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ABSTRACT

Recently, it has been a hot research topic to design different polynomial filters
in graph neural networks (GNNs). Most of the existing GNNs only pay atten-
tion to the properties of polynomials when designing the polynomial filter, thus
not only bringing additional computational costs but also ignoring embedding the
graph structure information into the construction process of the basis. To ad-
dress these issues, we theoretically prove that any polynomial basis with the same
degree has the same expressive ability and the finely designed polynomial basis
that only considers the polynomial property can at most bring linear benefit for
GNNs. Then, we propose a graph information activation (GIA) theory that pro-
vides a new perspective for interpreting polynomial filters and then analyse some
popular bases using the GIA theory. Based on the GIA theory and analysis, we
design a simple basis by utilizing the graph structure information and further build
a simple GNN (i.e. SimpleNet), which can be applied to both homogeneous and
non-homogenous graphs. Experiments on real datasets demonstrate that our Sim-
pleNet can achieve better or comparable performance with relatively less running
time compared to other state-of-the-art GNNs.

1 INTRODUCTION

Graph Neural Networks (GNNs) are effective machine learning models for various graph learning
problems (Wu et al., 2022), such as social network analysis (Li & Goldwasser, 2019; Qiu et al., 2018;
Tong et al., 2019), drug discovery (Rathi et al., 2019; Jiang, 2021) and traffic forecasting (Bogaerts
et al., 2020; Cui et al., 2019; Li et al., 2018). Generally, the layer of GNNs can be represented as a
unified form (Balcilar et al., 2021):

H(l+1) = σ(
∑
s

C(s)H(l)W (l,s)), (1)

where H(l) is the output of the lth layer, σ(·) is the activation function, W (l,s) is the weight to
be learnt, and C(s) is the sth graph convolution support that defines how the node features are
propagated to the neighbouring nodes. Currently, most existing GNNs differ from each other in
selecting convolution supports C(s), which are usually designed in a polynomial form.

Specifically, many researchers focus on analyzing the properties of polynomial filters and try to
find the optimal basis from the existing polynomials to approximate the filter. For example, Cheb-
Net (Defferrard et al., 2016) first adopts an orthogonal Chebyshev basis to approximate the filter.
BernNet (He et al., 2021) applies a non-negative Bernstein basis to improve the interpretation of
GNN. JacobiConv (Wang & Zhang, 2022) utilizes the orthogonal Jacobi basis due to its flexible
approximation ability and faster convergence speed. OptBasisGNN (Guo & Wei, 2023) learns the
optimal basis from the orthogonal space. However, these GNNs only consider the properties of poly-
nomials themselves and apply many complicated tricks to implement these bases, thus introducing
additional computation costs. For example, BernNet (He et al., 2021) has quadratic time complexity
related to the degree of the polynomial, JocobiConv (Wang & Zhang, 2022) requires three iterative
calculations to obtain the basis, and OptBasisGNN (Guo & Wei, 2023) introduces an additional or-
thogonalization process to construct an orthogonal matrix. In summary, there is a growing focus
on the nature of polynomials themselves in the design process, which not only introduces additional
computational costs, but also neglects to utilize the graph structure information in the design process
of the basis.
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Based on these discussions, we naturally put forward two problems:

Problem 1: Considering the nature of the polynomial alone, how much does the fine design of the
polynomial filter help to improve performance? Is it necessary to make such a design?

Problem 2: Can we design a polynomial filter in conjunction with the graph structure? Can this
help build an explainable and more efficient GNN?

In this paper, we attempt to provide an explicit answer to these two problems, and our contributions
are mainly threefold.

• To address the first problem, we theoretically prove that any polynomials with the same
degree have the same expressive ability and the same global optimal solution. Also, we
prove a theorem to claim that the convergence rate of the unified optimization form for
GNNs with the gradient descent method is linear, i.e., the finely designed polynomials can
at most bring linear benefits for GNNs. Therefore, we claim that it should not be neces-
sary to over-elaborately design the polynomial bases by only considering the polynomial
property.

• To address the second problem, we first propose a graph information activation (GIA) the-
ory that provides a new perspective for the interpretation of polynomial filters in GNNs.
Then we analyse some popular bases using the the concepts of positive and proper activa-
tion defined in GIA theory. Finally, we propose a simple basis with the embedded graph
structure information and further build a simple GNN (i.e. SimpleNet).

• Experimental results on the benchmark node classification datasets verify the superiority of
our proposed SimpleNet compared with existing GNNs in both accuracy and running time.

2 NOTATIONS AND PRELIMINARIES

Gradient descent method. For the optimization problem min
z

f(z), we can apply the gradient
descent method to solve it, namely,

zt+1 = zt − ηgt, (2)
where gt is the gradient of the loss function and η is the step size.

Convergence rate. Suppose {f(zn)}∞n=0 is a sequence that converges to f(z∗), where z∗ is the
optimal solution of min

z
f(z). If positive constants µ and α exist and

lim
n→∞

|f(zn+1)− f(z∗)|
|f(zn)− f(z∗)|α

= µ, (3)

where µ < 1 and we say {f(zn)}∞n=0 converges to f(z∗) at convergence rate µ with order α. When
α = 1, we say that {f(zn)}∞n=0 converges to f(z∗) at a linear convergence rate µ.

Graph Neural Networks. We denote an undirected and unweighted graph G with vertex set V and
edge set E as G = G(V,E), whose adjacency matrix is A. The symmetric normalized Laplacian
matrix of G is defined as L = I −D−1/2AD−1/2, where D is the diagonal degree matrix of A.
Given a graph signal x ∈ Rn, where n = |V | is the number of nodes in the graph, the graph filtering
operation can be represented as

∑K
k=1 wkL

kx, where wk is the weight. We denote L = UΛU⊤

as the eigen-decomposition of L, where U is the matrix of eigenvectors and Λ =diag[λ1, ..., λn] is
the diagonal matrix of eigenvalues.

Polynomial filters. Some GNNs design graph signal filters in the Laplacian graph spectrum, and
this type of GNN is called a spectral GNN. To avoid the eigenvalue decomposition of the graph
Laplacian matrix, spectral GNNs apply various polynomial bases to approximate the Laplacian filter
on the frequency domain of graph, which is called frequency polynomial filter. These frequency
polynomial filters construct the C(s) term in Eq. (1) in a uniform polynomial form as other GNNs
do, which are uniformly called polynomial filters.

3 MAIN WORK

In this section, we present our solutions to the aforementioned two problems.
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3.1 SOLUTIONS TO PROBLEM 1

To address the first problem, we first theoretically analyze the intrinsic consistency and difference
of polynomial filters from two aspects, that is, the expression ability of GNN and the convergence
rate of the optimization problem underlying the GNN.

3.1.1 EXPRESSIVE POWER ANALYSIS OF GNNS

The expressive power of GNNs is the ability to allow GNNs to approximate non-linear mappings
from features to labels on the graph. As pointed out in (He et al., 2021), the expression power of
GNNs is highly associated with the choice of polynomials that are used to approximate the graph
filter. In this paper, from the perspective of linear algebra, we claim that any polynomial of order K
has the same expression ability, which can be mathematically explained by the following theorem.

Theorem 3.1 Let g1(x), g2(x), . . . , gn(x) be n polynomials of the form
∑k

i=0 αix
i. The maximum

linearly independent group of these n polynomials has K + 1 elements, and then it can span the
linear polynomial space of degree K.

The proof of Theorem 3.1 can be found in the Appendix A.1. This theorem implies that any K
degree polynomial filter can be exactly represented by a set of K order linearly independent polyno-
mial bases. Since GNNs consist of successive layers as shown in Eq. (1), GNNs can thus be viewed
as an optimizer to solve a convex optimization problem as shown in Eq. (4) with a globally optimal
solution (Please refer to the proof of Theorem 3.1 in the Appendix A.1.). Specifically, Theorem
3.1 indicates that no matter whether a K-order polynomial is used as the basis (i.e. C(s)), it can
converge to a global optimal point. That is to say, although different polynomial bases are used to
approximate the graph signal filter, their expressive power will be the same if all polynomials have
the same degree.

3.1.2 CONVERGENCE RATE ANALYSIS OF GNN

After discussing the expressive ability of GNNs, a natural question is: how quickly can GNNs
converge to the optimal solution? Regarding convergence rate, the mainstream idea is that selecting
an orthogonal basis will affect the condition number of Hessian matrix and thus affect the learning
effect and convergence speed (Guo & Wei, 2023). In this work, we make a preliminary attempt to
study this effect from the perspective of solving one convex optimization using the gradient descent
(GD) algorithm. Specifically, we first prove that this effect does not exceed a linear level and then
provide an upper bound of the convergence rate. The analysis process is shown below.

Based on previous works, GNNs can be seen as an optimizer and can be mathematically formulated
in a uniform optimization form ((Dengyong Zhou, 2003; Zhu et al., 2021; He et al., 2021))):

min
z

f(z) = (1− α)zT γ(L)z + α∥z − x∥22, (4)

where z is the output feature matrix, γ(L) is an energy function of the positive-definite graph Lapla-
cian matrix L, x is the label matrix, and α ∈ [0, 1). Generally, γ(·) operates on the spectral of L,
and we have γ(L) = Udiag[γ(λ1), ...., γ(λn)]U

⊤. Fortunately, Eq. (4) is a convex optimization
problem, and thus its global optimal solution exists. Moreover, since this optimization problem is
quadratic, its convergence rate can be numerically analyzed using the following inequality.

Lemma 3.1 (Kantorovich inequality) ((Marshall & Olkin, 1990; Liu & Neudecker, 1999; Liu
et al., 2022)) For any z ∈ Rn, denote λmin and λmax as the maximum and minimum eigenvalues
of a positive definite symmetric matrix M ∈ Rn×n, respectively, and then

(zTMz)(zTM−1z)

(zTz)2
≤ (λmax + λmin)

2

4λmaxλmin
. (5)

Using Lemma 3.1, we can prove the following convergence rate theorem for GNNs.

Theorem 3.2 (Convergence rate theorem for GNN) The convergence rate of the gradient descent
algorithm with exact line search to solve the optimization problem (4) is not faster than a linear
constant. Mathematically, we have the following convergence formula:∣∣∣∣f(zk+1)− f(z∗)

f(zk)− f(z∗)

∣∣∣∣ ≤ (1− 2

1 + κ
)2, (6)
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where zk is the update of the kth iteration, z∗ is the global minimum solution, and κ is the condition
number of 2((1− α)γ(L) + αI).

Theorem 3.2 implies that the convergence rate difference of the optimization problem (4) underlying
GNNs is no more than a linear constant related to the condition number of the problem matrix.
Essentially, the impact of setting different polynomial bases is reflected in κ. As can be seen, the
minimum of κ is 1. When κ = 1 and α = 1, Eq. (4) degrades into a trivial regression problem, i.e.
min
z

f(z) = ∥z − x∥22, whose optimal solution is z = x. That degradation case also implies that
the optimizing of condition number also has a risk of worsening the structure of the problem. The
proof of Theorem 3.2 can be found in the Appendix A.1.

Moreover, since selecting the optimal orthogonal basis requires an additional expensive calcula-
tion cost (Guo & Wei, 2023), we therefore make an elementary attempt to replace these complex
orthogonal polynomial bases with a simpler monomial basis. Specifically, monomial bases, i.e.
(2I − L)k, k = 1, 2, ...,K, are designed to approximate the graph filter and we surprisingly find
that when the weights are all fixed as 1 (we call the GNN FixedMono), FixedMono outperforms
BernNet on homogeneous graph datasets with less computational cost as shown in Table 1. This in-
spires us to build a more interpretable basis since existing GNNs mainly focus on searching for some
highly restricted polynomial bases, while largely ignoring that designing polynomial or monomial
bases to approximate the targeted graph filters should also incorporate graph structure information
in order to better utilize the graph information.

Table 1: Comparison between Bernstein basis and FixedMono basis on homogeneous datasets.

Dataset Cora Computers Pubmed citepseer Photo
BernNet 88.52 ± 0.95 87.64 ± 0.44 88.48 ± 0.41 80.09 ± 0.79 93.63 ± 0.35
FixedMono (Ours) 88.76 ± 0.90 89.15 ± 0.42 88.84 ± 0.48 80.34 ± 0.70 95.08 ± 0.35

3.2 SOLUTIONS TO PROBLEM 2

For the second problem, we first propose a Graph Information Activation (GIA) theory, which can
be used to evaluate various popular bases. Then, we design a new basis embedded with the graph
structure information and this basis can be theoretically explained by the GIA theory. Based on this
basis, we further propose a simple GNN (i.e. SimpleNet).

3.2.1 GRAPH INFORMATION ACTIVATION THEORY

Inspired by graph theory (Andrilli & Hecker, 2023; Bronson et al., 2024), polynomial filter and
message passing theory on the graph (Gilmer et al., 2017; Yi Liu, 2022), we propose the Graph
Information Activation (GIA) theory in this section. Before introducing the main theorem, we first
introduce some necessary definitions and lemmas briefly.

Definition 3.1 (K-step neighborhood) For an undirected and unweighted graph, the K-step neigh-
borhood of node v is a set consisting of nodes which have a K-length simple path to the node v. The
K-step neighborhood of node v is denoted as Nk(v).

Definition 3.2 (K-step activation) For an undirected and unweighted graph, the K-step activation
x∗
v of a given node v equals the linear combination of the feature vector x0 of node v and all its

one-step to K-step neighbours’ feature vectors. Mathematically, the K-step activation is defined as

x∗
v =

K∑
k=1

∑
s∈Nk(v)

αsxs + α0x0 (7)

where x∗
v is the K-step activation of node v, αs and α0(≥ 0) are combination coefficients, and xs

is the feature vector of node s.

Definition 3.3 (Positive activation) In Eq. (7), if all the αss are non-negative and there is at least
one greater than 0, then the K-step activation is called positive; otherwise, it is non-positive.

Definition 3.4 (Proper activation) In Eq. (7), if α0 > 0, then the K-step activation is proper;
otherwise, it’s improper.
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Here, we give an explanation for the two properties. Specifically, the positive property describes
the positive feedback between neighbours in a graph, and the proper property means that one vertex
updated after activation contains its own feature. It can be viewed as a residual connection in the ac-
tivation of a graph, which inclines to make the activation more stable and consistent. The activation
illustrations are shown in Figure 1.

Figure 1: Left: Schematic depiction of a given full graph. The central node is the observing node
with an initial weight of one. We focus on its two activations. Right: The black nodes are those
that haven’t been activated. The red nodes are those with positive weights. The blue nodes are those
with negative weights. The redder or bluer the node, the greater the absolute value of its weights.
We show two activations L (upper) and (2I − L) (lower) with 3 iterations, primary, quadratic and
cubic terms. In this figure, (2I −L)k is a positive and proper activation while L is non-proper.

Definition 3.5 (Graph activation) For a graph G(V,E) with |V | = n and feature matrix X ∈
Rn×d, where d is the dimension of node feature, the activation of G can be computed as X∗ = AX ,
where A is a transformation matrix and X∗

i: is the activation of the ith node in the graph.

As defined in Eq. (7), activation of a node can be seen as the linear reconstruction of its neighbours
and itself, and activation of a whole graph can be seen as a special linear transformation of features.
In the rest of this section, we mainly focus on the polynomial forms of this transformation; that is
to say, we are dedicated to constructing an activation in polynomial form which is capable of finely
extracting graph information as previous GNNs do. The novelty is that this time, we are not trying to
approximate some spectral filter in polynomials. Conversely, we attempt to construct a polynomial
spatial filter from a GIA perspective.

Generally, the graph can be divided into two categories, i.e. homogeneous graph and nonhomo-
geneous graph. Let’s start with the simpler case, i.e., homogeneous graph. Due to the positive
correlation of neighbouring nodes in homogeneous graphs, a proper and positive activation can be
efficient for feature extraction. Now consider a problem: Can we find a proper and positive activa-
tion in polynomial form for all nodes in a graph? Let us refer to the following lemmas and theorems
to answer this question.

Lemma 3.2. G(V,E) is a graph with self-loop, |V | = n, and X is the feature matrix of G. Let A
be a n× n matrix such that {

Aij > 0 if (vi, vj) ∈ E,
Aij = 0 else

and then X∗ = AkX is a positive and proper k-step activation of graph G.

Lemma 3.3. The sum of finite positive and proper activations is still positive and proper.

Based on Lemma 3.2 and Lemma 3.3, we can then obtain the following theorem.

Theorem 3.3. Let L be the Laplacian matrix of graph G and I be the identity matrix, and then∑k
j=0 αj (2I −L)jX ,(∀αj ≥ 0), is a proper and positive activation of G.

We now get a general form of positive and proper activation of a graph as we expect initially. Also,
our FixedMono model well fits this form. Next, we will present the GIA analysis on the FixedMono
base and other popular bases to better understand the GIA theory and how it works. All the proof
can be found in Appendix A.1.

5



Under review as a conference paper at ICLR 2024

3.2.2 ANALYSIS ON FIXEDMONO AND OTHER POPULAR BASES USING GIA THEORY

Let’s look back on the FixedMono basis used in Section 3.1.2, which performs well in homogeneous
graph datasets as shown in Table 1 since the transform matrix constructed by the FixedMono base
can generate a positive and proper activation of a graph. The positive nature of the FixedMono
makes it slightly outperform many main baselines, as the neighbourhood of one vertex is too large
as k increases, making some neighbours not see it as ’nearby’. This problem is also called the “curse
of dimensionality” (Bellman & Corporation, 1957; Bellman, 1961) in the field of machine learning.

However, it should also be noted that FixedMono does not work well on non-homogeneous graphs,
as shown in Table 3, which may be attributed to the lack of negative feedback in activation. As
we know, the non-homogeneous graph consists of heterogeneous components. Two neighbours in
different classes may have negative feedback, that is to say, in some cases if two vertexes have a
connected edge, they have a high probability of being classified into different classes, e.g., if one
paper cites another one, they must be published at time-varying points.

Furthermore, we can generally conduct analysis on the popular polynomial bases using GIA theory.
For example, we focus on analyzing the Monomial (1 − λ)k and Bernstein (2 − λ)K−kλk bases.
Using the GIA theory, we can find that the (I − L)k base contains pure positive information ac-
tivation but lacks a non-positive component, thus limiting its expressive power. Also, (I − L)1 is
improper due to the lack of self-loop. (2I−L)K−kLk base really contains positive and non-positive
information activation. However, this mixture of positive and non-positive components does not de-
couple the learning process of positivity and non-positivity, that is to say, we cannot optimize the
positive or non-positive activation independently in our network. The only learned leading coeffi-
cient in the term (2I − L)K−kLk will scale up or hold both positive and non-positive components
simultaneously, which also forces us to find a simpler way to decouple the positive and non-positive
components in our activation.

3.2.3 SIMPLENET BASED ON GIA THEORY

Inspired by the GIA theory and FixedMono’s failure on the non-homogeneous datasets, we propose
a new GNN called SimpleNet. To understand the SimpleNet better, we first perceive it from the
classic spectral-GNN perspective. Given an arbitrary filter function h : [0, 2] → [0, 1], the spectral
filter on the graph signal x is denoted as

h(L)x = Uh(Λ)UTx = Udiag[h(λ1), ..., h(λn)]U
Tx. (8)

In particular, given a graph signal x, the convolution operator of our SimpleNet in the Laplacian
spectrum is defined as

z = (

K1∑
i=0

αi(2I −L)i +

K2∑
j=0

βjL
j)x, (9)

where K1 and K2 are two hyper-parameters, αi and βj are the weight coefficients of the basis.
Furthermore, the proposed basis used in Eq. (9) can be explained by our GIA theory. Specifically,
(2I − L)i is a positive and proper activation of graph information. To make it adaptive to non-
homogeneous datasets, we need another injection of non-positive components; thus, we simply add
the Lj term into our basis, which is a non-positive activation. In summary, our SimpleNet uses
the weighted mixture of positive and non-positive information activations simultaneously to achieve
proper information fusion, and the weight parameters (i.e., αi and βj) are learnable. Furthermore,
the positive and non-positive ratios can be rectified by adjusting K1 and K2. Also, note that when
SimpleNet performs convolution operations on the graph, it is equivalent to performing appropriate
information activation, and this process is shown in Figure 1.

4 EXPERIMENTAL RESULTS

In this section, we conduct experiments on real-world datasets to evaluate the performance of our
proposed SimpleNet. All experiments are carried out on a machine with an RTX 3090 GPU (24GB
memory), Intel Xeon CPU (2.20 GHz), and 256GB of RAM.
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Table 2: The statistics of our used real datasets for node classification.

Datasets Cora Computers Photo Texas Cornell Citeseer Actor Chameleon Pubmed Penn94
Nodes 2708 13752 7650 183 183 3327 7600 2277 19717 41554
Edges 5278 245861 119081 279 277 4552 26659 31371 44324 1362229
Features 1433 767 745 1703 1703 3703 932 2325 500 5
Classes 7 10 8 5 5 6 5 5 5 2

Table 3: Results on homogenous datasets: mean accuracy (%) ± 95% confidence interval.

Computers Photo Pubmed Citeseer Cora

GCN 83.32±0.33 88.26±0.73 86.74±0.27 79.86±0.67 87.14±1.01
ChebNet 87.54±0.43 93.77±0.32 87.95±0.28 79.11±0.75 86.67±0.82
GPRGNN 86.85±0.25 93.85±0.28 88.46±0.33 80.12±0.83 88.57±0.69
BernNet 87.64±0.44 93.63±0.35 88.48±0.41 80.09±0.79 88.52±0.95
JocobiConv 90.39±0.29 95.43±0.23 89.62±0.41 80.78±0.79 88.98±0.46
ChebNetII 89.37±0.38 94.53±0.25 88.93±0.29 80.53±0.79 88.71±0.93
OptBasis 89.65±0.25 93.12±0.43 90.30±0.19 80.58±0.82 88.02±0.70

FixedMono (ours) 89.15±0.42 95.08±0.35 88.84±0.48 80.34±0.70 88.76±0.90
LearnedMono (ours) 90.37±0.32 95.44±0.25 89.38±0.52 80.39±0.69 88.85±0.80
SimpleNet (ours) 90.42±0.30 95.46±0.31 91.06±0.34 80.84±0.56 89.01±0.38

4.1 NODE CLASSIFICATION ON REAL-WORLD DATASETS

Datasets. We evaluate the performance of our SimpleNet on real-world datasets. Following (He
et al., 2021) and (Guo & Wei, 2023), we adopt 5 homogeneous graphs, i.e. Cora, Citeseer, Pubmed,
Computers and Photo, and 5 non-homogeneous graphs, i.e. Chameleon, Actor, Texas, Cornell and
Penn94 in our experiments. The statistics of these datasets are summarized in Table 2.

Experimental Setup. We perform a full-supervised node classification task, where we randomly
split each data set (except Penn94) into a train/validation/test set with a ratio of 60%/20%/20%. For
Penn94, we use the partitioned data sets given in (Guo & Wei, 2023). For Chameleon, Actor, and
Penn94, the experiment setup is the same as (Guo & Wei, 2023). For the other datasets, the experi-
ment setup is the same as (He et al., 2021). More detailed settings can be found in Appendix A.2.

In all the experiments, our proposed methods contain three variations, i.e., FixedMono, Learned-
Mono, and SimpleNet, which are defined as follows. FixedMono uses a monomial basis ((2I −
L)k, k = 1, 2, . . . ,K) with positive activation property and weights are fixed with 1. LearnedMono
makes the weights of FixedMono learnable. SimpleNet adds the non-positive activation term into
the LearnedMono as Eq. (9). Besides, the competing methods are GCN (Kipf & Welling, 2017),
ChebNet (Defferrard et al., 2016), GPR-GNN (Chien et al., 2021), BernNet (He et al., 2021), Jaco-
biConvs (Wang & Zhang, 2022), ChebNetII (He et al., 2022), OptBasisGNN (Guo & Wei, 2023).
The micro-F1 score with a 95% confidence interval is used as the evaluation metric. The polynomial
degree K in other competing methods is set following their original papers. For our SimpleNet, the
degree parameters (i.e., K1 and K2) are set between 0 and 6.

Results. The experimental results on homogeneous graphs and non-homogeneous graphs are sum-
marized in Table 3 and Table 4, respectively. As can be seen from Table 3, our SimpleNet can
consistently obtain the best performance on all five homogenous datasets. Additionally, by compar-
ing FixedMono and LearnedMono, we can observe that LearnedMono can significantly improve the
performance of FixedMono, which can be attributed to the learnable weights that make the model
more flexible to adapt to the dataset. Furthermore, by comparing LearnedMono and SimpleNet, it
can be seen that SimpleNet can further promote the performance of LearnedMono. This should be
rationally explained by the injected non-positive activation in the SimpleNet that makes the model
better adapt to some real pattern in the homogenous graph. Table 4 records the performance com-
parison of all the methods on non-homogeneous datasets. Specifically, our SimpleNet can achieve
the best results on Texas and Cornell datasets and comparable results on Actor and Penn94 datasets
compared with other SOTA methods. It should also be noted that the performance of our SimpleNet
on the Chameleon dataset is worse than that of some competing methods, which may be due to the
high-dimensional node feature in this dataset. Further, by comparing LearnedMono and SimpleNet,
we can see that SimpleNet can significantly boost the performance of LearnedMono, which verifies
that non-positive activation is really beneficial for the non-homogeneous graphs.

7



Under review as a conference paper at ICLR 2024

Table 4: Results on non-homogenous datasets: mean accuracy (%) ± 95% confidence interval.

Texas Cornell Actor Chameleon Penn94

GCN 77.38±3.28 65.90±4.43 33.26±1.15 60.81±2.95 82.47±0.27
ChebNet 86.22±2.45 83.93±2.13 37.42±0.58 59.51±1.25 82.59±0.31
GPRGNN 92.95±1.31 91.37±1.81 39.91±0.62 67.49±1.37 83.54±0.32
BernNet 93.12±0.65 92.13±1.64 41.71±1.12 68.53±1.68 83.26±0.29
JocobiConv 93.44±2.13 92.95±2.46 41.17±0.64 74.20±1.03 /
ChebNetII 93.28±1.47 92.30±1.48 41.75±1.07 71.37±1.01 84.86±0.33
OptBasis 90.62±3.44 88.77±4.75 42.39±0.52 74.26±0.74 84.85±0.39

FixedMono (ours) 77.70±3.12 74.59±3.20 40.97±1.90 55.23±1.70 82.03±0.35
LearnedMono (ours) 74.75±7.38 79.18±2.29 41.17±1.25 65.73±2.18 79.67±0.37
SimpleNet (ours) 95.73±0.98 94.19±1.31 40.97±1.90 68.09±1.64 82.64±0.43

Table 5: Average running time per epoch (ms)/average total running time (s).

Cora Citeseer Pubmed Computer Photo Texas Cornell

GCN 5.59/1.62 4.63/1.95 5.12/1.87 5.72/2.52 5.08/2.63 4.58/0.92 4.83/0.97
APPNP 7.16/2.32 7.79/2.77 8.21/2.63 9.19/3.48 8.69/4.18 7.83/1.63 8.23/1.68
ChebNet 6.25/1.76 8.28/2.56 18.04/3.03 20.64/9.64 13.25/7.02 6.51/1.34 5.85/1.22
GPRGNN 9.94/2.21 11.16/2.37 10.45/2.81 16.05/4.38 13.96/3.94 10.45/2.16 9.86/2.05
BernNet 19.71/5.47 22.36/6.32 22.02/8.19 28.83/8.69 24.69/7.37 23.35/4.81 22.23/5.26
JocobiConv 6.40/3.10 6.30/3.00 6.60/4.90 7.30/4.80 6.40/4.80 6.60/3.40 6.50/3.40
OptBasis 19.38/7.57 13.88/4.53 39.60/15.79 16.16/13.49 13.25/10.59 14.07/8.61 13.03/8.16

FixedMono (ours) 4.59/1.17 4.95/0.78 3.95/2.13 5.15/3.30 5.31/3.84 5.33/2.68 5.35/2.69
LearnedMono (Ours) 6.44/1.64 5.96/0.94 4.51/2.89 5.52/3.96 5.58/3.97 7.07/3.55 7.50/3.77
SimpleNet (ours) 7.15/8.61 7.00/2.46 5.02/2.53 6.00/3.46 6.15/5.26 6.12/1.28 3.81/1.54

The training time for each method is shown in Table 5. As can be seen, our three proposed methods
have a lower average running time and a lower total running time than most other methods, and thus
they should be more efficient and user-friendly in practice. This may be attributed to the following
reasons. Firstly, since the multiplication operation is closed, i.e. (2I−L)k−1∗(2I−L) = (2I−L)k,
the calculation of the monomial basis is thus simpler than general polynomials. Specifically, the
computational time complexity is O(n). Secondly, since our basis does not require a big degree
parameter, the parameter learning of our methods is relatively easier than other competing methods.
More comparisons on running time can be found in Appendix A.3.

(a) Homogenous graph (b) Non-homogenous graph

Figure 2: Accuracy of different degree parameters (K1 and K2) for our SimpleNet.

4.2 MORE DISCUSSIONS

Effect of learnable weight (i.e. fixed weight vs. learnable weight). The necessity of setting
the weight learnable can be explained by comparing the experimental results of FixedMono and
LearnedMono presented in Table 3 and Table 4. As can be seen, if the weights are learnable, the
performance can be further improved compared with the fixed weight.

Effect of setting different degree parameters (K1 and K2). The results are shown in Figure 2.
For the homogeneous graph as shown in Figure 2(a), when K1 is fixed and K2 varies, the accuracy
does not change so rapidly. When K2 is fixed and K1 varies, the accuracy changes relatively more
rapidly. Generally, our SimpleNet is not sensitive to the degree parameters on homogeneous graphs.
For the non-homogeneous graph as shown in Figure 2(b), we can observe that our SimpleNet is

8
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more sensitive to the parameters. No matter whether K1 or K2 is fixed, the accuracy will be affected
obviously. The higher accuracy can be obtained when K1 and K2 are close.

Effect of K-step activation’s properties. To verify the effect of K-step activation’s property, e.g.
positive property, we further conduct a comparative experiment on the three bases, i.e.,

∑K
i=0(2I −

L)i,
∑K

i=0 L
i and

∑K1

i=0(2I − L)i +
∑K2

j=0 L
j . The experimental results are shown in Figure

3. As can be seen, due to its positive nature, the basis 2I − L is more powerful in tackling the
homogeneous graph while less effective in dealing with the non-homogeneous graph compared to
the non-positive basis L. Moreover, from Figure 3, we can observe that our SimpleNet combining
the two bases together evidently outperforms the two pure bases.

Figure 3: Performance comparison of different activations.

5 LIMITATIONS AND FUTURE WORK

Weakness on large scale non-homogeneous datasets. As shown in Table 3, our SimpleNet can-
not always perform best in large-scale non-homogeneous datasets, such as Penn94 and Chameleon.
This may be caused by these reasons. 1) As feature dimension and edge number increase, the ”curse
of dimensionality” starts to have a big impact. 2) In large-scale non-homogeneous datasets, con-
nectivity and locality are harder to characterize. These shortcomings require discovering powerful
activation with more properties.

More in-depth discussion on GIA theory. Except for positive and proper properties, more proper-
ties of activations should be explored, e.g., non-positive properties need a more detailed introduction.
Besides, only the linear case of graph information activation is considered in this study. However,
real graph information activation may be non-linear, thus the non-linear case should be considered.

Limiting assumption. All the neighbours are uniformly processed in a graph, which implies a
hidden assumption that all the same-step neighbours are equally treated in the feature space and the
activation is thus only concerned with the graph structure. However, this assumption may cause
a loss of generality since the feature itself should contribute to the intensity of activation. In the
future, we will attempt to relax this assumption and allow the network to more flexibly learn different
weights to the same-step neighbours.

6 CONCLUSION

In this paper, we have first made a theoretical analysis on the expressive power and convergence
rate of GNNs and found that finely setting a polynomial basis by only considering the polynomial
property can bring limited benefits. Then, we proposed a graph information activation (GIA) theory
that provides a new perspective for the interpretation and design of polynomial filters in GNN and
analysed some popular bases using the GIA theory. Based on the GIA theory and analysis, we design
a new basis by considering the graph information and further build a new GNN (i.e., SimpleNet),
which can be applied to both homogeneous and non-homogenous graphs. Experimental results
illustrate that our SimpleNet performs better and faster than most other popular GNNs.

9
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Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in Neural Information Processing Systems,
29, 2016.

Thomas Navin Lal Jason Weston Bernhard Schölkopf Dengyong Zhou, Olivier Bousquet. Learning
with local and global consistency. Neural Information Processing Systems, 2003.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. CoRR, 2017.

Yuhe Guo and Zhewei Wei. Graph neural networks with learnable and optimal polynomial bases.
pp. 12077–12097, 2023.

Mingguo He, Zhewei Wei, Hongteng Xu, et al. Bernnet: Learning arbitrary graph spectral filters via
bernstein approximation. Advances in Neural Information Processing Systems, 34:14239–14251,
2021.

Mingguo He, Zhewei Wei, and Ji-Rong Wen. Convolutional neural networks on graphs with cheby-
shev approximation, revisited. In NeurIPS, 2022.

Dejun et.al. Jiang. Could graph neural networks learn better molecular representation for drug
discovery? a comparison study of descriptor-based and graph-based models. Journal of chemin-
formatics, 13(1):1–23, 2021.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In Proceedings of International Conference on Learning Representations (ICLR), 2017.

Chang Li and Dan Goldwasser. Encoding social information with graph convolutional networks
forpolitical perspective detection in news media. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pp. 2594–2604, 2019.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. In Proceedings of the International Conference on Learning
Representations (ICLR), 2018.

10



Under review as a conference paper at ICLR 2024

Shuangzhe Liu and Heinz Neudecker. A survey of Cauchy-Schwarz and Kantorovich-type matrix
inequalities. Statistical Papers, 40:55–73, 1999.

Shuangzhe Liu, Vı́ctor Leiva, Dan Zhuang, Tiefeng Ma, and Jorge I. Figueroa-Zúñiga. Matrix
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A APPENDIX

A.1 PROOF OF THEOREMS

Theorem 3.1 Let g1(x), g2(x), . . . , gn(x) be n polynomials of the form
∑k

i=0 αix
i. The maxi-

mum linearly independent group of these n polynomials has K + 1 elements, then it can span the
polynomial linear space of degree K.

Proof: when K = 1, go = α0(α ̸= 0), now obviously that the constant α0 can span the polynomial
space of degree 0.

Considering the case K ≥ 1. Notice that each element a in k degree polynomial space can be written
as the form

a = α0 + α1x+ ...+ αkx
k (10)

so in this basis, a can be represented uniquely as a k+1-dimension vector as below

a = (α0, α1, ..., αk)
T (11)

Actually, the Eq. (11) can be written as a bijection mapping k degree polynomial space to k+1-
dimension linear space, thus we can say that the two spaces are isomorphic to each other. Then our
theorem is equivalent to the statement: Let y1, y2, ..., yn be n elements of the k+1-dimension linear
space. The maximum linearly independent group of these n polynomials has K+1 elements, then it
can span the k+1-dimension linear space.

From linear algebra, we can see that the statement above is obviously true, as all k+1 independent
k+1-dimension vectors can span k+1 dimension linear space.

Lemma 3.1 (Kantorovich inequality) ((Marshall & Olkin, 1990; Liu & Neudecker, 1999; Liu
et al., 2022)) For any z ∈ Rn, denote λmin and λmax as the maximum and minimum eigenvalues
of a positive definite symmetric matrix M ∈ Rn×n, respectively, then

(zTMz)(zTM−1z)

(zT z)2
≤ (λmax + λmin)

2

4λmaxλmin
. (12)

Proof: Considering that G is positive definite and symmetric, we can conduct eigenvalue decompo-
sition of G as follows:

G = UTΛU, (13)

where U is a n × n orthogonal matrix. Let y = Uz, ai = y2i , then we can rewrite the left term in
inequality 13

(zTGz)(zTG−1z)

(zT z)2
=

(zTUTΛUz)(zTUTΛ−1Uz)

(zTUTUz)2
(14)

=
(yTΛy)(yTΛ−1y)

(yT y)2
(15)

=
(
∑n

i=1 λiy
2
i )(

∑n
i=1 λ

−1
i y2i )

(
∑n

i=1 a
2
i )

2
. (16)

Without loss of generality, we let
∑n

i=1 ai = 1, then the inequality we want to prove is equivalent
to

(zTGz)(zTG−1z) ≤ (λmax+λmin)
2

4λmaxλmin
,

where the λ is notated in ascending order, which means λ1 =min, and λn = λmax. Now we can
construct a quadratic function

f(x) = (

n∑
i=1

λ−1
i ai)x

2
i −

λ1 + λn√
λ1λn

x+ (

n∑
i=1

λiai). (17)

12
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We can see that the inequality is true if and only if the discriminant of f(x) ∆ ≥ 0, which is to say
that f(x) has zero over the field of real numbers. Then, we construct

f(
√

λ1λn) = λ1λn

n∑
i=1

λ−1
i ai − (λ1 + λn) +

n∑
i=1

λiai (18)

= λ1λn(λ
−1
1 a1 + λ−1

n an +

n−1∑
i=2

λiai)− (λ1 + λn) + λ1a1 + λnan +

n−1∑
i=2

λiai (19)

= (a1 + an − 1)(λ1 + λn) + λ1λn

n−1∑
i=2

λ−1
i ai +

n−1∑
i=2

λiai (20)

= (a1 + an −
n∑

i=1

ai)(λ1 + λn) + λ1λn

n−1∑
i=2

λ−1
i ai +

n−1∑
i=2

λiai (21)

= −(λ1 + λn)

n−1∑
i=2

ai + λ1λn

n−1∑
i=2

λ−1
i ai +

n−1∑
i=2

λiai (22)

=

n−1∑
i=2

{
ai(λ1λnλ

−1
i + λi − λ1 − λn)

}
(23)

=

n−1∑
i=2

{
aiλ

−1
i (λ1λn + λ2

i − (λ1 + λn)λi)
}

(24)

=

n−1∑
i=2

{
aiλ

−1
i (λi − λ1)(λi − λn)

}
(25)

λ1 ≤ λi ≤ λn, so (λi − λ1)(λi − λn) ≤ 0. G is positive definite, so λi ≥ 0. ai = y2i ≥ 0. So∑n−1
i=2

{
aiλ

−1
i (λi − λ1)(λi − λn)

}
≤ 0 and f(

√
λ1λn) ≤ 0. Thus, the quadratic function f(x) has

zero in the real number field and the characteristic of f(x), ≥ 0. Finally, the inequality is true. Our
proof ends.

Theorem 3.2 (Convergence rate theorem for GNNs) The convergence rate of gradient descent
algorithm with exact line search to solve the optimization problem (4) is no faster than a linear
constant. Mathematically, we have the following convergence formula:∣∣∣∣f(zk+1)− f(z∗)

f(zk)− f(z∗)

∣∣∣∣ ≤ (1− 2

1 + κ
)2, (26)

where zk is the update of the kth iteration, z∗ is the global minimum solution, and κ is the condition
number of 2((1− α)γ(L) + αI).

Proof: The problem (4) is a convex optimization problem and has a globally optimal solution. We
denote the global optimal solution as z∗ and denote 1

2Q = (1 − α)γ(L) + αI , bT = −2αxT . We
define the convergence rate of the problem below and we can write the problem as:

z∗ = argmin
z

h(z) =
1

2
zTQz + bT z. (27)

Now we use the gradient descent method with exact line search to optimize this problem, which
means we have to find an optimal step size and direction for Eq. (2). In the gradient descent method,
the direction dt is −gk. The optimal step size γ∗ satisfies:

γ∗ = argmin f(zt + γdt)

= argmin f(zt − γgt)

= argmin

(
1

2
gTt Qgtγ

2 − gTt gtγ + f(zt)

)
. (28)

Observing Eq. (28), which is a quadratic function of γ, we get the optimal γ∗:

γ∗ =
gTt gt
gTt Qgt

(29)
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Next, We take the derivative of h(x∗), and set the derivative to be 0, namely

Qz∗ + b = 0 (30)

z∗ = −Q−1b. (31)

The optimization process can be written as Eq. (28) and the optimal step size γ∗ can be written as
Eq. (29). First, we replace f(zk) and f(zk+1) with Eq. (29) and Eq. (2).

f(zk+1) = f(zk − γ∗
kgk) =

1

2
zTk Qzk + bT zk − 1

2

(gTk gk)

gTk Qgk
= f(zk)−

1

2

(gTk gk)
2

gTk Qgk
. (32)

Firstly, we define κ = cond(Q) = λmax

λmin
. Now, we can write the convergence rate of the problem

(27) as follows: ∣∣∣∣f(zk+1)− f(z∗)

f(zk)− f(z∗)

∣∣∣∣ = 1
2z

T
k Qzk + bT zk − 1

2
(gT

k gk)
2

gT
k Qgk

+ 1
2b

TQ−1b

1
2z

T
k Qzk + bT zk + 1

2b
TQ−1b

(33)

= 1− (gTk gk)
2

(gTk Qgk)(Qzk + b)TQ−1(Qzk + b)
. (34)

Notice that from Eq. (33) to Eq. (A.1), we use the orthogonal property of Q, which is QT = Q.
Then we plug Kantorovich inequality into Eq. (A.1) and obtain

1− (gTk gk)
2

(gTk Qgk)(Qzk + b)TQ−1(Qzk + b)
≤ 1− 4λmaxλmin

(λmax+λmin)2
(35)

≤ (λmax−λmin

λmax+λmin
)2 (36)

≤ (1− 2
1+κ )

2. (37)

Through Eq. (A.1), we know that the convergence rate of the problem (27) using gradient descent
with exact line search method is no faster than a constant, which is related to the condition number
of Q.

Lemma 3.2 Let G(V,E) be a graph with n nodes (with self-loop). X is the feature matrix of G. Let
A be a n× n matrix such that {

Aij > 0 if (vi, vj) ∈ E,
Aij = 0 else ,

Supposed X∗ = AkX is a positive and proper k-step activation of graph G.

Proof: Firstly, we prove a lemma for support, which is that (Ak)ij ≥ 0 if the ith node and jth of G
are k-step neighbours to each other, else (Ak)ij = 0. We prove this by induction.

Base case: In the case K = 1, the lemma is true as the definition of A.

Induction: we assume the lemma is true for K then we prove it’s also true for K+1 case.

Ak+1 = AK ∗A (38)

Based on Eq. (38), we can see that

(Ak+1)ij =

n∑
k=1

(Ak)ijArj , (39)

which means that Ak+1
ij is positive iff there exists some r making (Ak)ir and Arj positive, (r =

1, 2, ..., n). Moreover, as our assumption, (Ak)ir is positive iff ith node and rth node of G are
k-step neighbors. Also, Arj is positive iff rth node and jth node of G are 1-step neighbors as the
definition of A. We call these three nodes i, j and r for short.

Thus we can get the conclusion that (Ak+1)ij is positive iff there is a path between i and j going
through r, whose length is k + 1. Considering that any r ranging from i to n can be in the case so
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that the condition of (Ak+1)ij’s positivity is equivalent to that i and j are k + 1-step neighbor to
each other. Now the lemma has been proved.

Then we can replace X∗ = AkX

X∗
i: = (Ak)i1x

T
1 + (Ak)i2x

T
2 + ...+ (Ak)inx

T
n . (40)

According to the lemma we just proved, Eq. (40) represents a positive k-step activation of node i.
Also, we add a self-loop on the graph so that any node is itself’s k-step neighbor so that (Ak)ii0, then
this activation is proper. Notice the node is arbitrarily chosen, so every node satisfies the properties
above, then X∗ = AkX is a positive and proper k-step activation of graph G. Our proof ends.

Lemma 3.3. The sum of finite positive and proper activations is still positive and proper.

Proof: It can be easily proved because the sum of finite non-negative real numbers is still non-
negative.

Theorem 3.3. Let L be the Laplacian matrix of graph G and I be the Identity matrix, then
∑k

j=0

αj (2I − L)jX , ∀αj ≥ 0, is a proper and positive activation of G.

Proof: It can be proved that (2I − L)jX is a proper and positive activation because of (2I − L)

have the same form with matrix A in Lemma2.2. And
∑k

j=0 αj (2I −L)jX meets Lemma 2.3. So∑k
j=0αj (2I − L)jX is a proper and positive activation of G. Our proof ends.

A.2 DETAILS OF EXPERIMENTS

Due to the problems related to the version of the package, especially for pyg, and compatibility of
datasets, we have to use two code structures to process our data and thus conduct training.

Model Setup. For Chameleon,Actor and Penn94, we followed the (Guo & Wei, 2023) structure.
For both methods, we initialize the weight parameter to all 1s. The hidden size of the first MLP
layers h is set as 64, which is also the number of filter channels. And we tune all the parameters
with Adam optimizer. For other datasets, we used the (He et al., 2021) structure. For FixMono, the
parameter decoupling method is used for parameter initialization. For SimpleNet, we initialize the
weight parameter to all 1s. For both models, we use a 2-layer MLP with 64 hidden units and we
optimize the learning rate for the linear layer and the propagation layer. We also used dropout in the
convolutional layer and the linear layer.

Hyperparameter tuning. We choose hyperparameters on the validation sets. We select hyperpa-
rameters from the range below with a maximum of 100 complete trials. For Chameleon, Actor and
Penn94,

• Truncated Order polynomial series: K,K1,K2 ∈ {0, 1, 2, 3, 4, 5, 6} ;

• Learning rates for linear layer: { 0.008, 0.01, 0.012, 0.014, 0.02, 0.03, 0.04} ;

• Learning rates for propagation layer: { 0.01, 0.012, 0.014, 0.016, 0.0175, 0.02, 0.03, 0.04,
0.05} ;

• Weight decays: {1e-8, · · · , 1e-3};

• Dropout rates: {0., 0.1, · · · , 0.9};

For other datasets,

• Truncated Order polynomial series: K,K1,K2 ∈ {0, 1, 2, 3, 4, 5, 6} ;

• Learning rates for linear layer: { 0.01, 0.012, 0.015, 0.02, 0.022, 0.025, 0.03, 0.04, 0.05} ;

• Learning rates for propagation layer: {0.01, 0.02, 0.022, 0.024, 0.03, 0.04, 0.05 } ;

• Weight decays: {0, 0.005};

• Dropout rate: {0., 0.1, 0.2, 0.3}
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A.3 COMPARISON OF RUNNING TIME

The comparison of running time for all the methods is shown in Figure 4-7. As can be seen, the area
under the curve is the total running time of each dataset. Obviously, SimpleNet’s area is the smallest
among other models which means that our model has extremely low computational overhead. Al-
though the number of SimpleNet’s total running epochs is a bit high, its running time per epoch is
really short. It really verifies the convergence rate analysis of GNN since our model’s polynomial
may not have a faster convergence rate but the computational cost of the polynomial itself is so low
that it can compensate for the lack of convergence speed.

Figure 4: Running time on computer dataset. Figure 5: Running time on cora dataset.

Figure 6: Running time on photo dataset. Figure 7: Running time on PubMed dataset.
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