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Abstract
State machine replication protocols, like MultiPaxos and Raft,
are at the heart of numerous distributed systems. To tol-
erate machine failures, these protocols must replace failed
machines with new machines, a process known as reconfigu-
ration. Reconfiguration has become increasingly important
over time as the need for frequent reconfiguration has grown.
Despite this, reconfiguration has largely been neglected in
the literature. In this paper, we present Matchmaker Paxos
and Matchmaker MultiPaxos, a reconfigurable consensus and
state machine replication protocol respectively. Our protocols
can perform a reconfiguration with little to no impact on the
latency or throughput of command processing; they can per-
form a reconfiguration in a few milliseconds; and they present
a framework that can be generalized to other replication pro-
tocols in a way that previous reconfiguration techniques can
not. We provide proofs of correctness for the protocols and
optimizations, and present empirical results from an open
source implementation showing that throughput and latency
do not change significantly during a reconfiguration.

1 Introduction

Many distributed systems [4, 6, 7, 14, 16] rely on a state ma-
chine replication protocol, like MultiPaxos [17] or Raft [34],
to keep multiple replicas of their data in sync. Over time,
machines fail, and if too many machines in a state machine
replication protocol fail, the protocol grinds to a halt. Thus,
state machine replication protocols have to replace failed ma-
chines with new machines as the protocol runs, a process
known as reconfiguration.

Reconfiguration is an essential component of state ma-
chine replication. It is not an optimization or an afterthought.
Without a reconfiguration protocol in place, a state machine
replication protocol will inevitably stop working; it’s just a
matter of when. Despite this, reconfiguration has largely been
neglected by current academic literature. Researchers have
invented dozens of state machine replication protocols, yet
many papers either discuss reconfiguration briefly with no
evaluation [31, 36–38], propose theoretically safe but inef-
ficient reconfiguration protocols [18, 26], or do not discuss
reconfiguration at all [2, 3, 19, 28, 29].

Ignoring reconfiguration has never been ideal, but we have
largely been able to get away with it. Historically, state ma-
chine replication protocols were deployed on a fixed set of

machines, and reconfiguration was used only to replace failed
machines with new machines – an infrequent occurrence. This
made it easy to leave reconfiguration out of sight, out of mind.
Recently however, systems have become increasingly elastic,
and the need for frequent reconfiguration has grown. These
elastic systems don’t just perform reconfigurations reactively
when machines fail; they reconfigure proactively. For exam-
ple, cloud databases can proactively request more resources
to handle workload spikes, and orchestration tools like Kuber-
netes [15] are making it easier to build these types of elastic
systems. Similarly, in environments with short-lived cloud
instances—as with serverless computing and spot instances—
and in mobile edge and Internet of Things settings, protocols
must adapt to a changing set of machines much more fre-
quently. This frequent need for reconfiguration makes it hard
to ignore reconfiguration any longer.

In this paper, we present a reconfigurable consensus proto-
col and a reconfigurable state machine replication protocol:
Matchmaker Paxos and Matchmaker MultiPaxos. In a nut-
shell, our protocols work by leveraging two key design ideas.

• The first is to decouple reconfiguration from the stan-
dard processing path. Many replication protocols [23,
26, 31, 34] have machines that are responsible for both
processing commands and for orchestrating reconfigura-
tions. By contrast, Matchmaker Paxos introduces a set
of distinguished matchmaker machines that are solely re-
sponsible for managing reconfigurations and operate off
of the critical path. These matchmakers act as a source
of truth; they always know the current configuration.

• The second design point is to reconfigure across rounds,
a technique known as vertical reconfiguration [22]. With
vertical reconfiguration, every round of consensus can
execute using a different configuration.

At the beginning of every round, the Paxos leader queries
the matchmakers to discover the older configurations that
were used in previous rounds, and it simultaneously sends
the matchmakers the configuration it intends to use in the
current round. In this way, the matchmakers act as a registry
for configurations. Leaders simultaneously query the past and
update the present. This matchmaking phase requires a single
round trip of communication and happens rarely. We also
introduce a number of novel protocol optimizations to perform
the matchmaking completely off the critical path to avoid
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degrading performance. Moreover, the protocol employs
a garbage collection protocol to delete old configurations
stored on the matchmakers. Our protocols have the following
desirable properties.

Little to No Performance Degradation. Matchmaker
MultiPaxos can perform a reconfiguration without signif-
icantly degrading the throughput or latency of processing
client commands. For example, we show that reconfiguration
has less than a 4% effect on the median of throughput and
latency measurements (Section 7). Note that Matchmaker
MultiPaxos is not the first protocol to achieve this [27].

Quick Reconfiguration. Matchmaker MultiPaxos can per-
form a reconfiguration quickly. Reconfiguring to a new set
of machines takes one round trip of communication in the
normal case (Section 4). Empirically, this requires only a
few milliseconds within a single data center (Section 7). It
takes slightly longer to shut down the old machines, but em-
pirically this takes only five milliseconds within a data center
(Section 7).

Generality Replication protocols based on classical Multi-
Paxos assume a totally ordered log of chosen commands and
reconfigure across log entries, known as horizontal reconfigu-
ration. However, many state machine replication protocols
do not replicate a log [2, 18, 31, 38, 39, 41]. These protocols
cannot use horizontal reconfiguration. However, while none
of these protocols have logs, they all have rounds and can
implement vertical reconfiguration. This allows Matchmaker
Paxos and Matchmaker MultiPaxos to serve as a foundation
on top of which reconfiguration protocols can be built for
these other non-log based protocols.

Theoretical Insights. Matchmaker Paxos generalizes Ver-
tical Paxos [22], it is the first protocol to achieve the theo-
retical lower bound on Fast Paxos [19] quorum sizes, and it
corrects errors in DPaxos [33] (Section 6).

Proven Safe. We describe Matchmaker Paxos and Match-
maker MultiPaxos precisely and prove that both are safe (Sec-
tions 3, 4, 5, A, B). Unfortunately, this is not often done for
all reconfiguration protocols [30, 36–38].

2 Background

2.1 System Model
Throughout the paper, we assume an asynchronous network
model in which messages can be arbitrarily dropped, delayed,
and reordered. We assume machines can fail by crashing but
do not act maliciously. We assume that machines operate at
arbitrary speeds, and we do not assume clock synchroniza-
tion. We assume a discovery service that nodes can use to
find each other, but do not require that this service be strongly
consistent. A node can safely communicate with outdated
nodes. A system like DNS would suffice. Every protocol
discussed in this paper assumes (for liveness) that at most f
machines will fail for some configurable f . All the protocols

discussed in this paper are safe, but due to the FLP impossi-
bility result [10], none of the protocols are guaranteed to be
fully live (unless the network is synchronous).

2.2 Paxos
A consensus protocol is a protocol that selects a single value
from a set of proposed values. Paxos [17, 20] is one of the
oldest and most popular consensus protocols. A Paxos deploy-
ment that tolerates f faults consists of an arbitrary number
of clients, at least f +1 nodes called proposers, and 2 f +1
nodes called acceptors, as illustrated in Figure 1. To reach
consensus on a value, an execution of Paxos is divided into
a number of rounds, each round having two phases: Phase
1 and Phase 2. Every round is orchestrated by a single pre-
determined proposer. The set of rounds can be any unbounded,
totally ordered set. It is common to let the set of rounds be the
set of lexicographically ordered integer pairs (r, id) where r
is an integer and id is a unique proposer id, where a proposer
is responsible for executing every round that contains its id.
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Figure 1: Paxos communication diagram ( f = 1).

When a proposer executes a round, say round i, it attempts
to get some value x chosen in that round. Paxos is a consensus
protocol, so it must only choose a single value. Thus, Paxos
must ensure that if a value x is chosen in round i, then no
other value besides x can ever be chosen in any round less
than i. This is the purpose of Paxos’ two phases. In Phase 1
of round i, the proposer contacts the acceptors to (a) learn of
any value that may have already been chosen in any round
less than i and (b) prevent any new values from being chosen
in any round less than i. In Phase 2, the proposer proposes a
value to the acceptors, and the acceptors vote on whether or
not to choose it. In Phase 2, the proposer will only propose a
value x if it ensured through Phase 1 that no other value has
been or will be chosen in a previous round.

More concretely, Paxos executes as follows, as illustrated
in Figure 1. When a client wants to propose a value x, it sends
x to a proposer p. Upon receiving x, p begins executing one
round of Paxos, say round i. First, it executes Phase 1. It sends
PHASE1A〈i〉 messages to the acceptors. An acceptor ignores
a PHASE1A〈i〉message if it has already received a message in
a larger round. Otherwise, it replies with a PHASE1B〈i,vr,vv〉
message containing the largest round vr in which the acceptor

2
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voted and the value it voted for, vv. If the acceptor hasn’t
voted yet, then vr = −1 and vv = null. When the proposer
receives PHASE1B messages from a majority of the acceptors,
Phase 1 ends and Phase 2 begins.

At the start of Phase 2, the proposer uses the PHASE1B
messages that it received in Phase 1 to select a value x such
that no value other than x has been or will be chosen in any
round less than i. Specifically x is the vote value associated
with the largest received vote round, or any value if no ac-
ceptor had voted (see [20] for details). Then, the proposer
sends PHASE2A〈i,x〉 messages to the acceptors. An acceptor
ignores a PHASE2A〈i,x〉 message if it has already received
a message in a larger round. Otherwise, it votes for x and
sends back a PHASE2B〈i〉 message to the proposer. If a ma-
jority of acceptors vote for the value, then the value is chosen,
and the proposer informs the client. Proposer and acceptor
pseudocode (with modifications for Matchmaker Paxos) are
shown in Algorithm 3 and Algorithm 2.

2.3 Flexible Paxos
Paxos deploys a set of 2 f +1 acceptors, and proposers com-
municate with at least a majority of the acceptors in Phase 1
and in Phase 2. Flexible Paxos [13] is a Paxos variant that
eschews the notion of a majority for that of an arbitrary quo-
rum. Specifically, Flexible Paxos introduces the notion of a
configuration C = (A;P1;P2). A is a set of acceptors. P1
and P2 are sets of quorums, where each quorum is a subset
of A. A configuration satisfies the property that every quorum
in P1 (known as a Phase 1 quorum) intersects every quorum
in P2 (known as a Phase 2 quorum). For a configuration
to tolerate f failures, there must exist some Phase 1 quorum
and some Phase 2 quorum of non-failed machines despite an
arbitrary set of f failures.

Flexible Paxos is identical to Paxos with the exception
that proposers now communicate with an arbitrary Phase 1
quorum in Phase 1 and an arbitrary Phase 2 quorum in Phase
2. In the remainder of this paper, we assume that all protocols
operate using quorums from an arbitrary configuration rather
than majorities from a fixed set of 2 f +1 acceptors.

3 Matchmaker Paxos

We now present Matchmaker Paxos. To ease understanding,
we first describe a simplified version of Matchmaker Paxos
that is easy to understand but is also naively inefficient. We
then upgrade the protocol to the complete, efficient version
by way of a number of optimizations.

3.1 Overview and Intuition
Matchmaker Paxos is largely identical to Paxos. Like Paxos, a
Matchmaker Paxos deployment includes an arbitrary number
of clients, a set of at least f + 1 proposers, and some set

of acceptors, as illustrated in Figure 2. Paxos assumes that
a single, fixed configuration of acceptors is used for every
round. The big difference between Paxos and Matchmaker
Paxos is that Matchmaker Paxos allows every round to have a
different configuration of acceptors. Round 0 may use some
configuration C0, while round 1 may use some completely
different configuration C1. This idea was first introduced by
Vertical Paxos [22].
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Figure 2: Matchmaker Paxos ( f = 1).

Recall from Section 2 that a Paxos proposer in round i
executes Phase 1 in order to (1) learn of any value that may
have been chosen in a round less than i and (2) prevent any
new values from being chosen in any round less than i. To
do so, the proposer contacts the fixed set of acceptors. A
Matchmaker Paxos proposer must also execute Phase 1 to
establish that these two properties hold. The difference is that
there is no longer a single fixed configuration of acceptors to
contact. Instead, a Matchmaker Paxos proposer has to contact
all of the configurations used in rounds less than i.

However, every round can use a different configuration of
acceptors, so how does the proposer of round i know which
acceptors to contact in Phase 1? To resolve this question, a
Matchmaker Paxos deployment also includes a set of 2 f +1
matchmakers. The protocol executes as follows, as illus-
trated in Figure 2.

(1) A client proposes a value x by sending it to a proposer
(p1 in Figure 2).

(2,3) When a proposer receives a value x, it begins executing
the protocol in some round i. It selects a configuration
Ci and sends Ci to the matchmakers. The matchmakers
reply with the configurations used in previous rounds.
We call this the Matchmaking phase. In Figure 2, the
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proposer executes in round 1 and selects configuration C1
consisting of acceptors b1, b2, and b3. The matchmakers
reply with the configuration C0 consisting of acceptors
a1, a2, and a3.

(4,5) The proposer then executes Phase 1 of Paxos with the
prior configurations that it received during the Match-
making Phase. In Figure 2, the proposer executes Phase
1 with configuration C0.

(6,7) The proposer then executes Phase 2 with the configu-
ration Ci to get the value x chosen. In Figure 2, the
proposer executes Phase 2 with configuration C1.

(8) Finally, the proposer informs the client that x was chosen.

At first, the extra round trip of communication with the
matchmakers and the large number of configurations in Phase
1 make Matchmaker Paxos look slow. This is for ease of
explanation. Later, we will eliminate these costs (Section 3.4
– Section 3.6).

3.2 Details
Every matchmaker maintains a log L of configurations in-
dexed by round. That is, L[i] stores the configuration of round
i. When a proposer receives a request x from a client and
begins executing round i, it first selects a configuration Ci to
use in round i. It then sends a MATCHA〈i,Ci〉 message to all
of the matchmakers.

When a matchmaker receives a MATCHA〈i,Ci〉message, it
checks to see if it had previously received a MATCHA〈 j,C j〉
message for some round j ≥ i. If so, the matchmaker ignores
the MATCHA〈i,Ci〉 message. Otherwise, it inserts Ci in log
entry i and computes the set Hi of previous configurations
in the log: Hi = {( j,C j) | j < i,C j ∈ L}. It then replies to
the proposer with a MATCHB〈i,Hi〉 message. Matchmaker
pseudocode is given in Algorithm 1. An example execution
of a matchmaker is illustrated in Figure 3.

Algorithm 1 Matchmaker Pseudocode
State: a log L indexed by round, initially empty

1: upon receiving MATCHA〈i,Ci〉 from proposer p do
2: if ∃ a configuration C j in round j ≥ i in L then
3: ignore the MATCHA〈i,Ci〉 message
4: else
5: Hi←{( j,C j) |C j ∈ L}
6: L[i]←Ci
7: send MATCHB〈i,Hi〉 to p

When the proposer in round i receives MATCHB〈i,H1
i 〉,

. . ., MATCHB〈i,H f+1
i 〉 from f + 1 matchmakers, it com-

putes Hi = ∪ f+1
j=1 H j

i . For example, with f = 1 and i = 2, if
the proposer in round 2 receives MATCHB〈2,{(0,C0)}〉 and

0

1

2

3

(a)

C00

1

2

3

(b)

C00

1

C22

3

(c)

C00

1

C22

C33

(d)

Figure 3: A matchmaker’s log over time. (a) Initially, the
matchmaker’s log is empty. (b) Then, the matchmaker re-
ceives MATCHA〈0,C0〉. It inserts C0 in log entry 0 and
returns MATCHB〈0, /0〉 since the log does not contain any
configuration in any round less than 0. (c) The match-
maker then receives MATCHA〈2,C2〉. It inserts C2 in log
entry 2 and returns MATCHB〈2,{(0,C0)}〉. (d) It then re-
ceives MATCHA〈3,C3〉, inserts C3 in log entry 3, and returns
MATCHB〈3,{(0,C0),(2,C2)}〉. At this point, if the match-
maker were to receive MATCHA〈1,C1〉, it would ignore it.

Algorithm 2 Acceptor Pseudocode
State: the largest seen round r, initially −1
State: the largest round vr voted in, initially −1
State: the value vv voted for in round vr, initially null

1: upon receiving PHASE1A〈i〉 from p with i > r do
2: r← i
3: send PHASE1B〈i,vr,vv〉 to p
4: upon receiving PHASE2A〈i,x〉 from p with i≥ r do
5: r,vr,vv← i, i,x
6: send PHASE2B〈i〉 to p

MATCHB〈2,{(1,C1)}〉, it computes H2 = {(0,C0),(1,C1)}.
Note that every round is statically assigned to a single pro-
poser and that a proposer selects a single configuration for a
round, so if two matchmakers return configurations for the
same round, they are guaranteed to be the same.

The proposer then ends the Matchmaking phase and begins
Phase 1. It sends PHASE1A messages to every acceptor in
every configuration in Hi and waits to receive PHASE1B mes-
sages from a Phase 1 quorum from every configuration. Using
the previous example, the proposer sends PHASE1A mes-
sages to every acceptor in C0 and C1 and waits for PHASE1B
messages from a Phase 1 quorum of C0 and a Phase 1 quorum
of C1. The proposer then runs Phase 2 with Ci.

Acceptor and proposer pseudocode are shown in Algo-
rithm 2 and Algorithm 3 respectively. To keep things simple,
we assume that round numbers are integers, but generaliz-
ing to an arbitrary totally ordered set is straightforward. A
Matchmaker Paxos acceptor is identical to a Paxos acceptor.
A Matchmaker Paxos proposer is nearly identical to a Flexible
Paxos proposer with the exception of the Matchmaking phase
and the configurations used in Phase 1 and Phase 2. For clar-
ity of exposition, we omit straightforward details surrounding
re-sending dropped messages and nacking ignored messages.

4
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Algorithm 3 Proposer Pseudocode. Modifications to a Paxos
proposer are underlined and shown in blue.
State: a value x, initially null
State: a round i, initially −1
State: the configuration Ci for round i, initially null
State: the prior configurations Hi for round i, initially null

1: upon receiving value y from a client do
2: i← next largest round owned by this proposer
3: x← y
4: Ci← an arbitrary configuration
5: send MATCHA〈i,Ci〉 to all of the matchmakers

6: upon receiving MATCHB〈i,H1
i 〉, . . . ,MATCHB〈i,H f+1

i 〉
from f +1 matchmakers do

7: Hi←
⋃ f+1

j=1 H j
i

8: send PHASE1A〈i〉 to every acceptor in Hi

9: upon receiving PHASE1B〈i,−,−〉 from a Phase 1 quo-
rum from every configuration in Hi do

10: k← the largest vr in any PHASE1B〈i,vr,vv〉
11: if k 6=−1 then
12: x← the corresponding vv in round k
13: send PHASE2A〈i,x〉 to every acceptor in Ci

14: upon receiving PHASE2B〈i〉 from a Phase 2 quorum do
15: x is chosen, inform the client

3.3 Proof of Safety
We now prove that Matchmaker Paxos is safe; i.e. every
execution of Matchmaker Paxos chooses at most one value.

Proof. Our proof is based on the Paxos safety proof in [19].
We prove, for every round i, the statement P(i): “if a proposer
proposes a value v in round i (i.e. sends a PHASE2A message
for value v in round i), then no value other than v has been or
will be chosen in any round less than i.” At most one value is
ever proposed in a given round, so at most one value is ever
chosen in a given round. Thus, P(i) suffices to prove that
Matchmaker Paxos is safe for the following reason. Assume
for contradiction that Matchmaker Paxos chooses distinct
values x and y in rounds j and i with j < i. Some proposer
must have proposed y in round i, so P(i) ensures us that no
value other than y could have been chosen in round j. But, x
was chosen, a contradiction.

We prove P(i) by strong induction on i. P(0) is vacuous
because there are no rounds less than 0. For the general
case P(i), we assume P(0), . . . ,P(i−1). We perform a case
analysis on the proposer’s pseudocode (Algorithm 3). Either
k is −1 or it is not (line 11). First, assume it is not. In this
case, the proposer proposes x, the value proposed in round k
(line 12). We perform a case analysis on round j to show that
no value other than x has been or will be chosen in any round
j < i. That is, we show P(i).

Case 1: j > k. We show that no value has been or will be

chosen in round j. Recall that at the end of the Matchmaking
phase, the proposer computed the set Hi of prior configura-
tions using responses from a set Mi of f + 1 matchmakers.
Either Hi contains a configuration C j in round j or it doesn’t.

First, suppose it does. Then, the proposer sent
PHASE1A〈i〉 messages to all of the acceptors in C j. A Phase
1 quorum of these acceptors, say Q, all received PHASE1A〈i〉
messages and replied with PHASE1B messages. Thus, every
acceptor in Q set its round r to i, and in doing so, promised
to never vote in any round less than i. Moreover, none of
the acceptors in Q had voted in any round greater than k. So,
every acceptor in Q has not voted and never will vote in round
j. For a value v′ to be chosen in round j, it must receive votes
from some Phase 2 quorum Q′ of round j acceptors. But, Q
and Q′ necessarily intersect, so this is impossible. Thus, no
value has been or will be chosen in round j.

Now suppose that Hi does not contain a configuration for
round j. Hi is the union of f +1 MATCHB messages from the
f +1 matchmakers in Mi. Thus, if Hi does not contain a con-
figuration for round j, then none of the MATCHB messages
did either. This means that for every matchmaker m ∈ Mi,
when m received MATCHA〈i,Ci〉, it did not contain a con-
figuration for round j in its log. Moreover, by processing
the MATCHA〈i,Ci〉 request, the matchmaker is guaranteed to
never process a MATCHA〈 j,C j〉 request in the future. Thus,
every matchmaker in Mi has not processed a MATCHA re-
quest in round j and never will. For a value to be chosen
in round j, the proposer executing round j must first receive
replies from f +1 matchmakers, say M j, in round j. But, Mi
and M j necessarily intersect, so this is impossible. Thus, no
value has been or will be chosen in round j.

Case 2: j = k. In a given round, at most one value is pro-
posed, let alone chosen. x is the value proposed in round k,
so no other value could be chosen in round k.

Case 3: j < k. By induction, P(k) states that no value other
than x has been or will be chosen in any round less than k.
This includes round j.

Finally, if k is −1, then we are in the same situation as in
Case 1. No value has or will be chosen in a round j < i.

3.4 Garbage Collection (How)

We’ve discussed how a proposer can change its round and
introduce a new configuration. Now, we explain how to shut
down old configurations. At the beginning of round i, a pro-
poser p executes the Matchmaking phase and computes a set
Hi of configurations in rounds less than i. The proposer then
executes Phase 1 with the acceptors in these configurations.
Assume Hi contains a configuration C j for a round j < i. If
we prematurely shut down the acceptors in C j, then proposer
p will get stuck in Phase 1, waiting for PHASE1B messages
from a quorum of nodes that have been shut down. Therefore,
we cannot shut down the acceptors in a configuration C j until
we are sure that the matchmakers will never again return C j

5
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during the Matchmaking phase.

Thus, we extend Matchmaker Paxos to allow matchmakers
to garbage collect configurations from their logs, ensuring
that the garbage collected configurations will not be returned
during any future Matchmaking phase. More concretely, a
proposer p can now send a GARBAGEA〈i〉 command to the
matchmakers informing them to garbage collect all configu-
rations in rounds less than i. When a matchmaker receives
a GARBAGEA〈i〉 message, it deletes log entry L[ j] for every
round j < i. It then updates a garbage collection watermark w
to the maximum of w and i and sends back a GARBAGEB〈i〉
message to the proposer. See Algorithm 4.

Algorithm 4 Matchmaker Pseudocode (with GC). Changes
to Algorithm 1 are underlined and shown in blue.
State: a log L indexed by round, initially empty
State: a garbage collection watermark w, initially 0

1: upon receiving GARBAGEA〈i〉 from proposer p do
2: delete L[ j] for all j < i.
3: w←max(w, i)
4: send GARBAGEB〈i〉 to p

5: upon receiving MATCHA〈i,Ci〉 from proposer p do
6: if i < w or ∃C j in round j ≥ i in L then
7: ignore the MATCHA〈i,Ci〉 message
8: else
9: Hi←{( j,C j) |C j ∈ L}

10: L[i]←Ci
11: send MATCHB〈i,w,Hi〉 to p

We also update the Matchmaking phase in three ways.
First, a matchmaker ignores a MATCHA〈i,Ci〉 message if
i has been garbage collected (i.e. if i < w). Second, a
matchmaker returns its garbage collection watermark w in
every MATCHB that it sends. Third, when a proposer
receives MATCHB〈i,w1,H1

i 〉, . . ., MATCHB〈i,w f+1,H
f+1

i 〉
from f +1 matchmakers, it again computes Hi = ∪ f+1

j=1 H j
i . It

then computes w = max f+1
j=1 w j and prunes every configura-

tion in Hi in a round less than w. In other words, if any of the
f +1 matchmakers have garbage collected round j, then the
proposer also garbage collects round j.

Once a proposer receives GARBAGEB〈i〉 messages from
at least f +1 matchmakers M, it is guaranteed that all future
Matchmaking phases will not include any configuration in
any round less than i. Why? Consider a future Matchmaking
phase run with f +1 matchmakers M′. M and M′ intersect, so
some matchmaker in the intersection has a garbage collection
watermark at least as large as i. Thus, once a configuration
has been garbage collected by f + 1 matchmakers, we can
shut down the acceptors in the configuration.

3.5 Garbage Collection (When)

Once a configuration has been garbage collected, it is safe to
shut it down, but when is it safe to garbage collect a configu-
ration? It is not always safe. For example, if we prematurely
garbage collect configuration C j in round j, a future proposer
in round i > j may not learn about a value v chosen in round j
and then erroneously get a value other than v chosen in round
i. There are three situations in which it is safe for a proposer
pi in round i to issue a GARBAGEA〈i〉 command. We explain
the three situations and provide intuition on why they are
safe. Later, we’ll see that all three scenarios are important for
Matchmaker MultiPaxos. See Section A for a safety proof.

Scenario 1. If the proposer pi gets a value x chosen in
round i, then it can safely issue a GARBAGEA〈i〉 command.
Why? When a proposer p j in round j > i executes Phase
1, it will learn about the value x and propose x in Phase 2.
But first, it must establish that no value other than x has been
or will be chosen in any round less than j. This is P( j)
from the safety proof in Section 3.3. The proposer pi already
established this fact for all rounds less than i (this is P(i)), so
any communication with the configurations in these rounds is
redundant. Thus, we can garbage collect them.

Scenario 2. If the proposer pi executes Phase 1 in round i
and finds k =−1 (see Algorithm 3), then it can safely issue
a GARBAGEA〈i〉 command. Recall that if k = −1, then no
value has been or will be chosen in any round less than i.
This situation is similar to Scenario 1. Any future proposer
p j in round j > i does not have to redundantly communicate
with the configurations in rounds less than i since pi already
established that no value has been chosen in these rounds.

Scenario 3. If the proposer pi learns that a value x has al-
ready been chosen and has been stored on f +1 non-acceptor
machines (e.g., f +1 proposers), then the proposer can safely
issue a GARBAGEA〈i〉 command after it informs a Phase 2
quorum of acceptors in Ci of this fact. Any future proposer
p j in round j > i will contact a Phase 1 quorum of Ci and
encounter at least one acceptor that knows the value x has
already been chosen. When this acceptor informs p j that
a value x has already been chosen, p j stops executing the
protocol entirely and simply fetches the value x from one of
the f +1 machines that store the value. Note that storing the
value on f +1 machines ensures that some machine will store
the value despite f failures. The decision of exactly which
f +1 machines is not important.

Later, we’ll extend this garbage collection protocol to
Matchmaker MultiPaxos (Section 4) and see empirically that
matchmakers usually return just a single configuration (Sec-
tion 7).

3.6 Optimizations

We now present a couple of protocol optimizations. First,
note that a proposer can proactively run the Matchmaking
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phase in round i before it hears from a client. This is similar
to proactively executing Phase 1, a standard optimization [12].
We call this optimization proactive matchmaking.

Second, assume that the proposer in round i has executed
the Matchmaking phase and Phase 1. Through Phase 1, it
finds that k=−1 and thus learns that no value has been chosen
in any round less than i (see the safety proof above). Assume
that before executing Phase 2 in round i, the proposer decides
to perform a reconfiguration. To perform the reconfiguration,
the proposer stops executing round i and begins executing the
next round i+11. Typically to perform the reconfiguration,
the proposer would have to execute the Matchmaking phase,
Phase 1, and Phase 2 in round i+ 1. However, in this case,
after executing the Matchmaking phase in round i+ 1, the
proposer can skip Phase 1 and proceed directly to Phase 2.
Why? The proposer established in round i that no value has
been or will be chosen in any round less than i. Moreover,
because it did not run Phase 2 in round i, it also knows that no
value has been or will be chosen in round i. Together, these
imply that no value has been or will be chosen in any round
less than i+ 1. Normally, the proposer would run Phase 1
in round i+ 1 to establish this fact, but since it has already
established it, it can instead proceed directly to Phase 2. We
call this optimization Phase 1 bypassing.

Phase 1 Bypassing depends on a proposer being the leader
of round i and the leader of the next round i+ 1. We can
construct a set of rounds such that this is always the case. Let
the set of rounds be the set of lexicographically ordered tuples
(r, id,s) where r and s are both integers and id is a proposer
id. A proposer is responsible for all the rounds that contain
its id. With this set of rounds, the proposer p in round (r, p,s)
always owns the next round (r, p,s+1). For example given
two proposers a and b, we have the following ordering on
rounds:

(0,a,0)< (0,a,1)< (0,a,2)< (0,a,3)< · · ·
(0,b,0)< (0,b,1)< (0,b,2)< (0,b,3)< · · ·
(1,a,0)< (1,a,1)< (1,a,2)< (1,a,3)< · · ·

We assume this round scheme throughout the rest of the paper.
In the next section, we’ll see that this optimization is essential
for implementing Matchmaker MultiPaxos with good perfor-
mance. Also note that this optimization is not particular to
Matchmaker Paxos. Paxos and MultiPaxos can both take
advantage of this optimization.

4 Matchmaker MultiPaxos

4.1 MultiPaxos
First, we summarize MultiPaxos. Whereas Paxos is a consen-
sus protocol that agrees on a single value, MultiPaxos [17,40]

1Note that given a round i, we denote the next largest round in the total
ordered set of rounds i+1. We call this the “next round”.

is a state machine replication protocol that agrees on a se-
quence, or “log” of values. MultiPaxos manages multiple
replicas of a state machine. Clients send state machine com-
mands to MultiPaxos, MultiPaxos places the commands in
a totally ordered log, and state machine replicas execute the
commands in log order. By beginning in the same initial
state and executing the same commands in the same order, all
deterministic state machine replicas are kept in sync.
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Configuration C
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Figure 4: An example execution of MultiPaxos ( f = 1). The
leader is adorned with a crown.

To agree on a log of commands, MultiPaxos implements
one instance of Paxos for every log entry. The ith instance of
Paxos chooses the command in log entry i. More concretely,
a MultiPaxos deployment that tolerates f faults consists of
an arbitrary number of clients, at least f + 1 proposers, a
configuration C of acceptors which can tolerate f failures,
and at least f +1 replicas, as illustrated in Figure 4.

One of the proposers is elected leader in some round, say
round i. We assume the leader knows that log entries up to
and including log entry kc have already been chosen (e.g.,
by communicating with the replicas). We call this log entry
the commit index. The leader then runs Phase 1 of Paxos
in round i for every log entry. Note that even though there
are an infinite number of log entries larger than kc, the leader
can execute Phase 1 using a finite amount of information. In
particular, the leader sends a single PHASE1A〈i〉 message
that acts as the PHASE1A message for every log entry larger
than kc. Also, an acceptor replies with a PHASE1B〈i,vr,vv〉
message only for log entries in which the acceptor has voted.
The infinitely many log entries in which the acceptor has not
yet voted do not yield an explicit PHASE1B message.

a

0

b

1

c

kc

d?

3 4

e?

kp 6 7 8

· · ·

Region 1:
(already chosen)

Region 2:
(maybe chosen)

Region 3:
(not chosen)

Figure 5: A leader’s knowledge of the log after Phase 1.

The leader’s knowledge about the log after Phase 1 can be
characterized by the commit index kc and a pending index
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kp with kc ≤ kp, as shown in Figure 5. The commit index
and pending index divide the log into three regions: a prefix
of chosen log entries (Region 1), a suffix of unchosen log
entries (Region 3), and a middle region of pending log entries
(Region 2). More specifically:

• Region 1 [0,kc]: The leader knows that a command has
been chosen in every log entry less than or equal to kc.

• Region 3 [kp +1,∞): The leader knows that no command
has been chosen (in any round less than i) in any log entry
larger than kp.

• Region 2 [kc +1,kp]: If there is a command that may have
already been chosen, then it appears between kc and kp.
Region 2 may also contain some log entries in which the
leader knows (from executing a previous round) that a
value has already been chosen, and it may contain some
log entries in which the leader knows (from counting votes
in Phase 1) that no value has been chosen (we call these
“holes”).

After Phase 1, the leader sends a PHASE2A message for
every unchosen log entry in Region 2, proposing a “no-op”
command for the holes. Simultaneously, the leader begins
accepting client requests. When a client wants to propose a
state machine command, it sends the command to the leader.
The leader assigns log entries to commands in increasing
order, beginning at kp+1. It then runs Phase 2 of Paxos to get
the command chosen in that entry in round i. Once the leader
learns that a command has been chosen in a given log entry,
it informs the replicas. Replicas insert chosen commands
into their logs and execute the logs in prefix order, sending
the results of execution back to the clients. This execution is
illustrated in Figure 4.

It is critical to note that a leader performs Phase 1 of Paxos
only once per round, not once per command. In other words,
Phase 1 is not performed during normal operation. It is per-
formed only when the leader fails and a new leader is elected
in a larger round, an uncommon occurrence.

4.2 Matchmaker MultiPaxos
We first extend Matchmaker Paxos to Matchmaker Multi-
Paxos with proactive matchmaking but without Phase 1 by-
passing or garbage collection. We’ll see how to incorporate
these two momentarily in Section 4.4. The extension from
Matchmaker Paxos to Matchmaker MultiPaxos is analogous
to the extension of Paxos to MultiPaxos. Matchmaker Mul-
tiPaxos reaches consensus on a totally ordered log of state
machine commands, one log entry at a time, using one in-
stance of Matchmaker Paxos for every log entry.

More concretely, a Matchmaker MultiPaxos deployment
consists of an arbitrary number of clients, at least f +1 pro-
posers, a set of 2 f + 1 matchmakers, a dynamic set of ac-
ceptors (one configuration per round which can tolerate f

failures), and a set of at least f + 1 state machine replicas.
We assume, as is standard, that a leader election algorithm
is used to select one of the proposers as a stable leader in
some round, say round i. The leader selects a configuration
Ci of acceptors that it will use for every log entry. The mecha-
nism by which the configuration is chosen is an orthogonal
concern. A system administrator, for example, could send
the configuration to the leader, or the configuration could be
read from an external service. Throughout the paper, we do
not depend any specific mechanism by which a configuration
is chosen. We assume that proposers use some unspecified
abstract process to select configurations.

The leader then executes the Matchmaking phase in
the same way as in Matchmaker Paxos (i.e. it sends
MATCHA〈i,Ci〉 messages to the matchmakers and awaits
MATCHB〈i,Hi〉 responses). After the Matchmaking phase
completes, the leader executes Phase 1 for every log entry.
This is identical to MultiPaxos, except that the leader uses
the configurations returned by the matchmakers rather than
assuming a fixed configuration. Note that proactive match-
making allows the leader to execute the Matchmaking phase
and Phase 1 before receiving any client requests.

The leader then enters Phase 2 and operates exactly as it
would in MultiPaxos. It executes Phase 2 with Ci for the
log entries in Region 2. Moreover, when it receives a state
machine command from a client, it assigns the command a
log entry in Region 3, runs Phase 2 with the acceptors in
Ci, and informs the replicas when the command is chosen.
Replicas execute commands in log order and send the results
of executing commands back to the clients.

4.3 Discussion

To reconfigure from some old configuration Cold in round i to
some new configuration Cnew, the Matchmaker MultiPaxos
leader of round i simply advances to round i+1 and selects
the new configuration Cnew. The new configuration is active
immediately after the Matchmaking phase, a one round trip
delay. Note that the acceptors in the new configuration Cnew
do not have to undergo any sort of warm up or bootstrapping
and do not have to contact any other acceptors in any other
configuration.

The new configuration is active immediately, but it is not
safe to deactivate the acceptors in the old configuration im-
mediately, as we saw in Section 3.5. We extend Matchmaker
Paxos’s garbage collection to Matchmaker MultiPaxos mo-
mentarily.

Also note that Matchmaker MultiPaxos does not perform
the Matchmaking phase or Phase 1 on the critical path of
normal execution. Similar to how MultiPaxos executes Phase
1 only once per leader change (and not once per command),
Matchmaker MultiPaxos runs the Matchmaking phase and
Phase 1 only when a new leader is elected or when a leader
changes its round (e.g., when a leader transitions from round
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Figure 6: An example Matchmaker MultiPaxos reconfiguration without Phase 1 bypassing. The leader p1 reconfigures from
the acceptors a1, a2, a3 to the acceptors b1, b2, b3. Client commands are drawn as gray dashed lines. Note that every subfigure
shows one phase of a reconfiguration using solid colored lines, but the dashed lines show the complete execution of a client
request that runs concurrently with the reconfiguration. For simplicity, we assume that every proposer also serves as a replica.

i to round i+ 1 as part of a reconfiguration). In the normal
case (i.e. during Phase 2), Matchmaker MultiPaxos and Mul-
tiPaxos are identical, and Matchmaker MultiPaxos does not
introduce any overheads. In the normal case, Matchmaker
MultiPaxos deploys a single stable leader that changes rounds
only to perform a reconfiguration. Changing from one leader
to another only happens after a leader has failed.

Furthermore, configurations do not have to be unique
across rounds. The leader in round i is free to re-use a config-
uration C j that was used in some round j < i.

Finally, because Matchmaker MultiPaxos deploys more
nodes than MultiPaxos, the mean time to failure is decreased,
and it will take less time to reach f failures. However, this
mean time to failure is many orders of magnitude larger than
the time required to perform a reconfiguration. As long as
failed machines are replaced via reconfiguration in a reason-
able amount of time, it is unlikely to experience f or more
failures.

4.4 Optimization

Ideally, Matchmaker MultiPaxos’ performance would be un-
affected by a reconfiguration. The latency of every client
request and the protocol’s overall throughput would remain
constant throughout a reconfiguration. Matchmaker Multi-
Paxos as we’ve described it so far, however, does not meet
this ideal. During a reconfiguration, a leader must temporarily
stop processing client commands and wait for the reconfigu-
ration to finish before resuming normal operation.

This is illustrated in Figure 6. Figure 6 shows a leader p1 re-
configuring from a configuration of acceptors Cold consisting
of acceptors a1, a2, and a3 in round i to a new configuration
of acceptors Cnew consisting of acceptors b1, b2, and b3 in
round i+ 1. While the leader performs the reconfiguration,
clients continue to send state machine commands to the leader.

We consider such a command and perform a case analysis on
when the command arrives at the leader to see whether or not
the command has to be stalled.

Case 1: Matchmaking (Figure 6a). If the leader receives
a command during the Matchmaking phase, then the leader
can process the command as normal in round i using the
acceptors in Cold. Even though the leader is executing the
Matchmaking phase in round i+1 and is communicating with
the matchmakers, the acceptors in Cold are oblivious to this
and can process commands in Phase 2 in round i.

Case 2: Phase 1 (Figure 6b). If the leader receives a
command during Phase 1, then the leader cannot process the
command. It must delay the processing of the command
until Phase 1 finishes. Here’s why. Once an acceptor in Cold
receives a PHASE1A〈i+1〉 message, it will reject any future
commands in rounds less than i+1, so the leader is unable
to send the command to Cold. The leader also cannot send
the command to Cnew in round i+ 1 because it has not yet
finished executing Phase 1.

Case 3: Phase 2 (Figure 6c). If the leader receives a com-
mand during Phase 2, then the leader can send the command
to the new acceptors in Cnew in round i+1. This is the normal
case of execution.

In summary, any commands received during Phase 1 of a
reconfiguration are delayed. Fortunately, we can eliminate
this problem by using Phase 1 bypassing. Consider a leader
performing a reconfiguration from Ci in round i to Ci+1 in
round i+1. At the end of the Matchmaking phase and at the
beginning of Phase 1 (in round i+1), let k be the largest log
entry that the leader has assigned to a command. That is, all
log entries after entry k are empty. These log entries satisfy
the preconditions of Phase 1 bypassing, so it is safe for the
leader to bypass Phase 1 in round i+1 for these log entries in
the following way. When a leader receives a command after
the Matchmaking phase, it assigns the command a log entry
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larger than k, skips Phase 1, and executes Phase 2 in round
i+1 with Cnew immediately.

With this optimization and the round scheme described in
Section 3.6, no state machine commands are delayed. Com-
mands received during the Matchmaking phase or earlier are
chosen in round i by Cold in log entries up to and including
k. Commands received during Phase 1, Phase 2, or later are
chosen in round i+1 by Cnew in log entries k+1, k+2, k+3,
and so on. With this optimization Matchmaker MultiPaxos
can be reconfigured with minimal performance degradation.

4.5 Garbage Collection

Recall that the Matchmaker MultiPaxos leader pi in round i
uses a single configuration Ci for every log entry. The leader
pi can safely issue a GARBAGEA〈i〉 command to the match-
makers once it ensures that every log entry satisfies one of the
three scenarios described in Section 3.5. Recall from Figure 5
that at the end of Phase 1 and at the beginning of Phase 2,
the log can be divided into three regions. Each of the three
garbage collection scenarios applies to one of the regions.

Scenario 2 applies to Region 3. These are the log entries
for which k =−1. Scenario 1 applies to Region 2, once the
leader has successfully chosen commands in all of the log
entries in Region 2. Scenario 3 applies to Region 1 if we make
the following adjustments. First, we deploy 2 f +1 replicas
instead of f + 1. Second, the leader ensures that the prefix
of previously chosen log entries is stored on at least f + 1
of the 2 f + 1 replicas. Third, the leader informs a Phase 2
quorum of Ci acceptors that these commands have been stored
on the replicas. Every replica maintains a copy of the log
of state machine commands and cannot discard a command
after execution. The log must also be garbage collected over
time, for example, by using snapshots [34]. Note that garbage
collecting the log is an orthogonal (but also complicated)
issue from garbage collecting old configurations. It must be
done regardless of reconfigurations and is outside of the scope
of this paper.

In summary, the leader pi of round i executes as follows.
It executes the Matchmaking phase to get the prior configu-
rations Hi. It executes Phase 1 with the configurations in Hi.
It enters Phase 2 and chooses commands in Region 2. It in-
forms a Phase 2 quorum of Ci acceptors once the commands
in Region 1 have been stored on f + 1 replicas. It issues
a GARBAGEA〈i〉 command to the matchmakers and awaits
f + 1 GARBAGEB〈i〉 responses. At this point, all previous
configurations can be shut down.

Note that the leader can begin processing state machine
commands from clients as soon as it enters Phase 2. It does
not have to stall commands during garbage collection. Note
also that during normal operation, old configurations are
garbage collected very quickly. In Section 7, we show that Hi
almost always contains a single configuration (i.e. Ci−1).

5 Reconfiguring Matchmakers

We’ve discussed how Matchmaker MultiPaxos allows us to
reconfigure the set of acceptors. In this section, we discuss
how to reconfigure proposers, replicas, and matchmakers
(themselves).

Reconfiguring proposers and replicas is straightforward.
In fact, Matchmaker MultiPaxos reconfigures proposers and
replicas in exactly the same way as MultiPaxos [40], so we
do not discuss it at length. In short, a proposer can be safely
added or removed at any time. Replicas can also be safely
added or removed at any time so long as we ensure that com-
mands replicated on f +1 replicas remain replicated on f +1
replicas. This is a difficult, yet orthogonal challenge. Existing
approaches can be adopted by Matchmaker MultiPaxos [35].
For performance, a newly introduced proposer should contact
an existing proposer or replica to learn about the prefix of
already chosen commands, and a newly introduced replica
should copy the log from an existing replica.

Reconfiguring matchmakers is a bit more involved, but still
relatively straightforward. Recall that proposers perform the
Matchmaking phase only during a change in round. Thus, for
the vast majority of the time—specifically, when there is a
single, stable leader—the matchmakers are completely idle.
This means that the way we reconfigure the matchmakers has
to be safe, but it doesn’t have to be efficient. The matchmak-
ers can be reconfigured at any time between round changes
without any impact on the performance.

Thus, we use the simplest approach to reconfiguration:
we shut down the old matchmakers and replace them with
new ones, making sure that the new matchmakers’ initial
state is the same as the old matchmakers’ final state. More
concretely, we reconfigure from a set Mold of matchmakers
to a new set Mnew as follows. First, a proposer (or any other
node) sends a STOPA〈〉 message to the matchmakers in Mold.
When a matchmaker mi receives a STOPA〈〉 message, it stops
processing messages (except for other STOPA〈〉 messages)
and replies with STOPB〈Li,wi〉 where Li is mi’s log and wi is
its garbage collection watermark. When the proposer receives
STOPB messages from f +1 matchmakers, it knows that the
matchmakers have effectively been shut down. It computes
w as the maximum of every returned wi. It computes L as
the union of the returned logs, and removes all entries of L
that appear in a round less than w. An example of this log
merging is illustrated in Figure 7.

The proposer then sends L and w to all of the matchmakers
in Mnew. Each matchmaker adopts these values as its initial
state. At this point, the matchmakers in Mnew cannot begin
processing commands yet. Naively, it is possible that two
different nodes could simultaneously attempt to reconfigure
to two disjoint sets of matchmakers, say Mnew and M′new.

To avoid this, every matchmaker in Mold doubles as a Paxos
acceptor. A proposer attempting to reconfigure to Mnew acts
as a Paxos proposer and gets the value Mnew chosen by the
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Figure 7: An example of merging three matchmaker logs (L0,
L1, and L2) during a matchmaker reconfiguration. Garbage
collected log entries are shown in red.

matchmakers (which are acting as Paxos acceptors). Once
Mnew is chosen, the proposer notifies the matchmakers in
Mnew that the reconfiguration is complete and that they are
free to start processing commands.

If a proposer contacts a stale set of matchmakers (e.g.,
Mold), the matchmakers inform the proposer of their succes-
sors (e.g., Mnew). This newer set of matchmakers may also
be stale, so the proposer repeatedly polls stale matchmakers
until it finds the active set of matchmakers. In this way, the
matchmakers form a chain, with each set of matchmakers
pointing to its successor.

Before a set of matchmakers can be shut down, the identity
of its successors must be persisted in some name service
(e.g., DNS). Ideally for performance, the name service would
always point to the active set of matchmakers, but this is not
required for safety.

6 Theoretical Insights

MultiPaxos To reconfigure from a set of nodes N to a new
set of nodes N′, a MultiPaxos leader gets the value N′ chosen
in the log at some index i. All commands in the log starting
at position i+α are chosen using the nodes in N′ instead of
the nodes in N, where α is some configurable parameter. This
protocol is called Horizontal MultiPaxos.
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Figure 8: A MultiPaxos log during reconfiguration (α = 4).

Matchmaker MultiPaxos has the following advantages over
Horizontal MultiPaxos. First, the core idea behind Horizontal
MultiPaxos seems simple, but the protocol has a number of
hidden subtleties [27]. For example, a newly elected Horizon-
tal MultiPaxos leader with a stale log may not know the latest

configuration of nodes. It may not even know which config-
uration of nodes to contact to learn the latest configuration
of nodes. This makes it unclear when it is safe to shut down
old configurations because a newly elected Horizontal Multi-
Paxos leader can be arbitrarily out of date. These subtleties
and the many others described in [27] makes Horizontal Mul-
tiPaxos significantly more complicated than it initially seems.
Matchmaker Paxos addresses these subtleties directly. The
matchmakers can always be used to learn the latest configura-
tion, and our garbage collection protocol details exactly when
and how to shut down old configurations safely.

Second, horizontal reconfiguration is not generally ap-
plicable. It is fundamentally incompatible with replica-
tion protocols that do not replicate a log. Moreover, re-
searchers are finding that avoiding a log can often be ad-
vantageous [2, 8, 18, 31, 38, 39, 41]. For example, protocols
like Generalized Paxos [18], EPaxos [31], Atlas [8], and Cae-
sar [2] arrange commands in a partially ordered graph instead
of a totally ordered log to exploit commutativity between com-
mands. CASPaxos [38] maintains a single value, instead of a
log or graph, for simplicity. Databases like TAPIR [41] avoid
ordering transactions in a log for improved performance, and
databases like Meerkat [39] do the same to improve scala-
bility. Even some protocols with logs cannot use the ideas
behind Horizontal MultiPaxos. For example, Raft cannot
safely perform Horizontal MultiPaxos’ reconfiguration [34].

Because these protocols do not replicate logs, they cannot
use MultiPaxos’ horizontal reconfiguration protocol. How-
ever, while none of the protocols replicate logs, all of them
have rounds. This means that the protocols can either use
Matchmaker Paxos directly, or at least borrow ideas from
Matchmaker Paxos for reconfiguration. For example, we are
developing a protocol called BPaxos that is an EPaxos [31]
variant which partially orders commands into a graph. BPaxos
is a modular protocol that uses Paxos as a black box subrou-
tine. Due to this modularity, we can directly replace Paxos
with Matchmaker Paxos to support reconfiguration. The same
idea can also be applied to EPaxos. CASPaxos [38] is simi-
lar to Paxos and can be extended to Matchmaker CASPaxos
in the same way we extended Paxos to Matchmaker Paxos.
These are two simple examples, and we don’t claim that
extending Matchmaker Paxos to some of the other more com-
plicated protocols is always easy. But, the universality of
rounds makes Matchmaker Paxos an attractive foundation on
top of which other non-log based protocols can build their
own reconfiguration protocols.

One could argue that these other protocols are not used as
much in industry, so it’s not that important for them to have
reconfiguration protocols, but we think the causation is in the
reverse direction! Without reconfiguration, these protocols
cannot be used in industry.

Third, optimizing Horizontal MultiPaxos is not easy. A
MultiPaxos leader can process at most α unchosen commands
at a time. This makes α an important parameter to tune. If we
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set α too low, then we limit the protocol’s pipeline parallelism
and the throughput suffers. Note that a small α reduces the
normal case throughput of Horizontal MultiPaxos, not just the
throughput during reconfiguration. If we set α too high, then
we have to wait a long time for a reconfiguration to complete.
If we are reconfiguring because of a failed node, then we
might have to endure a long reconfiguration with reduced
throughput. Matchmaker MultiPaxos has no α parameter to
tune. Note that Horizontal MultiPaxos can be implemented
with an optimization in which we select a very large α and
then get a sequence of α noops in the log to force a quick
reconfiguration. This optimization helps avoid the difficulties
of finding a good value of α, but the optimization introduces a
new set of subtleties into the protocol. For example, the leader
cannot process client requests while it is executing Phase 2
for the α noops. The protocol has to implement additional
mechanisms to avoid this one round trip stall.

Fourth, Horizontal MultiPaxos requires a Phase 1 and
Phase 2 quorum of acceptors from an old configuration in
order to perform a reconfiguration after a leader failure, but
Matchmaker MultiPaxos only requires a Phase 1 quorum.
Some read optimized MultiPaxos variants perform reads
against Phase 1 quorums [5]. These protocols benefit from
having very small Phase 1 quorums and very large Phase 2
quorums, requiring Horizontal MultiPaxos to contact far more
nodes than Matchmaker MultiPaxos during a reconfiguration.

Finally, we clarify that if Horizontal MultiPaxos is imple-
mented with all of its subtleties ironed out, is deployed with a
good choice of α, and is run with small Phase 2 quorums, then
it can perform a reconfiguration without performance degra-
dation. In this case, Horizontal MultiPaxos and Matchmaker
MultiPaxos both reconfigure, in some sense, “optimally”.

Horizontal MultiPaxos also has some advantages over
Matchmaker MultiPaxos. For example, reconfiguring the
set of matchmakers is simple, but it is still another recon-
figuration protocol that has to be implemented which adds
complexity to the system.

Vertical Paxos Matchmaker MultiPaxos significantly im-
proves the practicality of Vertical Paxos [22] in a number
of ways. First, Vertical Paxos is a consensus protocol, not a
state machine replication protocol, and it’s not easy to extend
Vertical Paxos’ garbage collection protocol to a state machine
replication protocol. Vertical Paxos garbage collects old con-
figurations in situations similar to Scenario 1 and Scenario
2 from Section 3.5. It does not include Scenario 3. Without
this, old configurations cannot be garbage collected, which
means that it is never safe to shut down old configurations.

Second, Vertical Paxos requires an external master but
does not describe how to implement the master in an efficient
way. We could implement the master using another state
machine replication protocol like MultiPaxos, but this would
be both slow and overly complex. Plus, we would have to
implement a reconfiguration protocol for the master as well.

Our matchmakers are analogous to the external master but
show that such a master does not require a nested invocation
of state machine replication.

Third, Vertical Paxos requires that a proposer execute Phase
1 in order to perform a reconfiguration. Thus, Vertical Paxos
cannot be extended to MultiPaxos without causing perfor-
mance degradation during reconfiguration. This is not the
case for matchmakers thanks to Phase 1 bypassing.

Fourth, Vertical Paxos does not describe how proposers
learn the configurations used in previous rounds and instead
assumes that configurations are fixed in advance by an or-
acle. Matchmaker Paxos shows that this assumption is not
necessary, as the matchmakers store every configuration.

Fast Paxos Fast Paxos [19] is a Paxos variant that shaves off
one network delay from Paxos in the best case, but can have
higher delays if concurrently proposed commands conflict.
While Paxos quorums consist of f +1 out of 2 f +1 acceptors,
Fast Paxos requires larger quorums. Many protocols have
reduced Fast Paxos quorum sizes a bit, but to date, Fast Paxos
quorum sizes have remained larger than classic Paxos quorum
sizes [8, 31]. Using matchmakers, we can implement Fast
Paxos with a fixed set of f +1 acceptors (and hence with f +1-
sized quorums). Specifically, we deploy Fast Paxos with f +1
acceptors, with a single unanimous Phase 2 quorum, and with
singleton Phase 1 quorums. A full description of the protocol
and a proof of correctness is given in Section C.

DPaxos DPaxos is a Paxos variant that allows every round
to use a different subset of acceptors from some fixed set of
acceptors. Matchmaker Paxos obviates the need for a fixed
set of nodes. DPaxos’ scope is limited to a single instance of
consensus, whereas Matchmaker MultiPaxos shows how to
efficiently reconfigure across multiple instances of consensus
simultaneously. We also discovered that DPaxos’ garbage
collection algorithm is unsafe. Matchmaker MultiPaxos fixes
the bug. See Section D for details.

7 Evaluation

We now evaluate Matchmaker MultiPaxos. Matchmaker Mul-
tiPaxos is implemented in Scala using the Netty networking
library. We deployed Matchmaker MultiPaxos on m5.xlarge
AWS EC2 instances within a single availability zone. We
deploy Matchmaker MultiPaxos with f = 1, f +1 proposers,
2 f +1 acceptors, 2 f +1 matchmakers, and 2 f +1 replicas.
For simplicity, every node is deployed on its own machine,
but in practice, nodes can be physically co-located. In particu-
lar, any two logical roles can be placed on the same machine,
so long as the two roles are not the same. For example, we
can co-locate a leader, an acceptor, a replica, and a match-
maker, but we can’t co-locate two acceptors (without reducing
the fault tolerance of the system). For simplicity, we deploy
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Table 1: Figure 9 median, interquartile range, and standard
deviation of latency and throughput.

Latency (ms)
1 Client 4 Clients 8 Clients

0s-10s 10s-20s 0s-10s 10s-20s 0s-10s 10s-20s

median 0.292 0.287 0.317 0.321 0.398 0.410
IQR 0.040 0.026 0.029 0.036 0.036 0.039
stdev 0.114 0.085 0.076 0.081 0.089 0.305

Throughput (commands/second)

1 Client 4 Clients 8 Clients
0s-10s 10s-20s 0s-10s 10s-20s 0s-10s 10s-20s

median 2,995 3,177 11,874 11,478 19,146 18,446
IQR 152 53 175 145 140 373
stdev 157 111 298 307 358 520

Matchmaker MultiPaxos with a trivial no-op state machine in
which every state machine command is a one byte no-op. All
of our results generalize to more complex state machines as
well (the choice of state machine is orthogonal to reconfigu-
ration).

7.1 Reconfiguration
Experiment Description. We run a benchmark with 1, 4, and
8 clients. Every client executes in a closed loop. It repeat-
edly proposes a state machine command, waits to receive a
response, and then immediately proposes another command.
This model is standard for state machine replication proto-
cols [25, 31, 36] and aligns with the definitions surrounding
linearizability [11]. Every benchmark runs for 35 seconds.
During the first 10 seconds, we perform no reconfigurations.
From 10 seconds to 20 seconds, the leader reconfigures the
set of acceptors once every second. In practice, we would
reconfigure much less often. This is a worst case stress test
for Matchmaker MultiPaxos. For each of the ten reconfigu-
rations, the leader selects a random set of 2 f + 1 acceptors
from a pool of 2× (2 f +1) acceptors. At 25 seconds, we fail
one of the acceptors. 5 seconds later, the leader performs a
reconfiguration to replace the failed acceptor. The delay of 5
seconds is completely arbitrary. The leader can reconfigure
sooner if desired.

We also perform this experiment with an implementation of
MultiPaxos with horizontal reconfiguration. As with Match-
maker MultiPaxos, we deploy MultiPaxos with f + 1 pro-
posers, 2 f + 1 acceptors, and 2 f + 1 replicas. We set α to
8. Because α is equal to the number of clients, MultiPaxos
never stalls because of an insufficiently large α. We do not
implement the noop optimization.

Results. The latency and throughput of Matchmaker Multi-
Paxos are shown in Figure 9. Throughput and latency are both
computed using sliding one second windows. Median latency
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Figure 9: Matchmaker MultiPaxos’ latency and throughput
( f = 1). Median latency is shown using solid lines, while the
95% latency is shown as a shaded region above the median
latency. The vertical black lines show reconfigurations. The
vertical dashed red line shows an acceptor failure.

is shown using solid lines, while the 95% latency is shown as
a shaded region above the median latency. The black vertical
lines denote reconfigurations, and the red dashed vertical line
denotes the acceptor failure.

The medians, interquartile ranges (IQR), and standard de-
viations of the latency and throughput (a) during the first 10
seconds and (b) between 10 and 20 seconds are shown in
Table 1. Figure 12 includes violin plots of the same data. The
white circles show the median values, while the thick black
rectangles show the 25th and 75th percentiles. For latency, re-
configuration has little to no impact (roughly 2% changes) on
the medians, IQRs, or standard deviations. The one exception
is that the 8 client standard deviation is significantly larger.
This is due to a small number of outliers. Reconfiguration has
little impact on median throughput, with all differences being
statistically insignificant. The IQRs and standard deviations
sometimes increase and sometimes decrease. The IQR is al-
ways less than 1% of the median throughput, and the standard
deviation is always less than 4%.

For every reconfiguration, the new acceptors become active
within a millisecond. The old acceptors are garbage collected
within five milliseconds. This means that only one configu-
ration is ever returned by the matchmakers. We implement
Matchmaker MultiPaxos with an optimization called thrifti-
ness [31]—where PHASE2A messages are sent to a randomly
selected Phase 2 quorum—so the throughput and latency ex-
pectedly degrade after we fail an acceptor. After we replace
the failed acceptor, throughput and latency return to normal
within two seconds.

The latency and throughput of MultiPaxos is shown in Fig-
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Figure 10: The latency and throughput of MultiPaxos with
horizontal reconfiguration ( f = 1).

ure 10. As with Matchmaker MultiPaxos, MultiPaxos can
perform a horizontal reconfiguration without any performance
degradation. The difference in absolute throughput between
the two protocols is due to minor implementation differences,
but the variance in throughput (rather than the throughput
itself) is what is important for this evaluation. We include
the comparison to MultiPaxos for the sake of having some
baseline against which we can compare Matchmaker Multi-
Paxos, but the comparison is shallow. For this reason, we do
not elaborate on the results much.

While Matchmaker MultiPaxos does provide performance
benefits over MultiPaxos’ and Raft’s reconfiguration proto-
cols, our goal is not to replace these protocols. Rather, there
are dozens of other state machine replication protocols (e.g.,
EPaxos [31], CASPaxos [38], Caesar [2], Atlas [8]) and
distributed databases (e.g., TAPIR [41], Janus [32], Ocean
Vista [9]) that do not have any reconfiguration protocol and
cannot use the existing reconfiguration protocols from Mul-
tiPaxos or Raft. Our hope is that the ideas in Matchmaker
MultiPaxos can be used to implement reconfiguration proto-
cols for these other systems. For this reason, it is difficult
to compare Matchmaker MultiPaxos against some existing
baseline because they simply do not exist.

Summary. This experiment confirms that Matchmaker
MultiPaxos’s throughput and latency remain steady even dur-
ing abnormally frequent reconfiguration. Moreover, it con-
firms that Matchmaker MultiPaxos can reconfigure to a new
set of acceptors and retire the old set of acceptors on the order
of milliseconds.
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Figure 11: Violin plots of Figure 9 latency and throughput
during the first 10 seconds and between 10 and 20 seconds.

7.2 Leader Failure

Experiment Description. We deploy Matchmaker Multi-
Paxos exactly as before. Now, each benchmark runs for 20
seconds. During the first 7 seconds, there are no reconfigu-
rations and no failures. At 7 seconds, we fail the leader. 5
seconds later, a new leader is elected and resumes normal
operation. The 5 second delay is arbitrary; a new leader could
be elected quicker if desired.

Results. The latency and throughput of the benchmarks
are shown in Figure 13. During the first 7 seconds, through-
put and latency are both stable. When the leader fails, the
throughput expectedly drops to zero. The throughput and la-
tency return to normal within two seconds after a new leader
is elected. The results for the same experiment, repeated with
Horizontal MultiPaxos, are shown in Figure 14.

Summary. This experiment confirms that the extra latency
of the Matchmaker phase during a leader change is negligible.

7.3 Matchmaker Reconfiguration

Experiment Description. We deploy Matchmaker Multi-
Paxos as above. We again run three benchmarks with 1, 4, and
8 clients. Each benchmark runs for 40 seconds. During the
first 10 seconds, there are no reconfigurations and no failures.
Between 10 and 20 seconds, the leader reconfigures the set of
matchmakers once every second. Every reconfiguration ran-
domly selects 2 f +1 matchmakers from a set of 2× (2 f +1)
matchmakers. At 25 seconds, we fail a matchmaker. At 30 we
perform a matchmaker reconfiguration to replace the failed
matchmaker. At 35 seconds, we reconfigure the acceptors.
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Figure 12: Violin plots of Figure 10 latency and throughput
during the first 10 seconds and between 10 and 20 seconds.

Results. The latency and throughput of Matchmaker Mul-
tiPaxos are shown in Figure 15. The latency and throughput
of the protocol remain steady through the first ten match-
maker reconfigurations, through the matchmaker failure and
recovery, and through the acceptor reconfiguration. This is
confirmed by the medians, IQRs, and standard deviations of
the latency and throughput during the first 10 seconds and
between 10 and 20 seconds, which are shown in Table 2.

Summary. This benchmark confirms that matchmakers are
off the critical path. The latency and throughput of Match-
maker MultiPaxos remains steady during a matchmaker recon-
figuration and matchmaker failure. Moreover, a matchmaker
reconfiguration does not affect the performance of subsequent
acceptor reconfigurations.

8 Related Work

SMART. SMART [27] is a reconfiguration protocol that re-
solves many ambiguities in MultiPaxos’ horizontal approach
(e.g., when it is safe to retire old configurations). Like Mul-
tiPaxos’ horizontal reconfiguration protocol, SMART can
reconfigure a protocol with minimal performance degrada-
tion. SMART differs from Matchmaker Paxos in a number
of ways. First, like MultiPaxos’ horizontal reconfiguration
protocol, SMART is fundamentally log based and is therefore
incompatible with many sophisticated state machine repli-
cation protocols. Second, SMART assumes that acceptors
and replicas are always co-located. This prevents us from
reconfiguring the acceptors without reconfiguring the replicas.
This is not ideal since we can reconfigure an acceptor without
copying any state, but must transfer logs from an old replica
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Figure 13: Matchmaker MultiPaxos’ latency and throughput
( f = 1). The dashed red line denotes a leader failure.

Table 2: Figure 15 median, interquartile range, and standard
deviation of latency and throughput.

Latency (ms)
1 Client 4 Clients 8 Clients

0s-10s 10s-20s 0s-10s 10s-20s 0s-10s 10s-20s

median 0.297 0.292 0.314 0.313 0.404 0.398
IQR 0.032 0.024 0.031 0.030 0.035 0.028
stdev 0.077 0.061 0.093 0.098 0.383 0.067

Throughput (commands/second)

1 Client 4 Clients 8 Clients
0s-10s 10s-20s 0s-10s 10s-20s 0s-10s 10s-20s

median 3019 3147 11631 11726 18569 19248
IQR 41 51 140 145 391 71
stdev 66 72 250 231 478 159

to a new replica. SMART’s garbage collection also has higher
latency that Matchmaker Paxos’ garbage collection. For Sce-
nario 3, Matchmaker Paxos proposers wait until a prefix of the
log is stored on f +1 replicas. SMART waits for the prefix
of the log to be executed and snapshotted by f +1 replicas.

Cheap Paxos. Cheap Paxos [24] is a MultiPaxos variant
that consists of a fixed set of f +1 main acceptors and f aux-
iliary acceptors. During failure-free execution (the normal
case), only the main acceptors are contacted. The auxiliary
acceptors perform MultiPaxos’ horizontal reconfiguration pro-
tocol to replace failed main acceptors. As with Fast Paxos,
we can deploy Matchmaker MultiPaxos with only f +1 ac-
ceptors, f fewer than Cheap Paxos. Matchmaker Paxos does
require 2 f +1 matchmakers, but matchmakers do not act as
acceptors and have to process only a single message (i.e. a
MATCHA message) to perform a reconfiguration.
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Figure 14: The latency and throughput of Horizontal Multi-
Paxos with f = 1.

Raft. Raft [35] uses a reconfiguration protocol called joint
consensus. Like MultiPaxos’ horizontal reconfiguration, joint
consensus is log-based and therefore incompatible with many
existing replication protocols. A simpler reconfiguration pro-
tocol for Raft was proposed in [34] but requires more rounds
of communication.

Viewstamped Replication (VR). VR [26] uses a stop-
the-world approach to reconfiguration. During a recon-
figuration, the entire protocol stops processing commands.
Thus, while the reconfiguration is quite simple, it is ineffi-
cient. Stoppable Paxos [21] is similar to MultiPaxos’ hor-
izontal reconfiguration, but also uses a stop-the-world ap-
proach. VR’s stop-the-world approach to reconfiguration is
also adopted by databases built on VR, including TAPIR [41]
and Meerkat [39]. We use a similar approach to reconfigure
matchmakers, but because matchmakers are off the critical
path, the performance overheads are invisible.

Fast Paxos Coordinated Recovery. Fast Paxos has an op-
timization called coordinated recovery that is similar to Phase
1 Bypassing. The main difference is that in coordinated re-
covery, a leader uses Phase 2 information in round i to skip
Phase 1 in round i+1, whereas with Phase 1 Bypassing, the
leader instead uses Phase 1 information. Note that coordi-
nated recovery is not useful for Matchmaker MultiPaxos. It
is subsumed by Phase 1 Bypassing. Coordinated recovery
is only needed for Fast Paxos because the leader may not
know which values were proposed in a round it owns. Phase
1 Bypassing cannot be applied to Fast Paxos for pretty much
the same reason.

DynaStore. Vertical Paxos assumes its external master is
implemented using state machine replication. MultiPaxos’
horizontal reconfiguration also depends on consensus. Match-
maker Paxos does not require consensus to implement match-
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Figure 15: The latency and throughput of Matchmaker Mul-
tiPaxos ( f = 1). The dotted blue, dashed red, and vertical
black lines show matchmaker reconfigurations, a matchmaker
failure, and an acceptor reconfiguration respectively.

makers, but we are not the first to notice this. DynaStore [1]
showed that reconfiguring atomic storage does not require
consensus.

ZooKeeper. ZooKeeper, a distributed coordinated service,
which uses ZooKeeper Atomic Broadcast [14] is a protocol
similar to MultiPaxos that can also reconfigure quickly after
leader failures.

9 Conclusion

We presented Matchmaker Paxos and Matchmaker Multi-
Paxos to address the lack of research on the increasingly
important topic of reconfiguration. Our protocols achieve a
number of desirable properties, both theoretical and prac-
tical: they can reconfigure without performance degrada-
tion, they provide insights into existing protocols, and they
generalize better than existing techniques. Our implemen-
tations of Matchmaker Paxos and Matchmaker MultiPaxos
can be found online at https://github.com/mwhittaker/
frankenpaxos.
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A Garbage Collection Safety

To prove that the three scenarios from Section 3.5 are safe,
we repeat the safety proof from Section 3. The new bits are
shown in blue.

Proof. We prove, for every round i, the statement P(i): “if a
proposer proposes a value v in round i (i.e. sends a PHASE2A
message for value v in round i), then no value other than v
has been or will be chosen in any round less than i.” At most
one value is ever proposed in a given round, so at most one
value is ever chosen in a given round. Thus, P(i) suffices to
prove that Matchmaker Paxos is safe for the following reason.
Assume for contradiction that Matchmaker Paxos chooses
distinct values x and y in rounds j and i with j < i. Some
proposer must have proposed y in round i, so P(i) ensures us
that no value other than y could have been chosen in round j.
But, x was chosen, a contradiction.

We prove P(i) by strong induction on i. P(0) is vacuous
because there are no rounds less than 0. For the general
case P(i), we assume P(0), . . . ,P(i−1). We perform a case
analysis on the proposer’s pseudocode (Algorithm 3). Either
k is −1 or it is not (line 11). First, assume it is not. In this

18



Journal of Systems Research (JSys) 2021

case, the proposer proposes x, the value proposed in round k
(line 12). We perform a case analysis on round j to show that
no value other than x has been or will be chosen in any round
j < i.

Case 1: j > k. We show that no value has been or will be
chosen in round j. Recall that at the end of the Matchmaking
phase, the proposer computed the set Hi of prior configura-
tions using responses from a set Mi of f + 1 matchmakers.
Either Hi contains a configuration C j in round j or it doesn’t.

First, suppose it does. Then, the proposer sent
PHASE1A〈i〉 messages to all of the acceptors in C j. A Phase
1 quorum of these acceptors, say Q, all received PHASE1A〈i〉
messages and replied with PHASE1B messages. Thus, every
acceptor in Q set its round r to i, and in doing so, promised
to never vote in any round less than i. Moreover, none of
the acceptors in Q had voted in any round greater than k. So,
every acceptor in Q has not voted and never will vote in round
j. For a value v′ to be chosen in round j, it must receive votes
from some Phase 2 quorum Q′ of round j acceptors. But, Q
and Q′ necessarily intersect, so this is impossible. Thus, no
value has been or will be chosen in round j.

Now suppose that Hi does not contain a configuration for
round j. Either a configuration C j was garbage collected
from Hi or it wasn’t. First, assume it wasn’t. Then, Hi is the
union of f + 1 MATCHB messages from the f + 1 match-
makers in Mi. Thus, if Hi does not contain a configuration
for round j, then none of the MATCHB messages did either.
This means that for every matchmaker m ∈Mi, when m re-
ceived MATCHA〈i,Ci〉, it did not contain a configuration for
round j in its log and never did. Moreover, by processing
the MATCHA〈i,Ci〉 request and inserting Ci in log entry i, the
matchmaker is guaranteed to never process a MATCHA〈 j,C j〉
request in the future. Thus, every matchmaker in Mi has not
processed a MATCHA request in round j and never will. For
a value to be chosen in round j, the proposer executing round
j must first receive replies from f +1 matchmakers, say M j,
in round j. But, Mi and M j necessarily intersect, so this is
impossible. Thus, no value has been or will be chosen in
round j.

Otherwise, a configuration C j was garbage collected from
Hi. Note that none of the matchmakers in Mi had received
a GARBAGEA〈i′〉 command for a round i′ > i when they re-
sponded with their MATCHB messages. If they had, they
would have ignored our MATCHA〈i,Ci〉 message. Let i′ be
the largest round j < i′ < i such that a matchmaker in Mi had
received a GARBAGEA〈i′〉 message before responding to our
MATCHA〈i,Ci〉 message.

If i′ was garbage collected because of Scenario 1, then k
would be at least as large as i′ since we would have intersected
the Phase 2 quorum of Ci′ used in round i′ to get a value
chosen. But k < j < i′, a contradiction. If i′ was garbage
collected because of Scenario 2, then we know no value has
been or will be chosen in round j. If i′ was garbage collected
because of Scenario 3, then we would have intersected the

Phase 2 quorum of Ci′ that knows a value was already chosen,
and we would have not proposed a value in the first place.
But, we proposed x, a contradiction.

Case 2: j = k. In a given round, at most one value is pro-
posed, let alone chosen. x is the value proposed in round k,
so no other value could be chosen in round k.

Case 3: j < k. By induction, P(k) states that no value other
than x has been or will be chosen in any round less than k.
This includes round j.

Finally, if k is −1, then we are in the same situation as in
Case 1. No value has or will be chosen in a round j < i.

B Matchmaker Reconfiguration Safety

We repeat the safety proof from Section A. The new bits are
shown in blue.

Proof. We prove, for every round i, the statement P(i): “if a
proposer proposes a value v in round i (i.e. sends a PHASE2A
message for value v in round i), then no value other than v
has been or will be chosen in any round less than i.” At most
one value is ever proposed in a given round, so at most one
value is ever chosen in a given round. Thus, P(i) suffices to
prove that Matchmaker Paxos is safe for the following reason.
Assume for contradiction that Matchmaker Paxos chooses
distinct values x and y in rounds j and i with j < i. Some
proposer must have proposed y in round i, so P(i) ensures us
that no value other than y could have been chosen in round j.
But, x was chosen, a contradiction.

We prove P(i) by strong induction on i. P(0) is vacuous
because there are no rounds less than 0. For the general
case P(i), we assume P(0), . . . ,P(i−1). We perform a case
analysis on the proposer’s pseudocode (Algorithm 3). Either
k is −1 or it is not (line 11). First, assume it is not. In this
case, the proposer proposes x, the value proposed in round k
(line 12). We perform a case analysis on round j to show that
no value other than x has been or will be chosen in any round
j < i.

Case 1: j > k. We show that no value has been or will be
chosen in round j. Recall that at the end of the Matchmaking
phase, the proposer computed the set Hi of prior configura-
tions using responses from a set Mi of f + 1 matchmakers.
Either Hi contains a configuration C j in round j or it doesn’t.

First, suppose it does. Then, the proposer sent
PHASE1A〈i〉 messages to all of the acceptors in C j. A Phase
1 quorum of these acceptors, say Q, all received PHASE1A〈i〉
messages and replied with PHASE1B messages. Thus, every
acceptor in Q set its round r to i, and in doing so, promised
to never vote in any round less than i. Moreover, none of
the acceptors in Q had voted in any round greater than k. So,
every acceptor in Q has not voted and never will vote in round
j. For a value v′ to be chosen in round j, it must receive votes
from some Phase 2 quorum Q′ of round j acceptors. But, Q
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and Q′ necessarily intersect, so this is impossible. Thus, no
value has been or will be chosen in round j.

Now suppose that Hi does not contain a configuration for
round j. Either a configuration C j was garbage collected
from Hi or it wasn’t. First, assume it wasn’t. Then, Hi is
the union of f +1 MATCHB messages from the f +1 match-
makers in Mi. Thus, if Hi does not contain a configuration
for round j, then none of the MATCHB messages did either.
This means that for every matchmaker m ∈Mi, when m re-
ceived MATCHA〈i,Ci〉, it did not contain a configuration for
round j in its log and never did. Moreover, no majority in
any previous set of matchmakers contained a configuration
in round j. If any majority did have a configuration in round
j, then all subsequent matchmakers would as well since a set
of matchmakers is initialized from a majority of the previous
matchmakers. Moreover, by processing the MATCHA〈i,Ci〉
request and inserting Ci in log entry i, the matchmaker is
guaranteed to never process a MATCHA〈 j,C j〉 request in the
future. Moreover, no future set of matchmakers will either.
A majority of matchmakers have a configuration in entry i,
so all subsequent configurations will as well. Therefore, they
will all reject a configuration in round j. Thus, every match-
maker in Mi has not processed a MATCHA request in round
j and never will. For a value to be chosen in round j, the
proposer executing round j must first receive replies from
f +1 matchmakers, say M j, in round j. But, Mi and M j nec-
essarily intersect, so this is impossible. This argument holds
for every set of matchmakers. Thus, no value has been or will
be chosen in round j.

Otherwise, a configuration C j was garbage collected from
Hi. Note that none of the matchmakers in Mi had received
a GARBAGEA〈i′〉 command for a round i′ > i when they re-
sponded with their MATCHB messages. If they had, they
would have ignored our MATCHA〈i,Ci〉 message. Simi-
larly, none of the matchmakers in Mi were initialized with
a garbage collection watermark w > i. Let i′ be the largest
round j < i′ < i that a matchmaker in Mi garbage collected
before responding to our MATCHA〈i,Ci〉 message.

If i′ was garbage collected because of Scenario 1, then k
would be at least as large as i′ since we would have intersected
the Phase 2 quorum of Ci′ used in round i′ to get a value
chosen. But k < j < i′, a contradiction. If i′ was garbage
collected because of Scenario 2, then we know no value has
been or will be chosen in round j. If i′ was garbage collected
because of Scenario 3, then we would have intersected the
Phase 2 quorum of Ci′ that knows a value was already chosen,
and we would have not proposed a value in the first place.
But, we proposed x, a contradiction.

Case 2: j = k. In a given round, at most one value is pro-
posed, let alone chosen. x is the value proposed in round k,
so no other value could be chosen in round k.

Case 3: j < k. We can apply the inductive hypothesis to
get P(k) which states that no value other than x has been or
will be chosen in any round less than k. This includes round

Algorithm 5 Fast Paxos Proposer Pseudocode
State: a round i, initially −1
State: the configuration Ci for round i, initially null
State: the prior configurations Hi for round i, initially null

1: i← next largest round owned by this proposer
2: Ci← an arbitrary configuration
3: send MATCHA〈i,Ci〉 to all of the matchmakers
4: upon receiving MATCHB〈i,H1

i 〉, . . . ,MATCHB〈i,H f+1
i 〉

from f +1 matchmakers do
5: Hi←

⋃ f+1
j=1 H j

i
6: send PHASE1A〈i〉 to every acceptor in Hi

7: upon receiving PHASE1B〈i,−,−〉 from a Phase 1 quo-
rum from every configuration in Hi do

8: k← the largest vr in any PHASE1B〈i,vr,vv〉
9: V ← the corresponding vv’s in round k

10: if k =−1 then
11: send PHASE2A〈i,any〉 to every acceptor in Ci
12: else if V = {v} then
13: send PHASE2A〈i,v〉 to every acceptor in Ci
14: else
15: send PHASE2A〈i,any〉 to every acceptor in Ci

j, which is exactly what we’re trying to prove.
Finally, if k is −1, then we are in the same situation as in

Case 1.

C Fast Paxos

Fast Paxos proposer pseudocode is given in Algorithm 5. We
do not modify the Fast Paxos acceptor or the matchmakers.
For simplicity, we assume that we deploy Fast Paxos with
f + 1 acceptors, with a single unanimous Phase 2 quorum,
and with singleton Phase 1 quorums. Generalizing to arbitrary
configurations that satisfy Fast Paxos’ quorum intersection
requirements is straightforward. Note that Fast Paxos cannot
leverage Phase 1 Bypassing. Also note while both MultiPaxos
and our Fast Paxos variant both have quorums of size f +1,
our Fast Paxos variant has a fixed set of f +1 acceptors, while
MultiPaxos can choose any set of f + 1 acceptors from all
2 f + 1 acceptors. This has some disadvantages in terms of
tail latency and fault tolerance.

We now prove that our modifications to Fast Paxos are safe.
For simplicity, we ignore garbage collection and matchmaker
reconfiguration. Introducing those two features and proving
them correct is pretty much identical to what we did with
Matchmaker Paxos.

Proof. We prove, for every round i, the statement P(i) which
states that if an acceptor votes for a value v in round i (i.e.
sends a PHASE2B message for value v in round i), then no
value other than v has been or will be chosen in any round
less than i. P(i) suffices to prove that Matchmaker Paxos is
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safe. Why? Well, assume for contradiction that Matchmaker
Paxos chooses distinct values x and y in rounds i and j with
i < j. Some acceptor must have voted for y in round j, so
P( j) ensures us that no value other than y could have been
chosen in round i. But, x was chosen, a contradiction.

We prove P(i) by strong induction on i. P(0) is vacuous
because there are no rounds less than 0. For the general
case P(i), we assume P(0), . . . ,P(i−1). We perform a case
analysis on the proposer’s pseudocode. Either k is −1 or it
is not (line 8). First, assume it is not. We perform a case
analysis on rounds j < i.

Case 1: j > k. Recall that at the end of the Matchmaking
phase, the proposer computed the set Hi of prior configura-
tions using responses from a set M of f + 1 matchmakers.
Either Hi contains a configuration C j in round j or it doesn’t.

First, suppose it does. Then, the proposer sent
PHASE1A〈i〉 messages to all of the acceptors in C j. A Phase
1 quorum of these acceptors, say Q, all received PHASE1A〈i〉
messages and replied with PHASE1B messages. Thus, every
acceptor in Q set its round r to i, and in doing so, promised
to never vote in any round less than i. Moreover, none of
the acceptors in Q had voted in any round greater than k. So,
every acceptor in Q has not voted and never will vote in round
j. For a value v′ to be chosen in round j, it must receive votes
from some Phase 2 quorum Q′ of round j acceptors. But, Q
and Q′ necessarily intersect, so this is impossible. Thus, no
value has been or will be chosen in round j.

Now suppose that Hi does not contain a configuration for
round j. Hi is the union of f +1 MATCHB messages from the
f +1 matchmakers in M. Thus, if Hi does not contain a con-
figuration for round j, then none of the MATCHB messages
did either. This means that for every matchmaker m ∈ M,
when m received MATCHA〈i,Ci〉, it did not contain a con-
figuration for round j in its log. Moreover, by processing
the MATCHA〈i,Ci〉 request and inserting Ci in log entry i, the
matchmaker is guaranteed to never process a MATCHA〈 j,C j〉
request in the future. Thus, every matchmaker in M has not
processed a MATCHA request in round j and never will. For
a value to be chosen in round j, the proposer executing round
j must first receive replies from f +1 matchmakers, say M′,
in round j. But, M and M′ necessarily intersect, so this is
impossible. Thus, no value has been or will be chosen in
round j.

Case 2: j = k. If V = {v}, then the proposer proposes v.
We must prove that no value other than v has been or will be
chosen in round k. For a value to be chosen in round k, every
acceptor must vote for it in round k. Some acceptor voted
for v in round k, so it is the only value with the possibility of
receiving a unanimous vote.

Otherwise V contains multiple distinct elements, and the
proposer proposes any. We must prove that no value has been
or will be chosen in round k. This is immediate since no value
can receive a unanimous vote in round k, if two different
values have received votes in round k.

Case 3: j < k. If V = {v}, then the proposer proposes v,
and we must prove that no value other than v has been or will
be chosen in any round less than k. This is immediate from
P(k). Otherwise, V = {v1,v2, . . .}, and the proposer proposes
any. We must prove that no value has been or will be chosen
in any round less than k. P(k) tells us that no value other than
v1 has been or will be chosen in any round less than k. P(k)
also tells us that no value other than v2 has been or will be
chosen in any round less than k. Thus, no value has been or
will be chosen in any round less than k.

Finally, if k is −1, then we are in the same situation as in
Case 1. No value has been or will be chosen in any round less
than i.

D DPaxos Bug

Consider a DPaxos deployment with fd = 1, fz = 0, three
zones, three nodes per zone, and delegate quorums. Thus, a
replication quorum consists of two nodes in one zone, and a
leader election quorum consists of two nodes in two zones.
We name the nodes A through I. Beside each node, we display
its ballot, vote ballot, vote value, and intents [20].

Zone 1

A

B

C

Zone 2

D

E

F

Zone 3

G

H

I

−1,−1,⊥, /0

−1,−1,⊥, /0

−1,−1,⊥, /0

−1,−1,⊥, /0

−1,−1,⊥, /0

−1,−1,⊥, /0

−1,−1,⊥, /0

−1,−1,⊥, /0

−1,−1,⊥, /0

Proposer 1 initiates the leader election phase in ballot 0
for value x. It selects {A,B,D,E} as its leader election quo-
rum and {B,C} as its intent. It sends prepare messages to
the leader election quorum, and the leader election quorum
replies. Proposer 1 doesn’t receive any intents, so it does not
expand its leader election quorum. It also learns that no value
has been chosen yet, so it proposes value x to B and C. Both
accept the value.

Zone 1

A

B

C

Zone 2

D

E

F

Zone 3

G

H

I

0,−1,⊥,{0 : {B,C}}

0,0,x,{0 : {B,C}}

0,0,x, /0

0,−1,⊥,{0 : {B,C}}

0,−1,⊥,{0 : {B,C}}

−1,−1,⊥, /0

−1,−1,⊥, /0

−1,−1,⊥, /0

−1,−1,⊥, /0

Next, proposer 2 initiates the leader election phase in ballot
1 for value y. It selects {E,F,H, I} as its leader election
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quorum and {G,H} as its intent. It sends prepare messages
to the leader election quorum, and the leader election quorum
replies. Proposer 2 receives the intent {B,C} in ballot 0 from
E, so it expands its leader election quorum and sends a prepare
message to C. Proposer 2 learns that value x was chosen in
ballot 0, so it ditches y and proposes x to G and H. G accepts,
but the propose message to H is dropped.

Zone 1

A

B

C

Zone 2

D

E

F

Zone 3

G

H

I

0,−1,⊥,{0 : {B,C}}

0,0,x,{0 : {B,C}}

0,0,x,{1 : {G,H}}

0,−1,⊥,{0 : {B,C}}

1,−1,⊥,{0 : {B,C},1 : {G,H}}

1,−1,⊥,{1 : {G,H}}

1,1,x, /0

1,−1,⊥,{1 : {G,H}}

1,−1,⊥,{1 : {G,H}}

Next, garbage collection is run. The garbage collector
contacts G and sees that it has accepted a value in ballot 1. It
informs all the nodes to discard intents in ballots less than 1.

Zone 1

A

B

C

Zone 2

D

E

F

Zone 3

G

H

I

0,−1,⊥, /0

0,0,x, /0

0,0,x,{1 : {G,H}}

0,−1,⊥, /0

1,−1,⊥,{1 : {G,H}}

1,−1,⊥,{1 : {G,H}}

1,1,x, /0

1,−1,⊥,{1 : {G,H}}

1,−1,⊥,{1 : {G,H}}

Next, proposer 3 initiates the leader election phase in bal-
lot 2 for value z It selects {D,E,H, I} as its leader election
quorum and {E,F} as its intent. It sends prepare messages to
the leader election quorum, and the leader election quorum
replies. Proposer 3 receives intent {G,H} in ballot 1, but has
already included H in its leader election quorum, so it does
not send any additional prepares. It learns that no value has
been chosen (this is a bug, x was chosen), so it proposes value
z to E and G. Both accept the value, and z is chosen. This is
a bug since x was already chosen.

Zone 1

A

B

C

Zone 2

D

E

F

Zone 3

G

H

I

0,−1,⊥, /0

0,0,x, /0

0,0,x,{1 : {G,H}}

2,−1,⊥, /02 : {E,F}

2,2,z,{1 : {G,H},2 : {E,F}}

2,2,z,{1 : {G,H}}

1,1,x, /0

2,−1,⊥,{1 : {G,H},2 : {E,F}}

2,−1,⊥,{1 : {G,H},2 : {E,F}}
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