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ABSTRACT

Insertion/deletion metrics and their variants have been extensively applied to eval-
uate attribution-based explanation methods. Such metrics measure the signifi-
cance of features by observing changes in model predictions as features are incre-
mentally inserted or deleted. Given the direct connection between the attribution
values and model predictions that insertion/deletion metrics enable, they are com-
monly used as the decisive metrics for novel attribution methods. Such influential
metrics for explanation methods should be handled with great scrutiny. However,
contemporary research on insertion/deletion metrics falls short of a comprehen-
sive analysis. To address this, we propose the TRAjectory importanCE (TRACE)
framework, which achieves the best scores of the insertion/deletion metric. Our
contribution includes two aspects: 1) TRACE stands as the principled explana-
tion for explaining the influence of feature deletion on model predictions. We
demonstrate that TRACE is guaranteed to achieve almost optimal results both the-
oretically and empirically. 2) Using TRACE, we benchmark insertion/deletion
metrics across all possible settings and study critical problems such as the out-
of-distribution (OOD) issue, and provide practical guidance on applying these
metrics in practice.

1 INTRODUCTION & BACKGROUND

With the rapid increase in computational power, deep neural networks have achieved remarkable
success in many domains. Despite their impressive performance, DNNs are often criticized for their
black-box nature, especially in critical applications where understanding decision-making process is
crucial. To address this opacity, the field of explainable artificial intelligence (XAI) has emerged and
developed rapidly, with various explanation methods introduced (Arrieta et al., 2020). Among these,
attribution methods stand out and are widely used due to their straightforwardness and intuitive
visualizations (Adebayo et al., 2018; Leavitt & Morcos, 2020). Given an input of d features, such as
pixels, tokens, patches, attribution methods assign an attribution value to each feature, illustrating
its “importance” to the output. Such approach offers a clear insight into feature relevance and allows
humans to directly comprehend it as it aligns well with the principles of linear models.

While attribution methods often take similar forms, they can originate from various methodologies
and objectives. Given the same input data and the same black-box prediction model, different at-
tribution methods can produce vastly different explanations. This variability presents a challenge
for both end-users and researchers in selecting the most appropriate explanation method (Kaur
et al., 2020; Krishna et al., 2022). To address this issue, evaluation metrics for attribution meth-
ods have been introduce to evaluate different explanations and identify the most suitable explana-
tion approach. These metrics generally fall into two main categories: alignment and performance.
Alignment metrics, such as the pointing game (Zhang et al., 2018), inspect how explanations align
with the prior knowledge of the data. It has been critiqued that such metrics are actually evaluat-
ing the plausibility to humans rather than reflecting actual model behaviours (Jacovi & Goldberg,
2020; Wang & Wang, 2022b). In contrast, performance metrics such as insertion/deletion empha-
size the model performance, where input features are perturbed (deleted/inserted, etc.) progressively
according to their attribution values. Then the AUCs of the resulting curve, which contrasts model
predictions against the proportion of perturbed features, serve as the evaluation criterion for the attri-
bution method. For instance, when the most relevant features are deleted first (denoted as MoRF),
a low AUC is anticipated. Conversely, when the least relevant features are deleted First (LeRF),
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Figure 1: The deletion tests of GradCAM, Integrated Gradient and Gradient. Solid and dashed
curves distinguish between LeRF and MoRF criteria. Different colors represent different reference
types. We include the zero, mean and blurring references.

a high AUC is then expected. Deletion metrics characterize important features as those affect the
model prediction the most when progressively deleted. The metric’s widespread use suggests that
such property is valued in the XAI community.

Related Work of the Studies of Deletion Metrics. Despite the deletion metrics’ prominence as a
preferred choice for evaluating attribution methods (Samek et al., 2016; Binder et al., 2016; Petsiuk
et al., 2018; Chen et al., 2018; Qi et al., 2019; Schulz et al., 2020; Wang & Wang, 2021; Khorram
et al., 2021; Covert et al., 2021; Chen et al., 2021), it is crucial to recognize that metrics should
undergo rigorous studies before widespread adoption. Deletion metrics, with different settings such
as the choices of the reference values that impute for the deleted features, LeRF/MoRF criteria,
feature sizes, etc., may yield distinct results. Hence it is important to make a judicious choice
among these variants in practice.

Besides, as the most paramount problem in the context of the deletion test, the OOD issue refers
to the phenomenon that when only a small amount of input features are deleted, the input becomes
out-of-distribution. As a result, the model performance decays significantly even if the informa-
tive features remain relatively intact. Although there are existing studies pointing out the OOD
problem of the deletion metrics and proposing related workarounds (Hooker et al., 2019; Sturmfels
et al., 2020; Schulz et al., 2020; Rong et al., 2022), they fall short in certain aspects. Hooker et al.
(2019) propose to remove and retrain (ROAR) to alleviate the OOD issue. However, it requires
training black-box models from scratch every time the number of deleted features changes, which
is computationally expensive and hardly applied. Also, since the models change every time, it leans
on explaining the dataset and the model family instead of the specific black-box model of interest
(Sturmfels et al., 2020; Zhou et al., 2021; Ras et al., 2022). Schulz et al. (2020) argue that using
MoRF or LeRF individually is insufficient and propose to use the difference between them as the
measurement. But the statement lacks justifications. Rong et al. (2022) introduce remove and de-
bias (ROAD), a weighted summation of the 8 surrounding pixels of the deleted one as the reference
values, which is an intermediate stage between mean imputation and blurring. However, like other
existing work, the proposed method is verified simply by observing whether the four selected expla-
nation methods are ranked consistently under LeRF and MoRF. This raises risks because studies of
metrics should not be restricted by specific explanation methods.

Tethered to popular explanation methods such as Gradient (Simonyan et al., 2013), Integrated Gra-
dient (Sundararajan et al., 2017), GradCAM (Selvaraju et al., 2017) etc., existing studies of the
deletion metric fall into a circular reasoning – These explanation methods, originally subjects of the
deletion metric, are paradoxically used to validate the metric itself. Hence the assessment of the
metrics will be highly biased by the selected explanation methods. For instance, to analyze the ref-
erence values in deletion metric, studies focusing on discrete attributions such as Gradient or IG are
likely to conclude that the difference between reference values are significant, while studies focus-
ing on smooth attributions such as GradCAM may conclude otherwise. Figure 1 shows the deletion
tests of three methods, with zero, mean and blurring references. For Gradient and IG, different ref-
erence types lead to completely different scores. However, for GradCAM, the difference between
zero reference and blurring reference is much less concerning. These opposite results suggest that
studies of the metrics should not rely on specific explanation methods, but instead be approached in
an explanation-method-agnostic fashion.
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In response to these problems, we introduce the TRAjectory importanCE (TRACE) framework,
which achieves the highest score of deletion metric both empirically and theoretically. By maximiz-
ing the score of the metric, TRACE is capable of (1) representing what the metric really measures,
embodying the principled explanations associated with the deletion metric that reflect the exact influ-
ence of feature deletion on model predictions; and (2) benchmarking all the settings of the deletion
metric, and providing guidance on how different choices can suffer from or be the remedy to the
infamous OOD issue. The main contributions of this paper are summarized as follows.

• We formally study the mathematical essence of deletion metrics in an explanation-method-
agnostic fashion to reveal intrinsic properties of the metrics.

• We propose TRACE, a combinatorial optimization framework to generate the principled
explanation of the deletion metric and validate its near-optimality both empirically and
theoretically. Thus it represents the exact feature importance under feature deletion.

• Using the principled explanation of the deletion metric, we present rigorous study on the
various settings, and provide guidelines to effectively mitigate the OOD problem.

2 METHODOLOGY

In this section, the details of the TRACE framework are introduced. The discussion covers its so-
lution using combinatorial optimization tools. And we introduce various settings of the deletion
metrics and TRACE in Section 3. This section begins with a formalization of the deletion metric.

Formalization of Deletion Metric. Let f : Rd → R be a black-box model. An attribution method
is defined as a mapping φf : Rd → Rd,x 7→ ψ. For ∀δ ⊆ {1, · · · , d}, let x\δ denote the input
where features indexed by δ are deleted, and xδ denote it where features index by δ are kept. Then
given the tuple (f,x, ψ), the deletion metric AUC score under the MoRF criterion can be written as

MoRF(ψ) =
d∑
k=0

f(x\σ(ψ)[k:]) =

d∑
k=0

f(xσ(ψ)[:k]) (1)

Similarly, LeRF(ψ) =
∑d
k=0 f(x\σ(ψ)[:k]) =

∑d
k=0 f(xσ(ψ)[k:]). Here σ maps the attribution map

ψ to a permutation of feature indices in the bottom-top order. That is, ψσ(ψ)[j] ≤ ψσ(ψ)[j+1]. And
x\σ(ψ)[k:],xσ(ψ)[:k] represent the input data where (a) the last k features indexed by σ(ψ) are deleted
and (b) the first k features indexed by σ(ψ) are kept, respectively. For example, if the attributions are
ψ = [0.1, 0.5, 0.3, 0.2], then σ(ψ) = [1, 4, 3, 2]. And xσ(ψ)[:1] = x\σ(ψ)[3:] = x[1] = x\[4,3,2] =
[x1,ref2,ref3,ref4] denote the input where the features x4, x3, x2 are deleted. With the nota-
tions defined above, the best attribution-based explanation of the model prediction f(x) under the
deletion metric with MoRF criterion is naturally

ψ∗
MoRF =arg min

ψ∈Rd
MoRF(ψ) = arg min

ψ∈Rd

d∑
k=0

f(xσ(ψ)[:k]) (2)

Regrettably, the optimization of this objective to find the “best explanation” is infeasible. The study
is confined to comparing the scores in Equation (1) between two attributions ψ1, ψ2. This limitation
underscores why existing studies on the deletion metric rely heavily on specific explanation methods.

Trajectory Importance (TRACE). To address these challenges, we introduce TRACE. A crucial
observation is that although attribution explanations are presented as dense vectors in the Euclidean
space Rd, their evaluations under the deletion metric are not based on the detailed attribution values.
In fact, by defining that σ(ψ)[i] < σ(ψ)[i+1] whenψσ[i] = ψσ[i+1]

1, an attributionψ can be mapped
to a unique permutation of the indices {1, · · · , d}. We thus define an equivalence relation R, where
two attributions ψ1, ψ2 are equivalent when they map to the same permutation, i.e., ψ1Rψ2 ⇔
σ(ψ1) = σ(ψ2). And ψ1, ψ2 receive identical scores under the deletion metric. In consideration
of this, we quotient out the equivalence class with the projection map Rd → Rd/R, ψ 7→ [ψ]. And
since the equivalence class [ψ] can be mapped to the permutation σ(ψ) in a 1-to-1 manner, we have
Rd/R ∼= Sd. Here Sd denotes the symmetric group of order d, which consists of all permutations
of {1, · · · , d}. Proofs are shown in Appendix B.1. As a result, the original problem in Equation (2)
transforms into an optimization over a finite, well-structured set Sd as

TRACE-Mo: min
τ∈Sd

d∑
k=0

f(xτ [:k]); TRACE-Le: min
τ∈Sd

d∑
k=0

f(xτ [k:]) (3)

1When the attributions are equal, features with smaller indices are put ahead.
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To clearly differentiate between our framework and the test of the deletion metric under different
criteria (e.g. MoRF, LeRF), we use the prefix TRACE (e.g. TRACE-Mo). In other words, MoRF
is a evaluation criterion as defined in Equation (1), where lower values in MoRF indicates better
explanations under the deletion metric; while TRACE-Mo is an optimization problem as we propose
in Equation (3). This new formulation sets the stage for combinatorial optimization with adequate
tools. We discuss the specific algorithms in Section 4.

Trajectory to Attributions. The optimizer of Equation (3) is a trajectory τ traversing all features
in the bottom-top order. While the mapping from the attributions ψ to the corresponding trajectory
τ = σ(ψ) is surjective, τ can map back to attribution in its equivalence class. Define Πτ = {π|π :
Sd → Rd, τ 7→ ψ, s.t. σ(ψ) = τ} as the set of mappings from τ to attributions that preserve
the trajectory. Thus ∀π ∈ Πτ , π(τ) ∈ Rd is a valid attribution map of τ . We define π(τ) =
(τ−1/d)α ∈ [0, 1]d, where τ−1 = argsort(τ) is the ranking of features in the trajectory τ for
simplicity. Here α controls the size of the highlighted region, which is similar to the colormap
choices. Using π, we can map the optimization results τ from Equation (3) to attributions ψ, and
visualize ψ as heatmap, offering insights akin to attribution explanation methods. We visualize the
TRACE results as heatmaps in Appendix C.

3 SETTINGS OF DELETION METRICS AND TRACE

As discussed in Section 1, various settings of the deletion metric give rise to a plethora of variants,
resulting in distinct evaluation results even for the same (f,x, ψ) tuple, such as the differences
shown in Figure 1. However, the judicious choice among these variants remains unclear. Here we
discuss these possible variants comprehensively, and study how the choices of them can influence the
metric via the principled explanations from TRACE in Section 5. Note that these settings influence
both the metric through the term f(xσ(ψ)[:k]) in Equation (1) (i.e., when using deletion metrics
for evaluation in practice), and the TRACE framework through the term f(xτ [:k]) in Equation (3)
(when determining the optimization objective). Also, it should be noted that the TRACE framework
is compatible with any input data types. In this work, we focus on the image data, which is most
influenced by the OOD issue.

Deletion vs. Insertion. Although the insertion metric serves as a popular alternative to the deletion
metric and inserts features instead of deleting them, the differences between them are neutralized
when the AUC is used for assessment. In fact, we prove in Appendix B.2 that they are equivalent
and will focus on deletion in the following context for clarity.
Theorem 3.1. The insertion metric is equivalent to the deletion metric up to AUCs with MoRF/LeRF.

Logit vs. Probability. Model outputs, denoted by f(x), vary in different contexts. For classifiers,
both the predicted logit from the final linear layer and the probability yielded by the softmax ac-
tivation can be seen as the output in standard practice. Notably, previous studies demonstrate that
perturbations concerning logits differ from probabilities (Wang & Wang, 2022a). We include this
variation with the suffixes -y (for logit) and -p (for probability).

MoRF vs. LeRF. The two criteria MoRF and LeRF, though sound symmetric, have very distinct
interpretations. MoRF defines important features as those who diminish the performance the most
when deleted. Conversely, LeRF sees features as crucial if they maintain the performance the most
when kept. Taking both aspects into consideration, the “important features” should be able to di-
minish the model performance when deleted and preserve the model performance when kept. We
denote this variant as LeRF−MoRF, which uses the difference

∑d
k=0

(
f(xτ [k:])− f(xτ [:k])

)
as the

objective in Equation (3). In experiments, we consider all three variants: -Le, -Mo, and -Le−Mo.

Reference Values. Black-box models such as DNNs take inputs of a fixed size. Thus the deleted
features have to be replaced with predefined reference values to represent the “null feature”. The
choices of reference values can significantly affect the results of the metric for some explanation
methods. The current conventional way is to use heuristic methods such as zeros, means, and blur-
rings to avoid introducing exogenous information and overcomplicating problems (Lundberg & Lee,
2017; Sundararajan et al., 2017; Hooker et al., 2019; Shrikumar et al., 2017; Sturmfels et al., 2020;
Covert et al., 2021; Rong et al., 2022). In fact, the choices of reference value types are tightly con-
nected with the OOD issue via the trade-off between deleting the feature and preserving the dis-
tribution. The zero reference deletes features completely but breaks the input distribution severely.
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In contrast, in the context of blurring reference, the original distribution is always preserved. How-
ever, the deleted features are also partially recovered, which can lead to problematic deletion test
in practice. To study such influence, we include three types of reference values in our experiments:
zeros, means, and blurrings.

Input Feature Size. Within an input image of size 224 × 224, the semantic meaning of pixel-wise
attributions is very limited (Rieger et al., 2020). Grouping pixels and dealing with the superpixel
patches, on the other hand, have been demonstrated to achieve great success (Dosovitskiy et al.,
2020; Tolstikhin et al., 2021; Yu et al., 2022). It is also observed that the deletion metrics have
been implemented with different resolutions. As a result, we operate on t superpixel square patches,
where the patch sizes are 224√

t
× 224√

t
(specially, when t = 224 × 224, each patch is a pixel). By

comparing the results of different patch sizes, we observe that the OOD issue is greatly mitigated by
decreasing the resolution t of the deletion process. Larger patches result in less noisy trajectories,
but coarser explanations, while smaller patches lead to finer results but are much more vulnerable to
the OOD problem. We study the influence of different patch sizes comprehensively in Section 5.2.
And we will abuse the notations a little to denote by x\τ [k:] or xτ [:t−k] the input image with the top
k patches deleted (i.e. bottom t− k patches kept).

4 ALGORITHMS FOR TRACE

Complexity Analysis. The TRACE framework Equation (3) aim at finding a trajectory τ of features
that optimize the “cost” defined by (f,x). Therefore, it is a non-trivial problem and can be solved
by combinatorial optimization with meta-heuristic algorithms. In Appendix B.3, we prove that
TRACE is NP-hard by relating to the traveling salesman problem (TSP).
Theorem 4.1. The optimization problem TRACE-Mo ({minτ

∑d
k=0 f(xτ [:k])}) is NP-hard.

Heuristic Approaches. In order to quickly identify a trajectory of features that optimizes the ob-
jective outline Equation (3), one direct method is the greedy strategy. Instead of seeking an entire
trajectory τ dynamically, this approach sequentially deletes one feature in each step. Starting from
the highest ranked feature (the lowest one for TRACE-Le), it finds the feature that minimizes the
prediction when deleted in each step. Such approach, while fast, is usually sub-optimal. Yet it
reaches the global optimal of TRACE-Mo/Le if the features’ contributions are additive, such as with
linear models. It’s essential to note, however, that this approach yields distinct trajectories for MoRF
and LeRF, and thereby does not apply to the LeRF−MoRF test, resulting in ineluctable trade-offs
between the principled explanation’s optimality and efficiency. We demonstrate in Section 5 that
TRACE-Greedy still outperforms all existing explanation methods significantly, and thus also serves
the role as near-principled explanations w.r.t. feature deletion.

Meta-Heuristic Approaches. When benchmarking the deletion metric, the above compromise can
cause insufficiency. Addressing the limitation described requires that the entire trajectory τ be opti-
mized comprehensively. In such contexts, meta-heuristic algorithms are the judicious choice given
their established efficacy in combinatorial optimization challenges (Baghel et al., 2012). Among
them, simulated annealing (SA) (Kirkpatrick et al., 1983) has been actively employed in problems
such as TSP to deliver sufficiently good sub-optimal results (Geng et al., 2011). Given its efficacy
and the theoretical grounding, we too adopt SA in our methodology. The associated pseudo-code is
provided in Appendix D. We also explore alternative meta-heuristic algorithms in Appendix E. In
the following context, TRACE refers to TRACE-SA unless otherwise claimed.

Neighbor Sets of SA. The performance of SA depend on the apt choice of neighbors, especially
on a discrete feasible set where the distance is not well-defined. Meanwhile, TRACE is essentially
a harder problem than TSP, where the pairs of directly connected cities determine the total cost.
TRACE considers not only the consecutively deleted patches but also the overall ordering of delet-
ing patches matter. For instance, if a segment in the trajectory is reversed, TSP’s costs only change
for the segment’s two endpoints. However, in TRACE, all values post the segment’s initial change.
As such, common neighbor strategies for TSP like vertex insertion, block insertion, and block re-
verse (Geng et al., 2011) do not transition to TRACE directly. Our comprehensive study on suitable
neighbors for TRACE can be found in Appendix B.4, where we conclude that the optimal neighbor
set should comprises all trajectories derived from the initial trajectory, τ0, by swapping two distinct
features: N(τ0) = {τ |∃i, j, i ̸= j, τ0[i] = τ [j], τ0[j] = τ [i]}.

Optimality of the Algorithms. While TRACE is capable of demonstrating exceptional performance
in the deletion metrics, it should be acknowledged that when employing meta-heuristic/heuristic al-
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Figure 2: (a) The comparison between TRACE-SA/Greedy, TRACE-GO and Complete Search (CS).
CS-Mo/CS-Le are the lower/upper bounds of TRACE-Mo/TRACE-Le, respectively. The blue, red
and green curves are the results of CS, TRACE-SA and TRACE-Greedy. Solid and dashed curves
are -Le and -Mo. The optimum TRACE-GO-Le and TRACE-GO-Mo lie in the cyan and lime color
areas, respectively, which are notably marginal. (b) Deletion results of the first 200 images from
the validation set of ILSVRC2012. In (i)(iii), patches are deleted following LeRF, and in (ii)(iv),
patches are deleted following MoRF. The y-axis of (i)(ii) is the output logits of the network, and the
y-axis of (iii)(iv) is the predicted probability. x-axis is the number of deleted patches.

gorithms, the resultant τ is not necessarily the global optimum. To validate the approximation to
the optimum, we undertake an empirical study to bound the deviation between TRACE-SA/TRACE-
Greedy and their global optimum. However, as a black-box optimization problem, the theoretical
global optimum of Equation (3) (denoted by TRACE-GO) is inaccessible. Exhaustively searching
for the global optimum is also impractical since |St| = t!. Therefore, instead of directly compar-
ing with TRACE-GO, we propose complete search (CS), which is proved to be the lower bound
of TRACE-GO. Formally, for k = 1, · · · , t, CS-Mo solves for an index set sk consisting of k
deletion features that minimizes the prediction f(x\sk

). Therefore, it is the lower bound of the
corresponding term of TRACE-Mo in Equation (3): ∀τ ∈ St,∀k ∈ {1, · · · , t}, f(xτ [:t−k]) ≥
minsk⊂{1,··· ,t},|sk|=k f(x\sk

). And the equality will not hold unless ∀k ∈ {1, · · · , t − 1}, the
optimizers s∗k satisfy s∗k ⊂ s∗k+1,. As a consequence, by summing up over k, we have

TRACE-(Greedy/SA)-Mo ≥ TRACE-GO-Mo ≥ CS-Mo (4)

Similar inequality holds for the -Le variant: TRACE-(Greedy/SA)-Le ≤ TRACE-GO-Le ≤ CS-Le.
Therefore, by squeezing TRACE-(Greedy/SA) and CS, we can then verify the near-optimality of the
algorithms (i.e., TRACE-(Greedy/SA) is close to the theoretical global optimum TRACE-GO).

5 EXPERIMENTS

In this section, we conduct experiments to 1) Validate TRACE’s optimality and the capability of
serving as the principled explanation; and 2) Use TRACE to assess the impact of different settings (as
discussed in Section 3) to address the OOD concern in deletion metric. We use a ResNet-18 model
(He et al., 2016) as the black box f for the demonstration. Other popular models such as AlexNet
(Krizhevsky et al., 2017), VGG-16 (Simonyan & Zisserman, 2014), GoogLeNet (Szegedy et al.,
2015), DenseNet-161 (Huang et al., 2017), and MobileNetV3 (Howard et al., 2019) are evaluated,
too. We adopt the pre-trained weights from torchvision. Experiments utilize the ImageNet-
1k (ILSVRC2012) dataset (Deng et al., 2009) with images resized to 224 × 224. For SA, we use
K = 5000 iterations, initial temperatures of T0 = 2 for -y and T0 = 0.1 for -p, and a cooling rate
of η = 0.999. Experiments are carried out on Intel(R) Core(TM) i9-9960X CPU @ 3.10GHz with
Quadro RTX 6000 GPUs.
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Table 1: The comparison among commonly studied DNNs on ILSVRC2012 with three different
reference values. The tested models are (i) ResNet-18, (ii) VGG-16, (iii) AlexNet, (iv) GoogLeNet,
(v) MobileNetV3, and (vi) DenseNet-161. Here we present the difference between AUCs of the
probabilities for LeRF and MoRF, so larger values are desired.

Ref. M. T-y T-p Grad GC IBA RISE EP EBP IG IxG

Zero

(i) 24.98 31.69 11.52 16.24 15.92 14.52 13.41 15.39 10.28 8.21
(ii) 25.80 31.25 14.03 16.28 18.77 17.07 15.63 16.36 13.71 10.86
(iii) 15.40 21.83 7.05 7.55 8.13 7.43 7.63 7.55 6.64 5.86
(iv) 23.70 28.13 11.31 14.31 14.06 12.53 11.98 13.67 10.29 8.72
(v) 27.55 33.86 8.15 16.78 13.06 10.0 11.08 10.74 8.49 6.20
(vi) 28.00 35.25 11.35 19.82 18.87 18.18 17.04 19.17 12.20 9.33

Mean

(i) 25.64 32.51 11.45 16.22 15.66 14.57 12.96 15.40 10.51 8.48
(ii) 26.66 32.64 14.09 17.00 19.06 17.63 15.73 16.58 13.83 10.77
(iii) 16.33 23.32 8.91 9.82 9.20 10.65 9.83 9.82 8.48 6.73
(iv) 24.02 29.17 11.63 14.49 14.14 12.70 11.85 13.89 10.63 9.06
(v) 27.25 34.26 8.25 17.07 13.64 10.82 11.69 11.45 8.36 5.99
(vi) 29.02 36.19 11.26 20.06 18.80 18.06 17.70 19.48 12.15 8.96

Blurring

(i) 27.34 33.84 10.93 17.38 16.41 16.01 14.98 16.24 10.04 7.57
(ii) 27.50 34.09 14.51 17.89 19.27 18.15 15.81 17.06 14.73 11.46
(iii) 19.55 26.78 8.90 9.81 9.20 10.65 10.00 9.81 8.47 6.73
(iv) 24.86 29.83 11.60 14.50 14.31 13.44 12.55 13.89 10.95 9.24
(v) 24.74 31.57 9.43 15.63 14.09 10.22 12.71 12.97 9.81 7.56
(vi) 29.69 36.87 10.93 19.20 18.11 17.95 17.28 18.63 11.55 8.07

5.1 THE OPTIMALITY OF TRACE

SA/Greedy vs. GO vs. CS. To validate the optimization through Greedy and SA achieves the
principled explanation of deletion metric, we demonstrate their closeness to CS, and thus squeeze
the possible range of TRACE-GO. We test both -Mo with MoRF and -Le with LeRF. Because of
the complexity of CS, we let t = 4 × 4 = 16 here. As shown in Figure 2 (a), TRACE-SA (red)
constantly outperforms TRACE-Greedy (green), suggesting better performance from meta-heuristic
algorithms. And the difference between TRACE-SA (red) and CS (blue) is almost negligible, result-
ing in extremely squeezed areas for TRACE-GO between them, as shown in the cyan and lime areas
(which are almost invisible). This suggests that TRACE-SA almost achieves the global optimum, and
is capable of serving as the principled explanation of the deletion metric. TRACE-Greedy can also
be used as the near-principled explanation when it’s acceptable to trade performance for efficiency.

The Optimality over Explanation Methods. Conventionally, we compare TRACE with existing
explanation methods, to demonstrate the deviation of existing explanation methods from the princi-
pled one. The results are demonstrated in Figure 2(ii). We present this comparison using TRACE-
SA-Le−Mo. And the resolution of both TRACE and the deletion metric is set to t = 7 × 7 = 49.
We elaborate on these choices in the next section, where we benchmark all settings of the deletion
metric with TRACE. Our observation highlights that existing attribution methods significantly under-
perform compared to the principled explanation provided by TRACE. Prior to TRACE’s introduction,
one might speculate that IBA (purple) is approaching the best AUCs given its superiority to other
explanation methods. However, as shown in Figure 2(b) (i)(iii), TRACE reveals that the model per-
formances can even increase substantially when unimportant features are deleted. In Figure 2(b), we
use zero references for the demonstration. Further, we show AUCs across different reference values
and black-box models in Table 1, where probability is used as the measurement. Same experiments
for the logit can be found in Appendix G.

5.2 BENCHMARKING DELETION METRICS WITH TRACE

Probability vs. Logit. Comparisons between TRACE-p and TRACE-y in Figure 2(b) and Table 1
suggests that the principled explanations w.r.t. probability and logit align compatibly. For in-
stance, in Figure 2(b):(iii)-(iv) and Table 1 where the evaluation is based on probabilities, though
both TRACE-p and TRACE-y surpass all attribution methods, their discrepancy is non-negligible.
In other words, TRACE-p (as the principled explanation for deletion metric with probabilities) per-
forms better than TRACE-y in the evaluation using probabilities. Similar results are observed in
Figure 2(b):(i)-(ii) when evaluating with logits. As a result, in practice, one should be aware of the
desired goal (probability or logit) of the evaluation and select correspondingly.

Reference Values. Recall that in Figure 1, where features are defined as pixels, different reference
types can affect the deletion test scores of explanation methods that focus on discrete attributions sig-
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Figure 3: (a) The demonstration of the converted heatmaps of the image of a “crane” from the
validation set of ILSVRC2012. A ResNet-18 predicts it correctly with the confidence ≈ 100.00%.
The smooth factor α = 2. We present results TRACE-SA-Le−Mo (top), TRACE-SA-Le (middle)
and TRACE-SA-Mo (bottom) respectively. They are implemented w.r.t. the probability. And the we
set t = 4 × 4 (left), t = 7 × 7 (middle) and t = 14 × 14 (right). Here t is the number of square
patches of pixels for one image. (b) The comparison of the TRACE-SA-Le−Mo (red), TRACE-SA-
Le (blue) and TRACE-SA-Mo (green), TRACE-Greedy-Le (yellow) and TRACE-Greedy-Mo (cyan)
under the LeRF (solid) and MoRF (dashed) tests. All explanation methods are also included, but
plotted indistinguishably just for the reference.

nificantly. However, as shown in Table 1, it can be found that the principled explanation TRACE (i.e.,
the highest-performing explanation) has consistent scores across different reference types.

Patch Sizes. In order to explain why the reference values no longer have that great influence, we
explore how pixel sizes affect the OOD issue. From the heatmap of a crane image in Figure 3(a), we
can observe that the principled explanation becomes more noisy as the patch becomes smaller (as t
increases from left to right), suggesting potentially more severe OOD problem.

For an impartial and rigorous verification, we execute a randomized deletion test in Figure 4, where
different curves represent different patch sizes. Zero reference (left figure in Figure 4) deletes fea-
tures completely, at the cost of pronounced OOD issue. And since patches are deleted completely at
random, when the same amount of features are deleted, the difference in prediction decays among
patch sizes is caused almost completely by the different OOD levels. And note Figure 4 reveals
that smaller patches lead to a quicker decline in prediction quality. This suggests that using larger
patches effectively diminish the OOD issue.

In contrast, blurring reference (middle figure in Figure 4) preserves the distribution, at the cost of not
deleting the feature sufficiently. Thus although the decay of model prediction is slower, it might be
caused by the information of the lingering features that should have been deleted instead of a mild
OOD issue. Interestingly, as patch sizes increase, the difference between zero reference and blurring
reference decreases (right figure in Figure 4). Recall that zero reference firmly deletes the features
completely but compromising on the OOD issue, while blurring reference firmly solves the OOD
issue but compromising on the feature deletion. Therefore, both desiderata can be attained when
they behave the same – features are deleted, and the OOD issue is mitigated. This also explains the
phenomenon in Table 1 where variances across different reference types are almost negligible.

MoRF vs. LeRF. MoRF defines important features as those who affect the model prediction the most
when deleted. This, although seems symmetric to LeRF, is problematic. This is because the goal of
MoRF is consistent with the OOD problem, where the deletion of a small amount of features can
bring down the model prediction significantly. We demonstrate TRACE-Le−Mo, TRACE-Le and
TRACE-Mo with different patch sizes in Figure 3(a) using heatmaps. Recall that smaller patches
are likely to exacerbate the OOD issue, it can be found that the extent to which the methods are
affected by OOD is ranked as TRACE-Le−Mo<TRACE-Le≪TRACE-Mo. We further verify this
by a cross-validation between the principled explanations and the associated tests in Figure 3(b),
where TRACE-(SA/Greedy)-Le is tested with MoRF and TRACE-(SA/Greedy)-Mo is tested with
LeRF. As deduced, TRACE-Mo performs extremely poorly in the LeRF test, indicating that features
recognized as “unimportant” by TRACE-Mo (i.e. deleted in the end) are not really unimportant.
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Figure 4: The random deletion test with (a) Zero reference (b) Gaussian blurring reference (c)
Difference between (a)(b). 6 different patch sizes are tested.

Because when they are deleted first, the prediction drops fast (green, solid), too. On the other
hand, those features that deleted in the end by TRACE-Le (i.e. important) do cause the prediction
to drop fast when they are deleted first (blur, dashed). This result impartially benchmarks that
LeRF should be the preferred criterion, while MoRF should be considered with great care. As the
combined version, TRACE-Le−Mo compromises slightly under each criterion, but demonstrates
perfect consistency. Therefore, in practice, when choosing the criterion in deletion metrics, we
suggest that LeRF−MoRF>LeRF≫MoRF. As a complement, It is also interesting to notice that as
t decreases (the patch size increases) to t = 16, even TRACE-Mo is no longer affected. This is
consistently supports the previous discussion of the patch size and the OOD issue.

TRACE-Greedy as the Baseline. The difference between TRACE-SA and TRACE-Greedy can be
small according to Figure 3 (b). This illustrates that when associating with the MoRF and LeRF
tests individually, the greedy scheme is an acceptable compromise to the meta-heuristic algorithms.
As discussed above, both TRACE-(SA/Greedy)-Le can outperform all attribution methods in the
LeRF−MoRF by a significant margin. And hence TRACE-Greedy can be used as a compromise
between performance and efficiency. Furthermore, TRACE-Greedy-Le can also be used as an initial-
ization of TRACE-SA to improve the speed of convergence. We provide assessment to the trade-off
between performance and efficiency in Appendix F.

6 CONCLUSIONS

In this paper, we study the deletion/insertion metric, the most popular metric for the evaluation of
attribution methods. We propose an explanation-method-agnostic framework TRACE that solves for
the near-optimal deletion trajectories that approach the theoretical global minimum closely. In doing
so, TRACE not only emerges as the principled explanation for the deletion metric, but also provides
a standardized lens to inspect and benchmark all kinds of variants of the deletion metric. Our rigor-
ous study offers several insights into the effective application of the deletion metric: (i) The image
features should be deleted as superpixel patches instead of pixels. (ii) While MoRF and LeRF tests
seem symmetric, the comparison between TRACE-Mo and TRACE-Le reveals that LeRF is a pre-
ferred criterion than MoRF. And LeRF−MoRF retains both sides to characterize important features.
(iii) It is verified that, unlike pixel-wise deletion, the reference values’ influence can be almost neg-
ligible when the features are deleted as superpixels. (iv) We also emphasize that using probabilities
and logits yield distinct evaluation results, and thus the goal of the test should be explicit.

Furthermore, while TRACE is proposed as the intrinsic property of the deletion metric to study what
such metrics are expecting, they are capable of mapping back to equivalent attributions that are
unparalleled in the deletion metric – When the deletion metric is utilized, TRACE is the one. This
phenomenon should be a warning that we should rethink how we develop and evaluate explanation
methods. Since every time a metric is employed, there’s a potential explanation-method-agnostic
principled explanation for that metric. And the question remains, “is that the desired explanation?”

As we conclude, this work also leaves many interesting topics. For example, the deletion trajectories
are closely related to path methods, where path methods use the incremental/decayed values as the
attributions while TRACE considers the deletion/insertion order. Such differences might position
them as distinct concepts, even with the same deletion trajectories. The exploration thus continues.
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