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ABSTRACT

Diffusion models (DMs) have rapidly emerged as a powerful framework for image
generation and restoration, achieving remarkable perceptual quality. However,
existing DMs are primarily trained in a supervised manner by using a large corpus
of clean images. This reliance on clean data poses fundamental challenges in
many real-world scenarios, where acquiring noise-free data is hard or infeasible,
and only noisy and potentially incomplete measurements are available. While
some methods are capable of training DMs using noisy data, they are generally
effective only when the amount of noise is very mild or when some additional
noise-free data is available. In addition, existing methods for training DMs from
incomplete measurements require access to multiple complementary acquisition
processes, an assumption that poses a significant practical limitation. Here we
introduce the first approach for learning DMs for image restoration using only
noisy measurement data from a single operator. As a first key contribution, we
show that DMs, and more broadly minimum mean squared error denoisers, exhibit
a weak form of scale equivariance linking rescaling in signal amplitude to changes
in noise intensity. We then leverage this theoretical insight to develop a denoising
score-matching strategy that generalizes robustly to noise levels lower than those
present in the training data, thereby enabling the learning of DMs from noisy
measurements. To further address the challenges of incomplete and noisy data, we
integrate our method with equivariant imaging, a complementary self-supervised
learning framework that exploits the inherent invariants of imaging problems, in
order to train DMs for image restoration from single-operator measurements that
are both incomplete and noisy. We validate the effectiveness of our approach
through extensive experiments on image denoising, demosaicing, and inpainting,
along with comparisons with the state of the art.

1 INTRODUCTION

Nearly all image data used in computer vision tasks come from a physical imaging system (e.g.,
digital camera, PET/CT scanner, etc.). These physical imaging systems span many disparate fields,
from astronomy (Vojtekova et al., 2020) to medicine (Heckel et al., 2024). In each application, the
crucial similarity is that the measurements from the imaging system are not always directly useful for
downstream tasks. This can be due to the measurement process (e.g., mosaicing, blurring, Fourier
encoding, etc.) and/or measurement noise.

Recovering the desired image x → Rn from (noisy) measurements y → Rm requires solving an
inverse problem. This inversion process is typically ill-posed and some regularization is needed to
obtain a robust inversion. Previously, handcrafted priors such as sparsity (Donoho, 2006; Lustig
et al., 2007) were popular in many inversion schemes. With the growth of deep learning methods,
many end-to-end networks for image recovery have been proposed (Hammernik et al., 2018; Ag-
garwal et al., 2019; Liang et al., 2021). Recently, there has been interest in using deep generative
models (Bora et al., 2017; Kawar et al., 2022; Jalal et al., 2021; Chung et al., 2024; Holden et al.,
2022; González et al., 2022; Spagnoletti et al., 2025) to compute estimators or sample from the pos-
terior distribution p(x|y). In both settings, a common framework is supervised learning, where a
large corpus of clean data {xi}Ni=1 ↑ p(x) is available for training.
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In practice, however, we often do not have direct access to samples from the distribution p(x) but
rather to measurement samples {yi}Ni=1 ↑ p(y) where yi are generated from the measurement
process of the imaging system of interest. Prior works have proposed methods for learning a variety
of estimators using only measurement data. These works range from end-to-end methods (Yaman
et al., 2020; Moran et al., 2019; Lehtinen et al., 2018; Tachella et al., 2025a; Monroy et al., 2025)
to generative techniques (Bora et al., 2018; Daras et al., 2023; 2024b;a; Lu et al., 2025). A key
similarity between many of these techniques, however, is an assumption of either access to some
noise-free data and/or measurements arising from multiple imaging operators. These assumptions
may not be met in practice, where all data are noisy and observed via a single measurement operator.

Herein, we propose a method for learning generative diffusion models capable of restoring cor-
rupted images using only degraded measurements, obtained from multiple images processed through
a common measurement operator. Our first key contribution demonstrates that diffusion models
(DMs), and more broadly minimum mean squared error (MMSE) denoisers, exhibit a weak form
of scale equivariance, wherein rescaling the signal amplitude induces a corresponding change in the
noise level. Leveraging this theoretical insight, we introduce a denoising score-matching framework
that enables the learning of denoisers at noise levels below those present in the measurements. These
denoisers can then be integrated into a DM sampler, yielding reconstructions with higher percep-
tual quality compared to existing self-supervised methods. Furthermore, we extend our approach
beyond denoising by incorporating equivariance to geometric transformations (e.g., translations and
rotations), allowing us to learn DMs in the challenging setting where data are observed via a single
incomplete measurement operator.

2 RELATED WORK

Diffusion Modeling The primary goal of generative modeling techniques is to learn a probability
distribution from observed samples, i.e, {xi}Ni=1 ↑ p(x). This can be accomplished in a variety
of ways (Kingma & Welling, 2022; Goodfellow et al., 2014; Ho et al., 2020). After learning this
distribution, the model can be queried to generate new samples from p(x) via a sampling procedure.
The most popular methods currently are diffusion based approaches (Ho et al., 2020; Song et al.,
2021; Karras et al., 2022). These techniques accomplish the task by training a deep neural network
with parameters ω on the supervised loss,

min
ω

N∑

i=1

LSUP(x,ω) where LSUP(x,ω) = Eε,ωt↓Dω(x+ ωtε,ωt)↔ x↓2, (1)

with ε ↑ N (0, I) and ωt ↑ p(ω), such that the learned network approximates the MMSE estimator
Dω(x + ωtε,ωt) ↗ E{x|x + ωtε} at each noise level ωt > 0. The probability distribution can be
sampled by solving the following stochastic differential equation (SDE) in reverse time,

dx = ↔2ω̇t
Dω(x,ωt)↔ x

ωt
dt+

√
2ω̇tωtdϑt, (2)

where ϑt is a Brownian noise process and t → (0, 1), using a variety of solvers (Karras et al., 2022).

Self-Supervised Learning for Denoising When the data needed to train restoration and diffusion
models come from a measurement device, there is no true notion of a clean, ground-truth training
set (Belthangady & Royer, 2019; Lehtinen et al., 2018). The two primary challenges in learning
models solely from corrupted measurements are noise and rank-deficient measurement operators. In
the simplest denoising problem, the data are corrupted by additive Gaussian noise, i.e.,

y = x+ ωnε, ε ↑ N (0, I), (3)

where ωn is called the measurement noise level. Self-supervised methods for learning denoisers
from a dataset of noisy measurements alone, {yi}Ni=1, have been developed and used with great
success. For example, Stein’s unbiased risk estimator (SURE) (Stein, 1981) provides an approach to
learn an unbiased estimate of the MMSE estimator with access only to noise-corrupted data (Metzler
et al., 2020; Soltanayev & Chun, 2021; Aali et al., 2023) by minimizing an equivalent objective
which only relies on the measurements (where div is the divergence operator):

LSURE(y,ω) = ↓y ↔Dω(y,ωn)↓2 + 2ω2
n divDω(y,ωn). (4)
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A key limitation of SURE is that it can only be used to obtain an unbiased estimate of the supervised
denoising loss in (1) for noise levels at and above the measurement noise level (i.e., ωt ↘ ωn). To
learn diffusion processes with noisy data y, however, we must be able to learn MMSE estimators
below the measurement level ωt ≃ ωn as well. Recently, methods have been proposed to learn de-
noisers below the measurement noise level of the data (Daras et al., 2024b;a) by running the sampler
during training and enforcing consistency, but they struggle when there are no clean data available
to assist in training (Lu et al., 2025). In this paper, we show that normalization-equivariance can
help bridge the gap to additionally learn below the measurement noise level without any clean data.

Self-Supervised Learning for Linear Inverse Problems In the general linear inverse problem
setting where data are corrupted by additive Gaussian noise, the measurements are given by

y = Ax+ ω2
nε, ε ↑ N (0, I), (5)

where A → Rm→n is typically rank-deficient or highly ill-conditioned, and thus cannot be easily in-
verted. To overcome the rank-deficient operator, several end-to-end techniques have been proposed
to train recovery methods from only corrupted measurement data (Yaman et al., 2020; Tachella
et al., 2022), including generative models (Bora et al., 2018; Daras et al., 2023; Kawar et al., 2024;
Kelkar et al., 2023; Park et al., 2025; Aali et al., 2025). Many of these techniques split the mea-
surements and predict one subset of the measurements from a different (potentially disjoint) subset
of measurements from the same sample. These measurement splitting techniques require access
to measurement datasets {yi,Ai}Ni=1 with many different operators Ai → A ↭ {A1, . . . ,AG}.
Intuitively, identifying a unique distribution p(x) from measurements should be easier as |A| grows.

If, however, |A| = 1 (i.e., there is only one measurement device) we must use additional information
about the signal distribution p(x) to assist in its recovery. The relatively mild assumption that the
signal set of plausible images is invariant to a group of transformations {Tg}Gg=1, such as transla-
tions, flips and/or rotations, is often enough for learning from a single forward operator (Chen et al.,
2022), as it allows us to create virtual operators in the following way:

yi = Ax = AT↑1
g Tgx = Agx

↓. (6)

where Ag = ATg and x↓ = Tgx. In other words, we get G virtual operators A =
{AT1, . . . ,ATG} (Tachella et al., 2023). This invariance information can be enforced in a self-
supervised way using the equivariant imaging loss (Chen et al., 2022).

Normalization Equivariant Denoisers Previous lines of work have explored architecture changes
for better noise level generalization in supervised denoisers (Mohan et al., 2020; Herbreteau et al.,
2024). Recently, normalization-equivariant network architectures for image denoising were pro-
posed in the supervised setting (Herbreteau et al., 2024). This work poses that certain conventional
neural network components, such as ReLUs, should be removed and replaced with alternatives that
retain normalization-equivariant properties over the network. This has been shown to lead to better
generalization across noise levels in supervised training scenarios.

3 NORMALIZATION INVARIANT DENOISING

In this section, we focus on the Gaussian denoising problem. We present a new self-supervised
loss for learning denoisers below the measurement noise level, ωn, using noisy data alone, {yi =
xi + ωnεi}Ni=1. The resulting denoisers can subsequently be used to implement diffusion samplers.

As stated above, the MMSE denoiser can be learned at the measurement noise level without access to
noise-free data by using SURE (4). However, SURE does not yield reliable estimates for noise levels
below that of the measurements; that is, it is only valid for ω ↘ ωn. To overcome this limitation, we
assume that the denoiser satisfies the following normalization equivariance property:

⇐ε → R+, ⇐µ → R, Dω(εy + µ1,ωε) = εDω(y,ω) + µ1, (7)

for all y in the measurement distribution. If (7) is satisfied, then denoising at any noise level ω↓

can be straightforwardly achieved by rescaling a single denoiser Dω(·,ω) trained at level ω, i.e.,
Dω(y,ω↓) = ω→

ω Dω(
ω
ω→y,ω). Equivariance can be enforced through architectural constraints as

done in previous work (Herbreteau et al., 2024) with supervised denoising. Instead, we propose to
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embed the normalization equivariance property into the original SURE loss by using the modified
loss

LNE-SURE(y,ω) = Eε,µ

{
↓εy + µ1↔Dω(εy + µ1,εωn)↓2 + 2(εωn)

2 divDω(εy + µ1,εωn)
}
,

(8)

where ε ↑ U(0, 1) and µ ↑ U(0, 1), as we find that this leads to better performance for self-
supervised learning, and where incorporating µ improves generalization. In practice, we evaluate the
expectation by sampling a random pair (ε, µ), and use Monte Carlo SURE (Ramani et al., 2008) to
approximate the divergence, which requires an additional network evaluation. Other approximations
can be similarly employed under our equivariance assumption (Monroy et al., 2025).

Posterior Sampling After training a self-supervised, or supervised, denoiser we can sample from
the posterior of noised measurement by initializing a reverse-time diffusion SDE processes at the
measurement noise level ωn and running the SDE solver on (2) to some ωmin.

Understanding Normalization Invariance A valid question to ask is: Are there realistic priors
whose associated MMSE denoisers verify this assumption? An initial answer to this question can
be investigated by looking at the definition of a scale equivariant MMSE estimator:

D(εy,εωn) = E(x|εy,εωn) =

∫
Rn p(x)p(εy|x,εωn)xdx∫
Rn p(x̃)p(εy|x̃,εωn)dx̃

(9)

=

∫
Rn p(x)p(y| x

ε ,ωn)xdx
∫
Rn p(x̃)p(y| x̃

ε ,ωn)dx̃
(10)

=
1

ε

∫
Rn p(εx)p(y|x,ωn)xdx∫
Rn p(εx̃)p(y|x̃,ωn)dx̃

(11)

where the first line uses that p(εy|x,εωn) = p(y| x
ε ,ωn) for Gaussian noise, and the second line

relies on a change of variables in both integrals. Inspecting (11), we see that choosing a positively
homogeneous prior of order k → Z, i.e., if p(εx) = εkp(x) for all x → Rn and all ε > 0, results in
the normalization-equivariant condition in (7) for µ = 0 (this result can be directly extended to the
case µ ⇒= 0 by additionally assuming that p(x) is invariant under additive shifts).

Unfortunately, no proper prior can be positively homogeneous, since we would get
∫
Rn p(x)dx =

⇑. Nonetheless, as shown in the theorem below, there are well-defined priors whose MMSE esti-
mators are close to being normalization-equivariant. Again, for clarity, we focus on the case µ = 0;
the extension to µ ⇒= 0 follows directly.
Theorem 3.1. Let D(y,ω) be the MMSE estimator to recover an unknown image x ↑ p(x) from y =
x+ωε with ε ↑ N (0, I). Assume that p(x) admits a factorization p(x) = p1(x)p2(x), with p1(x)
and p2(x) depending only on ↓x↓ and x/↓x↓ respectively, such that the normalized image x/↓x↓
is independent of ↓x↓. Also assume that U(x) = ↔ log p(x) is twice continuously differentiable.
Then, ⇓ωϑ > 0 such that for all ω,ω↓ → (0,ωϑ), D(y,ω) and D(y,ω↓) are approximately equivalent
by rescaling, i.e.,

↓D(y,ω↓)↔ ω→

ω D( ω
ω→y,ω)↓ ≃ ϑ .

where the error ϑ > 0 depends on the degree of non-homogeneity of p1, as measured by the Fisher
divergence w.r.t. to p(x|y,ω) between p1 and the closest positively homogeneous function.

Proof. Let P(Rn) be the class of functions on Rn that are positively homogeneous and whose
logarithm is twice continuously differentiable with Lipschitz continuous gradient. Assume that p(x)
admits a factorization p(x) = p1(x)p2(x), with p1(x) and p2(x) depending only on ↓x↓ and x/↓x↓
respectively, and let p̃1 be the function in P(Rn) that is closest to p1 in the sense of the Fisher
divergence w.r.t. the posterior p(x|y,ω) ⇔ p(x)p(y|x,ω), i.e.,

p̃1 = argmin
q↔P(Rn)

∫

Rn

↓↖ log q(x)↔↖ log p1(x)↓2 p(x|y,ω)dx .

Consider the approximation p̃(x) ⇔ p̃1(x)p2(x) of p, obtained by replacing the correct marginal p1
by p̃1, and denote by p̃(x|y,ω) ⇔ p̃(x)p(y|x,ω) the associated posterior distribution. We view p̃ as
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an operational prior that may be improper, but we assume that p̃(x|y,ω) is well defined. Moreover,
we denote by ϖω the Fisher divergence between the posteriors p(x|y,ω) and p̃(x|y,ω), given by

ϖω =

∫

Rd

↓↖ log p(x|y,ω)↔↖ log p̃(x|y,ω)↓2 ϱ(x|y,ω)dx ,

=

∫

Rd

↓↖ log p1(x)↔↖ log p̃1(x)↓2 ϱ(x|y,ω)dx ,

where we have used the factorization property of p and p̃.

Furthermore, because x ↙∝ log p(y|x,ω) is 1/ω2-strongly concave, and the Hessian of log p̃ is
bounded, there exists some ωϑ such that for all ω ≃ ωϑ the approximation log p̃(x|y,ω) is strongly
concave outside some compact set (i.e., for some constants K > 0 and R ↘ 0,↖2 log p̃(x|y) ′ KI
for all ↓x↓ ↘ R). From (Huggins et al., 2018, Theorem 5.3), this implies that for any ω ≃ ωϑ, the
2-Wasserstein distance between p(x|y,ω) and p̃(x|y,ω) is bounded as

W2 (p(x|y,ω), p̃(x|y,ω)) ≃ ςϖω ,

where ς > 0 depends on p̃(x|y,ω), but is independent of p(x|y,ω). For example, in the specific
case where p̃(x|y,ω) is strongly log-concave, ς is the inverse of the strong log-concavity constant.

Following on from this, we denote by D̃(y,ω) the MMSE denoiser associated with p̃(x|y,ω) and use
(11) to show that D̃(y,ω) verifies the desired rescaling property D̃(y,ω↓) = ω→

ω D̃( ω
ω→y,ω). Lastly,

because W2 bounds the difference in the expectation of random variables, we have

↓D(y,ω↓)↔ D̃(y,ω↓)↓ = ↓D(y,ω↓)↔ ω→

ω D̃( ω
ω→y,ω)↓ ≃ ςϖω→ ,

↓ω→

ω D( ω
ω→y,ω)↔ ω→

ω D̃( ω
ω→y,ω)↓ ≃ ω→

ω ςϖω ,

and therefore,

↓D(y,ω↓)↔ ω→

ω D( ω
ω→y,ω)↓ ≃ ϑ ,

with ϑ2 = ς2ϖ2
ω→ + (ω

→

ω )2ς2ϖ2
ω , concluding the proof.

To develop an intuition for Theorem 3.1, it is helpful to consider the following. For most images,
the magnitude ↓x↓ conveys negligible information about the normalized image x/↓x↓. Indeed,
recovering x from the total energy ↓x↓2 alone is typically impossible. Therefore, the assumption
that p(x) admits the proposed factorization p(x) = p1(x)p2(x) is practically justified. In addition,
it has been repeatedly empirically observed that the spectral properties of images exhibit power-
law statistics related to self-similarity (see, e.g., (Ruderman, 1997) and Figure 13 in Appendix A).
This motivates the consideration of power-law models of the form p1(x) = q(x)L(x) where q is
positively homogeneous, e.g., q(x) = ↓x↓↑ϖ , and L(x) is some slow-varying function that predom-
inantly influences p1(x) near the origin. In this case, minimizing the considered Fisher divergence
leads to p̃1 = q, and the remaining error, ϖωn =

∫
Rn L(x)p(x|y,ω)dx, is small if L(x) is small in

regions with high posterior mass. To conclude, because training by score-matching is equivalent to
minimizing the Fisher divergence w.r.t. p(x|y,ω), we view performing score-matching subject to the
considered normalization property as a mechanism for learning the approximate MMSE denoiser D̃
rather than D, and we expect this denoiser trained directly from noisy data to generalize robustly to
lower noise levels provided ωn ≃ ωϑ in Theorem 3.1, as evidenced by the experiments reported in
Section 4.

4 DENOISING EXPERIMENTS

Baselines We evaluate the performance of the normalization-equivariance strategy below the mea-
surement noise level by comparing to (1) a denoiser trained in supervised fashion at all noise levels
(2) a self-supervised denoiser trained using SURE only at the measurement noise level (SURE) to
understand how seeing only the measurement noise level generalizes performance (Metzler et al.,
2020), and (3) a recently proposed method for self-supervised denoising below the measurement
noise level using consistency (CD) (Daras et al., 2024a).
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Figure 1: Performance of various one-step denoisers on (A) FFHQ (B) NBU and (C) AFHQ dataset.

Figure 2: Denoising example on FFHQ dataset at test noise levels ω = 0.075 (top) and ω = 0.02
(bottom). All models, except for supervised, were trained on only noisy data with ωn = 0.075.

Training Details We compare the performance of all denoisers on the task of denoising FFHQ
(128∞128 pixels) training data that has been corrupted with ωn = 0.075. On the AFHQ (128∞128
pixels) dataset, we perform experiments for varying noise levels ωn → {0.05, 0.075, 0.10}. Finally,
we use a panchromatic satellite imaging dataset (NBU) (Meng et al., 2020) (128 ∞ 128 pixels)
corrupted with ωn = 0.075. To investigate the performance of our technique with varying dataset
sizes, we create various training set sizes of N → {500, 1000, 5000, 15000} for ωn = 0.05 using the
AFHQ dataset. We emphasize that for all datasets, we simulated noise only once for each image in
the training dataset to most accurately emulate a real-world setting. Our model architecture is the
UNet denoiser from Song et al. (2021) with 55M parameters.

Sampler Details For experiments on diffusion sampling, after training each model, we run Al-
gorithm 1 in Appendix A with A = I from the measurement noise level to ωmin = 0.01 (for
experiments with ωn → {0.05, 0.075}) or ωmin = 0.02 (for experiments with ωn = 0.10). We use
K = 25 steps for all sampling methods, and the timestep schedule following Karras et al. (2022):

ωi = (ω
1
ω
max +

i

N ↔ 1
(ω

1
ω

min ↔ ω
1
ω
max))ϱ , (12)

with φ = 7 and ωmax = ωn.
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Table 1: Posterior sampling metrics on FFHQ, NBU, and AFHQ 128 ∞ 128 where the models are
trained and complete inference on data with additive noise shown in the 2nd column.

Dataset ωn Solver Sampler Self Sup. PSNR (∈) SSIM (∈) LPIPS (∋) FID (∋)

FFHQ 0.075

MMSE (Self Sup.) ↫ 33.68 0.937 0.024 29.82
OURS ↫ ↫ 32.76 0.921 0.015 22.57
CD (Daras et al., 2024a) ↫ ↫ 28.92 0.756 0.057 59.37
MMSE (Sup.) (Karras et al., 2022) 34.20 0.944 0.023 32.79
EDM (Sup.) (Karras et al., 2022) ↫ 33.06 0.920 0.012 19.91

NBU 0.075

MMSE (Self Sup.) ↫ 32.58 0.863 0.111 79.20
OURS ↫ ↫ 32.05 0.851 0.085 34.01
CD (Daras et al., 2024a) ↫ ↫ 32.02 0.836 0.076 53.75
MMSE (Sup.) (Karras et al., 2022) 33.08 0.877 0.110 103.18
EDM (Sup.) (Karras et al., 2022) ↫ 32.02 0.841 0.057 18.21

AFHQ 0.05

MMSE (Self Sup.) ↫ 34.52 0.949 0.020 10.09
OURS ↫ ↫ 33.89 0.942 0.011 5.08
CD (Daras et al., 2024a) ↫ ↫ 32.48 0.903 0.015 10.74
MMSE (Sup.) (Karras et al., 2022) 34.77 0.952 0.019 9.83
EDM (Sup.) (Karras et al., 2022) ↫ 34.01 0.942 0.010 3.62

AFHQ 0.075

MMSE (Self Sup.) ↫ 32.41 0.923 0.034 11.56
OURS ↫ ↫ 31.71 0.911 0.021 7.12
CD (Daras et al., 2024a) ↫ ↫ 29.44 0.818 0.034 17.08
MMSE (Sup.) (Karras et al., 2022) 32.72 0.928 0.034 12.55
EDM (Sup.) (Karras et al., 2022) ↫ 31.80 0.910 0.017 5.66

AFHQ 0.10

MMSE (Self Sup.) ↫ 30.96 0.898 0.053 13.80
OURS ↫ ↫ 30.38 0.888 0.034 8.88
CD (Daras et al., 2024a) ↫ ↫ 27.01 0.732 0.064 20.65
MMSE (Sup.) (Karras et al., 2022) 31.34 0.906 0.049 14.37
EDM (Sup.) (Karras et al., 2022) ↫ 30.26 0.879 0.024 7.82

We report all metrics over validation sets of 1000, 1500, 1800 images for FFHQ, AFHQ, and
NBU datasets, respectively. To assess distortion in the reconstructed images, we report PSNR and
SSIM (Wang et al., 2004), while for perceptual quality, we report LPIPS and FID.

Denoising Performance Figure 1 shows how each denoiser performs at noise levels different than
the measurement noise level available at training time. Both SURE and CD perform poorly at noise
levels below the measurement noise level. In contrast, our approach incurs only a small performance
reduction with respect to the supervised case at noise levels below the training data noise, providing
strong empirical support for the validity of the normalization invariance assumption. Moreover, for
highly noisy training data, the gap between the proposed method and supervised learning at lower
noise increases, but it remains the best method across self-supervised techniques. Figure 2 (top)
show examples of how all self-supervised denoisers perform well at the measurement noise level
compared to the supervised approach. However, we observe in Figure 2 (bottom) that, at noise levels
below the measurement noise level, only our technique maintains a good performance compared to
the supervised strategy.

Posterior Sampling Performance We assess each denoiser’s sampling ability compared to a su-
pervised denoiser in Table 1. Here, MMSE (Self Sup.) is taken to be the one-step denoiser from our
normalization-equivariant SURE denoiser, as it showed better PSNR metrics than SURE alone in the
one-step denoising task above (i.e., better approximate self-supervised MMSE estimator). The sam-
pler based on our self-supervised denoiser reports better perceptual quality metrics than all methods
except for the supervised denoiser. As expected, all sampling approaches report worse PSNR and
SSIM than their respective MMSE (one-step) solvers, which is in line with the known perception-
distortion tradeoff (Blau & Michaeli, 2018). In Figure 3 we show visual examples comparing each
approach. Additionally, in Appendix A we show Figure 9 which are examples of each method at
various training + inference noise levels on the AFHQ dataset along with each method’s radial spec-
tra for the corresponding reconstructions in Figure 10. All one-step solvers appear to reduce high
frequency components resulting in a visually smoother image and CD retains noise in the sample
leading to higher frequency components. Our method, however, produces spectra noticeably more
closely aligned with the ground truth images.
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Figure 3: Example of various denoisers using diffusion sampling (except for MMSE (Self Sup.) and
MMSE (Sup.) columns) on FFHQ dataset with training and test noise level ωn = 0.075.

Figure 4: Denoiser performance on
AFHQ with varying amounts of only
noised training samples at ωn = 0.05.

Sample Complexity Figure 4 shows the performance
of our denoiser trained on the AFHQ dataset as a func-
tion of the number of (noisy) samples available for train-
ing. We plot the difference between the average MSE loss
for each denoiser and the MMSE performance (approxi-
mated here by supervised learning on the largest dataset
size). Previous work (Daras et al., 2024a) hypothesized
that learning below the measurement noise level requires
a potentially prohibitive amount of noisy training data.
We find, on the contrary, that the mean squared error
scales approximately as ω2

t /
△
N for noise levels above

(ωt ↘ 0.05) and also below (ωt < 0.05) the measure-
ment noise, which is the complexity typically observed in
supervised learning (Hardt & Recht, 2022, Ch. 6).

5 EXTENSION TO LINEAR INVERSE PROBLEMS

We now extend our method to more general linear inverse problems. In particular, we present a new
self-supervised loss for learning DMs from a dataset of noisy measurements, all observed by the
same forward operator at the same measurement noise level, {yi = Axi + ωnεi}Ni=1, where A is
rank deficient and ε ↑ N (0, I).

Following the equivariant imaging (EI) approach, we assume that p(x) is invariant to a group of
transformations {Tg → Rn→n}Gg=1 such as translations, flips and/or rotations, that is, for any image
x ↑ p(x), Tgx follows the same distribution. We propose the following loss to approximately learn
Dω(y,ω) ↗ E{x|Ax+ ωε} in a self-supervised fashion for all noise levels ω → (0,ωn]:

L(y,ω) = Eε,µ

{
↓εy + µ1↔Dω(εy + µ1,εωn)↓2 +2(εωn)

2 divDω(εy + µ1,εωn)
}

+ Eg,ω→,ς

{
↓Tgx̂ω ↔Dω(ATgx̂ω + ω↓ε,ω↓)↓2

}
(13)

where x̂ω = Dω(y,ωn), ω↓ ↑ U(0,ωn), ε ↑ N (0, I). The first two terms are the same as in the
denoising setting (8) and allow generalizing to noise levels below the measurement level ωn, and the
last term is the EI loss (Chen et al., 2022) which allows learning in the nullspace of A.

Posterior Sampling The learned network can be used to approximate the MMSE denoiser in
measurement space as E{Ax|Ax + ωε} = AE{x|y} ↗ ADω(y,ω). Thus, as in the denoising
setting in Section 4, we can run the reverse SDE in (2) in measurement space using the denoiser
A ▽ Dω from ωn to ωmin, to sample an (almost) noiseless measurement z ↑ p(Ax|Ax + ωnε),
and finally obtain an image space posterior sample as x = Dω(z,ωmin). The resulting algorithm is
summarized in Appendix A with Algorithm 1.

8
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Table 2: Image inpainting (top) and Demosaicing (bottom) metrics on AFHQ 64∞ 64.
Task ωn Solver Sampler Self Sup. PSNR (∈) SSIM (∈) LPIPS (∋) FID (∋)

Inpainting 0.075
EI (Chen et al., 2022) ↫ 27.92 0.867 0.043 25.259
OURS ↫ ↫ 27.74 0.864 0.031 21.114
Ambient Diff. (Daras et al., 2023) ↫ ↫ 25.21 0.783 0.067 44.921

Demosaic 0.075
EI (Chen et al., 2022) ↫ 26.48 0.836 0.067 45.426
OURS ↫ ↫ 26.05 0.835 0.050 42.289
Ambient Diff. (Daras et al., 2023) ↫ ↫ 7.77 0.078 0.532 232.951

If the operator A is injective over the support of p(x), that is, if reconstructions in the noiseless case
are exact (see Tachella et al. (2022) for technical details), then the final reconstruction step yields a
sample of the correct posterior distribution p(x|y).

5.1 EXPERIMENTS

Baselines We compare our approach to EI (Chen et al., 2022), a point estimator, with the same
group of transformations. Additionally, we compare against Ambient Diffusion (Daras et al., 2023)
trained without additive noise

Training Details We test the extension of our invariant sampler to non-trivial forward operators
by solving inpainting and demosaicing tasks. For the inpainting task, we randomly simulated one
inpainting mask with an undersampling factor of m/n = 0.7. After applying the same inpainting
mask to all samples in the datasets, we added noise ωn = 0.075 to the measurement data. Due to the
random structure of the inpainting mask, we use the translational invariance of natural images and
choose Tg to represent all circular shifts of the image. For demosaicing, we prepare our training
datasets by selecting the Bayer filter and applied the corresponding A to each image in the training
dataset and added noise ωn = 0.075. We assumed rotational invariance of the underlying signal
set and selected the group of transformations Tg that represents all possible rotations. For both
inpainting and demosaicing experiments, we used a training set size of 15000 from AFHQ (64∞ 64
pixels). We utilize the DeepInverse (Tachella et al., 2025b) package for applying transformations in
the equivariant imaging loss.

Inference Details For inference, we use Algorithm 1 with the same parameters as in Section 4,
except we set A to the respective measurement operator.

Sampler Performance In Table 2, we show quantitative results comparing each self-supervised
approach on inpainting and demosaicing. In both settings, EI retains superior distortion metrics (as
expected for a point estimator analogous to an MMSE estimator (Blau & Michaeli, 2018)), but our
approach beats both EI and Ambient Diffusion in perceptual quality metrics. Ambient Diffusion
performs poorly because it lacks access to measurements from different measurement operators that
cover the full ambient space. This means that at training time, there is a non-trivial nullspace that
the model is never given self-supervised guidance to predict. We provide example restorations in
the Appendix A(Figures 11 and 12).

6 CONCLUSION

We present a method for learning a denoiser from noisy data alone. In particular, the proposed
method can learn below the noise level of the data, which is necessary for obtaining posterior sam-
ples with DMs. Our denoiser performs on par with supervised learning in noise levels below the
measurement noise and can be used in diffusion sampling schemes. Moreover, our method can be
extended to learn from noisy and incomplete measurements associated with a single degradation
operator, producing higher perceptual quality images than existing self-supervised generative tech-
niques. Future work will include extending this method to data with unknown noise levels (Tachella
et al., 2025a), other measurement processes (e.g., MRI), as well as leveraging model architectures
specific to image restoration (e.g., unrolled networks).
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To allow complete reproducibility, we commit to publishing the full code upon acceptance.
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