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Abstract

Implicit generative modeling (IGM) aims to produce samples of synthetic data matching
the characteristics of a target data distribution. Recent work (e.g. score-matching networks,
diffusion models) has approached the IGM problem from the perspective of pushing syn-
thetic source data toward the target distribution via dynamical perturbations or flows in
the ambient space. We introduce the score difference (SD) between arbitrary target and
source distributions as a flow that optimally reduces the Kullback-Leibler divergence be-
tween them. We apply the SD flow to convenient proxy distributions, which are aligned if
and only if the original distributions are aligned. We demonstrate the formal equivalence
of this formulation to denoising diffusion models under certain conditions. However, unlike
diffusion models, SD flow places no restrictions on the prior distribution. We also show
that the training of generative adversarial networks includes a hidden data-optimization
sub-problem, which induces the SD flow under certain choices of loss function when the
discriminator is optimal. As a result, the SD flow provides a theoretical link between model
classes that collectively address all three challenges of the generative modeling trilemma:
high sample quality, mode coverage, and fast sampling.

1 Introduction

The goal of implicit generative modeling (IGM) is to create synthetic data samples by pushing a base
(or source) distribution q, representing the synthetic data, toward a target distribution p until the two
distributions are indistinguishable. A variety of approaches exist in the literature that address this problem
from the perspective of the dynamics imposed upon synthetic data during sampling or training. This
perspective can be applied to the direct sampling of data—such as in Langevin dynamics (Bussi & Parrinello,
2007; Welling & Teh, 2011) or Hamiltonian Monte Carlo (MacKay, 2003)—in which case a sample of particles
from a base distribution is perturbed until it resembles a sample from the target distribution. It can also
be applied in the training of parametric models, which either perform these perturbations under the hood,
such as in the case of normalizing flows (Rezende & Mohamed, 2015; Papamakarios et al., 2021), or during
inference, such as in the case of diffusion models (Ho et al., 2020; Nichol & Dhariwal, 2021).

This perspective would seem to contrast with approaches in which model parameters are optimized to align
the generative and target distributions by reducing a loss quantifying the mismatch between them. Perhaps
the most famous example of such an approach is a generative adversarial network (GAN) (Goodfellow et al.,
2014), which leverages a separately trained discriminator to assess and guide this source-target alignment.
However, we will show that such approaches contain a hidden sub-problem that corresponds to inducing a flow
on the generated data that is determined by the loss being optimized. This reduces the task of understanding
a wide variety of IGM methods to that of analyzing the dynamics imposed upon the synthetic or generative
distribution.

The question then becomes one of asking what the optimal dynamics might be. In this direction, we
introduce the score difference (SD)—the difference in the gradients of the log-densities of the target and
source data distributions with respect to the data—as the flow direction that optimally reduces the KL
divergence between them at each step. We then argue that we can sidestep directly working with the target
and source distributions in favor of operating on convenient proxy distributions with common support, since
aligning the proxies is equivalent to aligning the original, unmodified distributions.
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We derive the score difference from the analysis of the dynamical systems that govern probability flow. But
we also show that the score difference is hidden within or relates to various other IGM approaches under
certain conditions, most notably GANs and denoising diffusion models. We also outline a flexible algorithmic
approach for leveraging SD flow when working with any distributions p and q, with no restrictions placed
on either distribution.

The paper is organized around its key contributions as follows:

1. In Section 2, we derive the score-difference (SD) flow from the study of probability flow dynamical
systems and show that SD flow optimally reduces the Kullback-Leibler (KL) divergence between the
source and target distributions.

2. In Section 3, we consider modified proxy distributions for the source and target distributions, which
have common support and are generally easier to manage and estimate than the unmodified distri-
butions. We outline a method for aligning these proxies and show that this alignment occurs if and
only if the unmodified distributions are aligned.

3. In Section 4, we show that GAN generator training is composed of two main steps, a data-
optimization step that induces a flow determined by the loss being optimized and a model-
optimization step, in which the flow-perturbed particles are fit by the generator via regression.
This allows us to specify the evolution of the generative distribution under any loss. We also show
that the SD flow is induced in GANs under certain conditions and choices of loss function.

4. In Section 5, we draw a connection between SD flow and denoising diffusion models and show that
they are equivalent under certain conditions. However, unlike diffusion models, SD flow places no
restrictions on the prior distribution.

We offer concluding remarks in Section 6. In the appendices we provide algorithms for applying SD flow,
draw a link to maximum mean discrepancy (MMD) gradient flow, and report several experiments.

2 Probability Flow and the Score Difference

2.1 Derivation from Stochastic Differential Equations

Consider data x ∈ Rd drawn from a base distribution q = q0. We can describe a dynamical system that
perturbs the data and evolves its distribution q0 → qt over time by the stochastic differential equation

dx = µ(x, t)dt + σ(t)dω, (1)

where µ : Rd × R → Rd is a drift coefficient, σ(t) is a diffusion coefficient, and dω denotes the standard
Wiener process (Song et al., 2020).

When µ(x, t) = γ(t)
2 ∇x log p(x) and σ(t) =

√
γ(t), equation 1 describes Langevin dynamics, which for a

suitable decreasing noise schedule γ(t) can be shown to produce samples from a target distribution p as
t→∞ (Bussi & Parrinello, 2007; Welling & Teh, 2011). That is, q∞ = p.

A result due to Anderson (1982) shows that the dynamics in equation 1 can be reversed, effectively undoing
the evolution of q to p. These reverse dynamics are given by

dx =
[
µ(x, t)− σ(t)2∇x log qt(x)

]
dt + σ(t)dω̂, (2)

where now dt is a negative time step, and ω̂ is a time-reversed Wiener process. The reverse of a diffusion
process is therefore another diffusion process.

A remarkable recent result shows that there is a deterministic process with the same marginal densities as
those prescribed by equation 2. The corresponding dynamics are given by the probability flow ODE (Song
et al., 2020)

dx =
[
µ(x, t)− σ(t)2

2 ∇x log qt(x)
]

dt. (3)
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If we substitute in the Langevin drift and diffusion terms from above, equation 3 becomes

dx = γ(t)
2 [∇x log p(x)−∇x log qt(x)] dt. (4)

Since dt is assumed to be a negative time step in the reverse process, equation 4 as written provides the
dynamics of the forward process—pushing qt toward the target distribution p—when dt is positive. Equation
4 represents the score-difference (SD) flow of a probability distribution qt evolving toward p (or away from p,
depending on the sign). Note that this is no longer a diffusion but rather defines a deterministic trajectory.

2.2 SD Flow Optimally Reduces KL Divergence

A continuous flow dx = f(x)dt can be approximated by defining a transformation T (x) = x+εf(x) for some
small step ε > 0.1 If x ∼ q and x′ = T (x) ∼ q[T ], then Liu & Wang (2016) show that the Kullback-Leibler
(KL) divergence between q[T ] and p,

DKL(q[T ]∥p) = Ex∼q[T ]

[
log q[T ](x)− log p(x)

]
, (5)

varies according to its functional derivative,

∇εDKL(q[T ]∥p)|ε=0 = −Ex∼q[T ] [Tr (Apf(x))] , (6)

where
Apf(x) = ∇x log p(x)f(x)⊤ +∇xf(x) (7)

is the Stein operator (Gorham & Mackey, 2015).

By applying Stein’s identity to equation 6, we obtain

Ex∼q[T ] [Tr (Apf(x))] = Ex∼q[T ]

[
∇x log p(x)⊤f(x)

]
− Ex∼q[T ]

[
∇x log q[T ](x)⊤f(x)

]
= Ex∼q[T ]

[(
∇x log p(x)−∇x log q[T ](x)

)⊤ f(x)
]

,
(8)

which is the inner product of the score difference and the flow vector f(x). Maximizing the reduction in the
KL divergence (equation 6) corresponds to maximizing this inner product. Since the inner product of two
vectors is maximized when they are parallel, choosing f(x) to be parallel to the score difference will decrease
the KL divergence as fast as possible. We can also see from equation 6 and equation 8 that the decrease in
the KL divergence is then proportional to the Fisher divergence,

DF(q[T ]∥p) = Ex∼q[T ]

[
∥∇x log p(x)−∇x log q[T ](x)∥2] , (9)

which, never being negative, shows that moving along the SD flow in sufficiently small steps will not increase
the KL divergence.

3 Applying SD Flow to Proxy Distributions

One of the difficulties in applying Langevin dynamics or other score-based methods is the requirement that
we have access to the true score of the target distribution, ∇x log p(x), which is almost never available in
practice. It is also the case that when operating in the ambient space of x ∈ Rd, the score may not be
well defined in areas of limited support if the data exist on a lower-dimensional manifold, which is generally
assumed for a variety of data types of interest, such as image data. A large literature has emerged that is
dedicated to the estimation of this score or the design of training procedures that are equivalent to estimating
it (Hyvärinen & Dayan, 2005; Song & Ermon, 2020; Song & Kingma, 2021; Karras et al., 2022).

Applying SD flow would appear to be at least twice as difficult, since instead of one score to estimate, now
we have two. The distribution qt is also changing over time, so even a reasonably good estimate at one time
would have to be discarded and re-estimated at another. Our approach will be to essentially ignore p and
qt and work instead with modified proxy distributions that are easier to estimate and manage. Importantly,
aligning these proxy distributions will automatically align the unmodified source and target distributions.

1If ε is sufficiently small, then the Jacobian of T is of full rank, meaning that the transformation is bijective.
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3.1 Aligning Proxy Distributions

We can assess the alignment of two distributions q and p by computing a statistical distance between them.2
Although this quantity is not always a true “distance” in a strict mathematical sense, it will have the two
following properties:

1. D(q∥p) ≥ 0 for all distributions p, q

2. D(q∥p) = D(p∥q) = 0 ⇐⇒ p = q

Perhaps the best-known statistical distance is the KL divergence, DKL(q∥p) (equation 5), although it can
diverge to infinity if p and q have unequal support.

One way to equalize the support of two distributions is to corrupt their data with additive noise defined over
the whole space Rd. Let us assume a Gaussian noise model. The distribution of z = x + σϵ, with x ∼ p and
ϵ ∼ N (0, I), is given by the convolution p ∗ N (0, σ2I):

p̃σ(z) = p(z; σ) =
∫
Rd

p(x)N (z; x, σ2I) dx

= Ex∼p

[
N (z; x, σ2I)

]
,

(10)

with q̃σ(z) = q(z; σ) = Ey∼q

[
N (z; y, σ2I)

]
defined analogously. Although DKL(q̃σ∥p̃σ) ≤ DKL(q∥p) and

DKL(q̃σ∥p̃σ)→ 0 as σ →∞ (Sriperumbudur et al., 2017), it is easy to show that DKL(q̃σ∥p̃σ) = 0 if and only
if q = p (Zhang et al., 2020). As a result, aligning the proxy distributions q̃σ and p̃σ is equivalent to aligning
the generative distribution q with the target distribution p. Since we have shown that moving parallel to the
score difference optimally reduces the KL divergence, we will define an SD flow between q̃σ and p̃σ to align
q with p.

The score corresponding to equation 10 is given by

∇z log p(z; σ) = ∇zp(z; σ)
p(z; σ)

=
Ex∼p

[
∇zN (z; x, σ2I)

]
Ex∼p [N (z; x, σ2I)]

= 1
σ2

(
Ex∼p

[
N (z; x, σ2I)x

]
Ex∼p [N (z; x, σ2I)] − z

)
.

(11)

The score for q(z; σ) is derived in the same way for z = y + σϵ, with y ∼ q. This leads to the following
expression for the score difference:

∇z log p(z; σ)−∇z log q(z; σ) = 1
σ2

(
Ex∼p [Kσ(z, x)x]
Ex∼p [Kσ(z, x)] −

Ey∼q [Kσ(z, y)y]
Ey∼q [Kσ(z, y)]

)
, (12)

where Kσ(z, x) = exp
(
−∥z−x∥2

2σ2

)
is the Gaussian kernel.3

If we set the noise level according to the schedule σ2 = γ(t), then the variance term cancels from equation 4,
leading to the flow

dz = 1
2

[
Ex∼p [Kσ(z, x)x]
Ex∼p [Kσ(z, x)] −

Ey∼q [Kσ(z, y)y]
Ey∼q [Kσ(z, y)]

]
dt. (13)

Since dx/dz = dy/dz = I, the prescribed dynamics for the clean data are the same as for the corrupted
data, and we only need to keep track of the sign implied by the forward or reverse process. If we are moving
a point y ∼ q toward p, then dy = dz, while if we were moving a point x ∼ p toward q, then dx = −dz.
We test this formulation of SD flow in Appendix E.

2We will suppress the time index on q here for convenience.
3This substitution is a useful simplification because the normalization constant of the normal distribution cancels from the

numerator and denominator. It also makes the later comparison to MMD gradient flow (Appendix D) more straightforward.
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3.2 Alternative Formulations of SD Flow

In the limit of infinite data, equation 12 is exact. But applying this formulation in a large-data setting can
be computationally expensive, and estimates using smaller batches may suffer from low accuracy, especially
in high dimensions. It is useful to consider each term of equation 12 as a module that can be swapped out
for another method, depending on the problem setting. We provide several options in Algorithms 1 and 2.

As one example, we can rewrite equation 12 as

∇z log p(z; σ)−∇z log q(z; σ) = 1
σ2 [E[x|z]− E[y|z]] (14)

= 1
σ2

[
D∗

p(z; σ)−D∗
qt

(z; σ)
]

, (15)

where D∗
p(z; σ) and D∗

qt
(z; σ) are the optimal denoising models for the distributions p and qt, respectively,

when corrupted by Gaussian noise at level σ. A simple derivation of this result is possible by rearranging
Tweedie’s formula (Efron, 2011),4 but we provide a separate proof of optimality in Appendix B.

The denoiser corresponding to the target data would need to be trained only once, while the denoiser for
the generative distribution would, at least in principle, need to be retrained after each step along the flow.
However, since we actually observe y ∼ qt before corrupting it to form z = y + σϵ, we can just replace
D∗

qt
(z; σ) = E[y|z] with y in equation 15,5 leading to the update

y ← (1− ρ)y + ρD∗
p(z; σ) (16)

for some small step size ρ, which, as ρ → 0, corresponds to the continuous dynamics dy = D∗
p(z; σ)dt. In

Section 5, we show that this formulation is equivalent to the reverse process in denoising diffusion models.

4 Flows in Generative Adversarial Networks

4.1 Decomposing Generative Modeling into Sub-problems

When training a generative model gθ, we define a loss L, which is a scalar function of the generator output
that quantifies a discrepancy between the current model output and the target distribution. We treat this
loss as a function of the parameters θ ∈ Rn and then optimize θ to minimize L via gradient6 descent at
some learning rate η > 0:

θ′ = θ − η

(
∂L
∂θ

)⊤

. (17)

However, the loss L is also a function of the generated data x̃ = gθ(ξ) ∈ Rd, which is itself a function of either
ξ ∈ Rl or θ ∈ Rn, depending on our perspective. This perspective can be made explicit by decomposing the
derivative of the loss via the multivariate chain rule,

∂L
∂θ︸︷︷︸
1×n

= ∂L
∂x̃︸︷︷︸
1×d

∂x̃

∂θ︸︷︷︸
d×n

. (18)

This allows us to consider each component of the decomposition as corresponding to its own sub-problem.

In the first sub-problem, we perturb the generated data x̃ in the direction of the negative gradient,

x̃′ = x̃− λ1

(
∂L
∂x̃

)⊤

, (19)

4Tweedie’s formula states that E[x|z] = z + σ2∇z log p(z; σ),
5Note that this is an approximation, since D∗

qt
(z; σ) = E[y|z] will not necessarily equal y.

6We treat the gradient as the transpose of the derivative.
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where λ1 > 0 is some small step size. Intuitively, the perturbed data x̃′ corresponds to a potential output
of the generator that would have a lower loss, but we can also interpret it as resulting from a gradient flow
on the synthetic data.

In the second sub-problem, we update the generator parameters θ by regressing the new, perturbed target
x̃′ on the original generator input ξ via the least-squares loss

J = 1
2∥gθ(ξ)− x̃′∥2 = 1

2∥x̃− x̃′∥2. (20)

Putting the pieces together leads to

θ′ = θ − λ2

(
∂J
∂θ

)⊤

(21)

= θ − λ2

(
∂gθ(ξ)

∂θ

)⊤

(gθ(ξ)− x̃′) (22)

= θ − λ2

(
∂x̃

∂θ

)⊤

(x̃− x̃′) (23)

= θ − λ1λ2

(
∂x̃

∂θ

)⊤(
∂L
∂x̃

)⊤

(24)

= θ − λ1λ2

(
∂L
∂θ

)⊤

, (25)

which is is equal to the standard gradient update of θ under the original loss L (equation 17) with step size
η = λ1λ2. Here equation 24 follows from equation 23 by rearranging and substituting equation 19, while
equation 25 follows from equation 24 via equation 18.

Although this decomposition is a direct consequence of gradient descent, it shows that hidden within gener-
ator training are two sub-problems with separate control options (their learning rates, for instance), each of
which may be easier to conceptualize and handle than the original problem. In particular, we see that the
model-optimization step of generator training is preceded, at least implicitly, by a data-optimization step
that prescribes a flow in the ambient data space Rd, regardless of the overall loss being optimized. This
suggests that we can treat this data-optimization step as a target-generation module that can be swapped
out in favor of other procedures. Furthermore, it means that a wide variety of generative models can be
understood in terms of the dynamics imposed on the generated data during training.

4.2 GAN Dynamics in General

Since the negative gradient of the GAN loss defines a flow on the generated data x̃, which the generator fits
via regression, we can track the evolution of the synthetic distribution qt within the context of normalizing
flows (Rezende & Mohamed, 2015; Papamakarios et al., 2021). In particular, the dynamics induced by a
generator loss constitute, in the limit of arbitrarily small steps, a continuous normalizing flow whose effect
on the synthetic (generated) data distribution is governed by the Liouville equation (Ehrendorfer, 1994),

∂qt(x̃t)
∂t

= ∇x̃t
· [qt(x̃t)∇x̃L] , (26)

a continuity equation with solution

qt(x̃t) = q0(x̃0) exp
(∫ t

0
Tr [HL(x̃τ )] dτ

)
= q0(x̃0) exp

(∫ t

0
∇2

x̃τ
L dτ

)
, (27)

where HL(x̃τ ) is the Hessian matrix of the loss L evaluated at x̃τ , whose trace is the Laplacian ∇2
x̃L =∑

i ∂2/∂x̃i
2L.7 Taking the logarithm of both sides of equation 27 yields the solution to the instantaneous

change of variables differential equation (Chen et al., 2018; Grathwohl et al., 2018). Note that this evolution
holds for any generator loss L and does not make any assumptions about an optimal discriminator.

7Many authors denote the Laplacian by ∆, but we have reserved its use for discrete-time differences.
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4.3 SD Flow in GANs

Many GAN generators employ the widely used non-saturating loss (Goodfellow, 2016) given by

L(θ) = −Eξ∼p0 [log f(gθ(ξ))] , (28)

where ξ ∈ Rl is a random noise input to the generator drawn from a prior distribution p0 and f : Rd → (0, 1)
is a separately trained discriminator that estimates the probability that its argument is real data coming
from a target distribution p (in which case f ≈ 1), as opposed to fake data coming from the generator
distribution qt (in which case f ≈ 0). Intuitively, the aim of the loss given by equation 28 is to tune the
parameters θ to maximize the discriminator’s assessment of generated data as real.

It can be shown that, if the prior probabilities of coming from either p or qt are equal, the Bayes optimal
classifier ft is given by

ft(x) = p(x)
p(x) + qt(x) , (29)

where we have included the time subscript to indicate the optimal discriminator’s dependence on the changing
distribution qt. An optimal discriminator is often assumed in the analysis of GANs but almost never holds
in actual practice.

When implemented as a neural network, the discriminator ft usually terminates with a sigmoid activation,

ft(x) = 1
1 + exp[−ht(x)] , (30)

where ht(x) is the pre-activation output of the discriminator ft. Equating equation 29 and equation 30, we
see that in the case of an optimal discriminator, ht(x) = log p(x)− log qt(x), whose gradient is the SD flow,

∇xht(x) = ∇x log p(x)−∇x log qt(x). (31)

When trained using the non-saturating loss (equation 28),

−∇xL = [1− ft(x)]∇xht(x).

Since [1−ft(x)] > 0 for all x, taking the results of Section 4.1 into account we see that standard GAN training
with an optimal discriminator consistently pushes the generated data toward the target data in a direction
parallel to the score difference (equation 4). We can also consider an alternative to the non-saturating loss
that focuses on the pre-activation output ht(x):

Lalt = −Eξ∼p0 [ht(gθ(ξ))] = −Ex̃∼qt
[ht(x̃)], (32)

which induces a gradient flow on x̃ ∼ qt exactly equal to the SD flow when the discriminator is optimal.

5 Relation to Denoising Diffusion Models

In diffusion modeling, data from the target distribution p is corrupted in a forward diffusion process by
Gaussian noise under the scale and noise schedules αt and σt, respectively. Then for z0 = x ∼ p, the
conditional distribution at time t relative to that at time s < t is given by

p(zt|zs) = N (αt|szs, σ2
t|sI),

where αt|s = αt/αs and σ2
t|s = σ2

t − α2
t|sσ2

s (Kingma et al., 2021).

The hard part is inferring the reverse diffusion process, p(zs|zt), which is intractable unless also conditioned
on z0 = x: p(zs|zt, x) = N (µs|t, σ2

s|t), where µs|t = (αt|sσ2
s/σ2

t )zt + (αsσ2
t|s/σ2

t )x and σ2
s|t = σ2

t|sσ2
s/σ2

t . In
practice, x is replaced by D(zt; σt), the output of a denoising model.8

8In alternative but equivalent implementations, the error between x and zt is predicted by a parametric model ϵθ(zt; t).
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If we let αs = αt = 1 for all s, t, then

zs = σ2
s

σ2
t

zt +
(

1− σ2
s

σ2
t

)
D(zt; σt) + σs|tϵs (33)

= (1− ρ)zt + ρD(zt; σt) +√ρσsϵs (34)

for ϵs ∼ N (0, I) and ρ = 1 − σ2
s/σ2

t . Recalling that in the SD flow framework, zt = yt + σtϵt ∼ qt(zt; σt)
for all t, equation 34 becomes

zs = (1− ρ)yt + ρD(zt; σt) +√ρσsϵs + (1− ρ)σtϵt

= (1− ρ)yt + ρD(zt; σt) +
√

ρσ2
s + (1− ρ)2σ2

t ϵ

= (1− ρ)yt + ρD(zt; σt)︸ ︷︷ ︸
ys

+

√(
1− σ2

s

σ2
t

)
σ2

s +
(

σ2
s

σ2
t

)2
σ2

t︸ ︷︷ ︸
σs

ϵ

= ys + σsϵ,

(35)

where ϵ, ϵs, ϵt ∼ N (0, I) and ys follows from equation 16. In other words, the updating process under SD
flow is equivalent to the denoising diffusion reverse process under the substitution described in Section 3.2.

6 Discussion and Concluding Remarks

In this work, we introduced the score-difference (SD) flow and showed that it corresponds to an optimal
trajectory for aligning a source (synthetic) distribution with a target distribution. We also showed that this
alignment can be performed by working entirely with proxy distributions formed by smoothing the data
with additive noise. As a result, while the SD flow defines a deterministic trajectory, its application to
noise-injected points adds a stochastic component.

Unlike most other score-based methods, there are no restrictions on the choice of base or prior distribu-
tions. In this way, SD flow is capable of performing data-set interpolation in a manner similar to diffusion
Schrödinger bridges (De Bortoli et al., 2021) while being more straightforward to apply.9 Technical details
aside, the score difference is an intuitive trajectory to follow: If our goal is to get from point A to point B
as quickly as possible, we want to move not only toward B but also away from A.

As the difference in scores between the target and (current) synthetic distribution, the score difference is
equal to the gradient of the logarithm of the density ratio. The density ratio is an important quantity in
statistics that has a considerable literature dedicated to its estimation (Sugiyama et al., 2012; Rhodes et al.,
2020; Choi et al., 2022, for example). Beyond the applications to implicit generative modeling that are the
focus of this paper, we hope that this work inspires additional advances in the estimation and leveraging of
this important quantity.

We have shown that SD flow emerges in both GANs and diffusion models under certain conditions. The
conditions for GANs include the presence of an optimal discriminator, which is often unattainable when
training with finite, categorically labeled data. By contrast, diffusion models have the comparatively easier
task of learning to denoise an image, a task for which the ground truth is more readily represented in the
training data. Modern neural denoising architectures that employ attention provide another edge, since
they have shown themselves to be extraordinarily capable of capturing patterns in data due to their error-
correction and pattern-retrieval characteristics reminiscent of Hopfield networks (Ramsauer et al., 2020).

SD flow supplies a link between IGM methods that collectively perform well on all three desiderata of the
so-called generative learning trilemma (Xiao et al., 2021)—high sample quality, mode coverage, and fast
sampling. We hope that this work provides a useful advance toward the development of “triple threat”
models that produce high-quality, diverse output in a single inference step.

9See Appendix E.3.
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A Guide to the Appendices

In Appendix B, we show that the score difference corresponds to the difference between the outputs of
optimal denoisers corresponding to the target (p) and current synthetic (qt) distributions. In Appendix C, we
provide flexible pseudocode algorithms for applying SD flow in both the direct sampling (data-optimization)
and parametric generative modeling (model-optimization) settings. In Appendix D, we draw a connection
between the kernel definition of SD flow and maximum mean discrepancy (MMD) gradient flow (Arbel et al.,
2019). In Appendix E, we report several experiments in both the data- and model-optimization settings and
also demonstrate SD flow’s ability to interpolate between arbitrary distributions.
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B The Score Difference as the “Denoiser Difference”

We follow an approach similar to that found in Appendix B.3 of Karras et al. (2022) to derive the optimal
denoiser for p. We define the denoising loss by

E(Dp; σ) = Ex∼pEϵ∼N (0,σ2I)
[
∥Dp(x + ϵ; σ)− x∥2]

= Ex∼pEz∼N (x,σ2I)
[
∥Dp(z; σ)− x∥2]

= Ez∼N (x,σ2I)Ex∼p

[
∥Dp(z; σ)− x∥2]

=
∫
Rd

Ex∼p

[
N (z; x, σ2I)∥Dp(z; σ)− x∥2]︸ ︷︷ ︸

E(Dp;z,σ)

dz.

(36)

We can optimize E(Dp; σ) by minimizing the integrand E(Dp; z, σ) pointwise. The optimal denoiser is then
given by

D∗
p(z; σ) = arg min

Dp(z;σ)
E(Dp; z, σ), (37)

which defines a convex optimization problem. We can then find the global minimum by setting
∇Dp(z;σ)E(Dp; z, σ) to zero, leading to

Ex∼p

[
N (z; x, σ2I)∇Dp(z;σ)∥Dp(z; σ)− x∥2] = 0

2Dp(z; σ)Ex∼p

[
N (z; x, σ2I)

]
= 2Ex∼p

[
N (z; x, σ2I)x

]
D∗

p(z; σ) =
Ex∼p

[
N (z; x, σ2I)x

]
Ex∼p [N (z; x, σ2I)] ,

(38)

the final term of which is equal to the first term inside the brackets in equation 13 when Kσ is the Gaussian
kernel. The derivation for D∗

qt
(z; σ) is identical, which leads to the result.

C Algorithms

Here we provide pseudocode algorithms for applying SD flow. Note that we present several interpretations
of SD flow, providing the user with some flexibility to swap out one approach for another.

C.1 Data Optimization

Algorithm 1 Data optimization with SD flow
Input: Target data {xi}N

i=1 ∼ p, base (prior) data {yj}M
j=1 ∼ q0, noise schedule σ(t), step schedule η(t)

repeat
Draw data batches x ∼ p and y ∼ qt

Draw noise ϵ ∼ N (0, I) and perturb data: z = y + σ(t)ϵ
# Calculate SD (equation 13, 15, or 31).

∆z ∝ Ex∼p[Kσ(t)(z,x)x]
Ex∼p[Kσ(t)(z,x)] −

Ey∼qt [Kσ(t)(z,y)y]
Ey∼qt [Kσ(t)(z,y)] = D∗

p(z; σ(t))−D∗
qt

(z; σ(t)) ∝ ∇zht(z)
# Move (clean) data in SD direction.
y ← y + η(t)∆z

until Terminated

We first focus on the data-optimization application (Algorithm 1), in which a sample is generated by per-
turbing a single batch of “base data,” much like one would via Langevin dynamics or Hamiltonian Monte
Carlo. Here we interpret the base data as being drawn from q0 and evolving to the distribution qt through
iterative perturbation.
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Algorithm 2 Model optimization with SD flow
Input: Target data {xi}N

i=1 ∼ p, noise input for generator ξ ∼ p0, initialized generator gθ (θ ∈ Rn), noise
schedule σ(t), step schedule η(t), learning rate schedule λ(t)
repeat

Draw data batches x ∼ p and ξ ∼ p0
Generate sample y = gθ(ξ)
Draw noise ϵ ∼ N (0, I) and perturb data: z = y + σ(t)ϵ
# Calculate SD (equation 13, 15, or 31).

∆z ∝ Ex∼p[Kσ(t)(z,x)x]
Ex∼p[Kσ(t)(z,x)] −

Ey∼qt [Kσ(t)(z,y)y]
Ey∼qt [Kσ(t)(z,y)] = D∗

p(z; σ(t))−D∗
qt

(z; σ(t)) ∝ ∇zht(z)
# Move (clean) data in SD direction.
y ← y + η(t)∆z
# Update generator parameters via regression.
θ ← θ − λ(t)

2 ∇θ∥gθ(ξ)− y∥2

until Terminated

C.2 Model Optimization

Ordinary regression problems involve paired training data {(ξ, x)} that implicitly define the function mapping
g : ξ 7→ x to be learned. In the case of generative modeling, where the aim is to map data from a prior
distribution to a target distribution, no a priori pairing exists. This requires the mapping to be learned
indirectly. In the case of GANs, the sub-problem interpretation of Section 4.1 is that the discriminator
provides this pairing by associating a noise input ξ with a perturbed output x′ that serves as a regression
target.

The model-optimization application (Algorithm 2) trains a generator with unpaired data via regression on
perturbed targets that move progressively closer to the target distribution. Here we interpret q0 as the
distribution of the output of the generator gθ before training. As the generator regresses on perturbed
targets, its output distribution changes to qt at time step t according to the evolution in equation 27. When
the choice of SD flow is the gradient of the pre-activation discriminator output, ∇zht(z) (equation 31), this
algorithm is equivalent to GAN training with the alternative loss described in equation 32.

D Relation to MMD Gradient Flow

In the study of reproducing kernel Hilbert spaces (RKHS), the Gaussian kernel Kσ(z, x) is known as a
characteristic kernel (Sriperumbudur et al., 2011). This means that the mapping ϕp(z) = Ex∼p[Kσ(z, x)]
is injective, and ϕp(z) = ϕq(z) for all z if and only if p = q. This forms the basis of the maximum mean
discrepancy (MMD), which is equal to the Hilbert space norm ∥Wp,q∥H, where

Wp,q(z) = ϕq(z)− ϕp(z) = Ey∼q[Kσ(z, y)]− Ex∼p[Kσ(z, x)] (39)

is known as the witness function (Gretton et al., 2012; Arbel et al., 2019).

In the theory of optimal transport, we wish to efficiently transport “mass” from an initial distribution q0 to
a target distribution p, which we can do by defining a flow from q0 to p via intermediate distributions qt.
One such flow is defined by the solution to

∂qt

∂t
= ∇ · [qt∇Wp,qt

] , (40)

another instance of the Liouville equation (26) that defines a McKean-Vlasov process (McKean Jr, 1966)
with dynamics

dzt = −∇ztWp,qt(zt) dt

= (Ex∼p[∇ztKσ(zt, x)]− Ey∼q[∇ztKσ(zt, y)]) dt,
(41)
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where z0 ∼ q0. The results of Section 3.1 suggest that, in the limit of infinite data, this direction is
proportional to ∇ztp(zt; σ)−∇ztqt(zt; σ).

For the Gaussian kernel, we have

∇ztKσ(zt, x) = Kσ(zt, x)
(

x− zt

σ2

)
,

and for discrete time and finite data we can write equation 41 as

∆zt = 1
N

N∑
i=1

[
Kσ(zt, xi)

(
xi − zt

σ2

)]
− 1

M

M∑
j=1

[
Kσ(zt, yj)

(
yj − zt

σ2

)]
(42)

=
N∑

i=1
w

(p)
i xi −

M∑
j=1

w
(qt)
j yj +

 M∑
j=1

w
(qt)
j −

N∑
i=1

w
(p)
i

 zt, (43)

where w
(p)
i = Kσ(zt, xi)/(Nσ2) and w

(qt)
j = Kσ(zt, yj)/(Mσ2). This process defines the MMD gradient

flow (Arbel et al., 2019). The kernel version of SD flow (equation 13) can also be written in the form
of equation 43 by setting w

(p)
i = 1

2 Kσ(zt, xi)/
∑N

i=1 Kσ(zt, xi) and w
(qt)
j = 1

2 Kσ(zt, xi)/
∑M

j=1 Kσ(zt, yj),
which causes the zt term to vanish.

There are practical consequences of this difference in weighting schemes between methods, which put the
MMD gradient flow at a disadvantage in some conditions. We discuss this issue further in Appendix E.

E Experiments

Here we provide several experimental results using toy data. We intentionally avoid experiments on high-
dimensional image data and instead focus on experiments that can easily be run on one’s CPU.10 Beyond
the considerable computational and data demands, there are many architectural design choices and training
tricks that contribute to the current state of the art in image generation, which fall outside the scope of this
work.

E.1 Data Optimization

We tested our algorithm for SD flow versus our own implementation of MMD gradient flow (Arbel et al.,
2019) based on that paper’s pseudocode description. We chose to use our own implementation to guarantee
that all settings and hyperparameters between the methods were identical. We tested both batch-based and
full-data versions of both algorithms. We performed two versions of the experiment that varied where the
base data distribution was initialized, which, based on our analysis, we believed would reveal performance
differences between the two methods.

Remark 1 If p and qt are far apart, for a point zt = y + σϵ, with y ∼ qt and a small kernel bandwidth σ,
equation 43 (Appendix D) shows that under the MMD framework

∑
j w

(qt)
j ≈ 1/(Mσ2) and

∑
i w

(p)
i ≈ 0.

This suggests that under these conditions, the MMD gradient flow direction ∆zMMD
t will be nearly parallel

to zt − y = σϵ, which would have the effect of increasing the variance of qt while not necessarily pushing it
toward p. (See also Remark 2 below.) Normalizing the weights in equation 43 to sum to one resolves this
issue, however, and MMD gradient flow and SD flow then become equivalent.

To measure distribution alignment, we define a mean characteristic function distance (CFD),

DCF(p∥qt) = 1
K

K∑
k=1
|Ex∼p

[
exp(iω⊤

k x)
]
− Ey∼qt

[
exp(iω⊤

k y)
]
|,

the mean absolute difference between the empirical characteristic functions of p and qt evaluated at K
frequencies (K = 256 in our case) drawn from a normal distribution.

10All experiments reported here were carried out in MATLAB (R2022b) on a MacBook Pro (2019).
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E.1.1 Overlapping Base and Target Data
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Figure 1: Relative performance on fitting the “mystery distribution,” a mixture of 30 Gaussians in R3. The
500th step of MMD gradient flow (Arbel et al., 2019) is on the left, while the 500th step of SD flow (ours)
is in the center. The right panel shows the algorithms’ performance in terms of the mean characteristic
function distance (CFD).

In this experiment, our target “mystery distribution” p is a mixture of 30 Gaussians in R3 arranged in the
shape of a question mark. We used a modified cosine noise schedule to interpolate between a maximum
and minimum variance γ(0) = σ2

max = 4 and γ(tmax) = σ2
min = 0.5 over T = 500 steps according to

γ(t) = σ2
max cos(πt/2) for t ∈ [0, tmax],11 with tmax = 2/π cos−1(σ2

min/σ2
max). Many noise schedules are

possible, even constant noise schedules (see Appendix E.4), but the cosine schedule is a popular choice in
diffusion modeling (Nichol & Dhariwal, 2021).

Both algorithms were initialized with the same base data sample of 500 points and were fit to the same
sample of 1024 points from the target distribution. The step size for each algorithm was set automatically
so that the first perturbation to the base data would have a norm of 0.5. These experiments correspond to
the SD flow procedure described in Algorithm 1.

We set the base data to overlap the target distribution by initializing it as a spherical, unit-variance Gaussian
centered at the target distribution’s mean. With this initialization, both flows successfully yielded samples
plausibly drawn from the target distribution, although the MMD flow produced more outlying points and
had a consistently higher CFD value. (See Figure 1.)

E.1.2 Non-overlapping Base and Target Data

In Remark 1, our analysis suggested that the default weighting of terms in the MMD gradient flow could
lead to pathological cases in which synthetic points from the base distribution would be perturbed in such a
way to make the variance increase without aligning the synthetic and target distributions. In particular, we
argued that this could occur if the kernel bandwidth in the MMD flow (equivalent to the noise level in SD
flow) was small relative to the separation of the two distributions’ data points.

We tested this scenario by initializing the base distribution at some distance from the target distribution. The
target distribution and all other settings from the experiment described in Section E.1.1 were maintained,
although this time we also tested the batch-based version of both algorithms with a batch size of 128. The
results of these experiments are shown in Figure 2.

MMD gradient flow maintains the spherical shape of the base distribution for a large subset of points while
increasing their variance, exactly in the manner predicted in Remark 1. SD flow, on the other hand, still
successfully fits the target distribution. Note also that SD flow’s performance is consistent when using a
batch-based approach relative to using the full data in every step, while MMD gradient flow plateaus at a
higher CFD in the batch-based setting.

11This was set as T linearly spaced points between 0 and tmax using MATLAB’s linspace function.
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Figure 2: Top: Evolution of synthetic data points from an offset base distribution toward the target dis-
tribution over 500 steps of SD flow. Bottom left: Final step of MMD gradient flow from the same base
distribution initialization. Bottom right: Characteristic function distance (CFD) for both flows under batch
(solid lines) or full-data (broken lines) conditions.

Figure 3: Distribution of distances from synthetic (green) and target (red) data points to their first nearest
neighbors in the target distribution.

It is important to note that SD flow does not cause the synthetic data to collapse to nearest neighbors
in the target distribution. In Figure 3, we show the distribution of distances from points in the synthetic
distribution to their first nearest neighbors in the target distribution (shaded in green). Note the overlap
with the distribution of distances between target data points and their first nearest neighbors (excluding
themselves) in the target distribution. Overfitting to the target data would result in a large concentration
of mass near zero for the synthetic data.
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Figure 4: Top: Evolution of synthetic data points from an offset base distribution toward the target distri-
bution of 25 Gaussians over 1000 steps of SD flow. Bottom left: Final step of MMD gradient flow from the
same base distribution initialization. Bottom right: Characteristic function distance (CFD) for both flows.

E.2 Fitting a 25-Gaussian Grid

We then investigated whether SD flow would get stuck in local modes when initialized near them. To test
this, we created a target distribution of 1024 points drawn from a mixture of 25 spherical Gaussians arranged
on a grid in R2 and initialized 1024 points from a spherical Gaussian base distribution at a large distance
from the target distribution but closest to its top-left component. (See Figure 4.)

We once again compared performance of SD flow relative to MMD gradient flow. Both algorithms were run
for 1000 steps using a cosine noise schedule (described above) with σ2

max = 10 and σ2
min = 0.5. We tested

only the full-data (as opposed to batch-based) setting in this experiment.

While MMD gradient flow showed an initially steeper reduction in the CFD relative to SD flow, it quickly
plateaued while once again demonstrating an explosion of variance within the subset of points that did not
converge to the target distribution. SD flow, on the other hand, continued to reduce the CFD while fitting all
components of the target. Once again, the analysis of nearest neighbors showed no overfitting to the target
data, with nearest-neighbor distances distributed in a manner consistent with that of the target distribution.

Remark 2 Our method prescribes that we inject noise at a level equal to the kernel bandwidth in order to
sample from the noise-smoothed proxy distribution. In contrast, with MMD gradient flow the noise level is a
separate parameter that essentially controls a regularization effect. In that case, this added noise is typically
at a level far greater than that of the kernel bandwidth, which remains fixed during training. We further note
that evidence of the variance-exploding effect that we predicted in Remark 1 and observe experimentally is
also apparent in the authors’ original paper (e.g. Appendix G.2 therein).

E.3 Data-Set Interpolation

Standard score-based generative modeling is designed such that the end of the forward process is a Gaussian
distribution. While this has the advantage of defining a prior that is easy to sample from for the reverse,
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Figure 5: Top: Data-set interpolation via evolution of 1024 points from the “Swiss roll” distribution to the
“mystery” distribution in R3. Bottom: The reverse interpolation, from the “mystery” distribution to the
“Swiss roll” distribution.

generative process, it limits the flexibility of the method. Recent work on approximating a Schrödinger bridge
between source and target distributions (De Bortoli et al., 2021) relaxes this limitation, but the method itself
is relatively complicated.

SD flow, on the other hand, is (in our opinion) a simpler and more intuitive method that also has no
restriction on the distributions p and q. It is therefore also capable of performing interpolation between
arbitrary data sets. The results of one such interpolation experiment are shown in Figure 5. The figure
actually shows two interpolation experiments: The first evolves 1024 points of the “Swiss roll” data toward
the “mystery” distribution (Section E.1.1) in R3, while the second evolves from the “mystery” distribution
to the “Swiss roll.” The same variance schedule as in Section E.1.1 was employed. In each case, the entire
process took roughly 8.8 seconds on the CPU of a 2019 MacBook Pro.

E.4 Model Optimization

Although we do not run any experiments on high-dimensional image data for the reasons described above,
we report here an experiment using the model-optimization application (Algorithm 2) on “high”-dimensional
data in R50. Here the scare quotes acknowledge that this dimensionality is far lower than the thousands to
millions of dimensions typical in high-resolution image data, but it is high enough to exhibit the problematic,
intuition-challenging characteristics of high-dimensional data in general.

Specifically, it is well known that as data dimensionality grows, the ratio of the distance of a point to its
farthest neighbor, Dmax, and the distance to its nearest neighbor, Dmin, tends toward unity. The ratio
Dmax/Dmin drops precipitously in lower dimensions before leveling off at around 30 dimensions and very
slowly approaching an asymptote of one afterward (Beyer et al., 1999). We therefore chose R50 as a reasonable
setting to challenge our approach in high dimensions.

We generated a ground-truth target distribution by randomly populating a 50 × 25 matrix B with values
drawn from N (0, 0.25I) and a 50-vector µ with values drawn from N (10, I). Target data samples from
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Figure 6: Model optimization results in R50 using a constant noise schedule. SD flow allows a parametric
model to be learned that very closely matches the target mean (µ versus µ̂, left panel) and the elements of
the covariance matrix (BB⊤ vs B̂B̂⊤, center panel). Diagonals are included for reference. Nearest-neighbor
analysis showed no overfitting of the data (right panel) but showed a slightly lower average distance to nearest
neighbors in the target set than exhibited by the target data relative to itself.

N (µ, BB⊤) were then generated12 by drawing samples ξ ∼ N (0, I) ∈ R25 and forming x = Bξ + µ. The
model parameters to be learned were a 50 × 25 matrix B̂, initialized from N (0, 0.01I), and a 50-vector µ̂,
initialized to all zeros. This model can be interpreted as a single-layer linear neural network, but it is most
important to note that it exactly matches the capacity of the data-generating model.

If we retained the input vectors ξ ∈ Ξ for the outputs x ∈ X, then the task of learning the parameters
would be fairly straightforward in the context of a regression problem on paired data {(ξ, x)}. But in the
general IGM problem, we have only unpaired data to work with, so we assume that all information about
the target data inputs is unavailable.

We performed 1000 steps of SD flow using Algorithm 2 with a constant noise schedule of 10 times the
average distance of the initial synthetic (base) distribution to first nearest neighbors in the target distribution
(corresponding to σ2 > 700),13 with a batch size of 1024, an SD flow step size of η = 1, and a regression
learning rate of λ = 10−3. The training on the CPU of a 2019 MacBook Pro was completed in 24.72
seconds. Other than brief experimentation to set reasonable values, no effort was made to optimize these
hyperparameters.

The results of this experiment are shown in Figure 6. Despite (or perhaps because of ) a massive and constant
injection of noise, SD flow successfully fit the target distribution. Analysis of nearest neighbors once again
showed that SD flow did not overfit to the target distribution, although there was a very slight shift toward
lower distances between synthetic data and their nearest neighbors in the target distribution as compared
with the target data’s nearest-neighbor distances relative to itself.

12Technically, this is not completely well defined as a normal distribution, since BB⊤ is not of full rank.
13We found that using a higher amount of noise somewhat improved the convergence profile of the algorithm.
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