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Abstract
In millimeter wave (mmWave) communications,
aligning the transmitter and receiver beams is
crucial to reduce the significant path loss. As
scanning the entire directional space is inefficient,
designing an efficient and robust method to iden-
tify the correct optimal beamforming direction is
essential. Many existing works use bandit algo-
rithms for beam alignment but rely on unimodal-
ity or multimodality assumptions on the reward
structure, as well as assuming the horizon is suf-
ficiently long. However, such assumptions may
not hold in practice and cause such algorithms to
converge to choosing suboptimal beams.

In this work, we propose the physics-informed al-
gorithms PR-ETC and PR-GREEDY that exploit
the existence of a dominant path (e.g., LoS path),
an assumption that is perhaps more realistic in
practice, which has a connection to the Phase Re-
trieval Bandit problem. Through simulated exper-
iments using the DeepMIMO dataset (Alkhateeb,
2019), we demonstrate that both algorithms out-
perform existing approaches across 4,952 bandit
instances.

1. Introduction
We study beam alignment in Millimeter-wave (mmWave)
wireless communications. mmWave communication lever-
ages reconfigurable high-gain antenna arrays to achieve high
data rates. For example, when a Base Station (BS) and a user
equipment (UE) would like to communicate with each other,
BS performs beam steering, i.e., it dynamically reconfigures
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its phased array antenna by adjusting the phase delay of the
signal fed to each antenna element, allowing the signal to be
sent or received in the desired directions. The beam pattern
of an antenna array configuration characterizes the received
signal strength of users at different directions.

In modern applications, one chooses from a predefined code-
book of antenna configurations, whose beam patterns are
so narrow that even a slight misalignment of the beam to
the user location can result in a significant loss in signal
strength. For example, Nitsche et al. (2015) notes that with
a 7-degree beam width, an 18-degree misalignment can re-
duce the link signal strength by 17 dB. Aligning the beam
accurately with the direction that provides the highest gain
is crucial to fully harness the potential of next-generation
communication hardware.

Offline training-based methods (such as beam scanning) can
be adopted; however, they are inefficient and incur high
overhead due to the large beam space. To fulfill real-time
communication requirements, there is a critical need to
develop an algorithm to select the best beam in a sample-
efficient and online manner. In this paper, we investigate
beam alignment in a short-horizon setting.

An effective strategy for this beam alignment problem is to
cast it as a Multi-Armed Bandit (MAB) problem. Specifi-
cally, each possible beam can be viewed as an arm of a slot
machine, and the corresponding channel gain serves as the
reward feedback. In each round, a learning agent selects
an arm (i.e., a beam) and receives feedback drawn from the
distribution associated with that arm. The goal is for the
agent to adaptively choose the arms online that yield the
highest expected reward through repeated interactions.

Previously, effective algorithms for the MAB problem
have been proposed, such as Upper Confidence Bound
(UCB) (Lai, 1987; Auer et al., 2002) and Explore-Then-
Commit (ETC) (Langford & Zhang, 2007; Lattimore &
Szepesvári, 2020). To improve sample efficiency, Yu &
Mannor (2011); Cutkosky et al. (2023) studies the setting
where the expected reward is a unimodal function of the arm
(i.e., it has only one peak), a framework adopted by several
prior works in beam alignment (Hashemi et al., 2018; Ghosh
et al., 2024). Subsequent works (Saber & Maillard, 2024)
extend this to the setting where the reward is a multimodal
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function of the arm, however, they typically have restrictive
assumptions about a known (or a bound) number of peaks.

Nevertheless, multi-armed bandit approaches and their ex-
tensions are insufficient for mmWave beam alignment prob-
lems:

1. The real-world mmWave channel induces reward func-
tions that are often not unimodal. Even with only a
Line-of-Sight (LoS) path, because of the antenna side-
lobes, the reward function contains many local peaks –
see Figure 1. In addition, the mmWave signal propa-
gation is generally modeled using a geometric-based
statistical model which includes multiple reflection
paths (or clusters) (Rappaport et al., 2017; Gustafson
et al., 2013), which is more complex than the LoS path-
loss model in (Samimi & Rappaport, 2014). In reality,
the channel model parameters, such as the number of
paths, reflection coefficients, and the path-loss expo-
nents, all depend on the environment, which cannot
be exactly known in advance. Previous methods that
assume unimodality or multimodality (Yu & Mannor,
2011; Hashemi et al., 2018; Cutkosky et al., 2023) fail
to generalize under such realistic channel settings.

2. Real-world applications of beam alignment oftentimes
require low latency for real-time applications, and
requires selecting good beams in a short time hori-
zon (Hassanieh et al., 2018; Mazaheri et al., 2019).

Figure 1: The expected reward function of a bandit instance
from the DeepMIMO simulated dataset. It’s challenging
to generalize bandit algorithms that focus on exploiting the
unimodal property, especially in a sample efficient manner.

In this paper, inspired by works on parametric bandits (Fil-
ippi et al., 2010), we propose physics-informed parametric
bandit algorithms, PR-ETC and PR-GREEDY, for beam
selection by exploiting the underlying reward function

structure similar to the Phase Retrieval (PR) Bandit prob-
lem. We found that the electromagnetic wave propagation
model commonly used in far-field mmWave channel model-
ing (Samimi & Rappaport, 2014) can be viewed as a phase
retrieval model and solved using a similar approach for Gen-
eralized Linear Model (GLM) bandits in Filippi et al. (2010)
, while taking into consideration the properties of phase-
array antennas. Empirically, we demonstrate that leveraging
the unimodal or multimodal property is not as efficient as
leveraging the underlying wave propagation structure. Our
experiments also show that PR-GREEDY is robust under
model misspecification. Furthermore, the experiment re-
sults show the adaptability and robustness of our algorithm
across 4,952 bandit instances from the DeepMIMO simu-
lated environment (Alkhateeb, 2019), in a parameter-free
manner , without imposing any extra assumptions on the
underlying structure of the reward function (such as the num-
ber of paths, the number of peaks, etc.). We also proposed
the PR-ETC as a more computationally efficient approxi-
mation of PR-GREEDY to trade off between performance
and computational latency.

2. Related work
Many works have studied beam alignment in mmWave wire-
less communications, using the online learning regret as
the evaluation metric (Aykin et al., 2020). Hashemi et al.
(2018)’s algorithm can be seen as a mixture of local search
and greedy action, with an early stopping condition based on
the ratio between the peak and the average estimated channel
gain. Aykin et al. (2020) addressed the beam-tracking prob-
lem in dynamic environments using a model-free approach
and adapted the Thompson Sampling method to solve it.
While their experimental results are impressive and were
conducted with real hardware, their approach is based on
strong assumptions about the shape of the reward distribu-
tion (categorical distribution), which limits its applicability
in more general or practical settings.

Yu & Mannor (2011); Cutkosky et al. (2023) focus on ban-
dit with a unimodal structure of the reward function. Yu
& Mannor (2011) proposes the Line Search Elimination
Algorithm (LSE) to efficiently select the action with the
highest expected reward by leveraging the unimodal prop-
erty in general, not specifically designed for beam align-
ment. The noiseless and noisy 1-d convex bandit algorithms
in Lattimore (2024) can also be used to exploit the uni-
modal structure. Cutkosky et al. (2023) proposes a more
sample-efficient approach, but it maintains expected reward
estimates with a large collection of arms, which limits its
application in real-time deployment.

For the bandit setting with a multimodal reward function,
Saber & Maillard (2024) proposes the IMED-MB algorithm,
which uses the IMED index from Honda & Takemura (2015).
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Saber & Maillard (2024) shows that IMED-MB is asymp-
totically optimal in this setting and demonstrates impressive
empirical results.

The difficulty of short-horizon problems motivates us to
investigate solving beam alignment by viewing it as a para-
metric bandit problem. Parametric bandits with GLM struc-
ture have been previously studied by Filippi et al. (2010).
Here, the authors model the reward distribution using a
canonical exponential family, whose canonical parameter
is a linear function of the arm features. Then, they propose
the GLM-UCB algorithm that utilizes confidence bounds
for exploration.

In contrast, the physics-informed mmWave propagation
model we employ has a phase retrieval aspect (Kotłowski
& Neu, 2019; Lattimore & Hao, 2021) as the reward feed-
back is only related to the signal strength but not phase
shift. Our PR-GREEDY algorithm simply uses Maximum
Likelihood Estimation (MLE) to estimate the parameters of
the environment and act greedily.

3. Problem formulation
3.1. Far-Field Channel Strength

We model the channel using the far-field channel from a
uniform linear array (ULA) antenna with a dominant path.
Such a dominant path may be the Line-of-Sight (LoS) path
or other paths. Given an array of antennas, the total channel
received by the receiver is the sum of the channels provided
by each antenna. Suppose that we have 2N̄ + 1 antennas
and give the N̄ + 1-th antenna element as index 0 , as in
Figure 2. Therefore, the array response vector of this ULA
array can be represented as a complex vector, H:

H :=
(
ζe−j 2π

λ rn
)Ñ

n=−Ñ

where λ denotes the wavelength of the carrier, j is the imag-
inary unit, rn is the distance from the n-th antenna to the
receiver, and ζ denotes the channel gain (amplitude) for the
antennas. Now, consider the layout shown in Figure 2: r
is the distance from the center of the ULA antenna to the
receiver, sn is the position vector of the n-th antenna ele-
ment, θ and ϕ denote the azimuth and elevation angles of the
receiver with respect to the x–z plane. The elevation angle
ϕ does not affect the channel and can be assumed to be 0
without loss of generality. Therefore, rn ≈ ||r||−nd cos(θ)
and the array response vector H is equal to:

H =ζe−j
2π||r||

λ

(
ej

2π
λ (nd cos θ)

)N̄

n=−N̄
.

To be more convenience in optimization, we define:

h(θ) :=
(
ej

2π
λ (nd cos θ)

)N̄
n=−N̄

H(β, θ) :=βh(θ),

Figure 2: System layout of MISO system with ULA antenna.
Image from (Liu et al., 2023).

where β := ζe−2πj||r||/λ such that H can be represented as
a function of (β, θ), denoted as H(β, θ). The parameters
β, θ come from a space Θ that depends on the environment
and the receiver’s location.

Next, for the antenna in the receiver, we can control the
phase shift of each antenna and each configuration corre-
sponds to a different steering vector f .

We assume that we have a codebook of K different an-
tenna configurations (namely, steering vectors) that corre-
spond to different beam directions, forming an action set
{fa : a ∈ [K]}. The steering vector fa is generated in the
form:

fa :=
(
ej

2π
λ (nd cosπ a

K )
)N̄

n=N̄
.

Each steering vector corresponds to a set of phase shifts on
each antenna; therefore, it can be considered as an arm in
the MAB problem.

Then the received signal strength after applying a phase
shift characterized by the steering vector f is expressed as
Equation (1):

r =30 + 10 log10

(∣∣βf⊤h(θ)∣∣2)+ η (1)

where η a zero-mean Gaussian noise with standard deviation
σ = 3.6 (Samimi & Rappaport, 2014) (in dB). We define
the expected signal strength as a function of steering vector
f , and receiver’s location parameter (θ, β) as

R(f , θ, β) :=30 + 10 log10

(∣∣βf⊤h(θ)∣∣2) (2)

We remark that the above modeling assumptions (Equa-
tions (1) and (2)) have only two unknown free parameters
to be learned – channel gain parameter β and angle of de-
parture θ. This makes our method directly applicable to
different path loss exponents and carrier frequencies.
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3.2. Beam Alignment problem in the MAB Problem
Setting

The online learning for beam alignment protocol. For
each time step t = 1, . . . , T , the base station chooses beam
index at ∈ [K], and receives signal strength feedback
rt = R(fat

, θ∗, β∗) + ηt, where ηt ∼ N(0, σ2), where
θ∗ and β∗ are the ground truth parameters. We denote the
maximum expected return under the parameter θ and β and
the expected return as R∗(θ, β) := maxa∈[K] R(fa, θ, β).

Our goal is to minimize the regret, which is the cumulative
gap of signal strength between the perfectly aligned and the
steering vector selected by the algorithm up to time step T ,
defined as:

RegretT :=

T∑
t=1

R∗(θ∗, β∗)−R(fat , θ
∗, β∗)

3.3. Channel Estimation using Maximum Likelihood

Since we do not have access to the ground truth parame-
ters θ∗ and β∗, we rely on the Maximum Likelihood Esti-
mation (MLE) θ̂, β̂ to approximate these two parameters.
We expect the reconstructed reward function R(·, θ̂, β̂) to
be sufficiently close to R(·, θ∗, β∗) after the estimation.
Suppose that we have a dataset of T action-reward pairs
ST := {at, rt}Tt=1. We aim to find the estimates θ̂T , β̂T by
maximizing the likelihood function defined as:

L (θ, β | ST ) :=

T∏
t=1

1√
2πσ2

exp

(
− (rt −R(fat

, θ, β))2

2σ2

)
.

Note that maximizing the likelihood function L (θ, β | ST )
over the parameter space Θ is equivalent to minimizing the
square loss:

argmax
(θ,β)∈Θ

L (θ, β | ST ) = argmin
(θ,β)∈Θ

T∑
t=1

(rt −R(fat
, θ, β))

2

(3)

Therefore, at each time step, when the historical dataset St

is updated (e.g., by collecting one more pair (at+1, rt+1),
which updates the dataset to St+1, we solve the optimization
problem (Equation (3)) to obtain the MLE θ̂t+1, β̂t+1. We
expect that selecting the arm that maximizes R(fa, θ̂t, β̂t)
will minimize the instantaneous regret most effectively.

4. Algorithm
We introduce two versions of physics-informed para-
metric bandit algorithms: PR-ETC (Algorithm 1) and
PR-GREEDY (Algorithm 2), which are the Explore-then-
commit (ETC) and Greedy policies for phase retrieval bandit.

PR-ETC follows an Explore-Then-Commit (Lattimore &
Szepesvári, 2020) style via randomly selecting arms and
collecting feedback to estimate θ, β. PR-GREEDY focuses
on exploitation and takes action greedily in every time step,
which can still perform well in some contextual bandit prob-
lems as previously shown in Kannan et al. (2018).

For both algorithms, we use MLE to estimate (θ∗, β∗) by
solving optimization problem (3), and choose the action that
maximizes the predicted expected reward.

Algorithm 1 PR-ETC
Input: K ≥ 2, the configuration matrix F , the initial θ0
and β0, exploration parameter M .
for t = 1, 2, · · · , T do

if t < M then
Pull arm at ∈ [K] uniform randomly
Receive reward rt

else if t = M then
Estimate parameters θ̂T , β̂T by solving Equation (3).
Pull arm at := argmaxa∈[K] R(fa, θ̂t, β̂t)

else
Pull arm at = aM

end if
end for

Algorithm 2 PR-GREEDY

Input: K ≥ 2, the configuration matrix F , the initial θ0
and β0,
for t = 1, 2, · · · , T do

Estimate parameters θ̂t, β̂t by solving Equation (3).
Pull arm at := argmaxa∈[K] R(fa, θ̂t, β̂t)
Receive reward rt

end for

Note that PR-ETC only solves the optimization problem
once, which is at the last time step M of the exploration
phase, and we need to balance exploration and exploitation
by choosing M appropriately, while PR-GREEDY solves
the optimization problem T times. The computation cost of
PR-ETC will be much smaller than PR-GREEDY. Though
both algorithms collect T samples, we found the empirical
performance of PR-GREEDY is also better than PR-ETC
by a margin.

5. Experiment
In this section, we evaluate PR-ETC and PR-GREEDY in
environments with complex channel strength reward func-
tions. To this end, we utilize the DeepMIMO (Alkha-
teeb, 2019), which is a generic ray-tracing-based dataset
for benchmarking beam alignment algorithms. With Deep-
MIMO, we can vary the User Equipment (UE) location,
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allowing us to evaluate the algorithm across a wide range of
locations.

For our experiment, we utilize scenario 4 from an area in
Phoenix, which includes 3 base stations and 6,794 users.
For each combination of base station and user, we evalu-
ate all algorithms’ performance. In total, we have 20,382
transmitter-receiver pairs (i.e., tasks), including 4,952 pairs
with a channel connection. For each transmitter-receiver
pair, we construct a bandit instance and run every algorithm,
recording the arm chosen and the returned reward. Since
our analysis focuses on the ULA antenna, we configure 16
antennas in an array for the base station and set 1 antenna
for each user. The frequency of the mmWave in this exper-
iment is 28GHz, thus, the wavelength is λ = c

f = 0.011
meters. The spacing of the antenna is d = 0.5λ = 0.005.
The size of the beam codebook is K = 180. We set the pa-
rameter space Θ =

{
(θ, β) : θ ∈ [0, 360], β ∈ [10−50, 1]

}
.

Currently, we use a grid search method to solve the opti-
mization problem (Equation (3)). We divide the parameter
space Θ by splitting β into 50 grids and θ into 180 grids,
then search for the optimal pair across all grid points. Be-
cause the objective function (Equation (3)) is non-convex,
a coarse grid may cause the algorithm to miss the global
optimum.

5.1. Evaluation metric: normalized regret

Since we evaluate across 4,952 tasks, to make the regrets
of all tasks comparable, we shift and scale the regret of
all tasks to a common range. For each bandit instance, we
rescale the regret per step as follows:

regrett =
R∗(θ∗, β∗)−R(fat , θ

∗, β∗)

R∗(θ∗, β∗)− Ea∼U [K][R(fa, θ∗, β∗)]

where a ∼ U [K] means that a is drawn from the uniform
distribution over [K]. The total cumulative regret becomes

N-RegretT =
1

T

T∑
t=1

regrett

With this normalization, the normalized regret for any rea-
sonable algorithm better than random guessing is likely to
be [0, 1] , with the best action still having zero regret.

We compare our PR-ETC and PR-GREEDY algorithms
with several baseline MAB algorithms.

• UCB (Auer et al., 2002): a basic version of the Upper
Confidence Bound algorithm, where the confidence
bound is given by

√
2 ln(T )/Nt,a with Nt,a represent-

ing the number of arm a has being pulled up to time
t.

• LSE (Yu & Mannor, 2011): Line Search Elimination

Algorithm that selects the action with the highest ex-
pected reward by leveraging the unimodal property.

• BISECTION (Lattimore, 2024): the noisy bisection-
based algorithm.

• IMED-MB (Saber & Maillard, 2024), where we set the
number of assumed peaks in the reward function to be
M ′ = 10.

In addition, for PR-ETC, we set M , the number of random
exploration rounds, to be 20.

5.2. Performance on the synthetic dataset

5.2.1. DISTRIBUTION OF CUMULATIVE REGRET

Figures 3 and 4 show the distribution of N-RegretT over
4,952 environments for time horizons T = 50 and 200,
respectively. For each environment, the N-RegretT is com-
puted by averaging over 10 runs.

We find that PR-GREEDY consistently outperforms other
algorithms for a time horizon of T = 50. At time step 50,
the expected mean regret of PR-GREEDY is 0.47, while
PR-ETC has a mean regret of 0.64 (Figure 3). Increas-
ing the time horizon from 50 to 200 significantly improves
the performance of both PR-GREEDY and PR-ETC (Fig-
ure 4), although PR-GREEDY requires more time to solve
the optimization problem. This improvement occurs be-
cause, after the initial 50 steps, PR-GREEDY can identify a
near-optimal beam with high probability, resulting in near-
zero regret over the subsequent 150 steps. We show this in
the next section (Section 5.2.2).

For the other unimodal bandit algorithms, we empirically
observe that they do not perform as well as our physics-
informed algorithms. LSE’s performance improves as
the horizon T increases from 50 to 200, approaching
that of PR-ETC, but it still underperforms compared to
PR-GREEDY. BISECTION, designed for unimodal set-
tings, struggles in both the 50-step and 200-step horizons,
as it is not well-suited for the multimodal nature of the
problem. Although IMED-MB is designed for multimodal
settings, it exhibits a bimodal distribution in the histogram
plots. The experiment shows that IMED-MB struggles
to select the best beam with only a very small number of
observations. This behavior occurs because they can iden-
tify the best beam in some environments, but in others, their
overall performance is similar to a random policy. UCB
seems to have a clearly inferior performance due to its need
in choosing every beam once to begin with; with the total
number of beams being 180 and a time horizon of 50 or 200,
it performs almost identical to a random policy.

Due to space limitations, we present in Appendix A.3.1
the histograms of the normalized simple regret across dif-
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ferent algorithms. The results show a similar trend, with
PR-GREEDY generally achieving lower normalized simple
regret.

Figure 3: Distribution of N-RegretT over all transmitter-
receiver pairs at the first 50-th step

Figure 4: Distribution of N-RegretT over all transmitter-
receiver pairs at the first 200-th step

5.2.2. REWARD FUNCTION AND ITS ESTIMATION

To further understand the behavior of the algorithms and
baselines, we select one bandit instance from all user loca-
tions as an example (Figures 5 and 6). Both PR-GREEDY
and PR-ETC achieve lower average regret, which continues
to decrease as time progresses and more data is collected,
and PR-GREEDY performs better than PR-ETC. BISEC-
TION and LSE learn some patterns, but their performance
remains inferior compared to our methods. UCB and IMED-
MB perform the worst, with UCB particularly affected by
the insufficient number of samples to effectively shrink the
confidence interval—on average, we have no more than two
samples per arm.

Figure 5: Average regret vs time step for different algo-
rithms. Because of the finite-horizon setting with T = 200
steps and K = 180 arms, UCB and IMED-MB have a flat
regret from the initial uniform exploration of each arm.

We also plot in Figure 6 the reward function and estimated
reward function rebuilt by using θ̂T and β̂T by PR-GREEDY
and PR-ETC. From the plot, we can see that the beams
chosen by PR-GREEDY are centered around the peak of
the reward function rather than uniformly distributed on the
action space.

Figure 6: Reward function estimated by PR-GREEDY and
PR-ETC at time step 200. Each cross represents the arm
selected by PR-GREEDY and PR-ETC. For each color,
the vertical lines represent the best beam that maximizes the
respective reward function.

5.2.3. THE REGRET IN THE MAP

We also plot the spatial heatmap of the N-RegretT in Fig-
ures 7 to 9. Additional comparisons with other algorithms
are provided in Figure 11 in Appendix A.2. We observe
that the performance of PR-GREEDY aligns well with the
histogram distribution, indicating generally strong perfor-
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Figure 7: Spatial heat map of N-RegretT for PR-GREEDY
across the coverage area of Base Station 1

Figure 8: Spatial heat map of N-RegretT for PR-GREEDY
across the coverage area of Base Station 2

mance. Only a few areas on the map exhibit relatively
poorer results, which we suspect stem from computational
precision limitations.

6. Conclusion
We develop the physics-informed parametric bandit algo-
rithms, PR-ETC and PR-GREEDY, to address the beam
alignment problem in millimeter-wave communications.
Unlike other works that rely on unimodality or multimodal-
ity assumptions on the reward function, our approach is
grounded in the fundamental model of far-field mmWave
propagation with one dominant path. Our algorithms demon-
strate good performance on synthetic datasets compared to
existing multi-armed bandit-based methods. However, we
observe that the computational cost of solving the optimiza-
tion problem remains non-negligible (See Appendix A.1
for detailed comparison). There is significant potential to
extend this work. A natural next step is to consider dy-

Figure 9: Spatial heat map of N-RegretT for PR-GREEDY
across the coverage area of Base Station 3

namic environments where the user is moving, as explored
in Aykin et al. (2020). Additionally, real-world experiments
will be important to validate the practical effectiveness and
robustness of our algorithms under realistic conditions.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning and Wireless Communications. There
are many potential societal consequences of our work, none
of which we feel must be specifically highlighted here.
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A. Appendix
We include additional experimental results of the bandit algorithms to provide a more comprehensive evaluation. In
Appendix A.1, we present the computational time required by each algorithm when running for 200 steps on the synthetic
dataset. In Appendix A.2, we provide regret maps for other bandit algorithms. In Appendix A.3, we measure the performance
of all algorithms using the normalized simple regret instead of N-RegretT This analysis highlights the performance of each
algorithm after a fixed number of time steps, effectively removing the influence of the initial training phase.

A.1. Time cost

We compare the computational time required by each algorithm for a time horizon of T = 200 on the DeepMIMO dataset.
Notably, PR-GREEDY has the highest computational cost, requiring approximately 75,346 ms per transmitter-receiver pair .
, which is several orders of magnitude greater than most other methods. This is primarily due to the grid search approach
used in our implementation to solve the non-convex optimization problem (Equation (3)), as built-in solvers have proven
unreliable for this task. Similarly, PR-ETC is less expensive, taking about 1,581 ms, since it only solves the optimization
problem once during the whole training phase.

In contrast, classical algorithms such as UCB, LSE, and BISECTION have very low computational overhead, each
completing within 3 ms, making them highly efficient, though potentially less accurate in complex environments. IMED-MB
exhibits a moderate cost of around 100 ms.

We leave it as an important open problem to develop a faster and more reliable method to solve the optimization problem
(Equation (3)) without sacrificing accuracy.

Figure 10: Time cost of each algorithm, averaged over 40 different transmitter-receiver pairs with 5 repeats.

A.2. Spatial heat maps of N-RegretT

We include the spatial heat maps of N-RegretT of other algorithms over the synthetic dataset in Figure 11. From the figures,
it is clear that PR-GREEDY achieves the best overall performance, followed by PR-ETC and LSE.
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Base Station 1 Base Station 2 Base Station 3

GLM-ETC

LSE

BISECTION

IMED-MB

UCB

Figure 11: Spatial heat maps of N-RegretT of different algorithms (rows) across Base Stations 1–3 (columns).

A.3. Experiment result measured by simple regret

We present experimental results using simple regret, which is defined as the reward gap at the final time step, which is the
performance of the action committed by the algorithm after the training phase. Specifically, the simple regret is given by

regretT := R∗(θ∗, β∗)−R(faT
, θ∗, β∗). (4)
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and we apply the same normalization as described in Section 5.1. To remind us, the normalized simple regret is defined as

regrett =
R∗(θ∗, β∗)−R(fat

, θ∗, β∗)

R∗(θ∗, β∗)− Ea∼U [K][R(fa, θ∗, β∗)]

where a ∼ U [K] means that a is drawn from the uniform distribution over [K]. As a result, the regrets are mostly within the
range [0, 1], with the optimal policy yielding a regret of 0, and a random policy having a regret of 1.

In Appendix A.3.1, we show the distribution of normalized simple regret to illustrate the performance across different
BS-user location pairs. Additionally, in Appendix A.3.2 we include spatial heatmaps from three base stations for our
algorithms as well as our baselines for comparison.

A.3.1. SIMPLE REGRET DISTRIBUTION

Figure 12: Simple regret at the 50-th step

Figure 13: Simple regret at the 200-th step
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A.3.2. SIMPLE REGRET MAPS

Base Station 1 Base Station 2 Base Station 3

GLM-
Greedy

GLM-ETC

LSE

BISECTION

IMED-MB

UCB

Figure 14: Spatial heat maps of the normalized simple regret of different algorithms (rows) across Base Stations 1–3
(columns).
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