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ABSTRACT

Egocentric Action Recognition (EAR) aims to identify fine-grained actions and in-
teracted objects from first-person videos, forming a core task in egocentric video
understanding. Despite recent progress, EAR remains challenged by limited data
scale, annotation quality, and long-tailed class distributions. To address these is-
sues, we propose REAR, a Retrieval-augmented framework for EAR that lever-
ages external third-person (exocentric) videos as auxiliary knowledge—without
requiring synchronized ego-exo pairs. REAR adopts a dual-branch architecture:
one branch extracts egocentric representations, while the other retrieves seman-
tically relevant exocentric features. These are fused via a cross-view integra-
tion module that performs staged refinement and attention-based alignment. To
mitigate class imbalance, a class-adaptive selector dynamically adjusts retrieval
depth based on class frequency, and independent classifiers are trained with logit-
adjusted cross-entropy. Extensive experiments across three benchmarks demon-
strate that REAR achieves state-of-the-art performance, with significant gains in
object recognition and tail-class accuracy. Code will be released upon acceptance.

1 INTRODUCTION

Egocentric video understanding has become a pivotal area in computer vision, emphasizing the
analysis of first-person video to model human-environment interactions. In contrast to third-person
videos, egocentric perspectives offer direct access to users’ visual and motor activities, enabling a
more granular understanding of object manipulations and social interactions. This unique vantage
point underpins a range of real-world applications, including robotics (Kumar et al., 2020) and aug-
mented reality (Li et al., 2024a;b). A core research task within this domain is Egocentric Action
Recognition (EAR) (Li et al., 2015; Tan et al., 2023; Shiota et al., 2024), which focuses on clas-
sifying fine-grained verb and noun categories from continuous first-person video streams. EAR is
fundamental to enabling intelligent assistive systems and context-aware wearable devices.

Existing approaches to EAR can be broadly categorized into several groups. Early methods adapt
architectures from third-person video recognition (Sudhakaran et al., 2019; Wu et al., 2022; Chalk
et al., 2024; Gowda et al., 2024; Zhang et al., 2025), but often underperform due to egocentric-
specific challenges such as pronounced camera motion and viewpoint variability. Methods that
incorporate egocentric-specific cues (Li et al., 2018; Wang et al., 2023c; Schoonbeek et al., 2024;
Xu et al., 2023b; Shiota et al., 2024; Pei et al., 2025) show improved task alignment but frequently
rely on additional sensors (e.g., eye trackers or inertial units), limiting scalability and generaliza-
tion. More recent work explores large-scale egocentric video foundation models (Lin et al., 2022;
Pramanick et al., 2023; Zhao et al., 2023; Wang et al., 2023a; Zhao & Krähenbühl, 2023) and their
task-specific adaptations (Lyu et al., 2025; Wu et al., 2025; Xu et al., 2025a), which demonstrate
promising transferability but remain constrained by limited dataset diversity and long-tailed cat-
egory distributions. Another line of research seeks to leverage third-person video knowledge for
EAR (Xu et al., 2023a; Xue & Grauman, 2023; Li et al., 2021; Truong & Luu, 2025), though they
typically require temporally aligned ego-exo video pairs, which are expensive to collect at scale.

In this work, we propose Retrieval-augmented Egocentric Action Recognition (REAR), a novel
framework that enhances egocentric video representations by leveraging external third-person (exo-
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Figure 1: An overview of five paradigms for Egocentric Action Recognition (EAR). The figure
shows the progression from (a) simple Exo-to-Ego transfer and (b) multimodal Ego-Enhanced
Transfer, to (c) Ego-Only native training, (d) Ego-Exo Paired learning, and (e) Exo-Augmented
Ego retrieval, highlighting their distinct architectures and recognition capabilities.

centric) knowledge without requiring large-scale pretraining or paired ego-exo datasets, as illustrated
in Fig. 1. In contrast to prior work that either neglects egocentric-specific cues or depends on costly
synchronized recordings, REAR effectively incorporates rich semantics from third-person videos
while preserving egocentric characteristics. REAR operates in a dual-branch architecture. The tar-
get branch extracts egocentric features from the input video, while the retrieval-augmented branch
identifies and encodes the most relevant third-person videos using a cross-view retrieval module.
The two branches are fused via a cross-view integration module, producing a unified representation
for action classification. Notably, verbs and nouns are predicted through separate classifiers, each
optimized with Logit-Adjusted Cross-Entropy (LACE) to mitigate long-tail distribution bias.

To ensure strong egocentric recognition, we fine-tune a unified video encoder on the target egocen-
tric dataset and share it across both branches. The retrieval module includes a cross-view retriever
and a class-adaptive selector, which dynamically adjusts the number of retrieved videos per class.
This reallocates retrieval resources from head to tail classes, improving representation learning for
rare classes while controlling computational cost. The cross-view integration module refines exo-
centric features through staged feature fusion. First, a coarse aggregated representation is formed
via multi-level similarity-weighted fusion. Then, an attention mechanism enables fine-grained ego-
exo alignment, generating class-specific exocentric features tailored to the input video. These are
fused with egocentric features to form the final, ego-dominant representation. Extensive experi-
ments demonstrate that REAR achieves state-of-the-art results across three egocentric benchmarks.
In particular, we observe substantial improvements in noun recognition for tail classes on EPIC-
Kitchens-100, highlighting the effectiveness of retrieval-based augmentation under data scarcity.

The main contributions of our work are summarized as follows:

• We introduce REAR, a retrieval-augmented framework that enhances egocentric action
recognition by incorporating external exocentric video representations without requiring
paired datasets or additional sensors.

• We propose two core components: a class-adaptive selector that reallocates retrieval re-
sources to tail classes, and a cross-view integration module that performs staged ego–exo
feature fusion with high computational efficiency.

• REAR achieves strong performance across three egocentric benchmarks, with particularly
notable improvements in noun recognition and long-tail categories on EPIC-Kitchens-100.

2 RELATED WORK

Egocentric Action Recognition. Existing approaches to EAR fall into four broad categories. The
first line of work (Sudhakaran et al., 2019; Ashutosh et al., 2023; Gowda et al., 2024; Zhang et al.,
2025) directly adapts third-person recognition models to egocentric scenarios. Although straightfor-
ward, they often fail to address egocentric-specific challenges, such as pronounced camera motion,
viewpoint variation, and frequent hand-object occlusions. To address these limitations, subsequent
works integrate egocentric-specific cues, including gaze (Li et al., 2018), head motion (Wang et al.,
2023c; Schoonbeek et al., 2024), audio (Chalk et al., 2024), and hand-object interactions (Xu et al.,
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2023b; Shiota et al., 2024; Pei et al., 2025). While these cues improve task alignment, they often
require extra sensors or dense annotations, limiting scalability and real-world applicability.

Recent advances in Video Foundation Models (VFMs) have brought a new wave of research. Large-
scale models such as EgoVLPv2 (Pramanick et al., 2023) and LaViLa (Zhao et al., 2023) learn
general-purpose representations from egocentric data. Efficient adaptation techniques, including
parameter-efficient fine-tuning (Wu et al., 2025), prompt learning (Lyu et al., 2025), and feature
alignment (Xu et al., 2025a), further improve performance. However, the construction and deploy-
ment of such models remain resource-intensive and are limited by the class imbalance and scale of
available datasets. Another promising direction is ego-exo joint learning (Ho et al., 2018; Xu et al.,
2023a; Xue & Grauman, 2023), which utilizes synchronized multi-view data for improved repre-
sentation learning. Yet, acquiring large-scale paired datasets (Sigurdsson et al., 2018; Kwon et al.,
2021; Sener et al., 2022) is labor-intensive, and unsupervised alignment methods (Li et al., 2021;
Wang et al., 2023b; Truong & Luu, 2025) introduce additional technical challenges.

While these strategies offer valuable insights, many rely on extensive resources or fail to fully ex-
ploit the unique characteristics of egocentric data. In contrast, we propose a retrieval-augmented
framework that enriches egocentric representations by incorporating third-person video knowledge
without requiring large-scale training, additional sensors, or paired datasets.

Retrieval-Augmented Learning. Retrieval-augmented learning emerged from memory-augmented
neural networks (Graves et al., 2014) and gained traction in NLP through models that integrate
retrieval with language generation (Guu et al., 2020; Lewis et al., 2020; Borgeaud et al., 2022),
demonstrating the power of external memory for improving generalization and interpretability. In
computer vision, retrieval-based augmentation has been applied to tasks such as open-world recog-
nition (Liu et al., 2019), instance-level retrieval (Touvron et al., 2021), image generation (Chen et al.,
2022b; Yasunaga et al., 2022), captioning (Sarto et al., 2022; Ramos et al., 2023; Xu et al., 2025b),
and visual question answering (Chen et al., 2022a; Yang et al., 2022).

Closest to our work are retrieval-augmented methods for image recognition (Long et al., 2022; Is-
cen et al., 2023), which enhance classification by incorporating externally retrieved visual features.
However, these approaches operate primarily in the image domain and typically rely on CLIP (Rad-
ford et al., 2021) for cross-modal retrieval, which is not well-suited to video understanding and strug-
gles with cross-view alignment between egocentric and exocentric perspectives. To address this lim-
itation, we adopt a cross-view retrieval module specifically designed for egocentric-exocentric video
alignment (Xu et al., 2024), enabling semantically relevant third-person videos to be retrieved and
integrated. This design facilitates egocentric action recognition without requiring time-synchronized
multi-view recordings or additional supervision.

3 RETRIEVAL-AUGMENTED EGOCENTRIC ACTION RECOGNITION

3.1 OVERVIEW

As shown in Fig. 2, REAR consists of two parallel branches. The target branch extracts features
from the input egocentric video, while the retrieval branch retrieves and encodes exocentric videos
to provide complementary context.

Given an egocentric video vego, both branches share a unified visual encoder E, which ensures
alignment in a common representation space. The target feature is computed as:

f ego = E(vego) ∈ Rd. (1)
Concurrently, the retrieval module identifies the k most relevant exocentric videos:

{vexo
1 , . . . , vexo

k } = R(vego), (2)
which are encoded using the same visual encoder:

f exo
i = E(vexo

i ) ∈ Rd, i = 1, . . . , k. (3)
The Cross-view Integration Module fuses the egocentric feature f ego with the retrieved exocentric
features {f exo

i }ki=1 to obtain an enhanced representation:

f = Integrate
(
f ego, {f exo

i }ki=1

)
∈ Rd. (4)

Finally, the integrated representation f is passed to parallel verb and noun classifiers, respectively.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Ego Video

External Exo Videos

shareRetrieved Exo Videos

... ...

Video

Encoder

Video

Encoder

Video

Encoder

Video

Encoder

Class-adaptive

Selector

Cross-view 

Retriever

Target Branch

 Cross-View Integration Module

Verb 

Classifier

Noun

ClassifierRetrieval Branch

Figure 2: An overview of REAR. Given an egocentric video, the framework leverages relevant
exocentric videos through retrieval and cross-view integration to enhance action recognition.

3.2 RETRIEVAL BRANCH

The retrieval branch comprises a Cross-view Retriever and a Class-adaptive Selector, jointly de-
signed to retrieve relevant exocentric videos while accounting for the long-tailed class distribution.

3.2.1 CROSS-VIEW RETRIEVER

The goal of the Cross-view Retriever is to retrieve third-person (exocentric) videos that are semanti-
cally aligned with a given egocentric input. To this end, we adopt a pre-trained cross-view retrieval
model (Xu et al., 2024) and fine-tune it on the target dataset using the EgoExoNCE loss, a contrastive
objective tailored for cross-view video-text representation learning.

The model is trained with three types of positive pairs: (1) intra-view video-text (e.g., ego-ego
and exo-exo), (2) cross-view video-video (e.g., ego-exo describing similar actions), and (3) cross-
view text-text across views sharing at least one verb or noun. This strategy strengthens intra-view
alignment and encourages robust cross-view generalization anchored by shared action semantics.

For a given egocentric video vego, we retrieve the top-k exocentric videos from the candidate set Dv

by computing an average of the video-video and video-text similarities:

{vexo
1 , . . . , vexo

k } = argmax
k

{
1

2
(⟨vego, vexo

i ⟩+ ⟨vego, texo
i ⟩)

∣∣∣∣ vexo
i ∈ Dv, t

exo
i ∈ Dt

}
, (5)

where Dt is the corresponding text descriptions, texo
i is the caption associated with vexo

i , and k is
dynamically determined by the Class-adaptive Selector (described next). This retrieval strategy
ensures that selected exocentric videos are semantically relevant to the input while incorporating
both visual and linguistic similarity cues.

3.2.2 CLASS-ADAPTIVE SELECTOR

To address the long-tailed class distribution, we introduce a Class-adaptive Selector that dynamically
adjusts the number of retrieved exocentric videos k based on the frequency of the predicted class.
Concretely, we sort all action classes by their training frequencies and divide into three groups:

k(c) =


20, if c ∈ tail (bottom 20%),
10, if c ∈ mid (middle 60%),
5, if c ∈ head (top 20%).

(6)

This allocation strategy increases retrieval capacity for rare (tail) classes that lack sufficient egocen-
tric training data, while limiting the overhead for well-represented (head) classes. Consequently, it
provides a balanced trade-off between representational diversity and computational efficiency.

3.3 CROSS-VIEW INTEGRATION MODULE

The Cross-view Integration Module fuses information from egocentric and exocentric views in three
stages: (i) similarity-guided feature aggregation, (ii) cross-view attention fusion, and (iii) final fea-
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ture integration. This design enables robust representation learning while maintaining the discrimi-
native power of egocentric features.

Similarity-Guided Multi-Exo Feature Aggregation. We first compute pairwise cosine similarity
between the egocentric feature f ego and each exocentric feature f exo

i :

si = cos(f ego,f exo
i ) =

(f ego)⊤f exo
i

∥f ego∥ · ∥f exo
i ∥

, i = 1, . . . , k. (7)

For higher-order relationships, all features are concatenated and fed into a two-layer ReLU MLP:

F = [f ego;f exo
1 ; . . . ;f exo

k ] ∈ R(k+1)×d, f ′ = MLP1(F ). (8)

We then compute another similarity between the transformed feature f ′ and each exocentric feature:

s′i = cos(f ′,f exo
i ) =

(f ′)⊤f exo
i

∥f ′∥ · ∥f exo
i ∥

. (9)

The final attention weights are computed using a weighted softmax:

αi =
exp(w1si + w2s

′
i)∑k

j=1 exp(w1sj + w2s′j)
, i = 1, . . . , k, (10)

where w1 and w2 are learnable scalar weights. The resulting weighted exocentric features are:
F exo = [α1f

exo
1 ; . . . ;αkf

exo
k ] ∈ Rk×d. (11)

Cross-view Attention Fusion. To enhance cross-view interactions, we adopt a query-key-value
attention mechanism. The egocentric feature serves as the query, while re-weighted exocentric fea-
tures provide the keys and values:

q = f egoWq, K = F exoWk, V = F exoWv, (12)

where Wq,Wk,Wv ∈ Rd×d are learnable projection matrices. The attended feature is then:

f exo+ego = AV , where A = softmax
(
qK⊤
√
d

)
. (13)

Final Feature Integration. The final representation is obtained by concatenating the original ego-
centric and the attention-enhanced exocentric feature, followed by a non-linear transformation:

f = MLP2([f
ego;f exo+ego]) ∈ Rd. (14)

3.4 LOSS FUNCTION

Given the fused representation f , we apply two independent classifiers to predict verb and noun:

zv = Cv(f) ∈ R|V|, zn = Cn(f) ∈ R|N|, (15)
where |V| and |N| denote the number of verb and noun classes, respectively. To address class
imbalance in egocentric datasets, we adopt the LACE loss (Menon et al., 2021), an effective and
theoretically-grounded alternative to re-weighting that adjusts logits themselves based on class fre-
quency. For each class c, a frequency-aware logit adjustment is applied:

∆c = τ · log(πc), (16)
where πc is the empirical class prior computed over the training set, and τ is a temperature hyper-
parameter set to 1.0 based on validation performance. Separate priors are maintained for verbs and
nouns:

∑|V|
c=1 π

(v)
c = 1 and

∑|N|
c=1 π

(n)
c = 1. The logit-adjusted cross-entropy losses for verb and

noun predictions are:

Lv = − log
exp(zvyv

+∆
(v)
yv )∑|V|

c=1 exp(z
v
c +∆

(v)
c )

, (17)

Ln = − log
exp(znyn

+∆
(n)
yn )∑|N|

c=1 exp(z
n
c +∆

(n)
c )

, (18)

where yv and yn denote the ground-truth labels for verb and noun classes. The total training objec-
tive is the sum of both losses:

L = Lv + Ln. (19)
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4 EXPERIMENTS

We evaluate our REAR framework through comprehensive experiments. Section 4.1 details experi-
mental setup. Section 4.2 reports main results and comparisons, while Section 4.3 and Section 4.4
present ablation studies and qualitative analyses, respectively.

4.1 EXPERIMENTAL SETTINGS

4.1.1 DATASETS

We evaluate REAR on three widely used egocentric video datasets, including EPIC-Kitchens-100,
EGTEA Gaze+, and Charades-Ego, ensuring comparability with recent state-of-the-art methods.
For external exocentric video retrieval, we use the YouCookII dataset.

EPIC-Kitchens-100 (Damen et al., 2022) is the largest benchmark for egocentric action recogni-
tion, comprising 67K training clips and 10K validation/test clips. It captures kitchen activities and
provides fine-grained annotations spanning 97 verb classes and 300 noun classes. Following Shiota
et al. (2024), we analyzed the long-tailed distribution by ranking and dividing the label space into
head (top 20%), middle (middle 60%), and tail (bottom 20%) splits based on sample frequency.

EGTEA Gaze+ (Li et al., 2018) consists of 10,321 egocentric action clips annotated with 106 fine-
grained action classes. The dataset is split into 8,299 training and 2,022 testing clips, with an average
clip length of 3.2 seconds. All videos are recorded in kitchen environments, making this dataset
complementary to EPIC-Kitchens-100 for evaluating kitchen-centric action recognition.

Charades-Ego (Sigurdsson et al., 2018) contains 68K video clips covering 157 action classes,
recorded in diverse daily-life scenarios. Although the dataset includes time-synchronized egocen-
tric and third-person views, we followed prior work (Sigurdsson et al., 2018) and used only the
egocentric portion with the official train/test split for a fair comparison.

YouCookII (Zhou et al., 2018) is used as the external exocentric video pool. It consists of 2,000
untrimmed cooking videos sourced from YouTube, spanning 89 recipe classes and totaling 176
hours of video. Each video is temporally segmented and paired with natural language descriptions.
We selected YouCookII as our retrieval corpus for three reasons: (1) its domain closely matches
that of the egocentric datasets, (2) its rich textual annotations facilitate cross-modal and cross-view
retrieval, and (3) its scale ensures wide coverage of relevant actions and objects.

4.1.2 BASELINES

We compare REAR against a comprehensive set of state-of-the-art methods published within the
past three years. These baselines span four major categories:

• Exocentric adaptation methods, which transfer knowledge from conventional exocentric
videos to egocentric domain. Representative methods include MeMViT (Wu et al., 2022),
SFA-ViViT (Gowda et al., 2024), GACon (Zhang et al., 2025), and MACS (Lu et al., 2025).

• Egocentric-specific approaches, which exploit modality-specific cues such as gaze, hand-
object interaction, or audio signals. This category includes EgoPCA (Xu et al., 2023b),
HOCL-OSL (Shiota et al., 2024), and TIM (Chalk et al., 2024).

• Video Foundation Models (Ego-VFMs), which leverage large-scale pretraining on ego-
centric datasets. This includes general-purpose models such as EgoVLPv2 (Pramanick
et al., 2023), LaViLa (Zhao et al., 2023), Ego-Only (Wang et al., 2023a), and AVION (Zhao
& Krähenbühl, 2023), as well as task-specific variants like Ego-VPA (Wu et al., 2025) and
EgoPrompt (Lyu et al., 2025).

• Ego-Exo joint learning methods, which use multi-view video alignment to bridge ego-
centric and exocentric domains. Notable examples include SUM-L (Wang et al., 2023b),
BYOV (Park et al., 2025), and CVAR (Truong & Luu, 2025).

In addition to these external baselines, we include a simplified variant, REAR (baseline), which uses
only the egocentric branch without retrieval-augmentation. All baseline results are cited directly
from their original publications to ensure fair comparison under standard evaluation protocols.
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Table 1: Comparison of our method with baselines on the Epic-Kitchens-100. The best and second-
best results are bold and underlined, respectively.

Method Backbone Verb (Tail) Noun (Tail) Action

MeMViT (Wu et al., 2022) MViTv2 71.40 60.30 48.40
AVION (Zhao & Krähenbühl, 2023) ViT-L 73.00 65.40 54.40
EgoPCA (Xu et al., 2023b) MViT 68.70 - -
Ego-Only (Wang et al., 2023a) ViT-L 73.30 59.40 -
LaViLa (Zhao et al., 2023) TSF-L 72.00 62.90 51.00
SUM-L (Wang et al., 2023b) SlowFast-R101 67.00 53.40 -

HOCL-OSL (Shiota et al., 2024) Swin-B 54.33 (40.48) 52.63 (33.72) 33.52
SlowFast 59.70 (38.13) 45.16 (25.28) 33.63

SFA-ViViT (Gowda et al., 2024) ViViT-L 65.16 56.78 43.54
TIM (Chalk et al., 2024) Omnivore&VideoMAE-L 76.20 66.40 56.40
CVAR (Truong & Luu, 2025) ViT-B 69.37 (41.93) 61.03 (38.58) 46.15
EgoPrompt (Lyu et al., 2025) TSF-L 61.40 44.58 -
GACon (Zhang et al., 2025) CLIP-400M 69.50 58.10 45.70

REAR (baseline) UniFormerV2 71.70 (58.01) 59.53 (35.01) 53.50
REAR (cross-view) UniFormerV2 76.57 (67.35) 67.80 (48.57) 57.60

4.1.3 EVALUATION METRICS

We followed the standard evaluation protocols for each dataset to ensure fairness and consistency.

For EPIC-Kitchens-100, we report top-1 accuracy (%) for verb, noun, and action (verb+noun), as
per the official benchmark. In addition, following prior work (Shiota et al., 2024; Truong & Luu,
2025), we report performance on tail classes to evaluate robustness under long-tailed distributions.

For EGTEA Gaze+, we report top-1 action recognition accuracy (%) across all test clips.

For Charades-Ego, we adopt mean Average Precision (mAP) as the evaluation metric, consistent
with standard protocol (Sigurdsson et al., 2018).

4.1.4 IMPLEMENTATION DETAILS

We adopted UniFormerV2-L (Li et al., 2022) as the video encoder backbone and EgoInstructor (Xu
et al., 2024) as the retrieval model backbone. Both components are first fine-tuned on the target
egocentric dataset and then frozen during the main training phase of the REAR framework.

For video processing, we sample clips of 8 frames at a spatial resolution of 224 × 224, and extract
768-dimensional feature vectors using the frozen encoder. Text features, which are only used during
training of the retrieval model, are extracted from BERT-base (Devlin et al., 2019) using action labels
from the exocentric datasets and the sentence-level captions provided in the YouCookII corpus.

The cross-view integration module and classification heads are jointly optimized in an end-to-end
manner. The integration module contains two MLPs and cross-attention projection matrices, each
equipped with ReLU activations and Layer Normalization. We used the AdamW optimizer with
an initial learning rate of 3 × 10−5, weight decay of 0.01, cosine annealing learning rate schedule,
and a batch size of 16. Models are trained for 30 epochs, with early stopping applied if validation
accuracy does not improve for 5 consecutive epochs.

The temperature parameter τ in the LACE loss is set to 1.0, selected via validation performance. For
the class-adaptive selector, we assigned k based on class frequency: 20 for tail classes (bottom 20%),
10 for mid-frequency classes (middle 60%), and 5 for head classes (top 20%). All experiments are
implemented in PyTorch and conducted on NVIDIA V100 GPUs.

4.2 PERFORMANCE COMPARISON

On EPIC-Kitchens-100 (Table 1), REAR achieves state-of-the-art top-1 accuracy of 76.57% (verb),
67.80% (noun), and 57.60% (action), surpassing all prior methods. While the REAR (baseline)
model underperforms compared to strong Ego-VFMs such as AVION (Zhao & Krähenbühl, 2023)
and LaViLa (Zhao et al., 2023), the introduction of the retrieval-augmented branch yields substan-
tial improvements of +4.87%, +7.55%, and +4.10% on verb, noun, and action, respectively. This
confirms the effectiveness of the external knowledge to enhance egocentric feature representations.
Compared with TIM (Chalk et al., 2024), which benefits from audio cues, REAR shows a mod-
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Table 2: Comparison results on EGTEA.

Method Backbone Action

EgoPCA (Xu et al., 2023b) MViT 70.80
LaViLa (Zhao et al., 2023) TSF-L 71.37

HOCL-OSL (Shiota et al., 2024) Swin-B 65.98
SlowFast 66.86

Ego-VPA (Wu et al., 2025) TSF-L 73.39
MACS (Lu et al., 2025) ViT 67.30

REAR (baseline) UniFormerV2 69.07
REAR (cross-view) UniFormerV2 74.38

Table 3: Comparison results on Charades-Ego.

Method Backbone mAP

EgoVLPv2 (Pramanick et al., 2023) TSF-L 34.10
Ego-Only (Wang et al., 2023a) ViT-L 39.20
LaViLa (Zhao et al., 2023) TSF-L 33.70
SUM-L (Wang et al., 2023b) SlowFast-R101 30.70
BYOV (Park et al., 2025) ViT-B 31.80
CVAR (Truong & Luu, 2025) ViT-B 31.95
Ego-VPA (Wu et al., 2025) TSF-L 33.80

REAR (baseline) UniFormerV2 32.90
REAR (cross-view) UniFormerV2 40.70

Table 4: Ablation study on Epic-Kitchens-100 dataset. ↑ denotes improvement over baseline (#0).

# Top-k Integration Loss Verb Acc. Noun Acc.
Head Mid Tail All ↑ Head Mid Tail All ↑

0 - - CE 81.18 70.02 58.01 71.70 - 76.71 62.53 35.01 59.53 -

1 5 SimAtt CE 82.11 71.08 61.87 73.58 1.88 77.31 63.05 39.87 61.93 2.40
2 5 SimAtt BalCE 82.03 71.81 61.95 73.87 2.17 77.05 64.01 41.59 62.53 3.00
3 5 SimAtt Focal 82.03 71.97 62.01 74.03 2.33 77.95 65.98 42.80 63.78 4.25
4 5 SimAtt LACE 83.05 72.19 63.03 75.08 3.38 78.13 65.98 43.30 64.08 4.55
5 10 SimAtt LACE 82.24 72.98 65.91 75.89 4.19 77.13 68.03 46.04 64.98 5.45
6 20 SimAtt LACE 82.03 73.02 66.87 75.37 3.67 76.97 67.98 47.53 65.07 5.54
7 Adp Logit LACE 81.85 70.10 63.51 72.81 1.11 77.05 63.15 38.07 60.95 1.42
8 Adp AvePool LACE 81.54 71.14 63.87 73.03 1.33 76.93 63.17 38.79 61.03 1.50
9 Adp SimAg LACE 82.51 72.85 64.35 74.71 3.01 77.93 66.15 43.01 63.98 4.45
10 Adp CrossAtt LACE 82.57 72.53 65.38 74.83 3.13 78.03 66.94 43.32 64.32 4.79

11 Adp SimAtt LACE 83.33 74.38 67.35 76.57 4.87 78.86 68.75 48.57 67.80 8.27

est gain of +0.37% in verb recognition. However, REAR achieves notably higher gains in noun
(+1.40%) and action (+1.20%), emphasizing its strength in noun recognition—a known bottle-
neck in egocentric action understanding due to higher visual ambiguity and occlusion. On tail
classes, REAR (baseline) exhibits suboptimal noun recognition, lagging behind CVAR (Truong &
Luu, 2025). Nevertheless, the retrieval augmentation improves tail-noun accuracy by +13.56%, ul-
timately outperforming both HOCL-OSL (Shiota et al., 2024) and CVAR (Truong & Luu, 2025)
by +14.58% and +9.99%, respectively. These results highlight the efficacy of our class-adaptive
retrieval strategy in enriching representations for underrepresented, information-scarce categories.

On EGTEA (Table 2), REAR achieves 74.38% top-1 action accuracy, and on Charades-Ego (Ta-
ble 3), it attains 40.70% mAP. These consistent improvements demonstrate the generalizability of
our framework across diverse egocentric benchmarks and validate the core premise of REAR: aug-
menting egocentric representations with external, semantically aligned exocentric knowledge leads
to more robust and balanced action recognition, especially in long-tailed settings.

4.3 ABLATION STUDY

We conducted detailed ablation experiments on EPIC-Kitchens-100 (Table 4) to evaluate the contri-
butions of each component. The following abbreviations are: Top-k denotes the number of retrieved
exocentric videos; Adp refers to the class-adaptive selector for dynamic k adjustment; Logit indi-
cates logit-level fusion (Long et al., 2022); SimAtt denotes our staged fusion module, which com-
bines Similarity-guided multi-exo Aggregation (SimAg) with Cross-view Attention (CrossAtt).

Our full model (#11) consistently outperforms the baseline (#0), achieving relative gains of +4.87%
in verb recognition (+9.34% for tail classes) and +8.23% in noun recognition (+13.56% for tail
classes). As shown in the class-wise analysis (Fig. 3), the retrieval-augmented branch leads to espe-
cially notable improvements in noun recognition and performance on underrepresented categories.

Effect of top-k selection. Comparing #0 and #4-#6, we observed that head classes (top 20%)
benefit minimally from additional retrieved data. Mid-frequency classes show modest gains when
increasing k from 10 to 20, while tail classes benefit substantially from k = 20. These trends support
our adaptive retrieval strategy, which improves performance by allocating more external knowledge
to underrepresented classes while maintaining computational efficiency for frequent ones.

Effect of integration strategies. Results from #7-#11 reveal that both direct logit-level fu-
sion (Long et al., 2022) and naı̈ve average pooling (#8) underutilize retrieved exocentric information,
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Figure 3: Class-wise performance and distribution for (a) verbs and (b) nouns. Bars show
counts; lines compare Baseline (#0) vs Best Config (#11), highlighting stronger gains for tail classes.
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Figure 4: Qualitative results. Retrieved exocentric videos enhance egocentric action recognition,
improving fine-grained object and action distinction.

due to the lack of explicit cross-view interaction. Incorporating either similarity-guided weighting
(#9) or attention-based fusion (#10) improves performance. Combining both via our staged fusion
module (#11) yields the strongest results, demonstrating that coarse-to-fine fusion effectively cap-
tures both global relevance and fine-grained alignment across views.
Effect of loss functions. In comparison of loss functions (#1-#4), we evaluated methods such as
Balanced Softmax Cross Entropy (BalCE) (Long et al., 2022) and Focal loss (Lin et al., 2017).
The results show that the LACE loss (#4) significantly improves tail-class accuracy by +1.16%
(verbs) and +3.34% (nouns) over standard cross-entropy (#1). This underscores the importance of
incorporating class priors to mitigate long-tail bias in egocentric action recognition.

4.4 QUALITATIVE RESULTS

As shown in Fig. 4, we present two sets of exocentric videos retrieved for given egocentric inputs.
The examples illustrate that the retrieved samples generally correspond to the actions or objects in
the egocentric video. By leveraging these exocentric videos, the model can more accurately recog-
nize fine-grained verbs and nouns. In contrast, without this external enhancement, the model may
misclassify “lettuce” as the more familiar, head-class “cabbage”, with more training samples, and
struggle to distinguish actions like “wash” and “take”. These results demonstrate the effectiveness
of REAR in utilizing retrieved third-person videos to enhance egocentric action recognition.

5 CONCLUSION

In this work, we introduce REAR, a retrieval-augmented framework for egocentric action recogni-
tion that leverages external third-person (exocentric) videos to enhance egocentric representations.
Unlike prior methods that rely on paired ego-exo data or overlook egocentric-specific challenges,
REAR integrates a class-adaptive retrieval mechanism with a staged cross-view fusion module to
enable effective knowledge transfer without requiring additional sensors or alignment. Extensive ex-
periments on three benchmarks demonstrate the effectiveness and generalizability of our approach.
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A ETHICS STATEMENT

We have carefully considered the ethical implications of our research in accordance with the ICLR
Code of Ethics. Our work focuses on fundamental machine learning principles and is restricted to
standard academic benchmarks. This research did not involve any human subjects or participants.

The datasets used in this study are publicly accessible and have been widely used in previous re-
search. They do not contain sensitive or private information. Specifically:

• EPIC-Kitchens-100 (Damen et al., 2022) is used in accordance with its Creative Commons
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.

• EGTEA Gaze+ (Li et al., 2018) is used under the non-commercial research license speci-
fied on its official project website by its creators at Georgia Tech.

• Charades-Ego (Sigurdsson et al., 2018) is used under the academic research license pro-
vided by the Allen Institute for Artificial Intelligence.

• YouCookII (Zhou et al., 2018) dataset’s annotations are provided under the MIT License,
while the raw video files are distributed for non-commercial, research purposes only, a
condition we strictly adhere to.

B REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we commit to making our source code publicly avail-
able upon publication of this paper. All implementation details, hyperparameters, and computing
environment required to reproduce our experiments are detailed in Section 4.1.4. The datasets used
are all publicly available and are cited in the main text.
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tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326, 2024a.

Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, Bo Li, Wei Li, Zejun Ma, and Chunyuan Li.
Llava-next-interleave: Tackling multi-image, video, and 3d in large multimodal models. arXiv
preprint arXiv:2407.07895, 2024b.

Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Limin Wang, and Yu Qiao. Uni-
formerv2: Spatiotemporal learning by arming image vits with video uniformer. arXiv preprint
arXiv:2211.09552, 2022.

Yanghao Li, Tushar Nagarajan, Bo Xiong, and Kristen Grauman. Ego-exo: Transferring visual rep-
resentations from third-person to first-person videos. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 6943–6953, 2021.

Yin Li, Zhefan Ye, and James M Rehg. Delving into egocentric actions. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 287–295, 2015.

Yin Li, Miao Liu, and James M Rehg. In the eye of beholder: Joint learning of gaze and actions in
first person video. In Proceedings of the European Conference on Computer Vision, pp. 619–635,
2018.

Kevin Qinghong Lin, Jinpeng Wang, Mattia Soldan, Michael Wray, Rui Yan, Eric Z Xu, Difei
Gao, Rong-Cheng Tu, Wenzhe Zhao, Weijie Kong, et al. Egocentric video-language pretraining.
Advances in Neural Information Processing Systems, 35:7575–7586, 2022.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal loss for dense
object detection. In Proceedings of the IEEE International Conference on Computer Vision, pp.
2980–2988, 2017.

Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X Yu. Large-
scale long-tailed recognition in an open world. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 2537–2546, 2019.

Alexander Long, Wei Yin, Thalaiyasingam Ajanthan, Vu Nguyen, Pulak Purkait, Ravi Garg, Alan
Blair, Chunhua Shen, and Anton Van den Hengel. Retrieval augmented classification for long-tail
visual recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 6959–6969, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xiusheng Lu, Yanbin Hao, Lechao Cheng, Sicheng Zhao, Yutao Liu, and Mingli Song. Mixed
attention and channel shift transformer for efficient action recognition. ACM Transactions on
Multimedia Computing, Communications and Applications, 21:1–20, 2025.

Huaihai Lyu, Chaofan Chen, Yuheng Ji, and Changsheng Xu. Egoprompt: Prompt learning for
egocentric action recognition. arXiv preprint arXiv:2508.03266, 2025.

Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit,
and Sanjiv Kumar. Long-tail learning via logit adjustment. In Proceedings of the International
Conference on Learning Representations, 2021.

Jungin Park, Jiyoung Lee, and Kwanghoon Sohn. Bootstrap your own views: Masked ego-exo
modeling for fine-grained view-invariant video representations. In Proceedings of the Computer
Vision and Pattern Recognition Conference, pp. 13661–13670, 2025.

Baoqi Pei, Yifei Huang, Jilan Xu, Guo Chen, Yuping He, Lijin Yang, Yali Wang, Weidi Xie, Yu Qiao,
Fei Wu, and Limin Wang. Modeling fine-grained hand-object dynamics for egocentric video rep-
resentation learning. In Proceedings of the International Conference on Learning Representa-
tions, pp. 1–22, 2025.

Shraman Pramanick, Yale Song, Sayan Nag, Kevin Qinghong Lin, Hardik Shah, Mike Zheng Shou,
Rama Chellappa, and Pengchuan Zhang. Egovlpv2: Egocentric video-language pre-training with
fusion in the backbone. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 5285–5297, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In Proceedings of the International Conference on
Machine Learning, pp. 8748–8763, 2021.

Rita Ramos, Bruno Martins, Desmond Elliott, and Yova Kementchedjhieva. Smallcap: lightweight
image captioning prompted with retrieval augmentation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 2840–2849, 2023.

Sara Sarto, Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. Retrieval-augmented transformer
for image captioning. In Proceedings of the 19th International Conference on Content-based
Multimedia Indexing, pp. 1–7, 2022.

Tim J Schoonbeek, Tim Houben, Hans Onvlee, Fons Van der Sommen, et al. Industreal: A dataset
for procedure step recognition handling execution errors in egocentric videos in an industrial-like
setting. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,
pp. 4365–4374, 2024.

Fadime Sener, Dibyadip Chatterjee, Daniel Shelepov, Kun He, Dipika Singhania, Robert Wang,
and Angela Yao. Assembly101: A large-scale multi-view video dataset for understanding pro-
cedural activities. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 21096–21106, 2022.

Tsukasa Shiota, Motohiro Takagi, Kaori Kumagai, Hitoshi Seshimo, and Yushi Aono. Egocen-
tric action recognition by capturing hand-object contact and object state. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 6541–6551, 2024.

Gunnar A Sigurdsson, Abhinav Gupta, Cordelia Schmid, Ali Farhadi, and Karteek Alahari.
Charades-ego: A large-scale dataset of paired third and first person videos. arXiv preprint
arXiv:1804.09626, 2018.

Swathikiran Sudhakaran, Sergio Escalera, and Oswald Lanz. Lsta: Long short-term attention for
egocentric action recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 9954–9963, 2019.

Shuhan Tan, Tushar Nagarajan, and Kristen Grauman. Egodistill: Egocentric head motion distilla-
tion for efficient video understanding. Advances in Neural Information Processing Systems, 36:
33485–33498, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Hugo Touvron, Alexandre Sablayrolles, Matthijs Douze, Matthieu Cord, and Hervé Jégou. Grafit:
Learning fine-grained image representations with coarse labels. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 874–884, 2021.

Thanh-Dat Truong and Khoa Luu. Cross-view action recognition understanding from exocentric to
egocentric perspective. Neurocomputing, 614:128731, 2025.

Huiyu Wang, Mitesh Kumar Singh, and Lorenzo Torresani. Ego-only: Egocentric action detection
without exocentric transferring. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 5250–5261, 2023a.

Qitong Wang, Long Zhao, Liangzhe Yuan, Ting Liu, and Xi Peng. Learning from semantic align-
ment between unpaired multiviews for egocentric video recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 3307–3317, 2023b.

Xin Wang, Taein Kwon, Mahdi Rad, Bowen Pan, Ishani Chakraborty, Sean Andrist, Dan Bohus,
Ashley Feniello, Bugra Tekin, Felipe Vieira Frujeri, et al. Holoassist: an egocentric human in-
teraction dataset for interactive ai assistants in the real world. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 20270–20281, 2023c.

Chao-Yuan Wu, Yanghao Li, Karttikeya Mangalam, Haoqi Fan, Bo Xiong, Jitendra Malik, and
Christoph Feichtenhofer. Memvit: Memory-augmented multiscale vision transformer for efficient
long-term video recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 13587–13597, 2022.

Tz-Ying Wu, Kyle Min, Subarna Tripathi, and Nuno Vasconcelos. Ego-vpa: Egocentric video under-
standing with parameter-efficient adaptation. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pp. 9258–9268, 2025.

Boshen Xu, Sipeng Zheng, and Qin Jin. Pov: Prompt-oriented view-agnostic learning for egocentric
hand-object interaction in the multi-view world. In Proceedings of the 31st ACM International
Conference on Multimedia, pp. 2807–2816, 2023a.

Boshen Xu, Ziheng Wang, Yang Du, Zhinan Song, Sipeng Zheng, and Qin Jin. Do egocentric video-
language models truly understand hand-object interactions? In Proceedings of the International
Conference on Learning Representations, pp. 1–18, 2025a.

Jilan Xu, Yifei Huang, Junlin Hou, Guo Chen, Yuejie Zhang, Rui Feng, and Weidi Xie. Retrieval-
augmented egocentric video captioning. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 13525–13536, 2024.

Jilan Xu, Yifei Huang, Baoqi Pei, Junlin Hou, Qingqiu Li, Guo Chen, Yuejie Zhang, Rui Feng,
and Weidi Xie. Egoexo-gen: Ego-centric video prediction by watching exo-centric videos. In
Proceedings of the International Conference on Learning Representations, pp. 1–18, 2025b.

Yue Xu, Yong-Lu Li, Zhemin Huang, Michael Xu Liu, Cewu Lu, Yu-Wing Tai, and Chi-Keung Tang.
Egopca: A new framework for egocentric hand-object interaction understanding. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 5273–5284, 2023b.

Zihui Sherry Xue and Kristen Grauman. Learning fine-grained view-invariant representations from
unpaired ego-exo videos via temporal alignment. Advances in Neural Information Processing
Systems, 36:53688–53710, 2023.

Zhengyuan Yang, Zhe Gan, Jianfeng Wang, Xiaowei Hu, Yumao Lu, Zicheng Liu, and Lijuan Wang.
An empirical study of gpt-3 for few-shot knowledge-based vqa. In Proceedings of the AAAI
Conference on Artificial Intelligence, pp. 3081–3089, 2022.

Michihiro Yasunaga, Armen Aghajanyan, Weijia Shi, Rich James, Jure Leskovec, Percy Liang, Mike
Lewis, Luke Zettlemoyer, and Wen-tau Yih. Retrieval-augmented multimodal language modeling.
arXiv preprint arXiv:2211.12561, 2022.

Hailun Zhang, Xinrui Wang, and Qijun Zhao. Granularity-aware contrastive learning for fine-
grained action recognition. In Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 1–5, 2025.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026
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