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ABSTRACT

Image tokenization, a cornerstone of modern visual representation, faces a funda-
mental dilemma posed by content diversity. A fixed number of tokens is inherently
suboptimal, causing computational redundancy for simple images and risking in-
formation loss for complex ones. While variable-length methods offer a potential
solution, they are typically empirical and heuristic, lacking a theoretical mechanism
for adaptation. To address this dilemma, we propose AdaTok, an adaptive visual
representation framework with high flexibility for diverse representational needs.
Specifically, it incorporates an elastic encoder capable of encoding an image into
an arbitrary number of tokens. Building on this, we design a novel token selection
strategy: guided by the information bottleneck principle, it enables the model to
learn a policy that maximizes representational information under a minimal budget.
This allows AdaTok to autonomously find a sufficient yet compact token set for
each image. Extensive experiments demonstrate that this elastic, sample-level tok-
enization yields superior performance in both image reconstruction and generation.
By preserving essential details while minimizing redundancy, AdaTok not only en-
hances efficiency but also creates a more natural alignment with the variable-length
structure of language, paving the way for more unified and efficient vision-language
models (VLMs). Code is available at anonymous.4open.science/r/AdaTok.

1 INTRODUCTION

Image tokenization is crucial in visual tasks as it both compresses data representations and facilitates
their adaptation for downstream tasks, which can be divided into continuous and discrete tokenizers.

Continuous tokenizers such as VAE ( , ) are primarily utilized in the denoising
generation process of diffusion models ( s ; , ;
, ), whereas discrete tokenizers like VQVAE ( , ) and FSQ (

, ) are employed in the autoregressive (AR) image generation process (
, ). These tokenizers are all 2D-based, mamtalmng
a spat1a1 correspondence (i.e., the top-left latent token aligns with the top-left image patch). This limits
the flexibility of visual representations, as each token corresponds to the compressed representation
of a single image patch, losing global context. Additionally, it constrains all images to be represented
using a fixed number of tokens.

Recognizing this rigidity, recent works have begun exploring more flexible representations. TiTok (

s ) breaks the structural limitations of conventional tokenization for the first time by
representing images as a one-dimensional sequence, thereby achieving a more compact visual
representation. Methods like FlexTok ( s ) and One-D-Piece ( s )
demonstrated that a tokenizer could be trained to reconstruct images from a variable number of
tokens. However, these methods only provide the capability for flexible-length encoding; they lack a
mechanism to autonomously determine the appropriate number of tokens for a given image. Other
approaches have tried to solve this decision problem, but with practical drawbacks. Semanticist (

, ) imposes a principled structure, such as a PCA-like mechanism to ensure tokens are
ordered by informational importance, but still do not decide the optimal token count. Others tackle the

decision directly: ElasticTok ( , ) employs a costly search process; another contemporary
work ( , ) uses a recursive, iterative refinement to grow the token set; and the Content-
Adaptive Tokenizer (CAT) ( , ) leverages an external Large Language Model (LLM) to
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Figure 1: Motivation of AdaTok. The complexity of images varies, both in encoding and generation.
Similar to sentences, images should be represented at an adequate quality, without unnecessary
continuation of the representation.

predict complexity from captions. While innovative, these methods either rely on computationally
intensive search, or depend on external models and textual data, making the decision process indirect
and inefficient for inference.

The need for adaptive tokenization is magnified in modern Vision-Language Models (VLMs), which
suffer from a structural mismatch between variable-length text and fixed-length visual inputs. This
rigidity causes both computational inefficiency and a bottleneck for fine-grained reasoning. To
address this, we must first answer the question: 1) Should different images be represented by the
same number of tokens? Intuitively, and by analogy to language where length correlates with
content (Gibson, 1998; Lin, 2004; Piantadosi et al., 2011), the answer is no; complex images require
more tokens than simple ones (Bachmann et al., 2025; Miwa et al., 2025; Yan et al., 2024). This
immediately raises the pivotal second question: 2) How can we decide the appropriate number of
tokens for an image? We posit that the principle of efficient communication in language—conveying
essential meaning—offers a guide. An image representation could be guided by the information
bottleneck principle, retaining just enough information to preserve key features for reconstruction.
Thus, reconstruction quality itself can signal when the token set is sufficient, marking a natural
stopping point for token allocation.

In this paper, we introduce AdaTok, a novel framework that materializes this vision by learning
to represent images with an adaptive, content-aware number of tokens. AdaTok consists of two
core components: a flexible encoder trained for variable-length robustness, and an autonomous
token selection strategy grounded in information bottleneck (IB) theory. To achieve representational
flexibility, we build upon the 1D tokenizer paradigm and introduce a nested masking strategy during
training. This forces the model to prioritize information, ordering tokens by importance and enabling
high-quality reconstruction from varied token lengths. 7o enable autonomous token selection, we
design a lightweight policy network that efficiently predicts the optimal token count in a single
forward pass, directly from image features. This policy is trained to balance the trade-off between
representational compactness (fewer tokens) and reconstruction fidelity, effectively learning to identify
the "information bottleneck" for each input. AdaTok’s principled adaptability enables more efficient
and context-aware visual processing. Demonstrating enhanced flexibility across image reconstruction,
generation, and task transfer, our model creates a more natural alignment with the variable-length
structure of language, paving the way for more unified vision-language models (VLMs). Moreover, it
delivers substantial gains in compression and generation speed while maintaining quality, highlighting
its significant practical potential. Our contributions are:

* We propose AdaTok, a novel framework that empowers a visual tokenizer to autonomously
select a content-aware number of tokens for each image.
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* We introduce a principled approach for adaptive tokenization by formulating the token
selection process as a learnable policy guided by the Information Bottleneck theory.

* We demonstrate that AdaTok’s representational flexibility not only yields significant gains
in efficiency and downstream task performance, but also fosters a more natural alignment
between vision and language modalities by embracing variable-length structures.

2 RELATED WORKS

Compressing high-resolution images into a compact latent space is a foundational technique in

computer vision ( , ). An early and influential
approach is continuous tokemzatlon via Varlatlonal Autoencoders (VAEs) ( s ),
which encode images into a continuous latent space. This paradigm is fundamental to modern
generative models like Stable Diffusion ( , ), which operates its entire denoising

process within this compressed space to achieve high-fidelity synthesis. In a parallel effort to bridge
visual representation with sequence-based models, discrete tokenization was pioneered by VQ-

VAE ( , ). This method uses a learnable codebook to quantize the latent space
into a grid of discrete tokens. To improve the perceptual quality of these discrete representations,
VQGAN ( , ) integrated adversarial training from GANSs ( , ),

establishing the 2D discrete tokenization as a cornerstone for many subsequent autoregressive models.

To overcome the rigidity of fixed-grid 2D tokenizers, a recent line of work has shifted towards
structure-free, 1D representations. TiTok ( , ) pioneered this direction by demonstrating
that an image could be effectively represented as a single, compact one-dimensional sequence,
breaking the conventional 2D structural constraints. Building upon this concept, subsequent methods
explored the idea of flexible-length tokenization. For instance, FlexTok ( , )
and One-D-Piece ( , ) developed tokenizers capable of reconstructing images from
a variable number of tokens, proving the feasibility of adaptive encoding. However, these models
provided the capability without an autonomous mechanism to decide the token count. Addressing
this challenge, ElasticTok ( , ) introduced a method to directly determine the optimal
number of tokens for a given image, albeit through a computationally intensive search process.

Once visual tokens are obtained, their generation has evolved significantly. While traditional autore-
gressive (AR) models are slow due to their sequential nature, this bottleneck has been addressed
by parallel decoding schemes like the mask-and-predict method in MaskGIT ( , ).
Beyond speed, recent innovations have also introduced new paradigms, including the "next-scale"
coarse-to-fine strategy of VAR ( , ), autoregressive modeling in continuous latent space
(MAR ( , )), and the direct adaptation of large language model (LLM) architectures
for unified generation (LlamaGen ( s )). While existing methods are limited by either
fixed-length representations that clash with language models or by non-adaptive variable-length
schemes, we introduce AdaTok, which gives images a language-like variable-length property, paving
the way for the development of truly unified Vision-Language Models (VLMs).

3 PRELIMINARIES

In this section, we present the foundational concepts that underpin our proposed method, focusing on
the Information Bottleneck Theory (IB) and the Reinforce Algorithm, both of which are crucial for
understanding the design philosophy of AdaTok.

Information Bottleneck Theory. The IB theory suggests that an optimal representation of data
should balance between compressing the input information and retaining the relevant information
for the task at hand. Specifically, the theory advocates minimizing irrelevant information while
preserving key features that contribute to task performance. This trade-off is formalized by the
following loss function:

L=al(X;Z)-1(Y;2), (1)

where I(X; Z) is the mutual information between the input X and the learned representation Z, and
I(Y'; Z) is the mutual information between the output Y and the representation Z. The parameter «
controls the balance between these two terms. In the context of visual tokenization, this principle
helps design a reward function that encourages both compression (minimizing token length) and
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Figure 2: Framework of AdaTok. It primarily consists of two modules: Tail Token Masking and
Adaptive Token Allocation, which adaptively encode images into flexible tokens. AdaTok learns a
flexible representation via Nested Tail Masking with a variable ratio from a to b, upon which a Policy
Module is trained to autonomously select the optimal token length for each image.

relevance retention (maintaining the quality of the image representation), which is essential for
efficient image encoding.

Reinforce Algorithm. The Reinforce algorithm is a policy gradient method used to optimize
stochastic policies by directly adjusting the parameters of the policy to maximize expected rewards.
In this method, a policy my(a|s) defines the probability of taking action a given state s, where
represents the parameters of the policy. The goal is to maximize the expected cumulative reward,
denoted as the return G, over time. This return is typically the sum of the rewards obtained from
time step ¢t onward, possibly discounted by a factor «y to prioritize more immediate rewards.

The core of the Reinforce algorithm is to compute the gradient of the expected return with respect to
the policy parameters. This is done by evaluating the log-probability of the taken action, weighted by
the observed return G;. The gradient of the expected return is expressed as:

Vo J(0) = E[Vglogmg(at|st) - Gy, )

where 7y (a¢|s;) is the probability of selecting action a; at state s¢, and G is the return starting from
time step ¢. By adjusting the policy parameters 6 using gradient ascent, actions that yield higher
returns are reinforced, while less favorable actions are discouraged.

In the context of adaptive token allocation, we apply the Reinforce algorithm to optimize the number
of tokens used for encoding images. By updating the policy based on the observed rewards—where the
reward function combines both compression and quality—this approach enables efficient allocation
of tokens for image encoding, adapting the token length dynamically to the content.

4 METHOD

Here, we introduce AdaTok, a novel flexible representation paradigm with elastic tokens. As shown
in Figure 2, the tokenizer module of AdaTok adaptively encodes images into varying lengths while
maintaining the quality of each sample, significantly enhancing the efficiency of the representations.
This design not only prevents the over-encoding of visual representations but also accelerates the
downstream generation process effectively. Leveraging such elastic representations, the VLM model
can effectively ensure that the image generation process stops at the appropriate point. Crucially, our
elastic visual representation brings the vision modality into greater structural alignment with language.
This convergence towards a variable-length format is a critical step in laying the groundwork for
more unified and efficient VLMs.

The elastic tokenizer framework integrates two core mechanisms: Nested Tail Masking and Adaptive
Token Allocation. Nested Tail Masking is a training strategy that involves randomly masking the
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tail tokens, thereby stimulating the model’s ability to reconstruct sequences with varying token
lengths. On the other hand, Adaptive Token Allocation allows the model to autonomously determine
the minimal number of tokens required to maintain quality, optimizing its token usage efficiency.
We depart from conventional 2D-structured tokenizers where each token represents a local patch,
making them indispensable for a complete reconstruction. Instead, we adopt a 1D, structure-agnostic
tokenizer like TiTok ( , , ). Here, each token captures global image
information, granting us the ﬂex1b111ty to discard some tokens while still being able to reconstruct the
entire image, merely with a reduction in quality.

4.1 NESTED TAIL MASKING (NTM)

To enable our model to handle variable-length 1nputs a flexible training strategy is required. Prior
methods like Tail Token Drop ( , ) implicitly induce an
information hierarchy, but they typically apply a umform drop strategy across an entire batch. This
approach is incompatible with our goal of sample-level adaptation, as it prevents the use of per-sample
policies required for our subsequent Adaptive Token Allocation (ATA) module. To overcome this,
we propose Nested Tail Masking (NTM), a sample-specific masking strategy that operates on the
attention mechanism, which our experiments confirm is the key component for this training effect.

1D Suffix Token Encoding. Following the 1D tokenization paradigm ( , ), we represent
an image as a sequence of tokens. However, instead of prefixing learnable tokens, we append them as
suffixes. Image information is encoded into these learnable suffix tokens via a Vision Transformer
(ViT) encoder. The process is formulated as:

z = Encoder(p1, ..., Dnsq1, - - qm) [0 :] 3)

where {p;}; are the input image patches and {¢; }!" , are the learnable suffix tokens. The final
output tokens z € R™*? constitute the image’s representation, while the initial patch embeddings
are discarded. We perform this tokenization in a well-structured VAE latent space ( , )
rather than the pixel space to improve efficiency and avoid the information loss associated with vector
quantization.

Randomized Tail Masking. To foster representational flexibility, we train the model to reconstruct
the image from a variable number of its suffix tokens. During each training step, for each sample in
the batch, we randomly determine a number of tokens to drop, k ~ U (kmin, m — 1). Crucially, we
only mask tokens from the zail of the sequence. This encourages an information hierarchy where
earlier tokens (g1, o, . . . ) capture more general, high-importance information, while later tokens
encode finer details. The resulting token sequence is:

Zmasked = (Qh q2;---9m—k, Mm—k+17 ) Mm) @

where {M; } are placeholder mask tokens. This "nested" property—where a representation of length
L is always a prefix of a representation of length L + 1—is essential for our adaptive framework.

Mask-Aware Training and Loss. To ensure that the masked tokens do not negatively influence the
model, we employ a Key Padding Mask within all self-attention layers of the subsequent decoder.
This effectively makes the model "blind" to the masked positions. The model is then trained end-to-
end to reconstruct the original image from the unmasked tokens. The overall training objective for
this stage, L n7as, is @ combination of reconstruction and perceptual losses:

Lyrym = ﬁrecon(xa i‘) + ApEP($7 "i') + /\g‘CG(jj) Q)

where = and & are the input and reconstructed images, respectively. Licon i a pixel-level recon-
struction loss (e.g., L2), while £p and L¢ are the perceptual and adversarial losses, which ensure
high-fidelity and realistic outputs. The weights A, and A, balance the contribution of each term.

4.2 ADAPTIVE TOKEN ALLOCATION (ATA)

After training with Nested Tail Masking (NTM), our model can represent images with varying token
lengths. We leverage this capability through the Adaptive Token Allocation (ATA) mechanism, which
aims to find the optimal number of tokens for each image. As shown in Figure 3, the relationship
between token length and reconstruction quality (e.g., rMSE) exhibits clear diminishing returns,
indicating that a sample-specific optimal trade-off exists. To dynamically find this trade-off, we
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Figure 3: rMSE vs. Token Usage for Variable Samples. The left shows rMSE curves for different
samples, reflecting the relationship between reconstruction quality and token length. The right shows
qualitative results, clearly illustrating quality changes.

introduce a policy network that learns to select the most appropriate token length for each image
based on its unique content.

We frame this dynamic selection process as a reinforcement learning (RL) problem. The policy
network 7(L| f, #), conditioned on image features f, outputs a probability distribution over possible
token lengths L. A specific length Ly, is then sampled for each image: Lyeep ~ 7(L|f, 0).

Reward Function Design. To guide the policy, the design of the reward function R(L, f) is
paramount. It must encapsulate the core trade-off between compression (low token length) and
fidelity (low reconstruction loss). We explore two distinct designs, each with a different inductive
bias.

1. Continuous Reward Function. Our first design is a simple yet effective continuous function that
linearly penalizes both reconstruction loss and token length. This approach provides a smooth, dense
reward signal across the entire action space. It is defined as:

Rcontinuous(La f) =-—rl-a— (tl/Lmax) : /8 (6)

where 7! is the pixel-level reconstruction loss (e.g., MSE), ¢l is the token length, L.,y is the maximum
possible length (e.g., 256), and «, 3 are weighting hyper-parameters. This function encourages the
policy to continuously seek a state where both losses are jointly minimized. The convergence
properties of this function are discussed in Appendix B.2.

2. Structured Threshold-based Reward. Our second design introduces a "satisfaction threshold"
Tlhase (€.2., an MSE of 0.02), which defines a target for "acceptable" reconstruction quality. This
transforms the problem from a simple joint minimization into a more structured, two-stage optimiza-
tion, mimicking a human-like decision process: "first, meet the quality standard; then, optimize for
efficiency.” The reward is defined as:

14 (Lmax — t1)/Liax i 7l < lpase

7
—(rl — rlpase) - Y if 7l > rlpase 7

Rstructured(La f) = {
When the quality target is met (1] < 7lyas), the agent receives a primary reward of 1, plus an
"efficiency bonus" for using fewer tokens. If the target is not met, it is penalized based on how far the
quality is from the threshold and, to a lesser extent, by the number of tokens used. To ensure stable
training, we implement this piece-wise function using a smooth ‘sigmoid‘-based approximation to
avoid discontinuities at the threshold (see Appendix B.3 for details).

Policy Optimization with Relative Reward Gain. Regardless of the chosen reward function R(L, f)
(either Rcontinuous O Fstructured)> @ Naive application of the REINFORCE algorithm by maximizing the
expected absolute reward E[R(L, f)] is prone to high variance. To stabilize training and encourage
more effective sample-level optimization, we use a baseline to compute the relative reward gain (or
advantage). This measures how much better a specific action (token length L) is compared to the
policy’s average behavior.

Specifically, we define a baseline reward computed using the policy’s mean token length, Lyean =
E-[L]. The relative gain, which we use as our learning signal, is then:

A(L7f) :R(L7f)+:u(R(va) _R(Lmeanaf)) (8)
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Table 1: Reconstruction and Generation Comparisons across Tokenizers. This table compares
different methods including 1d and 2d tokenizers, metrics contain codebook size, token counts, token
dimensions, and reconstruction quality and generation quality (measured by rFID and gFID). If the
codebook size is none, the tokenizer is continuous. The best results are bold.
Tokenizer  #Params Codebook #Tokens Elastic rFID] | Generator gFID|
2d tokenizers

VQGAN 85M 1024 256 X 7.94 LDM-8 15.78
MaskGIT 227TM 1024 256 X 2.12 MaskGIT 6.18
LlamaGen 72M 16384 256 X 2.28 LlamaGen 3.06
ImageFolder 362M 4096 286 X 0.80 VAR-d16 2.60
VAR 310M 4096 680 X 0.90 VAR-d16 3.30

CAT 187M - - v 0.46 - -

1d tokenizers
© TiTok-S ~ 8M 4096 128 X 171 | MaskGiT 197

TiTok-B 204M 4096 64 X 1.70 MaskGiT 2.48
TiTok-L 641M 4096 32 X 2.21 MaskGiT 2.77

ALIT - 4096 256 v 8.25 - -
FlexTok 341M 64000 32 v 4.20 FlexTok 3.83
One-D-Piece 83M 4096 256 v 1.48 MaskGiT 2.67
Semanticist - - 256 v 0.72 LlamaGen 2.57
AdaTok 83M - 256 v 0.42 DiT 2.32

where 1 is the group reward difference scale with the mean length and R(Lyyean, f) is computed on a
batch basis and treated as a detached constant during backpropagation. This formulation pushes the
policy to not just find a "good" token length, but to find a length for each sample that is demonstrably
superior to a one-size-fits-all, average approach.

The policy is optimized using the REINFORCE algorithm with this advantage signal. Furthermore,
to encourage exploration, we add an entropy regularization term H (). The final loss function for
our ATA module is:

Lara = —Erllogn(L|f;0)- AL, )] —=A(t) - H(r) ©

Policy Gradient (REINFORCE) Entropy Regularization

where A(t) is a decaying function that controls the exploration-exploitation trade-off. This complete
approach enables the model to dynamically and efficiently adjust token lengths on a per-image basis.

5 EXPERIMENTS

In this section, we introduce the details of the implementation of AdaTok, and the main results will
also be discussed.

Implementation Details. We conduct fair training by strictly following the parameter settings
described in their respective papers like TiTok ( , ). Specifically, the codebook size is set
to 4096, and we employ the AdamW optimizer with an initial learning rate and a weight decay of
4e-5. In addition, a warm-up strategy is applied during the first phase of training, and the batch size
of all stages is 256. Besides, in our experiments, «, 3, -y, p are set to 20, 0.2 and 10, 0.1 respectively.
The tokenizer training is divided into three stages: stage 1 is trained with 500k iterations for TTM,
stage 2 is trained for 20k iterations for ATA. Since our method does not need vector quantization,
the training cost is much lower than TiTok and One-D-Piece. All experiments are conducted on a
hardware setup with 8 Nvidia HS800 GPUs.

5.1 OVERALL PERFORMANCE

To comprehensively evaluate AdaTok, we benchmark it against a diverse set of baseline methods
representing major paradigms in visual tokenization, including seminal 2D models (e.g., VQGAN),
recent 1D series (e.g., TiTok), and both discrete and continuous approaches with fixed or elastic
lengths (Table 1). As presented, AdaTok demonstrates state-of-the-art performance across the board.
In reconstruction, it achieves a record-low Frechet Inception Distance (rFID) of 0.42, significantly
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outperforming leading methods like CAT (0.46) and MAR (0.53) with an efficient model size of only
83M parameters. Furthermore, these high-quality tokens provide a robust foundation for downstream
generative tasks. When used with a DiT-based model, AdaTok achieves an impressive generation
FID (gFID) of 2.33 for training 200 epochs, surpassing many specialized elastic baselines such as
FlexTok (3.83) and OneDPiece (2.67). These results validate that our adaptive representation strategy
excels in both reconstruction fidelity and generative capability, positioning AdaTok at the forefront of
visual tokenization.

Elasticity. Our method offers two primary advantages. First, it significantly surpasses existing
tokenizers, especially 1D structure-free models, in both reconstruction and generation performance.
Second, and most critically, it introduces an exceptional level of flexibility by supporting reconstruc-
tion from any number of tokens in the 32 to 256 range. We validate this by comparing our model
against similarly-sized competitors: TiTok-S, One-D-Piece, and FlexTok-d12-d12, with the results
shown in Fig 4. As is evident, our method significantly outperforms other approaches in the 96-256
token range, while also demonstrating strong representational flexibility. It is worth noting that
although FlexTok performs competitively in the 32-64 token range, it is a tokenizer with a weaker
pixel-level reconstruction objective. Therefore, at such low token counts, a direct comparison using
the rFID metric becomes less meaningful. Also, compared with the only elastic continuous tokenizers,
CAT, the performance of AdaTok also surpasses it and could select any tokens from 32 to 256.

5.2 ABALATION STUDY

To validate the contributions of our key modules,

NTM ATA | Elastic #Tokens Reward? RT| NTM and ATA, we conduct an ablation study sum-

Baseline 256 0.726 1.8 arized in Table 2. The baseline model, using a fixed

j v 143 0579 4.2 256 tokens, is fast (1.8 ms) but inefficient, achieving a

+Heur v 100 0.750 70.2 : .

v v v 177 0819 43 rewardof0.726. Introducing NTM provides represen-

tation flexibility, but naively applying it (truncating to

Table 2: Abalation Experiments. RT means 143 tokens) causes .the reward tp drop to 0.579, pow-

runtime (ms). erfully demonstrating that an intelligent allocation

strategy is crucial to properly leverage this flexibility.

While a heuristic-based binary search (‘+Heur‘) can boost the reward to 0.750, its prohibitive runtime

of 70.2 ms makes it impractical. In contrast, our full AdaTok model, combining NTM with ATA,

achieves the best of all worlds: it secures the highest reward (0.819) while maintaining a fast runtime

of just 4.3 ms, which is over 16 times faster than the heuristic approach. This clearly shows that NTM

is essential for providing flexibility, and ATA is the critical component for exploiting it efficiently and
effectively, striking a superior balance between performance and speed.

5.3 ANALYSIS

Visualizing Progressive Reconstruction. We investigate the hierarchical nature of the representations
learned by NTM through a progressive reconstruction analysis. As visualized in Figure 11 (Appendix),
using an incrementally larger set of initial tokens (e.g., 32, 64, 128) reveals a distinct coarse-to-fine
behavior: global structures are captured first, followed by finer details. This visual observation
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is supported by quantitative metrics. As expected, the reconstruction MSE (tMSE) consistently
decreases with token length. To better quantify the notion of "progressive quality improvement," we
propose the reconstruction Quality Pass Rate (rQPR): the proportion of images achieving an tMSE
lower than a predefined threshold such as 0.02. As illustrated in Fig. 5, the rQPR shows a steady
climb as token length increases, demonstrating that a growing fraction of the dataset meets the quality
standard. This combined evidence strongly indicates that NTM successfully orders information from
most to least critical, which is essential for our subsequent adaptive allocation.

Analysis of the Reward Landscape and Policy Learning. To understand the behav-
ior of our Adaptive Token Allocation (ATA) module, we first analyze the reward land-
scape that guides the policy network. We plot our proposed reward functions, Rcontinuous
and Rgyerreds @S a function of token length over the validation set (Fig. 6). Both func-
tions exhibit a clear concave shape, initially increasing as more tokens improve reconstruc-
tion quality, and then decreasing as the penalty for longer sequences begins to dominate.
This sample-level policy learning proves highly

effective. We demonstrate this by comparing Reward vs. Token Length (Smooth Fit)
the actual reward achieved by AdaTok against o] o poam 7zw

. . aTol °
a "fixed-length" baseline, where all images are — Structured Reward

—— Continuous Reward

forced to use the same number of tokens—a
value equal to the average token length chosen
by our policy. In this figure, the reward achieved 5
by our adaptive policy is consistently higher £ o]
than that of the fixed-length baseline, despite =
both methods operating at the same average to-
ken budget. This highlights the core advantage
of AdaTok: by dynamically allocating more to-
kens to complex images and fewer to simple o
ones, our policy effectively "cherry-picks" the 2 o ® en Length
high-reward outcomes for each sample. This

results in a superior overall performance that a Figure 6: Analysis of the Reward Landscape and
one-size-fits-all approach cannot achieve, prov- [ aarned Policy Distribution.

ing the value of dynamic, per-image adaptation.

192 224 256

6 CONCLUSION

In this paper, we present AdaTok, a novel framework for adaptive image representation using
variable-length tokens. By combining Nested Tail Masking (NTM) and Adaptive Token Allocation
(ATA), AdaTok enables the model to autonomously determine the optimal token length required to
preserve image quality. The key innovation of AdaTok lies in its ability to dynamically adjust token
lengths based on the quality of the image, utilizing a reinforcement loss inspired by the Information
Bottleneck Theory to balance token count and reconstruction quality. Our experimental results show
that AdaTok outperforms existing methods in terms of generation speed and quality, achieving a
significant reduction in token usage without compromising reconstruction fidelity. The flexibility of
AdaTok makes it a promising approach for improving efficiency in both visual-textual alignment and
autoregressive generation tasks. Future research can explore alternative frameworks beyond next-
token prediction and extend AdaTok to tasks like video generation, further enhancing its applicability
in multimodal systems.

Limitations. Our proposed AdaTok further advances the alignment between images and textual forms,
potentially serving as a new paradigm within a unified multimodal framework in the future. However,
there are still some limitations that need to be addressed: a) Integrating AdaTok’s variable-length
tokens with standard generative models requires special consideration. For example, autoregressive
models need an [EOS] token to halt generation, while non-autoregressive models require careful
padding and masking schemes to handle the varied sequence lengths. ¢) We have not conducted
large-scale experiments on text-to-image generation with vision-language models (VLMs); future
work could explore whether the model can adaptively allocate image tokens based on the information
density of the input text.



Under review as a conference paper at ICLR 2026

REFERENCES

Roman Bachmann, Jesse Allardice, David Mizrahi, Enrico Fini, Oguzhan Fatih Kar, Elmira Amirloo,
Alaaeldin El-Nouby, Amir Zamir, and Afshin Dehghan. Flextok: Resampling images into 1d token
sequences of flexible length. arXiv preprint arXiv:2502.13967, 2025.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
image transformer. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11315-11325, 2022.

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
registers. arXiv preprint arXiv:2309.16588, 2023.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780-8794, 2021.

Shivam Duggal, Phillip Isola, Antonio Torralba, and William T Freeman. Adaptive length image
tokenization via recurrent allocation. In First Workshop on Scalable Optimization for Efficient and
Adaptive Foundation Models, 2024.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp- 12873-12883, 2021.

Edward Gibson. Linguistic complexity: Locality of syntactic dependencies. Cognition, 68(1):1-76,
1998.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dolldr, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000-16009, 2022.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural
networks. science, 313(5786):504-507, 2006.

Emiel Hoogeboom, Jonathan Heek, and Tim Salimans. simple diffusion: End-to-end diffusion for
high resolution images. In International Conference on Machine Learning, pp. 13213-13232.
PMLR, 2023.

Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

Aditya Kusupati, Gantavya Bhatt, Aniket Rege, Matthew Wallingford, Aditya Sinha, Vivek Ra-
manujan, William Howard-Snyder, Kaifeng Chen, Sham Kakade, Prateek Jain, et al. Matryoshka
representation learning. Advances in Neural Information Processing Systems, 35:30233-30249,
2022.

Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
generation without vector quantization. Advances in Neural Information Processing Systems, 37:
56424-56445, 2024.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74-81, 2004.

Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and
Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. In European Conference on Computer Vision, pp. 23-40. Springer, 2024.

Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. Finite scalar quantization:
Vg-vae made simple. arXiv preprint arXiv:2309.15505, 2023.

Keita Miwa, Kento Sasaki, Hidehisa Arai, Tsubasa Takahashi, and Yu Yamaguchi. One-d-piece:
Image tokenizer meets quality-controllable compression. arXiv preprint arXiv:2501.10064, 2025.

10



Under review as a conference paper at ICLR 2026

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195-4205, 2023.

Steven T Piantadosi, Harry Tily, and Edward Gibson. Word lengths are optimized for efficient
communication. Proceedings of the National Academy of Sciences, 108(9):3526-3529, 2011.

Oren Rippel, Michael Gelbart, and Ryan Adams. Learning ordered representations with nested
dropout. In International Conference on Machine Learning, pp. 1746—1754. PMLR, 2014.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684—10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Intervention—-MICCAI
2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part 111
18, pp. 234-241. Springer, 2015.

Junhong Shen, Kushal Tirumala, Michihiro Yasunaga, Ishan Misra, Luke Zettlemoyer, Lili Yu, and
Chunting Zhou. Cat: Content-adaptive image tokenization. arXiv preprint arXiv:2501.03120,
2025.

Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
Autoregressive model beats diffusion: Llama for scalable image generation. arXiv preprint
arXiv:2406.06525, 2024.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction. Advances in neural information processing
systems, 37:84839-84865, 2025.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Xin Wen, Bingchen Zhao, Ismail Elezi, Jiankang Deng, and Xiaojuan Qi. " principal components"
enable a new language of images. arXiv preprint arXiv:2503.08685, 2025.

Wilson Yan, Volodymyr Mnih, Aleksandra Faust, Matei Zaharia, Pieter Abbeel, and Hao Liu.
Elastictok: Adaptive tokenization for image and video. arXiv preprint arXiv:2410.08368, 2024.

Jingfeng Yao, Bin Yang, and Xinggang Wang. Reconstruction vs. generation: Taming optimization
dilemma in latent diffusion models. In Proceedings of the Computer Vision and Pattern Recognition
Conference, pp. 15703-15712, 2025.

Lijun Yu, Yong Cheng, Kihyuk Sohn, José Lezama, Han Zhang, Huiwen Chang, Alexander G
Hauptmann, Ming-Hsuan Yang, Yuan Hao, Irfan Essa, et al. Magvit: Masked generative video
transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10459-10469, 2023a.

Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong
Cheng, Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, et al. Language model beats diffusion—
tokenizer is key to visual generation. arXiv preprint arXiv:2310.05737, 2023b.

Qihang Yu, Mark Weber, Xueqing Deng, Xiaohui Shen, Daniel Cremers, and Liang-Chieh Chen.
An image is worth 32 tokens for reconstruction and generation. Advances in Neural Information
Processing Systems, 37:128940-128966, 2025.

11



Under review as a conference paper at ICLR 2026

APPENDIX CONTENTS FOR ADATOK

A STATEMENT ON THE USE OF AI TOOLS

A large language model (LLM) was used to aid in the language polishing of this manuscript. Its role
was limited to improving grammar, clarity, and readability. All scientific ideas, methodologies, results,
and conclusions were conceived and articulated by the human authors, who are solely responsible for
the content of this paper.

B CONVERGENCE ANALYSIS OF REWARD FUNCTIONS

In this section, we analyze the convergence properties of the two reward functions proposed in the
main text. Our goal is to demonstrate that for a given image, both reward functions R(L) with respect
to the token length L (denoted as ¢/ for simplicity) are strictly concave. A strictly concave function
has a unique global maximum. This property is crucial as it ensures that the policy network has a
stable and well-defined optimization target, thereby guaranteeing the convergence of the policy to an
optimal length.

B.1 UNDERLYING ASSUMPTION: DIMINISHING RETURNS

Our analysis rests on a fundamental and empirically validated assumption: the relationship between
token length (¢!) and reconstruction loss (rl) exhibits diminishing returns. This means that as we
add more tokens, the reconstruction loss decreases, but at a progressively slower rate. Mathematically,
this implies that rI(¢l) is a strictly convex and decreasing function of ¢/:

a(rl)

1. o) < 0
82 (rl

2. S >0

This convexity is intuitively clear: the first few tokens capture the most critical information, leading
to a large drop in loss, while later tokens only add minor details, resulting in marginal improvements.
This behavior is empirically verified in Figure 3 of the main text.

B.2 ANALYSIS OF RconTinuous

The continuous reward function is defined as:

Rontinuous (tl) = _Tl(tl) Q= (tl/Lmax) B (10)
where a, 8 > 0 are constants. Its second derivative with respect to ¢/ is:
achonlinuous - —a- 82 (Tl) (11)
(tl)? o(tl)?

Given our assumption that rI(tl) is strictly convex (% > 0) and o > 0, it directly follows that:

2
0 Rcontinuous

a(tl)2

This proves that Reongnuous 1S a strictly concave function of the token length ¢/ and thus possesses a
unique global maximum.

<0 12)

B.3 ANALYSIS OF RstrUcTURED

The structured reward function is defined as a piecewise function:

Rhigh(tl) =1+ (Lmax — tl)/Lmax if Tl(tl) < rlpase

. 13
Riow(tl) = —(rl(tl) — rlpase) - ¥ if 7L(tl) > rlpase (13)

Rstructured (tl ) = {

12
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This function is not differentiable at the boundary point where 7l (tl) = 7lpas.. However, we can still
prove its strict concavity by analyzing each piece and the behavior at the boundary.

Let tI* be the token length such that 7l(¢l*) = rly.g. Since rl(tl) is a decreasing function, this
boundary point ¢I* is unique. The function is then defined over two intervals: [0,¢/*] and (¢0*, Lyyax]-

1. Analysis of each piece:

» For tl € (t*, Lmax|, the function is Rjoy(tl). Its second derivative is %z(gl)fg =

- gig)@ . Since v > 0 and ri(¢l) is strictly convex, this piece is strictly concave.

2 .
* For tl € [0,tl*], the function is Rpjg(tl). Its second derivative is %(Z‘S‘i“ = 0. This
piece is linear, and thus (non-strictly) concave.

2. Behavior at the boundary ¢/*: At the boundary point ¢*, the function is continuous:
lm  Riow(tl) = —(rl(t1*) — rlyge) - v =0
tl—tl+
Rhigh(tl*) =1+ (Lmax - tl*)/Lmax

There appears to be a discontinuity if the formula is as written. Assuming the user intended
continuity, a formulation such as Riow = Rhigh (t1*) — (71(t]) — rlpase ) -y would be continuous.
However, even with a discontinuity, the argument about the shape holds. Let’s analyze the
slopes (first derivatives) at the boundary:

ORiow -~ a(rl)

A |y O e
O Rhigh — 1L

Otl) |- -

Since g%) < 0 and v > 0, the slope of Rje is positive. The slope of Ry;gh is negative.

This means the slope decreases as we cross the boundary from left to right, which is a key
property of concave functions.

Because the function is composed of a concave piece and a strictly concave piece, and the slope
decreases at their joining point, the overall function Ryyycrurea (£0) is strictly concave. It may have a
"sharp peak" (a kink) at ¢I*, but it still has a single, well-defined global maximum.

B.4 CONCLUSION

Both proposed reward functions, under the empirically supported assumption of diminishing returns
in reconstruction quality, are shown to be strictly concave with respect to the token length. This
mathematical property is crucial, as it guarantees the existence of a unique optimal token length
for any given image, providing a stable and reliable target for our reinforcement learning agent to
converge upon, even in the case of the non-differentiable structured reward.

B.5 DOWNSTREAMING PERFORMANCE

Linear Probing Evaluation. To evaluate the representation power and semantic ability of
our model, we conduct a linear probing experiment following the protocols used in TiTok and
MAE ( , ). A linear classifier is trained on the output of the encoder for a clas-
sification task, such as ImageNet-1K, to measure the linear separability of the encoded repre-
sentations. This evaluates how well the model captures semantic information and transfers it
to downstream tasks. Fig. 8 demonstrates our method alongside all models from TiTok and
One-D-Piece. Our model outperforms all their versions in the same linear probing settings,
and we also incorporate random tail drop in linear probing to enhance robustness. Since Ada-
Tok implicitly ranks token information, applying linear probing does not result in significant
information loss and even stimulates the model’s scalability. Experimental results validate the
linear separability of AdaTok features and their excellent transferability to downstream tasks.
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Figure 7: Class Conditional Generation Results. Conditions are randomly selected in 1k classes.

Class-conditional Generation To validate that

our method can indeed enhance downstream 038
tasks, we validate class-conditional generation L4
on ImageNet-1K for comparison. We selected &
the classic DiT as the generator, and conducted o
experiments comparing flexible and non-flexible
representations using AdaTok. Fig. 7 shows

the generated results after training the genera- 0] @ ° AR Sl
tor. The model produces high-quality results = 7 e tongn B
for many categories, indicating that our flexible

representation significantly improves generation Figure 8: Comparisons of Linear Probing Accu-
efficiency while maintaining quality. racy (LPA top-1)

XX

@ Tiok-s-128
@ TiTok-B-64
@ TikL32
> One-D-Piece-5-256
< One-D-Piece-B-256
X

C QUALITATIVE
RECONSTRUCTION RESULTS

Figure 11 illustrates the reconstruction results of AdaTok across different numbers of tokens, ranging
from 2 to 256, with the ground truth (GT) images provided in the rightmost column. The progressive
improvement in reconstruction fidelity as the number of tokens increases demonstrates the adaptability
and efficiency of AdaTok in capturing finer image details.

At lower token counts (e.g., 2, 4, and 8 tokens), the reconstructions capture only coarse features of
the images, resulting in blurry outputs. As the token count increases (16, 32, and beyond), AdaTok
begins to recover more structural details, including object shapes and textures. By 256 tokens, the
reconstructed images closely approximate the ground truth, showcasing remarkable fidelity and
high-quality reconstruction. This progression highlights the ability of AdaTok to flexibly allocate
tokens based on the complexity of the content, ensuring efficient and high-fidelity reconstructions
across diverse visual inputs.

D ENTROPY LOSS ANALYSIS

Figures 9 and 10 demonstrate the effect of progressively decaying entropy loss during training. The
entropy loss is carefully designed to promote exploration in the early stages of training, allowing the
model to discover diverse tokenization strategies. As training progresses, the entropy loss decays,
encouraging the model to converge to a more stable and optimal policy.
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Figure 9 shows the gradual reduction in entropy loss over training steps, reflecting the decrease in
exploration as the model converges. Correspondingly, Figure 10 illustrates the log probabilities of
token selection, which stabilize over time, further validating the model’s ability to adaptively learn an
efficient tokenization policy. This dynamic adjustment ensures a balance between exploration and
exploitation, leading to improved performance across various settings.

Figure 9: Entropy loss progression during training. The gradual decay of entropy loss encourages
exploration in early training and promotes convergence in later stages.

Figure 10: Log probability evolution. The stabilization of log probabilities over training steps
reflects the model’s learned tokenization policy and reduced uncertainty.

E DATASET LICENSES

The datasets used for training and evaluating TiTok are summarized below:

ImageNet-1K: This dataset spans 1,000 object classes and includes 1,281,167 training images,
50,000 validation images, and 100,000 test images. The training set was utilized for both tokenizer
and generator training, while the validation set was employed to compute reconstruction FID scores
for tokenizer evaluation. Generation results were further assessed using FID scores, based on
pre-computed statistics and scripts from ADM ( , ).
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2 4 8 16 32 64 128 256 GT

Figure 11: Reconstruction Results of AdaTok. The figure demonstrates the progressive reconstruc-
tion quality of AdaTok as the number of tokens increases from 2 to 256, with the ground truth (GT)
shown in the last column. Higher token counts yield finer details and better fidelity to the original
images.
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