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Abstract
Variational data assimilation estimates the dynam-
ical system states by minimizing a cost function
that fits the numerical models with the obser-
vational data. Although four-dimensional vari-
ational assimilation (4D-Var) is widely used, it
faces high computational costs in complex non-
linear systems and depends on imperfect state-
observation mappings. Deep learning (DL) offers
more expressive approximators, while integrating
DL models into 4D-Var is challenging due to their
nonlinearities and lack of theoretical guarantees
in assimilation results. In this paper, we propose
Tensor-Var, a novel framework that integrates ker-
nel conditional mean embedding (CME) with 4D-
Var to linearize nonlinear dynamics, achieving
convex optimization in a learned feature space.
Moreover, our method provides a new perspec-
tive for solving 4D-Var in a linear way, offering
theoretical guarantees of consistent assimilation
results between the original and feature spaces.
To handle large-scale problems, we propose a
method to learn deep features (DFs) using neural
networks within the Tensor-Var framework. Ex-
periments on chaotic systems and global weather
prediction with real-time observations show that
Tensor-Var outperforms conventional and DL hy-
brid 4D-Var baselines in accuracy while achieving
a 10- to 20-fold speed improvement.

1. Introduction
Forecasting of dynamical systems is an initial value problem
of practical significance. Many real-world systems, such as
the ocean and atmosphere, are chaotic, which means that
minor errors in current estimations in computational models
can lead to rapid divergence and substantial forecast errors
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Figure 1. Demonstration of Tensor-Var: A DA system with non-
linear dynamical model, observation model, and non-convex cost
function (bottom) can be represented linearly in feature space, re-
sulting in a convex cost function (top).

(Coveney, 2024). In this regard, data assimilation (DA)
(Law et al., 2015; Asch et al., 2016) uses observation data
to continuously calibrate models, improving forecast accu-
racy. Various DA methods have been proposed to deal with
different types of observation data and system dynamics.
Among these methods, 4D variational (4D-Var) data assimi-
lation has been considered cutting-edge and used effectively
in real-world applications such as numerical weather pre-
diction (NWP) (Browne et al., 2019; Milan et al., 2020).
4D-Var minimizes a quadratic cost function that finds the op-
timal match between system states and observations (Asch
et al., 2016). While effective in NWP, there are two criti-
cal limitations for their applications: (1) Numerical models
for complex, nonlinear systems are often inefficient for real-
time assimilation and forecasting. (2) Observations are often
noisy, incomplete representations of the states, or even with-
out a known state-observation mapping, posing challenges
in utilizing the observations.

Efforts have been made to integrate DL models to learn an
observation (or inverse) model (Frerix et al., 2021; Wang
et al., 2022; Liang et al., 2023), addressing the imperfect
knowledge of observation models in 4D-Var. While these
approaches improve observation utilization, they remain
constrained by the complexities of numerical models and
learned observation mappings, whereas our approach simpli-
fies them by finding their linear representations. To improve
computation efficiency, state-of-the-art DL models (Vaswani
et al., 2017; Chen et al., 2018; Li et al., 2020; Kovachki et al.,
2023; Cheng et al., 2025; He et al., 2025) are capable of con-

1



Tensor-Var: Efficient Four-Dimensional Variational Data Assimilation

structing highly nonlinear mappings to surrogate dynamical
systems and achieve notable successes in NWP (Bi et al.,
2022; Lam et al., 2022; Kurth et al., 2023; Chen et al., 2023;
Conti, 2024; Vaughan et al., 2024). However, integrating
such models into optimization-based tasks, such as 4D-Var,
remains challenging due to their inherent non-linearities
(Janner et al., 2021; Bocquet, 2023; Bocquet et al., 2024).
Using auto-differentiation (AD) of DL models in 4D-Var
can reduce computational costs and has shown success in
simple examples (Geer, 2021; Dong et al., 2022; Cheng
et al., 2024). However, concerns remain regarding the ac-
curacy of AD-derived derivatives, and their computational
complexity increases with the model scale (Baydin et al.,
2018). Recently, (Xiao et al., 2024) applied AD of a pre-
trained weather forecasting model in 4D-Var, forming a self-
contained DA framework for Global NWP. This approach
demonstrates promising performance in large-scale settings,
but relies on a well-designed pre-trained model and may
not generalize easily to other domains. Latent DA (Peyron
et al., 2021; Fablet et al., 2021; Melinc & Zaplotnik, 2023;
Cheng et al., 2023a; Fablet et al., 2023) addresses these
challenges by performing DA in a learned low-dimensional
latent space. Although efficient, these approaches lack theo-
retical guarantees for the consistency of 4D-Var solutions
between the latent and original spaces.

In this paper, we introduce Tensor-Var, a framework that
linearizes nonlinear dynamics via kernel embedding, en-
abling convex optimization in feature space. Our approach
addresses efficiency and non-convex challenges in existing
variational DA methods. To our knowledge, Tensor-Var is
the first attempt to identify the linear feature space for DA
systems with a convex cost function, enabling an efficient
solution to the 4D-Var problem. To handle incomplete ob-
servations, we derive an inverse observation operator that in-
corporates historical observations to infer the system states.
Moreover, we provide a theoretical analysis that demon-
strates the existence of a linear representation of the system
under kernel features and the consistency of the 4D-Var
solution across original and feature spaces. A key challenge
in extending the kernel embedding to practical variational
DA is scalability. To overcome this, our approach learns
adaptive deep features (DFs) that map data into a fixed-
dimensional feature space, reducing computational com-
plexities. Our experiments on two chaotic systems and two
global NWP applications show that Tensor-Var outperforms
both conventional and ML-hybrid variational DA baselines
in accuracy and computational efficiency, demonstrating the
advantages of linearizing DA systems.

2. Preliminary
Notation. Let S and O be random variables representing the
state and observation, respectively, with their realizations s

and o taking values in the spaces S ⊂ Rns and O ⊂ Rno ,
where ns and no denote the dimensions of these spaces.
The distribution of S is denoted by PS , the joint distribution
over (S,O) by PSO, and the conditional distribution of S
given O by PS|O. A sequence of states over time steps from
1 to t is denoted by s1:t = (s1, . . . , st).

2.1. 4D variational data assimilation

Consider a dynamical system in discrete-time comprising a
dynamical model and observation model:

st = F (st−1) + ϵst , and ot = G(st) + ϵot , (1)

in which F is the dynamical model that advances the state
st to st+1, and G is the observation model that maps the
st to the observation ot. The noise components ϵst , ϵ

o
t such

that ϵst ∼ N (0, Q) and ϵot ∼ N (0, R). The objective of
4D-variational DA is to minimize a cost function:

J(s0:T ) = ∥s0 − sb0∥2B−1 +

T∑
t=0

∥ot −G(st)∥2R−1

+

T∑
t=1

∥st − F (st−1)∥2Q−1 ,

(2)

in which sb0 is a prior guess for the initial state s0, with B
as the background covariance matrix representing the un-
certainty, i.e., s0 ∼ N (sb0, B). The second and third terms
account for errors in the observation and dynamical models
in (1). Solving the minimization (2) in a high-dimensional
nonlinear dynamical system with incomplete observations
can be challenging. In this paper, we aim to characterize the
nonlinear dynamical and observation models in (1) using lin-
ear models, allowing efficient optimization and forecasting.
In this sense, we use the CME that transforms the nonlinear
system (2) into a linear system in a feature space.

2.2. Kernel conditional mean embedding

A Reproducing Kernel Hilbert Space (RKHS) HS on S
with kernel kS is a Hilbert space, satisfying the reproduc-
ing property (Schölkopf & Smola, 2002). Let kS and kO
be positive-definite (pd) kernels on S and O with RKHS
HS and HO. We denote the kernel-induced features as
ϕO(ot) = kO(ot, ·) and ϕS(st) = kS(st, ·), referring the
HS and HO as feature spaces respectively.

Kernel mean embedding of distribution PS is defined as the
expectation of the feature ϕS(S) : µPS

= ES [ϕS(S)] ∈ HS

and always exists for bounded kernels (Fukumizu et al.,
2011). With the reproducing property of RKHS, ex-
pectations of the function f can easily be computed as
ES(f(S)) = ⟨µPS

, f⟩HS
for any f ∈ HS . For charac-

teristic kernels, these embeddings are injective, uniquely
determining the probability distribution (Berlinet & Thomas-
Agnan, 2011). In addition to mean embedding, we will need
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the (uncentered) cross-covariance operator (Baker, 1973)
CSO : HO → HS , defined as CSO = ESO[ϕS(S)⊗ϕO(O)],
where ⊗ denotes the tensor product. This operator always
exists for bounded kernels and can also be viewed as the
embedding of the joint distribution PSO, represented as
an element in the tensor product space HS ⊗ HO. Simi-
larly, the covariance operator CSS : HS → HS is defined as
CSS = E

[
ϕS(s)⊗ ϕS(s)

]
. These operators extend the con-

cepts of covariance matrices from finite-dimensional spaces
to infinite kernel feature spaces.

Conditional mean embedding. To represent the dynami-
cal and observation models that arise in (1), the conditional
mean embedding (CME) plays an important role. For a
conditional distribution PS|o of S. The CME of PS|O is
defined as

µPS|o = ES|o[ϕS(S)|O = o] for any o ∈ O, (3)

requiring an operator CS|O : HO → HS such that
(1) µPS|o = CS|OϕO(o), and (2) ⟨f, µPS|o⟩HS

=
ES|o[f(S)|O = o] for any f ∈ HS . Under standard as-
sumptions1, the CME operator can be expressed as CS|O =

CSOC−1
OO (Fukumizu et al., 2004; Song et al., 2009). Given

i.i.d samples {(si, oi)}ni=1 ∼ PSO, an empirical estimate of
the CME operator can be obtained as

ĈS|O = ĈSO(ĈOO + λI)−1 = ΦS(KO + λI)−1ΦT
O, (4)

where λ is the regularization parameter, KO is the Gram ma-
trix [KO]ij = kO(oi, oj), and ΦS = [ϕS(s1), ..., ϕS(sn)]
and ΦO = [ϕO(o1), ..., ϕO(on)] are the feature matrices
stacked by columns.

3. Method
In this section, we introduce our Tensor-Var approach,
which embeds 4D-Var into the kernel feature space and
provides a theoretical analysis demonstrating the existence
of linear dynamics with consistent convergence between the
original and feature space solutions. To effectively address
incomplete observations, we propose an inverse observation
operator that leverages consecutive historical observations.
Additionally, we propose a method to learn adaptive deep
features (DFs) using neural networks within the Tensor-Var
framework, improving real-world applicability. Finally, we
analyze optimization performance of Tensor-Var compared
to existing 4D-Var based methods, demonstrating its effi-
ciency.

3.1. CME of 4D-Var in RKHS

Having introduced the necessary tools for manipulating
kernel embeddings, we now focus on learning the linearized

1(1) CSS is injective, and (2) ES|o[f(S)|O = o] ∈ HS for any
f ∈ HS and o ∈ O.

models of the system in (1).

CME of dynamical model. Let S+ be the one-step for-
ward of S. Given the dynamical model F in (1) and the ker-
nel feature ϕS , the CME operator CS+|S can be recognized
as the best linear approximation in the feature space HS that
minimizes the regression residual E

[
∥ϕS(S

+)−CϕS(S)∥2
]
.

Given finite data {(s+i , si)}Ni=1 sliced from the system tra-
jectory s1:N+1, we can obtain the empirical estimate ĈS+|S
as (4) with theoretical support of convergence (Fukumizu
et al., 2013; Klus et al., 2020). The CME operator ĈS+|S
effectively characterizes the system dynamics as a linear
model and simplifies the 4D-Var as a convex optimization
in the feature space HS .

CME of inverse observation model. Analogous to the
dynamical model, the observation model G in (1) can be
linearized by the CME operator CO|S , which has been used
as observation models for filtering algorithms (Song et al.,
2009; Fukumizu et al., 2013; Kanagawa et al., 2016; Geb-
hardt et al., 2019). Most approaches assume a complete
observation setting, where the observations can fully deter-
mine the state. In practice, observations are often incom-
plete representations of states, with ns > no, leading to
underdetermined systems (Liu et al., 2022). In such sys-
tems, the lack of a bijective mapping between the state and
observation spaces means that observations cannot uniquely
determine the system’s state. As a result, the optimization
problem in 4D-Var may produce suboptimal solutions (Asch
et al., 2016). It is theoretically challenging to distinguish any
two mixtures of states based on a single-step observation
if ns > no. By introducing the past m consecutive obser-
vations as history ht = ot−m−1:t−1 ∈ Rm×no , the joint
information from history and current observation is enough
to estimate the system state. The choice of history length
is critical: Too short lacks sufficient information, while too
long is inefficient. Empirically, we performed an ablation
study to assess the effects of history length, as detailed in
the Subsection 4.4.

To effectively incorporate history, we introduce another
kernel feature ϕH with an induced RKHS HH . The space
HOH = HO ⊗ HH is called a tensor product RKHS on
O×H with associated kernel feature ϕOH(o, h) = ϕO(o)⊗
ϕH(h). As shown in (Song et al., 2013; Muandet et al.,
2017), the CME operator can be extended to high-order
features, allowing us to embed the joint distributions over st,
ot, and ht into the feature space (Song et al., 2009; 2013).
The tensor product feature ϕOH captures the high-order
dependencies between observations and the history. The
CME operator CS|OH is the linear inverse observation model
that minimizes the state estimation error given observations
and history. Given dataset {(si, oi, hi)}Ni=1, the empirical
counterpart ĈS|OH = ĈSOH(Ĉ(OH)(OH) + λI)−1 follows
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Table 1. Comparison of Tensor-Var with other algorithms. Here, ϵ is the error threshold and T is the length of the assimilation window.

Space Transformation Non-Space Transformation

Methods Tensor-Var Latent 4D-Var 4D-Var (w/o or w/ Adjoint) Frerix et al. (2021)

Convexity ✓ ✗ ✗ ✗
Convergence Rate Linear Sublinear Sublinear Sublinear
Iteration Time O (log (1/ϵ)) O(1/ϵ2) O

(
1/ϵ2

)
O

(
1/ϵ2

)
Computational
Complexity O (Tds log (1/ϵ)) O

(
(Tds)

2/ϵ2
) w/o Adjoint: O

(
(Tns)

2/ϵ2
)

w/ Adjoint: O
(
Tns/ϵ

2
) O

(
(Tns)

2/ϵ2
)

the same way as (4). The ĈSOH is the empirical high order
tensor, e.g., ĈSOH =

∑N
i=1 ϕS(si)⊗ ϕO(oi)⊗ ϕH(hi).

Feature space 4D-Var. Using the kernel features, we lin-
earize the original nonlinear dynamics and observations in
the feature space HS . This transformation enables us to
reformulate the 4D-Var optimization objective (2) into the
feature space and optimize over a sequence of elements z0:T
in feature space HS :

min
z0:T

∥z0 − ϕS(s
b
0)∥2B−1 +

T−1∑
t=0

∥zt+1 − CS+|Szt∥2Q−1

+

T∑
t=0

∥zt − CS|OHϕOH(ot, ht)∥2R−1 ,

(5)

where the B, R, and Q are the covariance operators for the
background error, observation error, and model error in the
feature space. In this work, we estimate the three operators
as the empirical error covariance matrices from the training
dataset (the explicit estimation can be found in Appendix
D.1). We present the pseudo-algorithms in Appendix D.2,
as shown in Algorithms 2 and 3.

3.2. Learning the deep features within Tensor-Var

Using the pre-determined kernel features has theoreti-
cal guarantees. However, it maps data into an infinite-
dimensional feature space, e.g., radial basis function, mak-
ing estimation challenging due to polynomial scaling with
sample size. On the other hand, these feature maps strug-
gle with irregular or high-dimensional data, often resulting
in poor performance. Learned deep features (DFs) have
emerged as alternatives to generic kernel features (Xu et al.,
2022; Kostic et al., 2023; Shimizu et al., 2024), projecting
the data into a fixed-dimensional feature space. To improve
scalability, we integrate DFs with the Tensor-Var framework
and validate their effectiveness through experiments.

Learning the state feature. Recall that the CME oper-
ator CS+|S is the best linear approximation of system dy-
namics in feature space. We propose to jointly learn the

feature ϕθS : Rns → Rds with ĈS+|S by minimizing the
loss L(θS) = minC∈Rds×ds L(C, θS) = E

[
∥ϕθS (s

+) −
ĈS+|SϕθS (s)∥2

]
. Predictions using ĈS+|S are in the fea-

ture space; however, for DA problems, reconstruction to the
original state space is required, which is known as the preim-
age problem (Honeine & Richard, 2011). Here, we learn an
inverse feature ϕ†

θ′
S

to solve the preimage problem during
training, avoiding repeated optimization whenever comput-
ing preimages. The final training loss is the combination of
the two terms as

L(θS , θ
′
S) = E

[
∥ϕθS (s

+)− ĈS+|SϕθS (s)∥2
]

+ wE
[
∥s− ϕ†

θ′
S

(
ϕθS (s)

)
∥2
]
,

where w ∈ (0, 1] is a weighting coefficient, and ĈS+|S is
computed as the CME over training batches. Note that using
DFs corresponds to a linear kernel in the learned feature
space, where kθS (si, sj) = ϕθS (si)

TϕθS (sj).

Learning the observation and history features. Sim-
ilar to learning the state feature, CS|OH is the minimizer
of the regression problem mapping the tensor product of
observation and history features to the state feature. In this
phase, we learn the DFs for observation ϕθO : Rno → Rdo ,
history ϕθH : Rnh → Rdh , and CS|OH jointly with the loss
function:

L(θO, θH) = E
[
∥ϕθS (s)− ĈS|OH [ϕθO (o)⊗ ϕθH (h)]∥2

]
,

where ĈS|OH is computed over training batches in parallel,
with the ⊗ denoting the Kronecker product in practice.

Improved 4D-Var Optimization. Tensor-Var improves
4D-Var optimization by transforming the nonlinear prob-
lem into a linear convex optimization, enabling global op-
timality and faster convergence in feature space. Unlike
conventional 4D-Var, which relies on costly Hessian compu-
tations and suffers from sublinear convergence, Tensor-Var
achieves linear convergence through linearized dynamics
zt+1 = CS+|Szt. Table 1 presents a theoretical comparison
of optimization properties between Tensor-Var and exist-
ing 4D-Var-based methods, including ML-hybrid 4D-Var
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(Frerix et al., 2021), latent 4D-Var (Cheng et al., 2024), and
traditional 4D-Var with or without an adjoint model. As
shown in Table 1, due to its linear dynamics, its iteration
time scales as O(log(1/ϵ)) with error threshold ϵ, which is
more efficient than O(1/ϵ2) the complexity of most 4D-Var
algorithms, as supported by empirical results in Section 4.1.
Notably, there is an additional error source from the feature
mapping, which is not explicitly discussed here; a more
in-depth analysis can be found in Appendix B.

3.3. Theoretical analysis.

In Section 3.1, we discuss how the dynamical system F in
(1) can be embedded as a linear system in the feature space.
However, two important questions remain: 1) Does such
a linear dynamical system exist? 2) Are the solutions of
the original and feature space 4D-Var consistent? In this
section, we provide affirmative answers to both questions
using the theory of Kazantzis-Kravaris/Luenberger (KKL)
observers (Andrieu & Praly, 2006). We give a road map of
the theoretical analysis with the main results and refer the
reader to Appendix C for details.

Under the mild assumptions that (1) the dynamical model
F is first-order differentiable and (2) the kernel features are
all first-order differentiable, the kernel feature ϕS satisfies
the necessary conditions as the state transformation in the
KKL observer framework. This transformation enables
us to represent the nonlinear dynamical system as a linear
system in a higher-dimensional feature space, as established
by KKL observer theory (Tran & Bernard, 2023). This
result confirms the existence of such a linear system, thus
answering question 1). The KKL observer theory provides a
theoretical foundation for our approach, bridging nonlinear
dynamics and linear 4D-Var methods (Andrieu & Praly,
2006). A detailed derivation proving that ϕS satisfies the
conditions as the state transformation of the KKL observer
can be found in Appendix C.

We consider the nonlinear system in (1) within a compact
state space and assume that the cost function in 2 has a
unique solution. Given that ϕS is a state transformation in
the KKL observer, the system in the original state space can
be represented linearly in the feature space. The solution
in the feature space has a consistent convergence to the
unique solution of the original 4D-Var problem, minimizing
with respect to the cost function 5, answering question 2).
A formal theorem with detailed proofs can be found in
Theorem C.9 in Appendix C.2.

4. Experiment
To evaluate our proposed method, the comparison is con-
ducted on a series of benchmark domains, representing the
optimization problem (2) of increasing complexity, includ-

ing (1) Lorenz 96 system (Lorenz, 1996) with ns = 40 and
80. (2) Kuramoto-Sivashinsky (KS) equation: a fourth-order
nonlinear PDE system (Papageorgiou & Smyrlis, 1991) with
ns = 128 and 256, representing different spatial resolution.
For both systems, we use a nonlinear observation model
o = G(s) = 5arctan(sπ/10) + ϵ, where ϵ is white noise
with a standard deviation of 0.01 times the standard devia-
tion of the state variable distribution, and only 20% states
can be observed. To assess the practical applicability of
Tensor-Var, we evaluate its performance in global medium-
range weather forecasting (i.e. 3-5 days) by using a subset
of the ECMWF Reanalysis v5 (ERA5) dataset for training
and testing, with further details in Subsection 4.2 and (Rasp
et al., 2024). Moreover, we incorporate observation loca-
tions extracted from the real-time weather satellite track
into the NWP experiment with higher spatial-resolution in
Subsection 4.3.

Baselines. We compare our method against several base-
line approaches: (1) 3D-Var with a known observation
model, (2) a model-based 4D-Var algorithm that assumes
known dynamical and observation models, (3) a learned in-
verse observation model with the known dynamical model,
as proposed by (Frerix et al., 2021). In the two NWP prob-
lems, we include another three baselines: Latent 3D-Var
and Latent 4D-Var (Cheng et al., 2024), which perform
variational data assimilation in a latent space learned via
an autoencoder, with Latent 4D-Var also modeling latent-
space dynamics; and Fengwu 4D-Var (Xiao et al., 2024),
an AI-embedded 4D-Var framework that integrates an ad-
vanced neural weather forecasting model into the DA pro-
cess. These competitive baselines cover both operational
Var-DA and ML-hybrid Var-DA methods.

4.1. Evaluation and results.

In each experiment, we measure the quality of assimilation
using the Normalized Root Mean Square Error (NRMSE)√

1
T

∑T
t=0 ∥ŝt − st∥2/(smax − smin) over the assimilation

window, where smax, smin are the maximum and minimum
state values in the training dataset. These results and the
average evaluation time for each algorithm are reported in
Table 2. All metrics are evaluated 20 times with different
initial conditions, reporting the mean and standard devia-
tion. For Tensor-Var, the history length m is selected using
a cross-validation approach as an ablation study in Subsec-
tion 4.4, and the objective function in the feature space is
minimized using quadratic programming, implemented via
CVXPY (Diamond & Boyd, 2016). The baselines use the
L-BFGS method (Nocedal & Wright, 2006) with 10 his-
tory vectors for the Hessian approximation. For 4D-Var
baselines, we consider two cases (with and without adjoint
models). The background state sb is set to the mean state of
the training set.
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Table 2. Comparison of DA performances. All baseline methods use the strong-constraint 4D-Var objective, while our approach uses
the weak-constraint 4D-Var objective. Evaluation times and iterations are reported as each assimilation window’s mean and standard
deviation. Our method consistently outperforms the baselines across all benchmark domains.

Domain Algorithm NRMSE (%) Evaluation time (10−2s) Iteration time
3D-Var 14.17± 0.93 12.59±0.39 13± 2

Lorenz 96 4D-Var 12.27± 1.41 210.52± 3.87 17± 6
ns = 40 4D-Var by Adjoint 12.18± 1.46 33.78± 2.11 16± 4
no = 8 Frerix et al. (2021) 9.89± 1.63 167.43± 1.33 11± 3

Ours 8.32± 0.87 12.51± 1.97 8± 2
3D-Var 15.19± 1.09 19.38± 0.37 14± 2

Lorenz 96 4D-Var 12.38± 1.11 322.21± 5.73 22± 8
ns = 80 4D-Var by Adjoint 12.44± 2.55 48.07± 2.59 22± 8
no = 16 Frerix et al. (2021) 10.79± 0.57 286.11± 2.43 14± 2

Ours 9.04± 1.32 21.09± 0.79 9± 1
3D-Var 17.64± 1.27 16.48± 1.17 13± 0

Kuramoto-Sivashinsky 4D-Var 15.46± 1.07 94.83± 3.89 77± 4
ns = 128 4D-Var by Adjoint 15.43± 0.87 22.14± 4.01 72± 4
no = 32 Frerix et al. (2021) 10.25± 1.34 63.28± 1.91 28± 1

Ours 9.69± 1.56 19.58± 1.23 18± 2
3D-Var 16.66± 0.69 18.81± 0.92 15± 1

Kuramoto-Sivashinsky 4D-Var 10.67± 0.62 99.68± 2.35 83± 3
ns = 256 4D-Var by Adjoint 10.23± 0.21 25.77± 2.13 81± 3
no = 64 Frerix et al. (2021) 8.87± 0.55 71.39± 1.23 31± 2

Ours 4.31± 0.19 21.37± 1.36 23± 3

Figure 2. Comparison of distribution of NRMSE (%) across different atmospheric variables (z500, t850, q700, u850, v850) for Latent
3D-Var, Latent 4D-Var, Fengwu 4D-Var, and Tensor-Var. The rightmost bar plot shows evaluation times and error bars indicate the
standard deviation for evaluation time.

As shown in Table 2, our method consistently outperforms
the other baseline methods in all metrics. In all four tasks,
Tensor-Var achieves the lowest mean and standard deviation
of NRMSE for assimilation accuracy, demonstrating strong
generalization from the Lorenz-96 systems to the more com-
plex KS systems. The better performances are attributed to
the linearization of the dynamics and the history-augmented
inverse observation operator, which makes the 4D-Var op-
timization convex with more reliable convergence to the
global optimum in the feature space. The larger NRMSE
errors observed in the model-based 3D-Var and 4D-Var
methods are due to the fact that incomplete observations
lead to uncontrolled errors in the unobserved state dimen-
sions. Although the ML-hybrid 4D-Var method (Frerix et al.,
2021) employs a learned inverse observation model, it strug-
gles with generalization due to the incomplete observations,
leading to poor performance on test data. By incorporating
historical information, our approach effectively controls es-
timation errors in the unobserved state dimensions. This

improvement is demonstrated in Figures 7 and 8 in Ap-
pendix E.1.2, which qualitatively compares the assimilation
performance in the Lorenz-96 and KS systems.

In terms of computational efficiency, the linear structure and
convexity of the Tensor-Var enable a linear optimization con-
vergence rate and much lower computational complexity, as
shown in Table 1. Our results confirm these improvements
by showing lower iteration times and overall evaluation
times compared to other baselines. Moreover, the computa-
tional cost of feature mapping is negligible relative to the
4D-Var optimization, and the lowest NRMSE validates con-
sistency of the optimization across both the original and
feature spaces.

4.2. Global NWP

Next, we consider a global NWP problem. The European
Centre for Medium-Range Weather Forecasts (ECMWF)
Atmospheric Reanalysis (ERA5) dataset (Hersbach et al.,
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Figure 3. Comparison of assimilation NRMSE (%) over a 7-day horizon for five atmospheric variables from Latent 3D-Var, Latent 4D-Var,
Fengwu 4D-Var, and Tensor-Var. Each time-step represents a 6-hour interval.

2020) provides the best estimate of the dynamics of the
atmosphere covering the period from 1940 to present. The
500hPa geopotential, 850 hPa temperature, 700 hPa humid-
ity, and 850 hPa wind speed (meridional and zonal direc-
tions) at 64×32 resolution are considered here. The data
is sourced from the WeatherBench2 repository (Rasp et al.,
2024). Observations are sampled randomly from the grid
with a 15% spatial coverage and with additive noise (0.01
times the standard deviation of the state variable) (see Figure
9). Latent dimensions of the two baseline methods are set to
match the feature dimension ds in our approach. The evalu-
ation metric is the area-weighting RMSE over grid points
(see more details in Appendix E.3). We trained all models
in ERA5 data from 1979-01-01 to 2016-01-01 and tested
on data post-2018, with a qualitative evaluation shown for
2018-01-01 00:00 in Figure 9.

Figure 2 (left 1-5) shows the distributions of NRMSE (%)
across different atmospheric variables (z500, t850, q700,
u850, v850) for Latent 3D-, 4D-Var, and Tensor-Var, eval-
uated on a test data set consisting of two years of data
from 2018-01-01 00:00 to 2020-01-01 00:00. Our approach
consistently achieves the lowest mean and standard devia-
tion of NRMSE for all variables, demonstrating improved
performance in both assimilation accuracy and robustness.
The latent spaces of 3D- and 4D-Var are learned by the
autoencoder purely based on the reconstruction loss with-
out considering the system dynamics. This weakens the
forecasting abilities of the dynamical systems, introducing
extra errors in the 4D-Var optimization compared to the 3D-
Var optimization. In contrast, our approach jointly learns
feature space representation and linear system dynamics,
resulting in more accurate forecasting and improved 4D-Var
performances. The rightmost barplot in Figure 2 shows
the evaluation times on an Nvidia RTX-4090 GPU. Tensor-
Var achieves faster computation than Latent 3D-Var and
Latent 4D-Var because its deep features are used only to
map data into feature space rather than being directly in-
volved in gradient-based optimization via AD. In addition
to the assimilation results, we evaluate the forecast quality
of Tensor-Var based on the assimilated state; quantitative
results can be found in Appendix E.3 Figure 10.

4.3. Assimilation from Satellite Observations

In the final experiment, we consider observations from satel-
lite track locations instead of random observation points
in Section 4.2, addressing a more realistic DA problem in
global NWP. Weather satellites offer crucial observations,
but their dynamic positions and spatial-temporal sparsity
make data assimilation more challenging. The spatial reso-
lution of the grid increases to 240× 121 in this case.

Figure 4. Selected satellite tracks over a one-hour horizon, with
observations (black triangles) sampled at half-hour intervals.

An example of satellite tracks and observation distribution
is shown in Figure 4. We extract satellite track data (lat-
itude and longitude coordinates) from CelesTrak2 for the
same periods as Section 4.2, matching it with ERA5 data to
generate practical observations. These observations include
satellite locations within two hours before the assimilation
time, sampled at half-hour intervals, with an average cover-
age of approximately 6%, see Figure 5. Other experimental
settings, such as data volume, training/testing periods, vari-
ables, and the 4D-Var window, align with Section 4.2. In
this experiment, we evaluate our proposed method in an
online operational scenario, where the DA is continuously
applied. To assess the uncertainties, all methods are evalu-
ated 10 times by randomly sampling sequences from the test
dataset. We present the mean and standard deviation of the
NRMSEs in Figure 3 over a 7-day time horizon. Tensor-Var

2CelesTrak provides public orbital data for a wide range of
satellites, including those with meteorological sensors at www.
celestrak.com. The data include positional details and tem-
poral information, allowing accurate real-time satellite tracking.
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Figure 5. Visualization of continuous assimilation results, absolute errors, and observation locations for z500 (geopotential), starting from
2018-01-01 00:00. The observation coverage, defined as the ratio of the number of observations to the number of grid points, is 6.37%.

consistently achieves the lowest mean and standard devia-
tion, demonstrating its robustness in a large-scale system
with practical observations. Figure 5 presents the qualitative
assimilation results for the variable z500 with observations;
results for other variables are provided in Appendix E.4. Dy-
namic satellite observations impact assimilation accuracy,
with clustered observations near the equator from geosyn-
chronous satellites substantially reducing errors in the corre-
sponding regions. The results demonstrate that Tensor-Var
excels in accuracy and robustness when handling large-scale
systems with practical observations, showing its potential
for applications in operational DA and forecasting.

4.4. Ablation study

To support our empirical results, we perform ablation stud-
ies on the 40- and 80-dimensional Lorenz-96 system to
investigate (1) the effect of history length in learning the
operator ĈS|OH , and explore (2) the effect of DFs ϕS with
different feature dimensions.

Effect of history length. We explore the effect of history
length m on learning the inverse observation operator and
its impact on state estimation accuracy. According to the
theory in (Liu et al., 2022), the history length can be cho-
sen as m ∝ log(ns)

3. The ablation study is conducted by
scaling m proportionally to m ≈ C log ns where the con-
stant C was adjusted. The dimensions ds, do, dh are fixed

3Please note that the result omits the class of systems with
exponential dependency on the history length.

to be the same as the experiments in Subsection 4.1. Table
3 (right) shows that incorporating history (C > 0) signifi-
cantly improves the accuracy of the state estimation, with
the NRMSE decreasing as C increases. However, improve-
ments become marginal when increasing C beyond a certain
point (around C = 4). This indicates a trade-off, where in-
creasing the history length beyond a certain threshold yields
little additional benefit in state estimation.

Effect of DFs. This experiment compares DFs with vary-
ing dimensions ds = 20, 40, 60, 80 to a Gaussian kernel
feature. To scale up the Gaussian kernel, we apply Nyström
approximation and kernel PCA (See Appendix E.5 for de-
tails). All three features are Gaussian kernels. The preimage
of the system state is learned using kernel ridge regression
on the low-dimensional representations. As shown in Table
3 (left), Gaussian kernel performance is close to the best DFs
in ns = 40 but degrades in ns = 80. In a lower-dimensional
problem, the Gaussian kernel features are more robust than
DFs, but their performance can degrade with increasing
system dimensionality and complexity. DFs with ds = 60
and 120 perform consistently well, whereas ds = 20 and
40 underperform, indicating trade-offs between data size,
model complexity, and system dimension.

5. Conclusion
In this paper, we propose Tensor-Var, a framework that
uses kernel conditional mean embedding to linearize non-
linear models in 4D-Var, making optimization tractable and
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Table 3. Comparison of different features and history lengths with
NRMSE (%) as the metric for state estimation accuracy. GK
denotes the Gaussian kernel.

Feature Dimension (NRMSE %) History Length (NRMSE %)

ds ns = 40 ns = 80 C ns = 40 ns = 80

20 16.7 ± 2.1 17.3 ± 2.6 0 11.7 ± 3.4 10.8 ± 2.6
40 14.1 ± 1.3 16.8 ± 2.2 1 9.3 ± 2.8 8.2 ± 1.7
60 8.3 ± 0.9 11.4 ± 0.9 2 7.7 ± 1.4 7.4 ± 0.9
120 9.7 ± 0.7 10.9 ± 0.9 4 7.7 ± 0.9 7.1 ± 0.9
GK 8.4± 0.5 11.7 ± 1.4 8 7.5 ± 0.5 7.0 ± 0.8

efficient. By learning adaptive deep features, Tensor-Var
addresses the scalability typically associated with traditional
kernel methods. Our inverse observation operator, which
incorporates historical observations, improves accuracy and
robustness with incomplete observations. Experiments on
two chaotic systems and global weather forecasting show
that Tensor-Var outperforms state-of-the-art hybrid ML-DA
models in both accuracy and efficiency.

Limitations and future work. Tensor-Var requires access
to system states to learn dynamics and observation models,
which may not be feasible in practice. Future work will
focus on learning these models directly from observations
and calibrating dynamics in feature space. Additionally, the
simplified error covariance used in 4D-Var may underesti-
mate system correlations; refining these within Tensor-Var
could improve assimilation and performance.

Acknowledgments
The authors thank the reviewers and the ICML 2025 pro-
gram committee for their insightful feedback and construc-
tive suggestions that have helped improve this work. We
also acknowledge the support from the University College
London (Dean’s Prize, Chadwick Scholarship), the Engi-
neering and Physical Sciences Research Council projects
(EP/W007762/1), the United Kingdom Atomic Energy
Authority (NEPTUNE 2057701-TN-03), and the Royal
Academy of Engineering (IF-2425-19-AI165).

Impact Statement
This paper aims to advance machine learning applications
in studying the long-term properties of large-scale chaotic
systems. There are many potential societal consequences
of our work, none of which we feel must be specifically
highlighted here.

References
Andrieu, V. and Praly, L. On the existence of a kazantzis–

kravaris/luenberger observer. SIAM Journal on Control
and Optimization, 45(2):432–456, 2006.

Asch, M., Bocquet, M., and Nodet, M. Data assimilation:
methods, algorithms, and applications. SIAM, 2016.

Baker, C. R. Joint measures and cross-covariance operators.
Transactions of the American Mathematical Society, 186:
273–289, 1973.

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind,
J. M. Automatic differentiation in machine learning: a
survey. Journal of machine learning research, 18(153):
1–43, 2018.

Berg, C., Christensen, J. P. R., and Ressel, P. Harmonic
analysis on semigroups, volume 100. Springer-Verlag
New York, 1984.

Berlinet, A. and Thomas-Agnan, C. Reproducing kernel
Hilbert spaces in probability and statistics. Springer
Science & Business Media, 2011.

Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and Tian,
Q. Pangu-weather: A 3d high-resolution model for fast
and accurate global weather forecast. arXiv preprint
arXiv:2211.02556, 2022.

Bobrowski, A. Convergence of one-parameter operator
semigroups, volume 30. Cambridge University Press,
2016.

Bocquet, M. Surrogate modeling for the climate sciences dy-
namics with machine learning and data assimilation. Fron-
tiers in Applied Mathematics and Statistics, 9:1133226,
2023.

Bocquet, M., Farchi, A., Finn, T. S., Durand, C., Cheng, S.,
Chen, Y., Pasmans, I., and Carrassi, A. Deep learning-
based sequential data assimilation for chaotic dynamics
identifies local instabilities from single state forecasts.
arXiv preprint arXiv:2408.04739, 2024.

Boyd, S. P. and Vandenberghe, L. Convex optimization.
Cambridge university press, 2004.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: Composable
transformations of Python+NumPy programs. http://
github.com/google/jax, 2018. Version 0.3.13.

Browne, P. A., De Rosnay, P., Zuo, H., Bennett, A., and
Dawson, A. Weakly coupled ocean–atmosphere data
assimilation in the ecmwf nwp system. Remote Sensing,
11(3):234, 2019.

Butcher, J. C. A history of runge-kutta methods. Applied
numerical mathematics, 20(3):247–260, 1996.

9

http://github.com/google/jax
http://github.com/google/jax


Tensor-Var: Efficient Four-Dimensional Variational Data Assimilation

Chen, K., Han, T., Gong, J., Bai, L., Ling, F., Luo, J.-J.,
Chen, X., Ma, L., Zhang, T., Su, R., et al. Fengwu: Push-
ing the skillful global medium-range weather forecast
beyond 10 days lead. arXiv preprint arXiv:2304.02948,
2023.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. K. Neural ordinary differential equations. Advances
in neural information processing systems, 31, 2018.

Cheng, S., Quilodrán-Casas, C., Ouala, S., Farchi, A., Liu,
C., Tandeo, P., Fablet, R., Lucor, D., Iooss, B., Brajard,
J., et al. Machine learning with data assimilation and
uncertainty quantification for dynamical systems: a re-
view. IEEE/CAA Journal of Automatica Sinica, 10(6):
1361–1387, 2023a.

Cheng, S., Min, J., Liu, C., and Arcucci, R. Torchda: A
python package for performing data assimilation with
deep learning forward and transformation functions. Com-
puter Physics Communications, pp. 109359, 2024.

Cheng, X., Yang, Y., Jiang, W., and Hu, Y. Keec: Embed
to control on an equivariant geometry. arXiv preprint
arXiv:2312.01544, 2023b.

Cheng, X., He, Y., Yang, Y., Xue, X., Cheng, S., Giles, D.,
Tang, X., and Hu, Y. Learning chaos in a linear way.
In The Thirteenth International Conference on Learning
Representations, 2025.

Conti, S. Artificial intelligence for weather forecasting.
Nature Reviews Electrical Engineering, 1(1):8–8, 2024.

Coveney, P. V. Sharkovskii’s theorem and the limits of
digital computers for the simulation of chaotic dynamical
systems. Journal of Computational Science, 83:102449,
2024.

Cox, S. M. and Matthews, P. C. Exponential time differenc-
ing for stiff systems. Journal of Computational Physics,
176(2):430–455, 2002.
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Melinc, B. and Zaplotnik, Ž. Neural-network data assim-
ilation using variational autoencoder. arXiv preprint
arXiv:2308.16073, 2023.

Milan, M., Macpherson, B., Tubbs, R., Dow, G., Inver-
arity, G., Mittermaier, M., Halloran, G., Kelly, G., Li,
D., Maycock, A., et al. Hourly 4d-var in the met office
ukv operational forecast model. Quarterly Journal of
the Royal Meteorological Society, 146(728):1281–1301,
2020.

Muandet, K., Fukumizu, K., Sriperumbudur, B., Schölkopf,
B., et al. Kernel mean embedding of distributions: A
review and beyond. Foundations and Trends® in Machine
Learning, 10(1-2):1–141, 2017.

Nguyen, D. and Fablet, R. A transformer network with
sparse augmented data representation and cross entropy
loss for ais-based vessel trajectory prediction. IEEE Ac-
cess, 2024.

Nocedal, J. and Wright, S. J. Quadratic programming. Nu-
merical optimization, pp. 448–492, 2006.

Papageorgiou, D. T. and Smyrlis, Y. S. The route to chaos
for the kuramoto-sivashinsky equation. Theoretical and
Computational Fluid Dynamics, 3(1):15–42, 1991.

11



Tensor-Var: Efficient Four-Dimensional Variational Data Assimilation

Parks, P. C. A new proof of the Routh-Hurwitz stability
criterion using the second method of Liapunov. In Math-
ematical Proceedings of the Cambridge Philosophical
Society, volume 58, pp. 694–702. Cambridge University
Press, 1962.

Paulin, D., Jasra, A., Beskos, A., and Crisan, D. A 4d-var
method with flow-dependent background covariances for
the shallow-water equations. Statistics and Computing,
32(4):65, 2022.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., et al. Scikit-learn: Machine
learning in python. the Journal of machine Learning
research, 12:2825–2830, 2011.
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A. Table of Notations

Notations Meaning
S,O,H random variables of state, observation, and history.
s, o, h samples of state, observation, and history.
S domain of state space.
O domain of observation space.
n dimension of original spaces with specified subscripts.
P probability distribution with specified subscripts.

ϕS(s) = kS(s, ·) kernel feature map for state.
ϕO(o) = kO(o, ·) kernel feature map for observation.
ϕH(h) = kH(h, ·) kernel feature map for history.

HS ,HO,HH induced kernel feature space for S,O and H .
z indicate the elements in feature space.
C Conditional mean embedding (CME) operators with specified subscripts.

B,R,Q error matrices for background, observation, and dynamical model in original space.
B,R,Q error matrices for background, observation, and dynamical model in feature space.
ϕθS deep feature for state with neural network parameters θS .
ϕ†
θ′
S

inverse feature for state with neural network parameters θS .
ϕθO deep feature for state with neural network parameters θO.
ϕθH deep feature for state with neural network parameters θH .
d dimension of feature spaces with specified subscripts.
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B. Variational Data Assimilation Optimization
A sequence {xk} generated by an optimization algorithm converges linearly to x∗ if there exists C ∈ (0, 1) such that
∥xk+1 − x∗∥ ≤ C∥xk − x∗∥, implying ∥xk − x∗∥ = O(Ck). Convergence is sublinear if ∥xk − x∗∥ → 0 as k → ∞
but slower than linear, often expressed as ∥xk − x∗∥ = O(1/kα) for α > 0. Superlinear convergence occurs when
limk→∞ ∥xk+1 −x∗∥/∥xk −x∗∥ = 0, with quadratic convergence as a special case where ∥xk+1 −x∗∥ ≤ C∥xk −x∗∥2.

B.1. Analysis of Optimization

Tensor-Var. Our approach based on CME is theoretically linear in the learned feature space. Under this condition, it
formulates a convex quadratic programming (QP) problem with linear dynamic constraints, as illustrated in Equation (5).
From the convergence rates of the Newton optimization method (Wright, 2006), the algorithm exhibits a linear convergence
rate in worst-case and a superlinear convergence rate in best-case. Consequently, the number of iterations required to
achieve an ϵ-error ranges between O(log(1/ϵ)) and O(log log(1/ϵ)). In terms of computational complexity, the QP problem
features an invariant Hessian matrix. This invariance allows us to compute the Hessian matrix only once. Incorporating the
iteration complexity, the total computational complexity of Tensor-Var is efficiently bounded between O (Tds log(1/ϵ)) and
O (Tds log log(1/ϵ)). This demonstrates that Tensor-Var achieves efficient computation by minimizing redundant Hessian
calculations and leveraging the convergence properties of the Newton method. It should be noted that the optimization error
in Tensor-Var is in the feature space, not the state space. The true error is quantified as (ϵ+ êrr) it decoding back, where êrr
represents the reconstruction error.

Latent 4D-Var. Unlike our linearized CME model, the latent 4D-Var approach (Cheng et al., 2024) directly constructs a
neural network-based surrogate model using an autoencoder, thereby no longer depending on computationally intensive
numerical models. In this framework, the inherent nonlinearity and non-convexity of the optimization problem remain
unchanged. According to optimization theory, the L-BFGS algorithm achieves a worst-case sublinear convergence rate and a
best-case superlinear convergence rate (Boyd & Vandenberghe, 2004; Wright, 2006). The best computational complexity can
only be achieved only if the problem exhibits strong local convexity around the initial point. Consequently, the number of
iterations required to achieve an ϵ-error ranges between O(1/ϵ2) and O(log log(1/ϵ)). Regarding computational complexity,
latent 4D-Var does not decompose the quadratic programming problem into T separate subproblems. Instead, it concatenates
the T features into a high-dimensional vector of size Tds. At each time step, the Hessian matrix is updated using the BFGS
algorithm. Considering the complexity of the iteration, the total computational complexity ranges from O((Tds)

2/ϵ2) to
O((Tds)

2 log log(1/ϵ)) which makes it computationally expensive. Since optimization is performed in the latent feature
space, the true error is quantified as (ϵ+ êrr) upon decoding, where êrr represents the reconstruction error.

4D-Var. The original 4D-Var, when solved using the Newton method, exhibits a similar convergence rate, ranging
from sublinear to superlinear. However, the number of iterations scales with the state dimension ns rather than the
latent space dimension ds, leading to a total complexity of O((Tns)

2/ϵ2) or O
(
(Tns)

2 log log(1/ϵ)
)

to achieve an ϵ-
error. When the adjoint model is available, the total computational complexities can be further reduced to O(Tns/ϵ

2) or
O
(
Tns log log(1/ϵ)

)
through forward and adjoint computations, each requiring O(ns) (Givoli, 2021; Wright, 2006). Since

the 4D-Var is directly solved on the original space, there is no reconstruction error that needs to be counted.

Frerix et al., 2021. Frerix et al. (2021) propose learning an approximate inverse observation operator using deep learning
and transform this problem into the physical state space. The 4D-Var problem is then solved using a standard Newton
solver, resulting in convergence properties and computational complexities similar to those of the standard 4D-Var without
an adjoint model such as O((Tns)

2/ϵ2) or O
(
(Tns)

2 log log(1/ϵ)
)
. In practice, (Frerix et al., 2021) argues that solving

4D-Var in a physical state space with an inverse observation operator leads to better initialization, as inverse mapping
provides an improved starting point for optimization. This improved initialization results in a better-conditioned optimization
landscape, i.e., strongly local convex and achieves a superlinear convergence rate. Our numerical experiments further
confirm that their method achieves faster convergence with fewer iterations compared to the standard 4D-Var model (with or
without an adjoint model), as shown in Table 2.

A comprehensive summary of these analyses and findings is provided in Table 4.
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Table 4. Full comparison of Tensor-Var with other algorithms. Here, ϵ is the error threshold and T is the length of the assimilation window.
The best computational complexity can only be achieved only if the problem exhibits strong local convexity around the initial point.

Space Transformation Non-Space Transformation

Methods Tensor-Var Latent 4D-Var 4D-Var (w/o or w/ Adjoint) Frerix et al. (2021)

Model-based ✗ ✗ ✓ ✓
Convexity ✓ ✗ ✗ ✗
Convergence Rate linear to superlinear sublinear to linear sublinear to linear sublinear to linear
Iteration Time O (log (1/ϵ)) O(1/ϵ2) O

(
1/ϵ2

)
O

(
1/ϵ2

)
Worst Computational
Complexity O (Tds log (1/ϵ)) O

(
(Tds)

2/ϵ2
) w/o Adjoint: O

(
(Tns)

2/ϵ2
)

w/ Adjoint: O
(
Tns/ϵ

2
) O

(
(Tns)

2/ϵ2
)

Best Computational
Complexity O (Tds log log (1/ϵ)) O

(
(Tds)

2 log log(1/ϵ)
) w/o Adjoint:

O
(
(Tns)

2 log log (1/ϵ)
)

w/ Adjoint:
O (Tns log log (1/ϵ))

O
(
(Tns)

2 log log (1/ϵ)
)

C. Theoretical Analysis
In this section, we provide a theoretical convergence analysis of Tensor-Var, drawing on concepts from control theory
and contraction analysis. We begin by introducing comparison functions, including class K and KL functions, as well
as Lyapunov functions. Using these tools, we examine the convergence of Tensor-Var through a differential equation,
demonstrating monotonic contraction based on the Lyapunov direct method. Furthermore, by using comparison functions,
we show that contraction in the feature space implies contraction in the original space.

Assumption 1. To perform a formal convergence analysis of Tensor-Var, we make a mild assumption about the first-order
differentiability of the dynamical system F in (1) with the time derivative ṡ = f(s), a standard assumption in convergence
studies (Sastry, 2013).

Assumption 2. We require that the kernel possess a well-defined first-order derivative, as the convergence analysis is
performed in the feature function space. This assumption is common in kernel methods and is satisfied by many widely-used
kernels, such as the Gaussian, Fourier, Matérn, and Laplace kernels (Berg et al., 1984; Schölkopf & Smola, 2002).

C.1. Notations and Technical Lemmas

Definition C.1 (Class K function (Gajic & Qureshi, 2008).). A continuous function α : [0, a] → [0,∞) is said to belong to
class K if it is strictly increasing and α(0) = 0. It is of class K∞ if α(∞) = ∞ and α(r) → ∞ as r → ∞.

Definition C.2 (Class KL function (Gajic & Qureshi, 2008).). A continuous function β : [0, a]× [0,∞) → [0,∞) is said
to belong to class KL if for each fixed t, the mapping β(r, t) belonging to class K with respect to r and, for each fixed a the
mapping β(a, t) is decreasing with respect to t and β(a, t) → 0 as t → ∞.

The K and KL are two classes of comparison functions, and we can use the comparison function to analyze the monotone
contraction in both spatial and temporal horizons.

Definition C.3 (Lyapunov Stability (Gajic & Qureshi, 2008)). If the Lyapunov function V is globally positive definite,
radially unbounded, the equilibrium is isolated and the time derivative of the Lyapunov function is globally negative definite:

dV

dt
(x) < 0, ∀Rn \ {0}, (6)

then the equilibrium is proven to be globally asymptotically stable. The Lyapunov function is a class K function, which
satisfies the condition as follows

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥), ,∀x ∈ [0,∞). (7)
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Lemma C.4 (Hurwitz stability criterion (Parks, 1962)). A square matrix A ∈ Rn×n is said to be Hurwitz stable if all the
eigenvalues of A have strictly negative real parts, i.e., for every eigenvalue λ of A,

Re(λ) < 0. (8)

In other words, the real part of each eigenvalue of the matrix must lie in the left half of the complex plane.

Lemma C.5 (Hurwitz stability criterion via Lyapunov function (Sastry, 2013)). Give a candidate Lyapunov function for
linear dynamics as

V (x) = xTPx,
dx

dt
= Ax (9)

where P is symmetric, positive definite matrix; A governs the evolution of dynamics. For the system to be stable, the time
derivative dV

dt must be negative definite, i.e., dV
dt < 0 for all x ̸= 0. This means that:

dV

dt
(x) =

d

dt
(xTPx) = xT (ATP + PA)x < 0 (10)

with
ATP + PA < 0, (11)

where (ATP + PA) is negative definite.

Based on the convergence analysis and Lyapunov theory, a more generalized concept – contraction metric is needed to
support our paper.

Definition C.6 (Contraction (Manchester & Slotine, 2017)). Given the system dx
dt = f(x, t), if there exists a uniformly

bounded metric M(x, t) (positive definite) such that

dM

dt
+

∂f

∂x
(x, t)TM +M

∂f

∂x
(x, t) < −cM, c > 0, (12)

then we call the system contracting, and M(x, t) is a contraction metric.

C.2. Proof of Key Theorems

To adopt the convergence analysis of the DA problem, we give a mild assumption on the smoothness of dynamics, the
first-order derivative exists in the system 1.

Theorem C.7 (Embedding and Consistent convergence). Here, we consider system st+∆t = F∆t(st) = st+
∫ t+∆t

t
f(sτ )dτ

in (1) is first order differentiable with derivative dst
dt = f(st) for s ∈ Rns with a unique equilibrium point as s∗. If there

exists a embedding as ϕS(s) := [ϕ1
S(st), . . . , ϕ

ds

S (st)]
T with that ds ∈ N ∪∞ satisfying the following properties:

• a. (embedding) For a finite ds, the ∂ϕ
∂s (st) is full-column rank; when ds is infinite, it is assumed to be rank-ds countably

infinite, i.e. {∇ϕS(st)} is full-column rank with ∇ϕS(st) = [
∂ϕ1

S

∂s (st), . . . ,
∂ϕn

S

∂s (st), . . . ]
T .

• b. (convergence) There exists Hurwitz matrix A verifying

dϕS

dt
(st) = AϕS(st). (13)

Then, the equilibrium s∗ and ϕS(s∗) are global asymptotic convergence.

Proof.

(Embedding.) The embedding property follows from RKHS theory. Since we restrict our analysis to a separable Hilbert
space, it has a countable basis either finite or infinite. Thus, the dimension of the RKHS can be infinite, but the rank of the
embedding is determined by a countable set of basis functions (Schölkopf & Smola, 2002).

16



Tensor-Var: Efficient Four-Dimensional Variational Data Assimilation

(convergence.) According to the differential equation in Hilbert space, we have

dϕS

dt
(st)

=
∂ϕS

∂st
(st) ·

dst
dt

=∇ϕS(st)f(st)

=AϕS(st).

(14)

The second line of (14) follows from the chain rule, the final line represents the time derivative in Hilbert space, where A is
a linear operator that governs the dynamics. Following the work from (Romanoff, 1947; Bobrowski, 2016; Cheng et al.,
2023b), we define A as:

A := lim
t→0+

CS+|S − Id

t
, (15)

where CS+|S is the conditional covariance operator between future and current states in the RKHS. Given the smoothness of
the kernel function and the differentiability of the system dynamics, the linear operator A exists and is well-defined in this
context.

Since s∗ is the equilibrium point, we can derive a natural result that f(s∗) = 0. Invoking (14) (third line) we have
dϕS

dt (s∗) = 0. Thus ϕS(s∗) is also a local equilibrium point in RKHS. From the embedding property of RKHS, we have a
local injective map ϕ : Rns → Rds , which ensures that the convergence properties of the system in the original space are
preserved in the feature space. For the neighbourhood around the equilibrium point s∗, there exist class K functions α1 and
α2 as

α1(∥st − s∗∥) ≤ ∥ϕ(st)− ϕ(s∗)∥2 ≤ α2(∥st − s∗∥), ∀st ∈ B(s∗, ϵ). (16)

B(s∗, ϵ) is denoted as ϵ−ball centred at s∗. The smoothness of the kernel function and regularity of the dynamics ensure
that the system remains well-behaved in feature space, and the convergence properties of the original system carry over to
the feature space.

Thus, when the system is locally stable in the original space, the corresponding system in Hilbert space is also locally
stable. According to the Hurwitz stability criterion in C.4, the linear operator A has only negative real part in its eigenvalues,
guaranteeing exponential convergence. If s∗ is global equilibrium, then ϕS(s∗) is also a global equilibrium in feature space.
Remark C.8. Theorem C.7 (a) implies the existence of a global coordinate. In many situations, when the embedding space
is chosen properly, we can have a stronger result that the existence of left inverse such that ϕ†(ϕ(s)) = s. This result can
be naturally connected to the Kazantzis Kravaris/Luenberger (KKL) observers (Tran & Bernard, 2023). The embedding
corresponds to the injectivity of the state. Theorem C.7 (b) corresponds to the convergence in the KKL observer. When
the embedding space is uniformly injective, the dynamics in feature space become rectifiable dynamics, yielding a stable
trajectory if the original system is stable.

Before entering the last main theorem, we need to introduce the KKL observer. Based on the theory of the KKL observer,
we will link the convergence problem in feature space with the KKL observer. Please note that we assume that the state
space S is a bounded set and system (1) is forward complete within this bounded set S.

Consider the nonlinear dynamical system in (1) with time derivative as

dst
dt

= f(st); ot = G(st). (17)

The design of the KKL observer is as follows:

• Find an embedding map T : S → Rds that transforms (17) to new coordinates T (s) as

∂T
∂s

(s)f(s) = AT (s) +BG(s), (18)

where A ∈ Rds×ds is Hurwitz matrix and B ∈ Rds×no , such that the system (A, B) is controllable4.

4R = [A,AB,A2B, ...,Ads−1B] has full row rank (i.e. rank(R) = ds)
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• Since T is injective, the left inverse T † exists, i.e., T †(T (s)) = s. The KKL observer is then given by

ŝ = T †(T (ŝ)). (19)

There are certain conditions (Andrieu & Praly, 2006) that (17) needs to satisfy in order to ensure the existence of a KKL
observer (18) in the sense that limt→∞ ∥ŝt − st∥ = 0. On the other hand, the map T : S → Rds need to be uniformly
injective if there exists a class K function α in C.1 such that, for every s1, s2 ∈ S, satisfying ∥s1−s2∥ ≤ α(T (s1)−T (s2)).
Our embedding properties and convergence conditions (as shown in C.7) are satisfied by the two conditions, thus we can
assert the existence of a KKL observer.

In this paper, we state the existence of a global linear dynamical system in feature space. We provide a theoretical guarantee
that the embedding property of ϕS can derive the equivalent convergence in the feature space. However, there are two parts
that have not been proven: 1). Does the global linear dynamical system exist? 2) Is the embedding space in C.7 properly
defined? We consider the nonlinear system in (1) within a compact space S and the cost function in 2 has a unique solution.
According to the condition of KKL observer, we guarantee (1) the existence of such linear system and (2) the solutions in
the original space and feature space has consistent convergence properties, with respect to the cost functions (2) and 5, and
convergent exponentially to the unique solution.

Theorem C.9. Let S be a bounded set in Rns . If there exists a C1 function T : S → Rds which satisfies the following two
conditions:

• T is solution of the partial differential equation

∂T
∂s

(s)f(s) = AT (s) +BG(s), ∀s ∈ S, (20)

where A is Hurwitz matrix, and (A, B) is controllable;

• There exists a Lipschitz constant such that for all (s1, s2) in S × S , the following inequality holds:

|s1 − s2| ≤ L|T (s1)− T (s2)|; (21)

then there exists a continuous function T † : Rns → S such for all (s, T (s)) ∈ S × Rns

∥T †(T (ŝt))− st∥ ≤ cL∥T (ŝ0)− T (s0)∥ exp(σmax(A)t),∀t ∈ [0,∞), (22)

and where (st, T (st)) is the solution of system in (1) and (17) at time t; σmax(A) is the largest eigenvalue of matrix A.

Proof.

It is possible to defined the left inverse function T † : Rds → S and this one satisfies,

∥s1 − s2∥ ≤ L∥T (s1)− T (s2)∥, ∀(s1, s2) ∈ S × S. (23)

It yields that the function T −1 : Rds → S is global Lipschitz. Hence, the function T † : Rds → S in our problem is a
Lipschitz extension on the set S of this function. For more convenience, we denoted z := T (s). Following the approach -
the Mc-Shane formula in (McShane, 1934), we select the T † as the function defined by

T †(w) ∈ inf
z

{
(T −1(z) + L∥z − w∥

}
. (24)

The function is such that for all s ∈ S,
T †(T (s)) = s, (25)

and for all (w, s) ∈ Rds × S ,
∥T †(w)− s∥ ≤

√
dsL∥w − T (s)∥. (26)

This implies that along the trajectory (st, zt) of the system satisfying the following result

∥T †(zt)− st∥ ≤
√

dsL∥zt − T (st)∥, ∀t ∈ [0,∞). (27)
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On the another hand, the function T is solution of the partial differential equation in (18), consequently, this implies that
along the trajectory of system (zt, st) ∈ Rds × S , we have

zt − T (st) = exp(At)(z0 − T (s0)) ∀t ∈ [0,∞). (28)

Note, since A is Hurwitz matrix, with σmax(A) < 0, it can derive that equation (22) holds and concludes the proof of the
theorem.
Remark C.10. The KKL observer asserts that the linear representation of the nonlinear system. After establishing the
KKL observer, theorem C.9 asserts the convergence of the estimated trajectory to the equilibrium trajectory. Since the
embedding property, we can derive that the existence of left inverse based on the Mc-Shane formula in (24). Meanwhile, the
convergence holds when pulling back the state to the original space S . Thus we can assert the feature ϕS in our framework
aligns the KKL observer, and the coordinate transformation T is just our feature ϕS .

D. Estimation of error matrices and Pseudo Algorithm
D.1. Estimation of error matrices.

To estimate these error covariance operators in the feature space, we empirically estimate these error matrices in the feature
spaces from the training dataset (Gejadze et al., 2008). For R and Q, we estimated the covariances as R = 1

N

∑N
i=1 ri ⊗ ri

and Q = 1
N

∑N
i=1 qi ⊗ qi, where ri = ϕS(si) − ĈS|OHϕOH(oi, hi) and qi = ϕS(s

+
i ) − ĈS+|SϕS(si) are the regression

residuals, quantifying the errors of the empirical operators ĈS|OH and ĈS+|S . Similarly, we compute the background
covariance as the empirical variance over an average of {ϕS(si)}Ni=1

5 This error should decay monotonically over time and
stabilize after a sufficiently long time horizon. This is strongly related to the covariance estimation in Kalman filtering (see
Chapter 6.7 (Asch et al., 2016)). We leave the investigation of such design for future efforts.

D.2. Pseudo algorithm.

In this section, we provide the pseudo-algorithm for training Tensor-Var with traditional kernel features in algorithm 2 and
training with deep features in algorithm 1. The kernel feature map ϕ : S → HS such that k(si, sj) = ⟨ϕ(si), ϕ(sj)⟩HS

may
not necessarily have an explicit form (e.g., RBF and Matérn kernels), as long as the ⟨·, ·⟩HS

is an valid inner product. For
clarity, we use the polynomial kernel with degree two and constant c as an example:

• Explicit form, ϕ(s) = k(s, ·) = (s21, ..., s
2
ns
,
√
2s1s2, ...,

√
2sns−1sns , c)

• Inner product, k(si, sj) = ⟨ϕ(si), ϕ(sj)⟩ = (sTi sj + c)2

Algorithm 3 outlines the procedure of performing data assimilation with trained models.

5For a cyclic application of Tensor-Var, a better design for B should be time-dependent, reflecting the error between the estimated
system state and the true state, e.g. (Paulin et al., 2022).
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Algorithm 1 Tensor-Var training with deep feature

Require: Data D = {si, oi, hi, s
+
i }Ni=1; Initialized deep features ϕθS , ϕθO , ϕθH ; the inverse feature ϕ†

θ′
S

training epoch K,
learning rate α, batch size NB

for k = 1, ...,K do
Random sample batch data Dbatch ⊂ D
ĈS+|S , ĈS|OH = Algorithm 2 by using batch data Dbatch and deep features
Compute loss l(θS) = ∥ĈS+|SϕθS (s)− ϕθS (s

+)∥2

Compute loss l(θO, θH) = ∥ĈS|OH [ϕθO (o)⊗ ϕθH (h)]− ϕθS (s)∥2

Compute loss l(θS , θ′S) = ∥ϕ†
θ′
S
(ϕθS (s))− s∥2

Update the deep features.
θS = θS + α∇θS l(θS);
θO, θH = θO + α∇θO l(θO, θH), θH + α∇θH l(θO, θH);
θS , θ

′
S = θS + α∇θS l(θS , θ

′
S), θ

′
S + α∇θ′

S
l(θS , θ

′
S)

end for
Compute ĈS+|S , ĈS|OH = Algorithm 2 by using the whole dataset D and trained deep features ϕθS , ϕθO , ϕθH .
Compute the error covariance matrices B, R, Q from Subsection D.1
Return ϕθS , ϕθO , ϕθH , ĈS+|S , ĈS|OH , B, R, and Q

Algorithm 2 Tensor-Var training with kernel feature

Require: Dataset D = {si, oi, hi, s
+
i }Ni=1; kernel features ϕS(s) = kS(s, ·), ϕO(o) = kO(o, ·), ϕH(h) = kH(h, ·)

Compute the Gram matrix KS where [KS ]ij = kS(si, sj)
Compute the Gram matrix KOH where [KOH ]ij = kOH(oi ⊗ hi, oj ⊗ hj) = kO(oi, oj)kH(hi, hj)
If N is too large, say N ≥ 10000, using the Nystrom approximation to select a subset Ds = {si, oi, hi, s

+
i }ni=1

Compute the feature matrix ΦS = [ϕS(s1), ..., ϕS(sn)]
Compute the feature matrix ΦS+ = [ϕS(s

+
1 ), ..., ϕS(s

+
n )]

Compute the feature matrix ΦOH = [ϕO,H(o1, h1), ..., ϕO,H(on, hn)]

CME for the system dynamics. ĈS+|S = ΦS+(KS + λI)−1ΦS

CME for the inverse observation model. ĈS|OH = ΦS(KOH + λI)−1ΦT
OH

Compute the error covariance matrices B, R, Q from Subsection D.1.
Fit the projection matrix for pre-image. Ĉproj = S(KS + λI)−1ΦT

S where S = (s1, ..., sn)

Return ĈS+|S , ĈS|OH , Ĉproj, B, R, and Q

Algorithm 3 Tensor-Var assimilation-forecasting
Require: assimilation window {ot, ht}Tt=0; background state sb; leading time τ ; kernel features ϕS , ϕO, ϕH (or trained

deep features ϕθS , ϕθO , ϕθH ); CME operators ĈS+|S and ĈS|OH ; Error covariance matrices B, R, Q.
Perform Quadratic Programming with objective

min
{zt}T

t=0

∥z0 − ϕS(s
b
0)∥2B−1 +

T∑
t=0

∥zt − ĈS|OHϕOH(ot, ht)∥2R−1

+

T−1∑
t=0

∥zt+1 − ĈS+|Szt∥2Q−1 ,

Project back to original space with ŝt = Ĉprojzt (or using learned inverse feature ŝt = ϕ†
θ′
S
(zt))

for t = 1, ..., τ do
Predict zt+T = ĈS+|SzT+t−1

Project back to original space with ŝt = Ĉprojzt (or inverse feature ŝT+t = ϕ†
θ′
S
(zT+t))

end for
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E. Experiment Settings
Training details. Given the generated data, we construct two datasets: Ddyn = {{(sit, sit+1)}T−1

t=0 }Ni=1 and Dobs =

{{(sit, oit, hi
t)}Tt=0}Ni=1. The DFs are trained in two steps using these datasets. First, the state DFs ϕθS , ϕ

†
θ′
S

are trained on

Ddyn and we store the estimated operator ĈS+|S . Next, with the state features fixed, the observation DF ϕθO and history
DF ϕθH are trained on Dobs according to (3.2), storing the estimated operator ĈS|OH . The baseline method (Frerix et al.,
2021) is trained on Dobs, excluding history. All models are trained with the Adam optimizer (Kingma, 2014) for 200 epochs,
using batch sizes from 256 to 1024 for stable operator estimation. Additional details on the DFs, baselines, and training
procedures can be found in Appendix E.

Implementation details. For all baseline methods, we employ the L-BFGS algorithm for Variational Data Assimilation
(Var-DA) optimization, implemented in JAX (Bradbury et al., 2018). The 4D-Var baselines use numerical dynamical models
based on the 8th-order Runge-Kutta method and the 4th-order Exponential Time Differencing Runge-Kutta (ETDRK)
method (Cox & Matthews, 2002) for the Lorenz-96 and KS systems. For Tensor-Var, we apply interior-point quadratic
programming to solve the linearized 4D-Var optimization, using CVXPY (Diamond & Boyd, 2016). All training is conducted
on a workstation with a 48-core AMD 7980X CPU and an Nvidia GeForce 4090 GPU.

E.1. Lorenz 96

First, we consider the single-level Lorenz-96 system, which is introduced in (Lorenz, 1996) as a low-order model of
atmospheric circulation along a latitude circle. The system state is [S1, ..., SK ] representing atmospheric velocity at K
evenly spaced locations and is evolved according to the governing equation:

dSk

dt
= −Sk−1(Sk−2 − Sk+1)− Sk + F,

with periodic boundary conditions xk+K = xk. The first term models advection, and the second term represents a linear
damping with magnitude F . In general, the dynamics become more turbulent/chaotic as F increases. We choose the
number of variables K = 40, 80 and the external forcing F = 10, where the system is chaotic with a Lyapunov time of
approximately 0.6 time units. As an observation model for the following experiments, we randomly observe 25% states (e.g.
10 in K = 40). Our models are trained on a dataset D of N = 100 trajectories, each trajectory consisting of = 5000 time
steps, generated by integrating the system from randomly sampled initial conditions.

E.1.1. DATA GENERATION.

To generate the dataset, we use the 8th-order Runge-Kutta (Butcher, 1996) method to numerically integrate the Lorenz-96
systems with sample step 0.1 and the integration step ∆t size is set to 0.01. The system is integrated from randomly sampled
initial conditions, and data is collected once the system reaches a stationary distribution. For an observation operator, we use
subsampling which every 5th and 10th variable for 40 and 80-dimensional system are observed via the nonlinear mapping
5 arctan(·π/10) + ϵ with noise ϵ ∼ N (0, 0.1) (see Figure 6 in Appendix E.1 for an example). The arctan : R 7→ [−π

2 ,
π
2 ]

squeezes the state variable Sk into [−π
2 ,

π
2 ], which is difficult for inverse estimation. We integrate the Lorenz96 system with

observation interval ∆t = 0.1. The history length is set as 10 such that ht = (ot−10, ..., ot−1).

E.1.2. ADDITIONAL EXPERIMENT RESULTS.

We provide qualitative results in Figure 7 for the Lorenz 96 system at two different dimensions: 40 (left) and 80 (right). Each
subplot illustrates the normalized absolute error for various methods, including 3D-VAR, 4D-VAR, (Frerix et al., 2021), and
Tensor-Var, compared to the ground truth. The assimilation window length is set to 5 (indicated by the red dashed line), with
forecasts extended for an additional 100 steps based on the assimilated results. Tensor-Var generally outperforms the other
methods in both dimensions and maintains stable long-term forecasts, comparable to other model-based approaches. For 3D-
and 4D-VAR with partially observed models, the observed states show minimized errors (indicated by the dark lines), while
the errors of unobserved states remain uncontrollable, as clearly shown in Figure 7.

21



Tensor-Var: Efficient Four-Dimensional Variational Data Assimilation

Figure 6. Nonlinear observation model in the Lorenz 96 system: the state values are represented by the solid blue curve, with the observed
grid points indicated by red dots.
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3D-VAR Error

4D-VAR Error

Frerix et al. (2021) Error

Tensor-Var Error 

(a) 40 dimensional Lorenz 96 system

Ground Truth

3D-VAR Error

4D-VAR Error

Frerix et al. (2021) Error

Tensor-Var Error 

(b) 80 dimensional Lorenz 96 system

Figure 7. Qualitative error comparison for the Lorenz 96 system at (a) 40 dimensions and (b) 80 dimensions. The plots show the
normalized absolute errors for various methods, including 3D-VAR, 4D-VAR, Frerix et al. (2021), and Tensor-Var, compared to the
ground truth. The assimilation window length is set to 5 (indicated by the red dashed line), with forecasts extended for an additional 100
steps based on the assimilated results.
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E.2. Kuramoto-Sivashinsky

Next, we consider the Kuramoto-Sivashinsky (KS) equation, a nonlinear PDE system known for its chaotic behaviour and
widely used to study instability in fluid dynamics and plasma physics (Papageorgiou & Smyrlis, 1991). The dynamics in
spatial domain u(x, t) is given by,

∂u

∂t
+ u

∂u

∂x
+

∂2u

∂x2
+

∂4u

∂x4
= 0,

where x ∈ [0, L] with periodic boundary conditions. We set the domain length L = 32π, large enough to induce complex
patterns and temporal chaos due to high-order term interactions (Cvitanović et al., 2010). The system state u(x, t) was
discretized into ns = 128 and ns = 256. The observation model is the same as in Lorenz-96, where 25% states can be
observed. In this case, our models are trained on a dataset D consisting of N = 100 trajectories, each with L = 5000 time
steps and a discretization of ∆t = 0.01, sampled from the stationary distribution with different initial conditions.

E.2.1. DATA GENERATION.

To generate the dataset, we use the exponential time differencing Runge–Kutta method (ETDRK), which has proven
effective in computing nonlinear partial differential equation (Cox & Matthews, 2002) with an integration step ∆t = 0.001
and sample step 0.01. The system is integrated from randomly sampled initial conditions, and data is collected once
it reaches a stationary distribution. For observations, we use subsampling, observing every 8th state in both 128- and
256-dimensional systems, we use subsampling which every 8th for both 128 and 256-dimensional system are observed with
noise ϵ ∼ N (0, 1), and 5 arctan(·π/10) as nonlinear mapping (see Figure 6 in Appendix E.1 for an example). The history
length is set to 10 as well.

E.2.2. ADDITIONAL EXPERIMENT RESULTS.

Ground Truth

3D-VAR Error

4D-VAR Error

Frerix et al. (2021) Error

Tensor-Var Error 

(a) 128 dimensional KS system

Ground Truth

3D-VAR Error

4D-VAR Error

Frerix et al. (2021) Error

Tensor-Var Error 

(b) 256 dimensional KS system

Figure 8. Qualitative error comparison for the KS system at (a) 128 dimensions and (b) 256 dimensions. The plots show the normalized
absolute errors for various methods, including 3D-VAR, 4D-VAR, Frerix et al. (2021), and Tensor-Var, compared to the ground truth. The
assimilation window length is set to 5 (indicated by the red dashed line), with forecasts extended for an additional 100 steps based on the
assimilated results.
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We provide qualitative results in Figure 8 for the KS systems at two different dimensions: 128 (left) and 256 (right). Each
subplot illustrates the normalized absolute error for various methods, including 3D-VAR, 4D-VAR, Frerix et al. (2021), and
Tensor-Var, compared to the ground truth. The assimilation window length is set to 5 (indicated by the red dashed line), with
forecasts extended for an additional 100 steps based on the assimilated results.

Compared to the Lorenz-96 system, the KS system is more complex, being governed by partial differential equations (PDEs)
that account for spatial evolution. In both dimensions, Tensor-Var consistently outperforms other methods, particularly in
capturing chaotic dynamics during the initial forecast phase. It also maintains long-term stability in a more complex PDE
system, comparable to other model-based approaches. In contrast, 3D-VAR struggles with assimilation, especially in the
256-dimensional case, due to its inability to capture temporal evolution, leading to rapid error divergence. This underscores
the critical importance of temporal modeling in chaotic systems. A similar pattern of error between observed and unobserved
states is evident in Figure 8.

E.3. Global NWP

We consider a global numerical weather prediction (NWP) problem using the European Centre for Medium-Range Weather
Forecasts (ECMWF) Atmospheric Reanalysis (ERA5) dataset (Hersbach et al., 2020). This dataset provides high-resolution
atmospheric reanalysis data from 1940 to the present, offering the most comprehensive estimate of atmospheric dynamics.
For our proof of concept, we focus on five upper level physical variables: 500 hPa geopotential height, 850 hPa temperature,
700 hPa humidity, and 850 hPa wind speed (meridional and zonal components) at a spatial resolution of 64×32.

The data is sourced from the WeatherBench2 repository (Rasp et al., 2024). From this dataset, we randomly sample grid
points with 15% spatial coverage. The sampled observations include additive noise equivalent to 0.01 times the standard
deviation of the state variable, ensuring robustness against observational uncertainty (see Figure 9). For model training, we
use ERA5 data from 1979-01-01 to 2016-01-01, separating data from post-2018 for testing. There are 51,100 consecutive
system states with generated observations for training and 2,920 data for testing.

True State Latent-3DVar errorObservationBackground State

z5
00

 
t8

50
 

q7
00

 
u8

50
v8

50
 

Latent-4DVar error Tensor-Var error

Figure 9. Visualization of assimilation results for five variables from ERA5 data at time 2018-01-01 00:00. Each column (from left to
right) displays the background state, observations, true state, and errors for Latent-3DVar, Latent-4DVar, and Tensor-Var. The reported
error was a weighted absolute error in each pixel; see Appendix E.3 for more details.

In addition to the results presented in the main experiments, we evaluate the forecasting quality of Tensor-Var based on the
assimilated state. Figure 10 shows the mean RMSE weighted by latitude (Rasp et al., 2024) for five variables predicted
by Tensor-Var at various lead times τ , where τ = 0 represents the assimilation error in the final state of the assimilation
window.
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Figure 10. The (non-cyclic) forecasting quality of Tensor-Var in NWP experiments with leading time zero as the final state in the
assimilation window, is evaluated across different experiments. The five sub-figures display the NWP forecast for 5 variables (15-day in
total).

Area-weighting Root mean squared error (RMSE). The error is defined for each variable and level as√√√√ 1

TIJ

T∑
t=1

I∑
i=1

J∑
j=1

(w(i)ŝt,i,j − st,i,j)2,

which is area-weighting over grid points. This is because on an equiangular latitude-longitude grid, grid cells at the poles
have a much smaller area compared to grid cells at the equator. Weighing all cells equally would result in an inordinate bias
towards the polar regions. The latitude weights w(i) are computed as:

w(i) =
sin (θui )− sin (θli)

1
I

∑I
i=1(sin (θ

u
i )− sin (θli))

,

θiu and θil indicate upper and lower latitude bounds, respectively, for the grid cell with latitude index i.
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E.4. ASSIMILATION FROM SATELLITE OBSERVATIONS

E.4.1. DATA GENERATION.

We collect the weather satellite track data from https://celestrak.org/NORAD/elements/ for the period 1979-
01-01 00:00:00 to 2020-01-01 00:00:00. Observations are matched to the high-resolution ERA5 dataset (240× 121 grid) by
identifying the nearest neighborhood grid points along the satellite track to generate observations. Furthermore, we use an
observation frequency of up to every half hour within the 2 hours before each assimilation time and add white noise with a
standard deviation of 1% of the standard deviation of the corresponding state variables.

E.4.2. ANOMALY CORRELATION COEFFICIENT EVALUATION

In addition to the NRMSE results reported in Subsection 4.3, we also evaluate the assimilated fields using the Anomaly
Correlation Coefficient (ACC), which measures the pattern similarity between anomalies in the analysis (or forecast) and
a reference field relative to a climatological mean. This metric is widely used in numerical weather prediction to assess
the accuracy of large-scale spatial patterns. We compare the ACC performance of our method with the SOTA data-driven
baseline, FengWu 4D-Var (Xiao et al., 2024). ACC is formally defined as:

ACC =

∑
t(ŝt − s̄)(st − s̄)√∑

t(ŝt − s̄)2
√∑

t(st − s̄)2
,

where ŝ is the result of assimilation, s is the corresponding reference value (e.g. ERA5), and s̄ is the climatological mean.
Figure 11 reports the mean and standard deviation of ACC for five atmospheric variables over a 7-day forecast horizon,
with an assimilation window of length 5. The results indicate that Tensor-Var consistently achieves higher ACC values than
FengWu 4D-Var over a long horizon.

Figure 11. Comparison of ACC over a 7-day horizon for five atmospheric variables from Fengwu 4D-Var and Tensor-Var. Each time-step
represents a 6-hour interval.

E.4.3. LONG ROLL-OUT STABILITY TEST

To assess the long-term stability of our method, we conduct a one-year roll-out experiment under the following settings:
spatial resolution of 240× 121; meteorological variables {z500, t850, q700, u850, v850}; a 6-hour time step; assimilation
window length of 5 steps; and a forecast lead time of 7 days. The experiment covers the full year from January 1 to December
31, 2018, with training and evaluation settings consistent with Section 4.3.

Figure 12 illustrates the long-term behavior of Tensor-Var in comparison to FengWu 4D-Var. The results show that
Tensor-Var effectively controls the estimation error over extended periods and achieves lower error magnitudes than FengWu
4D-Var throughout most of the year. However, we observe that Tensor-Var exhibits instability after approximately 800
assimilation steps, whereas FengWu maintains stable performance.
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Figure 12. Long-term roll-out stability test for the five meteorological variables over a one-year horizon. The plot compares the NRMSE
of forecasts (dashed) and forecast-DA (solid) outputs from Tensor-Var and FengWu 4D-Var.

The observed instability can be attributed to the linear dynamical structure of Tensor-Var, which is able to handle short-
term forecasting but can be insufficient for capturing nonlinear long-term dynamics. In contrast, the transformer-based
architecture of FengWu 4D-Var appears to be more robust for extended temporal integration. These findings highlight a
trade-off between assimilation efficiency and long-horizon stability. Future work will focus on improving Tensor-Var’s
dynamical expressiveness while preserving its computational advantages.
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E.4.4. ADDITIONAL QUALITATIVE RESULTS
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Figure 13. Visualization of continuous assimilation results, absolute errors, and observation locations for t850 (temperature), starting from
2018-01-01 00:00.

Figure 14. Visualization of continuous assimilation results, absolute errors, and observation locations for q700 (humidity), starting from
2018-01-01 00:00.
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Figure 15. Visualization of continuous assimilation results, absolute errors, and observation locations for u850 (meridional wind speed),
starting from 2018-01-01 00:00.
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Figure 16. Visualization of continuous assimilation results, absolute errors, and observation locations for v850 (zonal wind speed), starting
from 2018-01-01 00:00.
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E.5. Ablation study

In this section, we provide the details of the ablation studies of (1) the history length m, (2) the dimensions of the feature
dimension and comparison with standard kernel functions, and (3) the effects of the estimated error matrices. All ablation
studies are conducted on Lorenz-96 systems with ns = 40 and ns = 80. We fix the remaining hyperparameters consistent
with the main experiments and vary only the parameters under investigation.

(1) Effect of the history length m. We examine the impact of the history length m on learning the inverse observation
operator and its effect on state estimation accuracy. The feature dimensions ds, do, and dh remain constant, while the history
length is varied by adjusting the size of the final linear layer (see Table 5). The state feature dimensions ds are set to 60 and
120 for the two system dimensions.

(2) Effect of DFs. We implement Tensor-Var with a Gaussian kernel using kernel PCA projected to the first 60 and 120
eigen-coordinates in scikit-learn (Pedregosa et al., 2011) by aligning with the dimension of the used DFs. For the Gaussian
kernel, we approach the pre-image problem by fitting a projection operator (Kwok & Tsang, 2004). The space S ⊂ Rns

together with the linear kernel k(si, sj) = sTi sj also forms an RKHS. Therefore, we can define the projection operator
as a CME operator that maps from the feature space HS to the original space S as Ĉproj = S(KS + λI)−1ΦT

S , where
S = [s1, ..., sn]. By applying Ĉproj now to the state, we can obtain the mean estimation of the kernel mean embedding in S
such that ŝ = ĈprojµPS

= ES [ĈprojϕS(S)] = ES [S]. We normalize the dataset to a standard Gaussian distribution and select
the length scale γ = 1.0 by performing a cross-validation on γ = [0.5, 0.75, 1.0, 1.25, 1.5, 2].

E.6. Model architecture

Table 5. Deep feature architecture for 1D chaotic systems with dimensions ns, no, nh = m× no and feature dimension ds, do, dh
Components Layer Weight size Bias size Activation

Fully Connected ns × 4ns 4ns Tanh
ϕθS Fully Connected 4ns × 2ns 2ns Tanh

Fully Connected 2ns × ds ds
Fully Connected ds × 2ns 2ns Tanh

ϕ†
θ′
S

Fully Connected 2ns × 4ns 4ns Tanh
Fully Connected 4ns × ns ns

Fully Connected no × 4no 4no Tanh
ϕθO Fully Connected 4no × 2no 2no Tanh

Fully Connected 2no × do do
Convolution 1D m× 2m× 5 2m Tanh

Max Pooling (size=2)
ϕθH Convolution 1D 2m× 4m× 3 4m Tanh

Max Pooling (size=2)
Flatten

Fully Connected mno × dh dh
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Table 6. Model architecture for Global NWP with input dimension (H,W,C) with C physical variables and spatial resolution H ×W .
The implementation of vision Transformer (ViT) block follows (Zamir et al., 2022) with applications in DA followed by (Nguyen &
Fablet, 2024).

Components Layer Layer number C, (H,W ) Activation
Convolution2d 1 C → 4C, (H,W )

Transformer Block 2 4C → 4C, (H2 ,
W
2 ) ReLU

ϕθS Transformer Block 3 4C → 8C, (H4 ,
W
4 ) ReLU

Transformer Block 3 8C → 8C, (H8 ,
W
8 ) ReLU

Flatten (8C, H
8 ,

W
8 ) → CHW

8

Fully Connected 1 CHW
8 → ds

Fully Connected 1 ds → CHW
8

Transpose CHW
8 → (8C, H

8 ,
W
8 )

ϕ†
θ′
S

Transformer Block 3 8C → 8C, (H8 ,
W
8 ) ReLU

Transformer Block 3 8C → 4C, (H4 ,
W
4 ) ReLU

Transformer Block 2 4C → 4C, (H2 ,
W
2 ) ReLU

Convolution2d 1 4C → C, (H,W )

Convolution2d 1 C → 2C, (H,W )

Transformer Block 2 2C → 2C, (H2 ,
W
2 ) ReLU

ϕθO Transformer Block 3 2C → 4C, (H8 ,
W
8 ) ReLU

Flatten (4C, H
8 ,

W
8 ) → CHW

16

Fully Connected 1 CHW
16 → do

Convolution2d 1 mC → 2C, (H,W )

Transformer Block 2 2C → 2C, (H2 ,
W
2 ) ReLU

ϕθO Transformer Block 3 2C → 4C, (H8 ,
W
8 ) ReLU

Flatten (4C, H
8 ,

W
8 ) → CHW

16

Fully Connected 1 CHW
16 → dh
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