

Text-to-Image Generation. T2I-G has aroused wide attention in both academia and industry over
the past decade, with advancements ranging from Generative Adversarial Networks (Reed et al.,
2016) to Auto-regression Models (Ding et al., 2021) and Diffusion Probabilistic Models (DPMs) (Ho
et al., 2020). Recent breakthroughs in DPMs, guided by the scaling law (Kaplan et al., 2020; Li
et al., 2024a), have propelled T2I-G to new heights, e.g., models like DALL-E 2 (Ramesh et al.,
2022) and DALL-E 3 (Betker et al., 2023), the Imagen series (Saharia et al., 2022), and the Stable
Diffusion (SD) series (Rombach et al., 2022; Podell et al., 2023; Esser et al., 2024). Concurrently,
efforts have been made to enhance the composed text-image alignment (Feng et al., 2022; Chefer
et al., 2023; Qu et al., 2024; Yang et al., 2024) and cater to human preference (Lee et al., 2023;
Xu et al., 2024). Some studies recognize the importance of knowledge-intensive image acquisition,
employing RAG (Chen et al., 2022) or constructing benchmark (Huang et al., 2024a). However, they
focus solely on generation and overlook the potential for unifying generation and retrieval.

Text-to-Image Retrieval. Early studies on multimodal information retrieval focused on feature
representation (Faghri et al., 2017; Li et al., 2019) and modality interaction (Lee et al., 2018; Qu
et al., 2021) for precise cross-modal similarity estimation. Recent advancements, propelled by large-
scale pre-training, have led to improved retrieval performance and generalization in vision-language
models (Radford et al., 2021; Li et al., 2021; Dou et al., 2022). More recently, researchers have
explored more challenging scenarios, such as fine-grained interaction (Lin et al., 2024a), equivariant
similarity (Wang et al., 2023), multimodal instruction following (Wei et al., 2023), and chat-based
IR (Levy et al., 2024). Despite thrilling progress, retrieval systems are inherently limited by database
size, and incapable of creating new visual content.

Large Multimodal Models. Empowered by the versatility of LLMs, pioneering works on LMMs
have shown impressive understanding capabilities (Liu et al., 2023; Zhu et al., 2023a). Recent
research explores image generation through two categories: 1) Continuous Visual Representation
methods aim to align visual representations from LLMs with condition embeddings of SD through
regression (Koh et al., 2023; Sun et al., 2023a; Wu et al., 2023; Dong et al., 2023; Zhu et al., 2023b)
or score distillation (Dong et al., 2023) objectives. GILL (Koh et al., 2023) combines an external
dense retriever, i.e., CLIP, and a diffusion decoder with an LLM to achieve retrieval and generation,
respectively. However, such an ensemble approach brings extra alignment costs and may encounter
an alignment gap (Zhao et al., 2024). Moreover, the dense retriever suffers from inefficiency (Li
et al., 2024b), as it requires extensive similarity comparisons between the query and all items in the
database. 2) Discrete Visual Tokenization methods (Yu et al., 2023; Lu et al., 2023; Ge et al., 2023)
first encode an image into a sequence of discrete codes (Esser et al., 2021; Van Den Oord et al., 2017;
Ge et al., 2023; Jin et al., 2023), and then employ next-token prediction to train LMMs. To synthesize
images, the discrete codes are decoded into the pixel space via VQ-GAN or SD. In this work, we
resort to the discrete paradigm to be consistent with the inherent discreteness of language. Compared
with existing work, TIGeR-ONE achieves comprehensive image acquisition, encompassing both
content creation and knowledge retrieval within a single framework.

3 METHODOLOGY

We first formulate the task of unifying T2I-G and T2I-R through LMMs in Sec. 3.1. We then explore
the intrinsic cross-model discriminative ability of LMMs in Sec. 3.2. Based on the discriminative
ability, we propose the TIGeR-ONE framework, as shown in Fig. 2, including generative retrieval in
Sec. 3.3, synchronous generation and retrieval, and decision-making in Sec. 3.4.

3.1 TASK FORMULATION

TIGeR aims to satisfy complex human visual information needs by unifying T2I-G and T2I-R in a
unified LMM framework. We formulate this problem in an autoregressive generation manner:

p(Y |X) =

N∏
i=1

p(yi|Y<i, X), (1)

where X denotes a textual prompt provided by humans, tokenized into a sequence X = [x1, ..., xM ];
and Y = [y1, ..., yN ] denotes the sequence of visual tokens (Ge et al., 2023) that can be decoded
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into an image, with Y<i referring to the tokens before step i. By sampling from the conditional
distribution, we obtain a sequence instance, i.e., Y ∗ ∼ p(Y |X), where Y ∗ ∈ VN and V denotes the
visual token space defined by a visual vocabulary, and |V| = V is the vocabulary size. VN denotes
the Cartesian product of N token spaces, i.e., the whole discrete visual space.

To achieve unified T2I-G and T2I-R, an LMM is required to possess the following three capabilities:
1) creativity to generate a novel photorealistic image Ŷ based on the visual tokens sampled from
p(Y |X); 2) discrimination to measure semantic similarity between a prompt X and each image Y ,
and then retrieve the relevant image Ỹ from a database G, formally, Ỹ = argmaxY ∈G p(Y |X); and
3) decision to automatically determine the superior option by comparing p(Ŷ |X) and p(Ỹ |X) for
generation and retrieval, respectively, ultimately yielding the optimal result Y ∗.

Considering the proficiency of recent LMMs (Dong et al., 2023; Zheng et al., 2023; Ge et al., 2023) in
creative T2I-G, we shed more light on exploring the discriminative ability for T2I-R and the potential
of unifying generation and retrieval with decision-making in the remaining of this section.

3.2 INTRINSIC DISCRIMINATIVE ABILITY OF LMMS

For effective T2I-R, we first probe the discriminative capability of LLMs and present three training-
free proxies to estimate the semantic similarity between the prompt and images in the database.

Table 1: Text-to-image ranking perfor-
mance of three similarity (Sim.) prox-
ies for SEED-LLaMA (Ge et al., 2023)
and LaVIT (Jin et al., 2023) on MS-
COCO (Lin et al., 2014).

Sim. Proxy SEED-LLaMA LaVIT
R@1 R@5 R@1 R@5

Random 0.02 0.10 0.02 0.10
log p(Y |X) 3.50 8.79 0.02 0.16
log p(Y |X)

p(Y ) 26.25 54.57 23.43 48.52
log p(X|Y ) 49.34 75.45 50.35 70.87

Proxy 1: Conditional Likelihood. To estimate the se-
mantic similarity s(X,Y ) between a given text prompt
X and an image Y ∈ G, a straightforward approach is to
employ the conditional likelihood based on autoregressive
factorization as the proxy:

s(X,Y ) = log p(Y |X) =

N∑
i=1

log p(yi|Y<i, X), (2)

where p(Y |X) denotes the likelihood of autoregressively
generating Y conditioned on the given X . In practice, we
can attain it by computing the cross entropy between the
predicted logits and the image tokens. However, as shown
in Tab. 1, we observed that this proxy performs poorly. We
attribute this issue to visual bias, caused by the interference of the visual prior p(Y ). Although similar
phenomena have been noted in recent studies (Krojer et al., 2023; Lin et al., 2024b) on diffusion and
captioning models, the visual bias problem in LMMs has yet to receive adequate research attention.

Proxy 2: Debiasing Pointwise Mutual Information. In this study, the visual bias largely stems from
the unbalanced distribution p(Y ), and thus we introduce an alternative proxy based on Pointwise
Mutual Information (PMI) (Role & Nadif, 2011; Li et al., 2015; Lin et al., 2024b) as,

s(X,Y ) = log
p(Y |X)

p(Y )η
=

N∑
i=1

log p(yi|Y<i, X)− η

N∑
i=1

log p(yi|Y<i), (3)

where we use the visual prior p(Y ) to help debiasing with a strength factor η. p(Y ) can be approxi-
mately estimated by p(Y |X̄), where X̄ refers to a special prompt without any descriptive content,
e.g., a null character or “Can you give me an image?”. The results in Tab. 1 demonstrate that this
proxy could significantly alleviate the visual bias issue.

Proxy 3: Reverse Conditional Likelihood. In addition to the debiasing strategy, we propose another
option to circumvent the unbalanced prior distribution. Different from the generation process without
the image Y , the retrieval task allows the model to access all images in the database. This means we
can estimate the semantic similarity in a reverse way by predicting the conditional likelihood of X
given Y to alleviate the visual bias of T2I-G models. Formally,

s(X,Y ) = log p(X|Y ) =

M∑
i=1

log p(xi|X<i, Y ), (4)

where the LMMs work as image captioners to estimate the semantic similarity. As shown in Tab. 1,
this reverse proxy outperforms others, effectively revealing the discriminative abilities of LMMs.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Large Multimodal Models (LMMs)

<img> <img_5> <\img>...Word 

Embedding

...

Forward Beam SearchDiscrete Tokenization

Quantize

Unused

Word 

Embedding

Word 

Embedding

LMMs

Parallel

Reverse Re-Ranking & Decision

Re-Ranking List

Constraint

...

...

...

...

Repeat

Victoria  Memorial

X      Y

Y 

Y      X
Diff. 

Model

Visual 

Encoder

Visual 

Encoder

Give me an image of Victoria Memorial.Give me an image of Victoria Memorial.

( | )
log

( )

p Y X

p Y 

1

log ( | , )
M

i i

i

p x X Y

=



log ( | )p X Y

X: 

Figure 2: Overview of the TIGeR-ONE framework to unify text-to-image generation and retrieval.
Images from the database are first tokenized into discrete codes and a lookup table is maintained for
the correspondence between discrete codes and images. The given prompt X is first fed into an LMM
and Forward Beam Search is performed to retrieve and generate images in parallel. The prompt and
obtained images are then fed into the same LLM for Reverse Re-Ranking and Decision-making.

Now we could estimate similarities between a given prompt and all |G| images in the database by
traversing each image and calculating a proxy. Afterward, we could sort them to attain a ranking list,
enabling T2I-R. Compared with the prior work GILL (Koh et al., 2023), any of the three proxies
can be seamlessly integrated with next-token prediction, the mainstream paradigm of generative
pre-training. This proxy-based approach eliminates the need for additional discriminative training,
such as contrastive learning, and benefits from fine-grained cross-modal interaction within LMMs.

3.3 LMMS-BASED GENERATIVE RETRIEVAL

The above proxies make it possible to calculate cross-modal similarities for T2I-R. However, it is
inefficient due to |G| times of forward propagation, each time with the extensive parameterization and
the heavy internal attention interaction. To tackle this issue and achieve an optimal balance between
efficiency and recall, we introduce forward beam search and reverse re-ranking, as shown in Fig. 2.

Preliminary of Beam Search. Beam search Graves (2012); Boulanger-Lewandowski et al. (2013)
was originally proposed for decoding tokens in sequence-to-sequence models and widely used in
neural machine translation Sutskever (2014). Based on breadth-first search (BFS), it explores a search
tree from the root to the leaves. At each level, beam search generates all possible child nodes based
on the current prefixes, then sorts and selects the top-B paths by their conditional likelihood. Unlike
BFS, which considers all paths, beam search maintains only B valid paths at each level and prunes
others. As a result, it produces B ranked sequences.

Forward Beam Search (FBS). Inspired by the advancement of generative retrieval (Tay et al.,
2022; Li et al., 2024b), we adopt constraint generation via autoregressive token decoding and beam
search (Freitag & Al-Onaizan, 2017) with the beam size B to recall B images. Specifically, we
compress all images in the database into discrete tokens and store them in a Trie structure. This
Trie structure constrains the sampling space and ensures that the generated prefix at any timestep
corresponds to at least one image in the database. Once the beam search is finished, we could obtain
a ranking list of B sequences of visual tokens, each of which corresponds to an image. This process
aims to obtain a list of images given the prompt, thus the direction has to be X → Y , which means we
can only adopt the two forward proxies illustrated in Eqn. 2 or Eqn. 3. However, FBS method could
significantly improve the efficiency since it only requires N(N ≪ |G|) times of forward propagation
of LMMs, where N denotes the length of the visual token sequence for an image.

Reverse Re-Ranking (RRR). Despite the improved efficiency, the semantic matching ability of the
two forward proxies is noticeably weaker than that of the reverse proxy in Eqn. 4, as shown in Tab. 1.
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Given the ranking list R = [Y1, ..., YB ] obtained by forward beam search, we resort to the reverse
proxy in Eqn. 4 for re-ranking and attain the final ranking list R∗.

3.4 TIGER-ONE: UNIFYING GENERATION AND RETRIEVAL WITH ONE LMM

The discrete visual tokenization strategy enables LMMs to generate both language and visual content
in an autoregressive generation manner. The proposed forward beam search in Sec. 3.3 performs
retrieval in the same autoregressive manner to generate visual tokens (which have been tokenized
and saved in a database). Naturally, we can unify generation and retrieval with one LMM under the
autoregression framework and make a decision between the generated and retrieved images.

Synchronous Generation and Retrieval. In TIGeR-ONE, an LMM can synchronously conduct un-
constrained and constrained token decoding processes for image generation and retrieval, respectively.
As shown in Fig. 2, these two tasks can be performed in parallel by maintaining respective search
paths, which only requires N forward propagations, ensuring efficiency. Each path corresponds
to a sequence of discrete visual tokens. We can generate a new image Y G by a diffusion decoder
conditioned on the sequence, and meanwhile, immediately find the retrieved top-11 image Y R.

Decision Making. Given the generated Y G and the retrieved Y R, we choose the better one based
on the discriminative ability of LMMs, as discussed in Sec. 3.3. Specifically, we calculate two
similarities s(X,Y G) and s(X,Y R) using one of the three proxies and choose the image with the
higher similarity. Since we have computed similarities between the given prompt and shortlisted
images through forward beam search and reverse re-ranking using the debiasing and reverse proxies,
the decision process incurs no additional computational cost and can be performed efficiently.

4 TIGER-BENCH

To evaluate the performance of our method on TIGeR, we build a comprehensive benchmark (TIGeR-
Bench), as shown in Fig. 1. It covers creative and knowledge-intensive image acquisition domains.

Creative Domains. Creative images emphasize the intricate visual content that is challenging
to capture in the real world. It includes unusual and counterfactual compositions of concepts
(e.g., “A steamed train bellows rainbow-hued smoke”) and imaginary scenes aligning with real
users’ preference. To meet the two aspects, we collect prompt-image pairs from the well-designed
WHOOPS! (Bitton-Guetta et al., 2023) dataset and a large-scale open dataset named Pick-a-
Pic (Kirstain et al., 2024) which stems from a web platform collecting real users’ creative intention.

Knowledge-intensive Domains. Acquiring knowledge-intensive images requires models with
extensive world knowledge and the ability to align such knowledge with visual objects or concepts.
We focus on six knowledge domains including logo, history and news, landmark, food (Min et al.,
2023), nature species, Wiki miscellaneous, and collect text-image pairs from six high-quality datasets.
Different from previous content-oriented data (Lin et al., 2014) covering common objects in daily
life, the collected data requires stronger cross-modal knowledge alignment, as the texts often consist
solely of concept names without any descriptions in appearance. We collect pairwise image-text data
from eight domains, constructing the evaluation benchmark containing 6k data samples, with 3k for
creative domains and 3k for knowledge domains. See Appendix A for more details.

5 EXPERIMENTS

5.1 DATASETS, BASELINES, AND EVALUATION METRICS

We TIGeR-Bench to evaluate the unified performance, and the two widely-used benchmark datasets,
i.e., Flickr30K (Young et al., 2014) and MS-COCO (Lin et al., 2014), to assess the text-to-image
retrieval performance. The compared baselines mainly include recent LMMs (Koh et al., 2023; Sun
et al., 2023b;a; Ge et al., 2023; Jin et al., 2023) which can generate images, as well as generation and
retrieval expert models (Podell et al., 2023; Radford et al., 2021). Following T2I-G (Podell et al.,
2023; Esser et al., 2024; Saharia et al., 2022), the unified performance is measured by the CLIP

1This work only considers one generated image and the top-1 retrieved image, but the proposed framework
can also acquire more than one images batch-wise and choose the best one.
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Table 2: Performance comparison on TIGeR-Bench. “Token” refers to visual tokenization during
image synthesis, including continuous (Cont.) and discrete (Dist.) approaches. Entries by gray
are expert models for T2I retrieval or generation, and those with a cyan background denote that
an image query is first generated and then used to perform image-to-image retrieval. Entries with
a gray background denote our methods.

Method Size LLM Token CLIP-T ↑ CLIP-I ↑
Text-to-Image Generation

SDXL (Podell et al., 2023) 2.6B - Cont. 26.79 46.71
GILL (Koh et al., 2023) 8B OPT-6.7B Cont. 14.16 13.72
Emu (Sun et al., 2023b) 14B LLaMA-13B Cont. 22.26 40.78
Emu 2 (Sun et al., 2023a) 37B LLaMA-33B Cont. 24.25 44.24
DreamLLM (Dong et al., 2023) 8B Vicuna-7B Cont. 24.34 42.77
SEED-LLaMA (Ge et al., 2023) 8B LLaMA-7B Dist. 22.00 43.02
LaVIT (Jin et al., 2023) 11B LLaMA-7B Dist. 27.07 48.75

Text-to-Image Retrieval

CLIP (ViT-B/32) (Radford et al., 2021) 151M - Cont. 25.22 53.95
SDXL (Podell et al., 2023) 2.6B - Cont. 15.41 35.96
Emu (Sun et al., 2023b) 14B LLaMA-13B Cont. 14.44 34.46
Emu 2 (Sun et al., 2023a) 37B LLaMA-33B Cont. 14.69 36.38
DreamLLM (Dong et al., 2023) 8B Vicuna-7B Cont. 15.41 37.18
SEED-LLaMA (Ge et al., 2023) 8B LLaMA-7B Dist. 14.78 36.93
LaVIT (Jin et al., 2023) 11B LLaMA-7B Dist. 16.34 39.25
GILL (Koh et al., 2023) 8B OPT-6.7B Cont. 10.96 16.30
Ours (SEED-LLaMA) 8B LLaMA-7B Dist. 16.95 40.30
Ours (LaVIT) 11B LLaMA-7B Dist. 21.30 50.03

Unified Text-to-Image Generation and Retrieval

GILL (Koh et al., 2023) 8B OPT-6.7B Cont. 12.12 15.25
Ours (SEED-LLaMA) 8B LLaMA-7B Dist. 23.98 50.52
Ours (LaVIT) 11B LLaMA-7B Dist. 28.45 61.37

Table 3: Text-to-image retrieval performance comparison on Flickr30K and MS-COCO. Entries
by gray denote dense retrieval methods and others are generative retrieval methods. Entries with
a gray background denote our methods.

Method Flickr30K (1K) MS-COCO (5K)
R@1 R@5 R@10 R@1 R@5 R@10

CLIP (ViT-B/32) (Radford et al., 2021) 68.70 90.60 95.20 37.80 62.40 72.20
GRACE (Structured ID) (Li et al., 2024b) 37.40 59.50 66.20 16.70 39.20 50.30
IRGen (Zhang et al., 2023) 49.00 68.90 72.50 29.60 50.70 56.30
Ours (LaVIT) 68.84 82.92 86.44 44.81 62.61 68.28
Ours (SEED-LLaMA) 71.70 91.82 95.44 46.11 69.02 76.13

score (Hessel et al., 2021) including CLIP-T for text-image alignment and CLIP-I for the alignment
between the predicted image and the ground-truth image. As for T2I-R (Hessel et al., 2021; Faghri
et al., 2017), we adopt the standard metric Recall at K, R@K (K=1, 5, and 10) for short. Details on
datasets, baselines, and evaluation metrics are provided in Appendix A.

5.2 PERFORMANCE COMPARISON

Unified Performance on TIGeR-Bench. We compare LMM baselines and our method, reporting
results on TIGeR-Bench in Tab. 2, including separate and unified tasks. The base models (i.e., SEED-
LLaMA and LaVIT) and Ours share the same architectures and parameters. The key differences
lie in the integration of FBS, RRR, and decision-making mechanisms, which are training-free and
non-parametric. The results show that our method achieves the best performance, compared with
expert generation (Podell et al., 2023) or retrieval models (Radford et al., 2021), the state-of-the-art
LMMs, and GILL (Koh et al., 2023). Due to half of the data being sourced from knowledge domains,
current generation models, e.g., SDXL (Podell et al., 2023), and LMMs could not handle the unified
problem well. Moreover, the proposed method could achieve impressive retrieval results, especially
compared with other LMMs or SDXL. Compared with the vanilla SEED-LLaMA and LaVIT, our
method significantly improves retrieval performance by dealing with the unified problem.

Text-to-Image Retrieval Performance on Flickr30K (Young et al., 2014) and MS-COCO (Lin
et al., 2014). As shown in Tab. 3, we compare the proposed method with the representative dense
retrieval model CLIP (Radford et al., 2021) and two generative retrieval baselines (Zhang et al.,
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Table 5: Ablation study on TIGeR-Bench investigating Reverse Re-Ranking (RRR) and two decision-
making strategies, i.e., Forward with Eqn. 3 and Reverse with Eqn. 4. %Retr. denotes the percentage
of retrieved images selected as results.

RRR Decision Ours (SEED-LLaMA) Ours (LaVIT)
CLIP-T ↑ CLIP-I ↑ R@1 ↑ %Retr. CLIP-T ↑ CLIP-I ↑ R@1 ↑ %Retr.

% Forward 22.63 49.71 26.80 42.10 27.19 49.59 28.13 4.38
! Forward 23.72 48.86 29.23 12.72 27.28 49.62 49.37 1.40
% Reverse 23.89 50.52 26.80 25.60 28.23 56.51 28.13 30.47
! Reverse 22.84 49.54 29.23 61.47 28.45 61.37 49.37 56.25

2023; Li et al., 2024b) which have been specially trained on the two datasets. In contrast, the
proposed method is training-free but achieves the best performance across all baselines. It verifies the
effectiveness of the proposed generative retrieval method and demonstrates that LMMs are capable
of retrieval despite the sole optimization objective of next-token prediction.

Chat-to-Image Acquisition Performance on VisDial (Das et al., 2017). Follow-
ing GILL (Koh et al., 2023), we conducted a series of experiments on the VisDial
dataset to evaluate the proposed unified models based on LaVIT (Jin et al., 2023)
and SEED-LLaMA (Ge et al., 2023) for image acquisition in multi-turn chat scenarios.

Table 4: Chat-to-image acquisition performance on Vis-
Dial (Das et al., 2017). The CLIP-I score is used as the
evaluation metric. Unlike previous approaches limited to
image generation (Gen.), our method autonomously selects
between generation and retrieval (Retr.).

Method Gen. Retr. 1 round 5 rounds 10 rounds

Chat-to-Image Generation

GLIDE (Nichol et al., 2021) ! % 56.2 59.5 58.7
SD-v1.5 (Rombach et al., 2022) ! % 55.2 62.9 62.2
GILL (Koh et al., 2023) ! % 52.8 62.1 64.5
LaVIT (Jin et al., 2023) ! % 46.6 52.3 59.3
SEED-LLaMA (Ge et al., 2023) ! % 57.0 64.4 67.9

Unified Chat-to-Image Generation and Retrieval

Ours (LaVIT) ! ! 51.7 60.0 65.8
+5.1 +7.7 +6.5

Ours (SEED-LLaMA) ! ! 57.0 65.4 70.9
+0.0 +1.0 +3.0

We compared our method with
GLIDE (Nichol et al., 2021), Stable
Diffusion (SD) v1.5 (Rombach et al.,
2022), GILL, and the original mod-
els of LaVIT and SEED-LLaMA, as
shown in Tab. 4. The results demon-
strate: 1) The original SEED-LLaMA
model exhibits the strongest multi-
turn chat understanding and image
generation abilities conditioned on
chat contexts, achieving the highest
CLIP-I scores. 2) Our proposed uni-
fied framework significantly improves
the performance of both LaVIT and
SEED-LLaMA. 3) The improvement
of our method becomes more pro-
nounced with an increasing number
of rounds. For example, our method
achieves the most significant improve-
ment in 10 rounds for SEED-LLaMA.
This phenomenon verifies the effectiveness of our method on complex multi-turn chat scenarios.

5.3 IN-DEPTH ANALYSIS

Ablation Study on Reverse Re-Ranking (RRR) and Decision-Making for TIGeR. We evaluate
TIGeR-One based on SEED-LLaMA and LaVIT by different RRR and decision settings, and report
the unified and retrieval performance as well as the retrieval percentage in Tab. 5. We have the
following discussions: 1) RRR could consistently improve the retrieval performance for SEED-
LLaMA and LaVIT, but may not help in unified performance for SEED-LLaMA, because unified
performance is also influenced by decision strategies. 2) Compared with the forward decision with
Eqn. 3, the reverse decision with Eqn 4 could enhance the unified performance in most cases for
both models, which reflects the reverse decision may have stronger discriminative power across more
domains. 3) Intuitively, we expect the most correctly retrieved images can be selected and the left
wrong ones can be remedied by generation. However, we find that the two LMMs may suffer from a
generation preference problem. Especially, LaVIT always prefers to choose generated images even
though the retrieved ones are correct, as shown by the low %Retr. in the first two settings. One of the
reasons may be that significant gaps exist between the pre-trained and fine-tuned image generation
data and TIGeR-Bench. In all, besides the modality bias discussed in Tab. 1, the difference between
the two directional ranking and decision may be attributed to the unbalance between captioning
(image-to-text) and text-to-image data at the training phase of LMMs.
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Figure 3: The influence of the
debiasing factor η in Eqn. 3
on the forward ranking per-
formance of SEED-LLaMA
and LaVIT on the MS-COCO
dataset. The best performance
is achieved around η = 1.
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Figure 5: Comparison of re-
trieval efficiency quantified
by the number of processed
prompts per second among
CLIP (ViT-B/32), GILL, and
the proposed generative re-
trieval method based on SEED-
LLaMA.

Visual Modality Debiasing for Discriminative Power. In Sec. 3.3, we discussed the visual modality
bias problem with the forward log p(Y |X) in Eqn. 2 as the similarity proxy, and adopt a debiasing
proxy log p(Y |X)

p(Y )η by considering the unconditional likelihood. To explore the influence of the
debiasing strength, we set different values of the factor η in Eqn. 3 and a series of results are shown
in Fig. 3. They show that the ranking performance is sensitive to the debiasing strength and reaches
the highest point around η = 1, verifying the effectiveness of the unconditional debiasing strategy.

Forward Beam Search (FBS) and Reverse Re-Ranking for Retrieval. Considering the trade-off of
retrieval efficiency and recall, we present FBS and RRR, respectively. As shown in Fig. 4, we compare
the ranking (dotted lines) and retrieval (solid lines) performance and explore the impact of beam
size and RRR. In the ranking experiments, we adopt the proxies in Sec. 3.3 to calculate similarities,
and then rank the whole database. The comparison indicates that ranking with the debiasing proxy
(log p(Y |X)

p(Y )η ) seems the upper bound of FBS since FBS may miss the target image with the limited
beam size. Benefiting from the reverse proxy (log p(X|Y )), RRR could help FBS break through the
ceiling and significantly improve recall. Additionally, regardless of similarity proxies or base LMMs
employed, increasing the beam size can reduce the recall gap between retrieval and ranking.

Efficiency of Generative Retrieval. We analyze the efficiency of the proposed generative retrieval
method for T2I-R and compare it with two dense retrieval methods, i.e.GILL Koh et al. (2023) and
CLIP (Radford et al., 2021) in Fig. 5. The efficiency of dense retrieval gets worse with the increase
in the database size due to more matching in the common feature space. In contrast, the proposed
method keeps almost constant efficiency regardless of the database size.

Table 6: Text-to-image generation and retrieval
performance on TIGeR-Bench (Knowledge) in
chat scenarios, across various chat generation
methods including Gemini Pro and GPT-4o.

Expansion
Method

T2I Generation T2I Retrieval
CLIP-T CLIP-I R@1 R@5 R@10

Raw Prompt 19.50 36.11 22.57 36.80 43.23
Gemini-Pro 17.71 34.58 17.83 31.70 36.77
GPT-4o 19.40 38.17 24.03 40.73 47.83

Prompt Expansion in Chat Scenarios. We guide
Gemini-Pro (Reid et al., 2024) and GPT-4o (Ope-
nAI, 2024) to imagine a scenario where a user
intends to know a concept and seeks an image.
We provide them with detailed instructions and in-
context examples, leveraging their expert language
knowledge to process raw prompts. The prompts
are then expanded into multi-round chat contexts,
serving as input for T2I generation and retrieval.
Results in Tab. 6 indicate that unifying them could
utilize the abundant knowledge within LMMs to improve knowledge-intensive image acquisition.

5.4 QUALITATIVE ANALYSIS

In Fig. 6, we compare our methods with SDXL on TIGeR-Bench, covering both creative and
knowledge domains. Besides, we explore multi-turn chat scenarios with multimodal context and both
image retrieval and generation or editing requirements in Fig. 7. Owing to its training-free nature, our
model-agnostic framework fully inherits the interleaved capabilities of the base model, facilitating
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Figure 6: Qualitative results on TIGeR-Bench. The prefix prompt "Give me an image of" is omitted
here. Green ticks and red crosses highlight correct and wrong retrieval results.

Can you recommend me a place to
go during my holiday trip in Paris?

Certainly! I highly recommend the Eiffel Tower.
It's a must-see iconic symbol of Paris and one 
of the most recognizable landmarks in the 
world. It was built for the 1889 World's Fair 
and stands at 324 meters tall.  You can enjoy 
the stunning views of the city from the top, 
and there are also various exhibitions and 
events held there throughout the year. In 
addition, the Eiffel Tower is surrounded by a 
beautiful park called the Champ de Mars, where 
you can relax and enjoy the atmosphere. 

Cool. Can you show me a photo of
the Eiffel Tower? I just can't wait to see it.

It is a pity that I can't bring my kitty 
along the trip. This is my kitty Leo. 

Can you generate an image of Leo
sitting in front of the Eiffle Tower?

Awesome! Can you makeLeo wear sunglasses?

GeneratedUser Prompt Retrieved

Figure 7: Example of multi-turn chat based on SEED-LLaMA with unified generation and retrieval.

accurate interleaved image generation with identity preservation. Additionally, compared to the base
model, our method can proactively retrieve knowledge-intensive images (e.g., the Eiffel Tower) and
maintain their key characteristics throughout the interaction process.

6 CONCLUSION

In this work, we start with the practical requirements for image acquisition, analyze the weaknesses of
single generation and retrieval, and propose to unify these two tasks within MLLMs. Toward this end,
we first delve into the intrinsic discriminative abilities of MLLMs for semantic matching and propose
a generative retrieval method to perform text-to-image retrieval in an auto-regressive manner. Besides,
under the same auto-regressive framework, we unify generation and retrieval synchronously and
present an autonomous decision strategy to select the best image. The proposed framework exhibited
effectiveness and versatility across the constructed TIGeR-Bench and two retrieval benchmarks.
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A TIGER-BENCH DETAILS

A.1 DATA COLLECTION

Data Source. To comprehensively evaluate unified text-to-image generation and retrieval, we build
a benchmark called TIGeR-Bench, encompassing both creative and knowledge-intensive domains.
For the creative domains, the data is derived from authentic user prompts that reflect real-world needs,
requiring high levels of novelty and creativity. We collect the data from the WHOOPS! Bitton-Guetta
et al. (2023) and Pick-a-Pic Kirstain et al. (2024) datasets:

• WHOOPS! Bitton-Guetta et al. (2023): The WHOOPS! dataset consists of 500
commonsense-defying prompt-image pairs created by designers. First, the designers think of
counterfactual prompts by combining two elements or concepts that violate commonsense,
e.g., “Albert Einstein holding a smartphone”. Next, they are guided to use text-to-image
generation tools (e.g., Midjourney, DALL-E Ramesh et al. (2021), and Stable Diffusion Rom-
bach et al. (2022)) to synthesize images using these counterfactual prompts. Finally, the
designers verify the ‘weirdness’ of generated images to guarantee the data quality.

• Pick-a-Pic Bitton-Guetta et al. (2023): The Pick-a-Pic dataset consists of real-world user
prompts and corresponding generated images, annotated with user preference, gathered
from the Pick-a-Pic web application. In detail, we collect our data from Pick-a-Pic v2 2.

For knowledge-intensive domains, we collect data encompassing a wide range of categories to fulfill
users’ needs for visual knowledge, including Logo-2K+ Wang et al. (2020), Visual News Liu et al.
(2020), Google Landmark v2 Weyand et al. (2020), Food2k Min et al. (2023), iNaturalist Van Horn
et al. (2018), WIT Kirstain et al. (2024).

• Logo-2K+ Wang et al. (2020): Logo-2K+ is a large-scale real-world logo dataset, containing
167,140 images with 2,341 categories and 10 root categories, e.g., food, clothes, and
institution.

• Visual News Liu et al. (2020): Visual News is a large-scale dataset comprising over one
million news images along with associated news articles, image captions, author information,
and additional metadata. Distinguished from other image captioning datasets, this dataset
prioritizes factual contexts, including individuals, locations, and events, sourced from
prominent news outlets such as The Guardian, BBC, USA Today, and The Washington Post.

• Google Landmark v2 Liu et al. (2020): Google Landmark v2 includes approximately 5M
images annotated with 200k distinct instance labels representing human-made and natural
landmarks. It is collected from Wikimedia Commons.

• Food2K Min et al. (2023): Food2K is a food recognition dataset with 2,000 categories and
more than 1 million images, covering cereal products, vegetables, bread, snack, soup and
porridge, barbecue, egg products, dessert, beam products, seafood, fried food, and meat.

• iNaturalist Van Horn et al. (2018): The iNaturalist dataset is constructed to reflect the
diversity of the natural world, featuring an unbalanced distribution of species. It encompasses
a total of 5,000 species of plants and animals, accompanied by 859,000 images.

• WIT Kirstain et al. (2024): Wikipedia-based Image Text (WIT) is a large multimodal
multilingual dataset, comprising 37.6 million image-text pairs representing real-world
entities. It encompasses 11.5 million unique images across 108 Wikipedia languages. The
texts are sourced from 3 primary channels: reference descriptions, attribution descriptions,
and alt-text descriptions.

Prompts. The WHOOPS! and Pick-a-Pic datasets contain prompts, while Visual News also provides
natural language descriptions, serving as user prompts or queries. For the remaining five datasets,
only category names or concepts represented by single words or phrases are available. To address
this, we utilize a template to formulate them into complete prompt sentences, i.e., “Give me an image
of [concept]”.

These datasets, originally designed for different purposes, are effectively repurposed as the creative
domain and knowledge-intensive domain candidates within the TIGeR-Bench.

2https://huggingface.co/datasets/yuvalkirstain/pickapic_v2
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Table 7: The statistics of TIGeR-Bench. We keep the ratio of 1 : 1 for creative and knowledge
domains and collect 6,000 high-quality text-image pairs in total.

Domain Data Source #Text-Image Pairs

Creative
WHOOPS! Bitton-Guetta et al. (2023) 500
Pick-a-Pic Kirstain et al. (2024) 2500

Knowledge-intensive

Logo-2K+ Wang et al. (2020) 500
Visual News Liu et al. (2020) 500
Google Landmark v2 Weyand et al. (2020) 500
Food2K Min et al. (2023) 500
iNaturalist Van Horn et al. (2018) 500
WIT Kirstain et al. (2024) 500

A.2 AUTOMATIC DATA FILTRATION

Data Split. To evaluate text-to-image generation and retrieval, we prioritize selecting the original test
split of each dataset to construct TIGeR-Bench. In cases where only a validation set is provided, we
default to utilizing the validation set.

Filtration Pipeline Given that all 8 datasets have undergone individual single-modality quality
assessments during their construction, our emphasis now lies on cross-modal relevance and generation
challenge properties. We proceed with the following three steps for data filtration.

1) To ensure a strong alignment between the positive text and image pairs for both generation
and retrieval, we employ a filtering process to remove weakly relevant text-image pairs
(e.g., outliers or noisy pairs) across 7 datasets except for WHOOPS! due to its limited scale.
Specifically, we calculate the CLIP-T scores (Sgt) between the ground-truth images and
texts, and remove pairs with CLIP-T scores lower than 30.0. Considering the large scale of
Pick-a-Pic, we then randomly sample 7,500 pairs as candidates for the following human
quality validation phase.

2) As discussed in Sec. 1, T2I-G models may struggle with synthesizing knowledge-intensive
images. To identify challenging concepts in the above six knowledge-intensive datasets,
which pose difficulties for current state-of-the-art T2I-G models, we first employ open-
sourced models including the SD series Rombach et al. (2022); Podell et al. (2023) to
generate images by feeding the textual prompts in candidates as conditional input. Subse-
quently, we calculate the average CLIP-T scores (Sgen) over images generated by multiple
models for each prompt. We then calculate the difference between the scores of the ground-
truth pair and the generated pair for each prompt, i.e., ∆ = Sgt − Sgen.

3) Finally, we select the top 1,000 unique instance pairs – comprising 1,000 different prompts
and 1,000 different images – with the highest values of ∆ for each knowledge dataset.
The remaining examples form a new candidate set with 500 WHOOPS! instances, 7,500
Pick-a-Pic instances, and 1,000 instances for the six knowledge datasets.

A.3 HUMAN ANNOTATOR FILTRATION

To further improve the data quality of TIGeR-Bench, human annotators were employed to mark
evaluate each text-image pair across three aspects: text, image, and pair. Specifically, as for each
text-image pair, considerations include the conciseness and unambiguity of the text, the clarity and
usefulness of the image, and the relevance of the text-image pair. Annotators assigned a score of
0 (not satisfied) or 1 (satisfied) for each aspect. Finally, only text-image pairs meeting satisfaction
across all three aspects were retained.

A.4 DATA SAMPLING

To strike a balance between adequacy and efficiency in evaluation, we retain all 500 samples in
WHOOPS!, and further randomly sample 2,500 data instances from Pick-a-Pic, along with 500
instances from each knowledge-intensive dataset. The statistics of TIGeR-Bench are presented in
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Fig. 7. Maintaining a balanced ratio of 1 : 1 between creative and knowledge domains, we finally
obtain a total of 6,000 high-quality text-image pairs.

B MODEL DETAILS

In this work, we introduce and implement our approach for unified text-to-image generation and
retrieval, based on two foundation MLLMs: SEED-LLaMA Ge et al. (2023) and LaVIT Jin et al.
(2023). The details of these two models are as follows.

SEED-LLaMA produces 32 discrete visual codes for each image via the SEED tokenizer. This
tokenizer is composed of a Causal Q-Former, a learnable codebook, and an MLP (only for training),
and is trained with contrastive learning and reconstruction objectives. SEED-LLaMA takes discrete
visual codes as input for multimodal understanding tasks such as image captioning and VQA, and
outputs discrete visual codes. The output codes are then fed into the unCLIP-SD model Rombach
et al. (2022); Ramesh et al. (2022) to generate images.

LaVIT obtains discrete visual codes with variable lengths using a meticulously designed dynamic
visual tokenizer, which comprises a token selector, a token merger, and a reconstruction decoder (used
solely for training). This tokenizer is trained with a reconstruction objective. During tokenization,
LaVIT samples a binary decision mask from a Gumbel distribution to select visual patches and
quantize them into discrete tokens. To ensure reproducibility and stability in tokenization, we depart
from LaVIT and employ a deterministic selection method, where a patch is selected if its importance
score exceeds a threshold of 0.5; otherwise, it is discarded. With this discriminative tokenization
strategy, we pre-tokenize the 6 knowledge-intensive datasets of TIGeR-Bench, resulting in average,
maximum, and minimum lengths of discrete tokens at 88, 130, and 37, respectively. During image
generation, LaVIT first autoregressively produces a sequence of discrete visual tokens and then
decodes them into an image using a diffusion model initialized with SD-v1.5 Rombach et al. (2022)
or SDXL Podell et al. (2023). In contrast to SEED-LLaMA, which utilizes discrete visual tokens as
input for multimodal understanding and generation, LaVIT takes continuous visual features from the
token merger as input.

C EXPERIMENTAL DETAILS

C.1 BASELINES

As shown in Tab. 2, we compare the proposed method with several baselines on TIGeR-Bench
across three aspects, i.e., text-to-image generation, text-to-image retrieval, and unified generation and
retrieval. We introduce these baselines in the following.

• Text-to-Image Generation Baselines: There include the expert model SDXL Podell et al.
(2023) and recent MLLMs with image generation abilities. The MLLMs in this category are
GILL Koh et al. (2023), Emu Sun et al. (2023b), Emu 2 Sun et al. (2023a), DreamLLM Dong
et al. (2023), SEED-LLaMA Ge et al. (2023), and LaVIT Jin et al. (2023).

• Text-to-Image Retrieval Baselines: These include the expert model CLIP (ViT-B/32) Rad-
ford et al. (2021) and recent MLLMs. Currently, GILL Koh et al. (2023) is the only MLLM
with retrieval ability, which maps the embeddings of special visual tokens into the CLIP
feature space. Although other MLLMs Sun et al. (2023b;a); Dong et al. (2023); Ge et al.
(2023); Jin et al. (2023) do not directly support text-to-image retrieval, we evaluate them
through a two-step process: 1) generating an image query conditioned on the text prompt,
and 2) performing nearest neighbor search for image-to-image retrieval using the CLIP
(ViT-B/32) image encoder as the feature extractor and cosine similarity as the metric.

• Unified Text-to-Image Generation and Retrieval: GILL Koh et al. (2023) is the only
baseline capable of performing both text-to-image generation and retrieval. It incorporates
and trains a binary classifier to decide between generation and retrieval tasks.
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Table 8: Unified performance comparison on the CLIP-T score across 8 domains in TIGeR-Bench.

Method Creative Domains Knowledge Domains AllCounterfactual Preference Logo News Landmark Nature Food Wiki

SDXL Podell et al. (2023) 36.90 30.09 16.36 24.96 21.51 26.00 24.25 20.99 26.79
CLIP (ViT-B/32) Radford et al. (2021) 16.61 15.86 36.17 34.95 32.51 30.56 29.44 31.00 24.21
GILL Koh et al. (2023) 10.80 11.22 14.65 9.49 14.31 12.92 13.64 13.55 12.12
Emu Sun et al. (2023b) 23.61 23.98 17.24 19.21 21.54 23.43 21.25 21.00 22.26
Emu 2 Sun et al. (2023a) 29.49 26.21 23.67 20.85 19.56 26.09 20.53 19.81 24.25
DreamLLM Sun et al. (2023a) 27.16 23.47 25.57 25.13 24.27 23.31 20.78 24.20 23.98
SEED-LLaMA Ge et al. (2023) 27.18 23.97 16.73 19.66 19.03 22.66 19.63 19.29 22.00
LaVIT Jin et al. (2023) 34.60 29.07 16.70 25.17 24.14 29.59 25.07 24.26 27.07
SEED-LLaMA (Ours) 27.16 23.47 25.57 25.13 24.27 23.31 20.78 24.20 23.98
LaVIT (Ours) 32.05 25.39 35.87 24.30 32.38 31.28 27.59 31.01 28.45

Table 9: Unified performance comparison on the CLIP-I score across 8 domains in TIGeR-Bench.

Method Creative Domains Knowledge Domains AllCounterfactual Preference Logo News Landmark Nature Food Wiki

SDXL Podell et al. (2023) 65.91 55.38 14.21 42.09 35.43 44.94 45.60 35.40 46.71
CLIP (ViT-B/32) Radford et al. (2021) 31.33 26.68 93.55 91.04 71.54 75.38 71.39 75.59 53.60
GILL Koh et al. (2023) 15.93 13.61 20.38 15.96 14.34 18.25 15.49 14.52 15.25
Emu Sun et al. (2023b) 43.17 43.95 22.23 34.25 38.53 46.97 48.56 35.97 40.78
Emu 2 Sun et al. (2023a) 59.07 49.17 32.27 36.27 33.44 49.77 40.72 33.51 44.24
DreamLLM Sun et al. (2023a) 53.93 46.22 33.16 32.09 37.87 46.06 43.82 35.13 42.77
SEED-LLaMA Ge et al. (2023) 52.76 49.37 18.50 37.89 33.78 45.46 46.55 34.50 43.02
LaVIT Jin et al. (2023) 65.79 53.64 20.87 42.20 39.77 53.66 52.48 42.05 48.75
SEED-LLaMA (Ours) 52.67 47.81 51.94 56.86 48.76 51.99 52.53 52.52 50.52
LaVIT (Ours) 60.80 46.56 92.68 57.32 72.88 74.70 69.79 75.44 61.37

Table 10: Retrieval percentage of our method based on SEED-LLaMA and LaVIT on 8 domains in
TIGeR-Bench.

Method Creative Domains Knowledge Domains AllCounterfactual Preference Logo News Landmark Nature Food Wiki

SEED-LLaMA (Ours) 1.0% 9.6% 44.2% 44.2% 53.6% 26.2% 40.2% 49.8% 25.6%
LaVIT (Ours) 15.0% 27.5% 99.8% 82.0% 88.6% 80.6% 87.6% 84.0% 56.3%

C.2 IMPLEMENTATION DETAILS

The proposed method is training-free and based on SEED-LLaMA Ge et al. (2023) and LaVIT Jin
et al. (2023). We utilize the 8B version of SEED-LLaMA and load the parameters of supervised
fine-tuning. For LaVIT, we employ the 11B model with SDXL as the pixel decoder. We combine all
images in the 6 knowledge-intensive datasets and tokenize them into discrete tokens. Subsequently,
we build the mapping between images and tokens. Based on these discrete tokens, we construct a
Trie for efficient storage and constrained generation. The beam size for retrieval is set to 800, and the
timestep for generation is 25.

D ADDITIONAL EXPERIMENTS

In this section, we carry out extensive experiments and obtain quantitative and qualitative results to
explore the unified text-to-image generation and retrieval problem and the proposed MLLMs-based
method.

D.1 ADDITIONAL QUANTITATIVE RESULTS

D.1.1 UNIFIED PERFORMANCE COMPARISON

To broadly compare the performance of baselines and our method for unified text-to-image generation
and retrieval, we report the results with the CLIP-T score and the CLIP-I score as the evaluation
metrics across 8 domains in TIGeR-Bench, in Tab. 8 and Tab. 9, respective. In addition, we show
the retrieval percentage of our method on 8 domains in TIGeR-Bench to understand the automatic
decision in Tab. 10.
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Table 11: Text-to-image generation performance on TIGeR-Bench (Knowledge) in long text scenarios,
with CLIP-T and CLIP-I scores as evaluation metrics across various prompt/query expansion methods
including Self-Expansion, Gemini Pro, and GPT-4o. For expansion, we guide LLMs to explain the
appearance characteristics in detail with their expert language knowledge for given raw queries by
giving them detailed instructions. After that, the queries can be expanded into longer texts and are
combined with raw queries as input for text-to-image generation. We perform generative retrieval
with 200 beams.

Expansion Method Ours (SEED-LLaMA) Ours (LaVIT)
CLIP-T CLIP-I CLIP-T CLIP-I

Raw Query 19.50 36.11 24.16 41.84
Self-Expansion 18.07 35.12 - -
Gemini-Pro 17.48 34.74 22.38 39.28
GPT-4o 20.36 38.95 23.91 42.59

Table 12: Text-to-image retrieval performance on TIGeR-Bench (Knowledge) in long text scenarios,
with recall as the evaluation metric across various prompt/query expansion methods including Self-
Expansion, Gemini Pro, and GPT-4o. For expansion, we guide LLMs to explain the appearance
characteristics in detail with their expert language knowledge for given raw queries by giving them
detailed instructions. After that, the queries can be expanded into longer texts and are combined with
raw queries as input for text-to-image retrieval. We perform generative retrieval with 200 beams.

Expansion Method Ours (SEED-LLaMA) Ours (LaVIT)
R@1 R@5 R@10 R@1 R@5 R@10

Raw Query 22.57 36.80 43.23 25.63 43.63 49.40
Self-Expansion 17.20 30.10 36.77 - - -
Gemini-Pro 18.57 34.27 40.30 19.07 36.80 43.10
GPT-4o 25.00 42.50 48.90 25.20 46.03 52.17

Table 13: Text-to-image generation and retrieval performance on TIGeR-Bench (Knowledge) in
multimodal chat scenarios. Based on the chat contexts with pure text generated by GPT-4o, we can
perform generation and retrieval. Afterwards, we concatenate the generated or retrieved top-1 images
with the chat contexts and form the multimodal context, to explore the influence on retrieval and
generation, respectively. Considering that LaVIT was not fine-tuned by chat instructions, we only
carry out experiments based on SEED-LLaMA. We perform generative retrieval with 200 beams.

Expansion Method Image Context Text-to-Image Generation Text-to-Image Retrieval
CLIP-T CLIP-I R@1 R@5 R@10

Raw Query - 19.50 36.11 22.57 36.80 43.23
GPT-4o Retrieved 18.62 38.20 - - -
GPT-4o Generated - - 15.87 29.13 35.60

D.1.2 PROMPT/QUERY EXTENSION

In this section, we mainly study the influence of prompts on the retrieval and generation performance
in knowledge-intensive scenarios. Toward this end, we first let SEED-LLaMA, Gemini Pro, and GPT-
4o to explain the raw query with knowledge concepts from 6 domains. Subsequently, we concatenate
the raw prompt and expanded ones to form new long text prompts and feed them to SEED-LLaMA.
The results for text-to-image generation and retrieval are listed in Tab. 11 and Tab. 12, respectively.
We can see that prompt/query expansion with strong LLMs could promote both generation and
retrieval performance. Meanwhile, weak LLMs may introduce false explanations and do harm to the
generation and retrieval performance.

We also carry out experiments in multimodal chat scenarios to explore the interplay between genera-
tion and retrieval, as shown in 13. Specifically, we concatenate the retrieved top-1 images behind the
chat context and then evaluate the generation performance. Similarly, we concatenate the generated
images behind the chat context and then evaluate the retrieval performance.
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Table 14: Comparison of CLIP-T score between the unified method and single generation and retrieval
variants based on SEED-LLaMA and LaVIT on 8 domains of TIGeR.

Method Creative Domains Knowledge Domains AllCounterfactual Preference Logo News Landmark Nature Food Wiki

Ours (SEED-LLaMA)
Generation 27.18 23.97 16.73 19.66 19.03 22.66 19.63 19.29 22.00
Retrieval 11.04 10.36 27.87 26.21 23.73 20.25 19.56 22.99 16.95
Unified 27.16 23.47 25.57 25.13 24.27 23.31 20.78 24.20 23.98

Ours (LaVIT)
Generation 34.60 29.07 16.70 25.17 24.14 29.59 25.07 24.26 27.07
Retrieval 13.21 12.17 35.84 23.64 32.58 31.08 27.61 30.76 21.30
Unified 32.05 25.39 35.87 24.30 32.38 31.28 27.59 31.01 28.45

Table 15: Comparison of CLIP-I score between the unified method and single generation and retrieval
variants based on SEED-LLaMA and LaVIT on 8 domains of TIGeR-Bench.

Method Creative Domains Knowledge Domains AllCounterfactual Preference Logo News Landmark Nature Food Wiki

Ours (SEED-LLaMA)
Generation 27.18 23.97 16.73 19.66 19.03 22.66 19.63 19.29 22.00
Retrieval 11.04 10.36 27.87 26.21 23.73 20.25 19.56 22.99 16.95
Unified 27.16 23.47 25.57 25.13 24.27 23.31 20.78 24.20 23.98

Ours (LaVIT)
Generation 34.60 29.07 16.70 25.17 24.14 29.59 25.07 24.26 27.07
Retrieval 13.21 12.17 35.84 23.64 32.58 31.08 27.61 30.76 21.30
Unified 32.05 25.39 35.87 24.30 32.38 31.28 27.59 31.01 28.45

Table 16: Comparison between the unified method and single generation and retrieval variants based
on SEED-LLaMA and LaVIT on the Flickr30K and MS-COCO datasets. Performance is evaluated
by the CLIP-T score.

Method Flickr30K MS-COCO

Ours (SEED-LLaMA)
Generation 28.65 27.74
Retrieval 29.86 28.73
Unified 30.01 29.09

Ours (LaVIT)
Generation 37.05 35.59
Retrieval 27.54 27.13
Unified 33.69 32.24

D.1.3 ABLATION STUDY

In this part, we conduct comprehensive ablation studies on the components of the proposed method
to study the effectiveness.

First, we compare the alignment performance between separate generation, retrieval, and unified
variants across all 8 domains. The results are listed in Tab. 14 and Tab. 15 with the CLIP-T and
CLIP-I score as the evaluation protocols, respectively. Besides, although Flickr30K and MS-COCO
are the general datasets describing daily common scenes, we also investigate the three variants on
them, as shown in Tab. 16

Second, we further study the effects of the directions of re-ranking and decision-making, across 8
domains in Tab. 17, and 2 general datasets, i.e., Flickr30K and MS-COCO, in Tab. 18.

In addition, we delve into the discriminative abilities by forward and reverse ranking methods, as
well as forward beam search and reverse re-ranking in Tab. 19 on 6 knowledge-intensive domains.
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Table 17: Ablation study on 8 domains of TIGeR-Bench investigating Reverse Re-Ranking (RRR)
and two decision-making strategies, i.e., Forward with Eqn. 3 and Reverse with Eqn. 4. Performance
is evaluated by the CLIP-T score.

RRR Decision Creative Domains Knowledge Domains AllCounterfactual Preference Logo News Landmark Nature Food Wiki

Ours (SEED-LLaMA)
Forward 26.64 22.41 24.02 23.64 22.85 20.34 19.63 22.40 22.63

! Forward 27.14 23.95 23.57 23.18 22.82 24.57 20.62 22.93 23.72
Reverse 27.16 23.47 25.57 25.13 24.27 23.31 20.78 24.20 23.98

! Reverse 26.81 20.19 27.29 23.22 24.16 26.04 21.79 23.84 22.84

Ours (LaVIT)
Forward 34.59 29.00 16.84 25.53 24.74 29.56 24.93 25.05 27.19

! Forward 32.05 29.07 17.15 25.57 24.76 29.60 25.17 25.20 27.28
Reverse 33.83 28.17 24.67 28.88 28.06 29.02 25.65 27.84 28.23

! Reverse 32.05 25.39 35.87 24.30 32.38 31.28 27.59 31.01 28.45

Table 18: Ablation study on Flickr30K and MSCOCO investigating Reverse Re-Ranking (RRR) and
two decision-making strategies, i.e., Forward with Eqn. 3 and Reverse with Eqn. 4. %Retr. denotes
the percentage of retrieved images selected as results.

RRR Decision Flickr30K MS-COCO
CLIP-T ↑ R@1 ↑ %Retr. CLIP-T ↑ R@1 ↑ %Retr.

Ours (SEED-LLaMA)
Forward 28.89 58.50 39.52 25.95 26.17 67.61

! Forward 29.68 71.70 26.92 28.71 46.11 33.91
Reverse 30.01 58.50 35.98 28.61 26.17 26.23

! Reverse 30.02 71.70 51.88 29.09 46.11 60.69

Ours (LaVIT)
Forward 37.03 47.86 0.20 35.34 23.20 3.44

! Forward 37.04 68.84 0.10 35.58 44.81 0.23
Reverse 36.18 47.86 24.34 34.67 23.20 20.60

! Reverse 33.69 68.84 41.84 32.24 44.81 49.11

Table 19: Recall@1 performance comparison of Forward Ranking, Reverse Ranking, Forward Beam
Search (FBS) with different beam sizes, and BFS + Reverse Re-Ranking (RRR). Experiments are
conducted based on SEED-LLaMA and LaVIT on 6 knowledge-intensive domains of TIGeR-Bench.

Method Logo News Landmark Nature Food Wiki ALL

Ours (SEED-LLaMA)
Forward Ranking 56.00 45.60 22.60 2.60 4.40 30.40 26.93
Reverse Ranking 61.80 40.40 26.60 15.00 7.00 32.40 30.53
FBS (#Beam=100) 39.40 29.60 10.40 8.80 4.60 19.40 18.70
FBS (#Beam=800) 56.00 46.80 20.20 3.60 4.60 29.60 26.80
FBS (#Beam=100) + RRR 37.40 25.80 10.00 10.20 6.00 18.60 18.00
FBS (#Beam=800) + RRR 61.20 39.60 22.60 15.40 6.80 29.80 29.23

Ours (LaVIT)
Forward Ranking 37.80 52.20 25.00 10.00 11.40 33.20 28.27
Reverse Ranking 92.20 41.00 56.00 36.40 23.60 63.80 52.17
FBS (#Beam=100) 16.60 46.00 20.20 9.40 10.00 28.40 21.77
FBS (#Beam=800) 37.00 53.40 24.40 10.80 11.40 31.80 28.13
FBS (#Beam=100) + RRR 27.00 30.80 30.60 16.80 15.40 41.00 26.93
FBS (#Beam=800) + RRR 87.20 40.40 51.60 34.60 23.00 59.40 49.37

D.2 ADDITIONAL QUALITATIVE RESULTS

We showcase more examples of our SEED-LLaMA and LaVIT in both creative and knowledge-
intensive domains in Fig. 8 and Fig. 9.

In the creative domain, the CLIP model, limited to retrieving images from the database, shows
significant discrepancies when compared to the ground truth images. Our SEED-LLaMA and LaVIT,
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capable of both generation and retrieval, tend to favor image generation in the creative domain.
However, our models also exhibit decision errors. For instance, as demonstrated in the last two rows
of Fig. 8, the models incorrectly selected misleading retrieved images.

As shown in Fig. 8, our models has the advantages over SDXL in the knowledge-intensive domain,
accurately retrieving the correct results. However, decision errors still occur. We leave further
exploration of the decision strategy for future work.

In Fig. 10, we compare our models with current Text-to-Image baseline models such as Emu2,
DreamLLM, and GILL, which can autonomously decide between retrieval and generation. Our
models are consistently retrieving the correct images in the knowledge-intensive domain. In this
domain, Emu2, DreamLLM, and GILL fail to generate closely matching images, highlighting the
limitations of current MLLMs.

We further explored two scenarios: Augmented Generation for Better Retrieval and Augmented
Retrieval for Better Generation. In the Augmented Generation for Better Retrieval scenario, we first
use the MLLM’s capability to generate an image before performing image retrieval. The generated
image, along with the retrieval prompt, is then used as input for the retrieval process. As shown in
Fig. 11, generating an image beforehand improves the model’s retrieval performance.

In the Augmented Retrieval for Better Generation scenario, we leverage our model’s generative
retrieval capabilities to perform an image retrieval before generating an image. The retrieved image,
along with the generation prompt, is then used as input for the generation process, similar to Retrieval-
Augmented Generation (RAG). As shown in Fig. 12, performing image retrieval beforehand improves
the stability and quality of the generated images.

One major limitation of the CLIP model for retrieval is its limited context length. Our model leverages
the advantage of the LLM’s long context length, making retrieve with longer prompts possible. As
shown in Fig. 13, extending the prompt further enhances the retrieval performance of our model.

E FUTURE WORK

In the future, we plan to investigate the root causes of modality biases from various perspectives,
including data distribution, model architecture, and optimization objectives. We will also examine
the potential impacts of these biases on generative and discriminative tasks. Additionally, we aim to
study more complex contexts involving interleaved multimodal content to advance comprehensive
unified generation and retrieval tasks. Finally, it would be valuable to explore the deeper relationships
and possible interactions between generation and retrieval (e.g., retrieval-augmented generation and
generation-augmented retrieval) within the TIGeR framework.
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Ground Truth CLIP-B LaVIT
Gen

LaVIT
Ret

SEED-LLaMA
Gen

SEED-LLaMA
Ret

A Baby eating a hot chili pepper

Mary Poppins flying with balloons

A pile of fruit has a blue apple

a pink pistol

a digital painting of a european dragon with wings

Movie keyart of mario surrounded by goombas zoombies, guns, bullet tracing vfx, hazing environment,
drone view from the sky, cinematic light, by kyoto animation and peter mohrbacher, high radiosity,

splatter on ground, color dodge on lights, simon stålenhag background, green pallete

A pregnant old lady

inside of the black hole, super realistic, string theory, space neurons and
neural networks, parallel universes, radiated radar view,  twisted loophole

Figure 8: Qualitative results in TIGeR-Bench creative domain. We use ticks or crosses to highlight
the selected results from generation or retrieval. Green ticks indicate the correct generated images
and red crosses indicate the wrong retrieved images. Black ticks refer to the correct retrieved images
despite the creative domain.
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Ground Truth SDXL
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Gen

SEED-LLaMA

Ret

The logo of Preem

the worst princess by anna kemp and sara ogilvie


Sir Thomas Brisbane Planetarium




Chicken heart string

Moonflower

Dangerous Love (1920 film)




international space stationa bright orange zinnia has blossomed aboard the international space station 

marking a first in space us astronaut scott kelly who took the photograph tweeted first flower ever grown 


in space makes its debut zinnias grow easily on earth and blossom in abundance in summer but on the iss 

they have had trouble adapting to microgravity





Shiogama-jinja

Figure 9: Qualitative results in TIGeR-Bench knowledge domain. We use ticks or crosses to highlight
the selected results from generation or retrieval. Green ticks indicate the correct retrieved images and
red crosses indicate the wrong generated images.
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Emu2 DreamLLM GILL SEED-LLaMA LaVIT

The logo of Microsoft

benefits street prompted a debate about socalled poverty porn

some 700000 federal workers have been sent home on unpaid leave

Old Swedes, Wilmington

Anterior cingulate cortex

Cape Sugarbird

Mixed agaric with coriander

Alora turbinata

Figure 10: Qualitative results in TIGeR-Bench knowledge domain compared to Text-to-Image
generation baselines. Green tick indicates the final output by our model is correct and Red cross
indicates the final output by our model is incorrect.
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Hi, I heard about the HP TouchSmart tx2z.
Can you tell me what it is?

Cool. I wonder what the TouchSmart
tx2z looks like. Can you show me?

I recently saw an image taken with the
NASA/ESA Hubble Space Telescope featuring
something that seems to be smiling. Can you tell
me more about it?

Can you show me the image of the galaxy
cluster SDSS J1038+4849 and it seems to
be smiling?

In the center of this image is the galaxy cluster
SDSS J1038+4849. The 'smile' effect is due to
gravitational lensing, where the massive gravity of
the cluster bends light from galaxies behind it,
creating curved arcs that look like a smiley face.

That's fascinating! Can you show me an
image of this galaxy cluster?  Please give me an image of the HP Laptop.

The HP TouchSmart tx2z is a convertible laptop
that was released in 2009.
It features a touchscreen display that can be
rotated and folded, allowing it to function as both
a laptop and a tablet. It was one of the early
models to popularize touch input and is known
for its innovative design.

User Prompt Generated Retrieved Augmented Generation for Better Retrieval

Figure 11: Augmented generation for better retrieval. Green box is the additional generation step.
Green tick indicates the final output by our model is correct and Red cross indicates the fina3l output
by our model is incorrect.
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My brother's birthday is coming.
Can you give me a design drawing
of a rose cake?

Sounds delicious! Can you show me
an image of a rose cake? 

Rose cake is a traditional Chinese pastry that
incorporates rose petals and sometimes rose
essence, giving it a distinct floral aroma.
Typically enjoyed during special occasions, it is
known for its delicate, sweet flavor and soft,
tender texture.

Hi, I heard about Rose cake. Can
you tell me what it is?

Degeberga kyrka is a traditional Swedish
church featuring a whitewashed exterior with a
tall, pointed red-tiled roof and a square tower
topped with a spire, situated in a picturesque
rural setting. Generate an image of Degeberga
kyrka.

Hi, I plan to visit Sweden and have heard about
Degeberga kyrka. Can you tell me what it is?

I want to design a new building like it.
Can you generate an image? 

Can you show me an image 
of Degeberga kyrka? 

User Prompt Generated Retrieved Augmented Retrieval for Better Generation

Figure 12: Augmented retrieval for better generation. Green box is the additional retrieval step. Green
tick indicates the final output by our model is consistent and Red cross indicates the final output by
our model is inconsistent.
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Generate an image of  Pickled sweet garlic

Pickled sweet garlic typically appears as small, whole garlic
cloves submerged in a clear or slightly amber-colored brine,
often with a glossy, slightly translucent look and sometimes a
hint of spices or herbs visible in the jar. Generate an image of

Pickled sweet garlic.
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Generate an image of  the logo of Mirc

The logo of mIRC features a stylized combination of lowercase
and uppercase letters in bright colors, where the letter "m"

appears in red, the lowercase "i" and uppercase "R" are in blue,
and the final "c" is in yellow, often with a playful, rounded design.

Generate an image of the logo of Mirc.
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Short Prompt Retrieval Long Prompt Retrieval

Generate an image of  deonka deidra drayton 32

Deonka Deidra Drayton, a 32-year-old individual, was one of the
victims of the Pulse nightclub shooting in Orlando, Florida, which

occurred in June 2016. Generate an image of deonka deidra
drayton 32.
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Generate an image of  twotone blooms linaria reticulata flamenco


Twotone blooms Linaria reticulata 'Flamenco' feature vibrant,
delicate flowers with a striking combination of deep magenta

and bright yellow colors, often with an intricate, veined pattern
adding to their visual appeal. Generate an image of  twotone

blooms linaria reticulata flamenco
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D
-L
La
M
A

La
V
IT

Figure 13: Short prompt and long prompt retrieval comparison on TIGeR-Bench knowledge domain.
Red box is the retrieve result of short prompt. Green box is the retrieve result of long prompt. Green
tick indicates the final output by our model is correct and Red cross indicates the final output by our
model is incorrect.
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