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Abstract

Multimodal Named Entity Recognition001
(MNER) focuses on identifying entities of002
predefined categories within text by utilizing003
information from multiple sources, primarily004
text and images. While this task has seen005
progress in high-resource languages, it remains006
challenging for low-resource settings like Urdu,007
where social media content is often short,008
informal, and ambiguous. To address this, we009
propose KE-UMNER, a knowledge-enriched010
MNER framework that augments multimodal011
input with external semantic knowledge. It012
leverages Large Language Models to generate013
entity-specific contextual knowledge and014
employs a vision-language model (BLIP)015
to produce natural language captions from016
images. These knowledge signals are inte-017
grated with the input through a cross-modal018
attention mechanism and decoded via a019
BiLSTM-CRF layer for sequence labeling.020
Experiments on the Twitter2015-Urdu dataset021
show that KE-UMNER achieves a 12.08%022
absolute improvement in F1-score over prior023
state-of-the-art models. Ablation studies024
confirm the contribution of external knowledge025
sources, and case analyses demonstrate im-026
proved disambiguation in noisy, low-resource027
contexts.028

1 Introduction029

Named Entity Recognition (NER) is a fundamen-030

tal task in natural language processing (Grishman031

and Sundheim, 1996) that involves identifying and032

classifying mentions of entities such as persons,033

organizations, and locations within unstructured034

text (Tjong Kim Sang, 2002; Tjong Kim Sang and035

De Meulder, 2003). While significant progress has036

been made in NER for high-resource languages,037

particularly under clean, monomodal conditions,038

the growing prevalence of multimodal content on039

social media platforms has introduced new chal-040

lenges. Posts on platforms such as Twitter and041

(a) (b)Text: [Paula (MISC)] has been
waiting to be adopted for 2 years!
Could U offer her a home? 

Text: [Attenborough(PER)] and [Ben
Kingsley(PER)] with their [Oscars(MISC)].

Figure 1: Two examples of Multimodal Named Entity
Recognition. Named entities and their types are high-
lighted.

Instagram often contain brief, informal textual con- 042

tent accompanied by images, creating a complex 043

interaction between modalities that demands more 044

sophisticated modeling. 045

Multimodal Named Entity Recognition (MNER) 046

addresses these challenges by leveraging both vi- 047

sual and textual content for more accurate entity 048

classification (Mai et al., 2024; Yu et al., 2020). In 049

this context, images serve as crucial disambigua- 050

tion cues, especially when the textual context is 051

insufficient or ambiguous (Liu et al., 2024a). As 052

shown in Figure 1, traditional NER systems may 053

misclassify entities due to ambiguity. For instance, 054

in (a), the name “Paula” could be interpreted as 055

a person, but the accompanying image reveals it 056

refers to a dog, suggesting a MISC classification. 057

Similarly, in (b), the term "Oscars" might be misin- 058

terpreted as an organization, but the image clarifies 059

it refers to the prestigious film awards. 060

However, MNER becomes notably more chal- 061

lenging in low-resource languages like Urdu. So- 062

cial media posts in Urdu are typically short, lack 063

capitalization, and exhibit flexible word order and 064

rich morphology, factors that amplify the ambiguity 065

inherent in brief texts. These linguistic challenges 066

are discussed in detail in Appendix A. Despite Urdu 067

being spoken by over 70 million native and more 068

than 100 million second-language speakers across 069
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Pakistan and India, it remains underexplored in070

MNER compared to high-resource languages like071

English (Liang et al., 2024). The scarcity of anno-072

tated datasets and strong baselines further compli-073

cates model development and evaluation (Ahmed074

et al., 2024).075

To address these challenges, we propose KE-076

UMNER, a Knowledge-Enriched Multimodal077

Named Entity Recognition framework. Rather than078

relying solely on limited in-text or in-image cues,079

KE-UMNER enriches multimodal inputs with ex-080

ternal knowledge from vision-language models081

and large language models. Specifically, we uti-082

lize BLIP (Li et al., 2022) to generate image083

captions that translate visual content into natural084

language, and incorporate LLM-generated entity-085

specific prompts that provide supplementary con-086

text for ambiguous mentions. These signals are087

integrated into the model through a cross-modal088

fusion architecture followed by a structured predic-089

tion layer for sequence labeling.090

We evaluate KE-UMNER on the Twitter2015-091

Urdu dataset (Ahmad et al., 2025), which reflects092

the noisy, multimodal nature of real-world social093

media in a low-resource setting. KE-UMNER sig-094

nificantly outperforms strong unimodal and multi-095

modal baselines, particularly where text and image096

cues alone are insufficient. These results highlight097

the value of external knowledge as a complemen-098

tary modality and suggest new directions for NER099

in low-resource scenarios.100

The key contributions of our work are as follows:101

• We introduce KE-UMNER, a knowledge-102

enriched framework for MNER in low-103

resource languages, which incorporates exter-104

nal knowledge to address ambiguity in short,105

informal social media text.106

• Our approach fuses LLM-generated contex-107

tual cues and BLIP-derived image captions108

using a cross-modal attention mechanism, en-109

abling effective integration of textual, visual,110

and external signals.111

• We evaluate KE-UMNER on the Twitter2015-112

Urdu dataset, achieving significant improve-113

ments over unimodal and multimodal base-114

lines, especially in ambiguous cases. Ablation115

and case studies further validate the contribu-116

tions of each module in our framework.117

2 Related Work 118

2.1 Multimodal Named Entity Recognition 119

Multimodal Named Entity Recognition extends tra- 120

ditional NER by incorporating visual context along- 121

side text. Early NER systems relied solely on tex- 122

tual features, leveraging CNNs (Collobert et al., 123

2011) and BiLSTM-CRF architectures (Huang 124

et al., 2015). The advent of pre-trained language 125

models like BERT (Devlin et al., 2019) and XLM- 126

RoBERTa (Conneau et al., 2020; Souza et al., 2020) 127

led to significant improvements through contextu- 128

alized textual representations. 129

Recent MNER methods focus on improving 130

cross-modal alignment via cross-attention (Li et al., 131

2023; Yu et al., 2020), hierarchical visual pre- 132

fixes (Chen et al., 2022b), and variational autoen- 133

coders (Zhou et al., 2022). Other enhancements in- 134

clude uncertainty modeling (Liu et al., 2022), rela- 135

tion classification (Sun et al., 2020; Xu et al., 2022), 136

and query grounding (Jia et al., 2023). To enrich 137

semantic representations, external knowledge is of- 138

ten introduced through scene graphs (Wang et al., 139

2023), multimodal graphs (Zhang et al., 2021), or 140

label-based supervision (Wang et al., 2022). 141

However, the majority of MNER research has 142

focused on high-resource languages. Low-resource 143

languages like Urdu remain underexplored and 144

present unique challenges due to scarce anno- 145

tations, flexible word order, and complex mor- 146

phology. These limitations highlight the need 147

for more adaptable, knowledge-enhanced MNER 148

frameworks capable of effectively handling noisy, 149

multimodal data in under-resourced settings. 150

2.2 Pre-trained Vision and Language Models 151

Pre-trained vision-language models (VLMs) have 152

advanced multimodal learning by aligning textual 153

and visual features through large-scale image–text 154

pretraining. Models such as ViLBERT (Lu 155

et al., 2019), UNITER (Chen et al., 2020), and 156

CLIP (Radford et al., 2021) provide strong multi- 157

modal representations transferable to downstream 158

tasks. BLIP (Li et al., 2022) further improves 159

alignment through bootstrapped image captioning, 160

converting visual content into natural language for 161

easier integration. LLMs like GPT offer comple- 162

mentary contextual knowledge, generating entity 163

descriptions and background prompts that compen- 164

sate for missing or ambiguous textual cues (Hou 165

et al., 2024). 166
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Our work integrates both modalities: BLIP-167

generated captions serve as visual knowledge,168

while GPT-derived prompts offer entity-level con-169

text. These signals are fused with the original in-170

put through a unified encoder, improving cross-171

modal alignment and enhancing robustness in low-172

resource scenarios.173

3 Methodology174

3.1 Task Formulation175

We formulate MNER as a sequence labeling task.176

Given a text-image pair (T, V ), where T =177

{w1, w2, . . . , wn} is a sequence of n tokens and178

V is the associated image, the goal is to predict179

a label sequence Y = {y1, y2, . . . , yn}. Each180

yi corresponds to the entity label for token wi,181

following the BIO tagging scheme, where yi ∈182

{B-type, I-type,O} and type denotes predefined en-183

tity categories such as PER, LOC, ORG, or MISC.184

3.2 Overall Architecture185

KE-UMNER is a knowledge-enriched MNER186

framework aimed at improving entity recognition187

in low-resource languages like Urdu. KE-UMNER188

integrates external knowledge from LLMs and189

VLMs to enhance entity disambiguation. The over-190

all architecture, illustrated in Figure 2, consists191

of six modules: (1) LLM-Augmented Contextual192

Integration Module (LACIM), (2) Text Represen-193

tation Module, (3) Visual Representation Module,194

(4) Text Self-Attention Module, (5) Cross-Modal195

Fusion Module, and (6) CRF Decoder Module.196

LACIM enriches the input by retrieving entity-197

specific knowledge via GPT and generating se-198

mantic image captions through BLIP, forming a199

knowledge-enhanced sequence. The Text Repre-200

sentation Module processes this input using a pre-201

trained Urdu-BERT, producing contextualized em-202

beddings. Simultaneously, the Visual Representa-203

tion Module extracts spatial features from images204

using ResNet-152, projecting them into a shared205

embedding space. The Text Self-Attention Mod-206

ule applies Transformer-based attention to high-207

light important contextual cues. The Cross-Modal208

Fusion Module (Yu et al., 2020) combines tex-209

tual, visual, and external knowledge streams using210

multi-head attention and gating to prioritize rele-211

vant features. Finally, the CRF Decoder (Lafferty212

et al., 2001), comprising a BiLSTM and CRF layer,213

predicts BIO-tagged entity labels while modeling214

sequential dependencies. Together, these compo-215

nents enable KE-UMNER to robustly handle ambi- 216

guity and noise, delivering strong performance in 217

challenging multimodal, low-resource settings. 218

3.3 LLM-Augmented Contextual Integration 219

Module 220

LACIM is a core component of KE-UMNER that 221

enhances entity recognition by enriching local tex- 222

tual and visual cues with external knowledge. Tra- 223

ditional MNER models often struggle with ambigu- 224

ous mentions, especially in low-resource languages. 225

To address this, LACIM integrates two knowledge 226

extraction strategies: (1) LLM-based Contextual 227

Knowledge Extraction (LCKE) and (2) BLIP-based 228

Image Captioning with Urdu Translation. 229

The process involves two steps: First, entity 230

candidates are identified, and relevant contextual 231

knowledge is retrieved using a large language 232

model (GPT). Second, image captions are gener- 233

ated via BLIP and translated into Urdu to align 234

visual information with the text. This knowledge- 235

enhanced input improves entity disambiguation, 236

particularly when local context is insufficient. 237

3.3.1 LLM-Based Contextual Knowledge 238

Extraction 239

LCKE enhances entity recognition by integrating 240

external knowledge to improve disambiguation, 241

particularly in low-resource languages like Urdu. 242

Traditional NER models often struggle due to lim- 243

ited context; LCKE addresses this by retrieving 244

rich, linguistically and culturally appropriate infor- 245

mation using LLMs. 246

Identifying Entity Candidates. The first step in 247

knowledge extraction is detecting potential entity 248

mentions in the input text. KE-UMNER utilizes a 249

Transformer-based encoder to process the sentence: 250

Torig = (w1, w2, . . . , wn), (1) 251

the model applies BIO tagging to classify each 252

token. Entity spans are extracted as 253

S = {s1, s2, . . . , sm}, (2) 254

where each si represents a detected entity mention. 255

These spans are used as queries for knowledge 256

retrieval. 257

Contextual Knowledge Extraction Using LLM. 258

After detecting entity candidates, LCKE constructs 259

structured prompts and queries GPT-3.5 to retrieve 260

relevant contextual knowledge: 261

KGPT = (k1, k2, . . . , km). (3) 262

3



صوفیہ نےپیرس میں آیفل ٹاور کا دوره کیا۔ 

Entity Candidates
Detection Module

Urdu_BERT Encoder

Cross-Modal Fusion Module

CRF Decoding

ResNet-152

7x7x2048

FC

ChatGpt

Image Captioning
Module

, . . . ,

[Original Sentence] + [GPT Knowledge] + [Image Caption]

پیرس فرانس کا ایک مشہور شہر ہے۔ آیفل ٹاور
پیرس کا ایک مشہور تاریخی مقام ہے۔ صوفیہ ایک

مسافر ہو سکتی ہے

B-
OTHER O B-PER I OO

ایک عورت آیفل ٹاور کے سامنے کھڑی ہے۔

صوفیہ
 پیرس 
آیفل ٹاور

V1 V2 V3 V48 V49. . .

t0 t1 t2 tn tn+m+p+2

Text
Representation

Module, . . . ,

Transformer Layer with
Self-Attention
Q K V

r0 r1 rn+m+p+2r2 , . . . ,

Text Self-Attention Module

Visual
Representation

Module

h0 h1 hn+m+p+2h2 , . . . , hn

LACIM
LLM-Based Contextual Knowledge

Extraction (LCKE)

Figure 2: Overall Architecture of KE-UMNER Framework.

This external knowledge enriches the input repre-263

sentation, enhances semantic understanding, and264

improves entity disambiguation, particularly for265

low-resource languages like Urdu where annotated266

corpora are limited. Prompt construction is tailored267

according to entity type: biographical details for268

PER, historical and geographical context for LOC,269

organizational attributes for ORG, and conceptual270

information for MISC. Further details, including271

structured prompt templates and examples, are pro-272

vided in Appendix B.273

3.3.2 BLIP-Based Image Captioning274

In multimodal settings, images can provide valu-275

able cues for entity recognition, but not all images276

are directly helpful. To ensure effective utilization,277

we employ BLIP to generate descriptive captions278

that translate visual content into text.279

Given an input image V , BLIP produces a cap-280

tion:281

CIMG = (c1, c2, . . . , cp) (4)282

where ci are the caption tokens. This caption is283

further translated into Urdu using GPT:284

CIMG_Urdu = (c′1, c
′
2, . . . , c

′
p) (5)285

The LLM-extracted knowledge KGPT and Urdu- 286

translated captions CIMG_Urdu are concatenated 287

with the original input text to form a knowledge- 288

enriched sequence. This augmented input is then 289

processed by the Text Representation Module using 290

Urdu-BERT. 291

By integrating structured knowledge and visual 292

descriptions, KE-UMNER enhances disambigua- 293

tion, aligns cross-modal information, and improves 294

recognition performance in noisy Urdu social me- 295

dia content. 296

3.4 Text Representation Module 297

The Text Representation Module encodes 298

knowledge-augmented inputs into contextual 299

embeddings. It integrates the original text Torig, 300

LLM-extracted knowledge KGPT, and BLIP- 301

generated Urdu captions CIMG_Urdu, combined 302

as: 303

Tfinal = [Torig;KGPT;CIMG_Urdu], (6) 304

where each component is tokenized into 305

(w1, . . . , wn, k1, . . . , km, c1, . . . , cp). Following 306

BERT conventions, we insert [CLS] and [SEP] 307

tokens, and obtain input embeddings by summing 308
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word, segment, and positional embeddings. Pass-309

ing the resulting sequence through Urdu-BERT310

yields contextualized token representations:311

T = (t0, t1, . . . , tn+m+p+1), (7)312

where each ti ∈ Rd captures semantic and external313

knowledge features.314

3.5 Visual Representation Module315

The Visual Representation Module extracts struc-316

tured visual features aligned with the textual modal-317

ity. Each input image is resized to 224×224 pixels318

and passed through ResNet-152, producing a 7×7319

grid of spatial features, each a 2048-dimensional320

vector:321

U = {u1, u2, . . . , u49}. (8)322

To align with text embeddings, visual features are323

projected into a shared d-dimensional space via a324

linear transformation:325

V = W⊤
u U = {v1, v2, . . . , v49}, (9)326

where Wu ∈ R2048×d is a learnable matrix. The327

resulting embeddings V are passed to the Cross-328

Modal Fusion Module for joint multimodal pro-329

cessing.330

3.6 Text Self-Attention Module331

To capture linguistic dependencies and contextual332

relationships in Urdu text, KE-UMNER incorpo-333

rates a Transformer-based Self-Attention Layer.334

This module allows the model to dynamically335

weigh the importance of different tokens, crucial336

for disambiguating entities based on surrounding337

context.338

Operating on the contextualized embeddings339

from Urdu-BERT, the input sequence is:340

C = (c0, c1, . . . , cn+1) (10)341

The self-attention mechanism computes interac-342

tions among tokens:343

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V

(11)344

where Q, K, and V are linear projections of C, and345

dk is the dimensionality scaling factor.346

The attention-weighted outputs are processed347

through a feed-forward network, producing the en-348

hanced textual representations:349

R = (r0, r1, . . . , rn+1) (12)350

These refined embeddings are then passed to the351

Cross-Modal Fusion Module.352

3.7 Cross-Modal Fusion Module 353

To achieve cross-modal alignment, we adopt the 354

Cross-Modal Fusion strategy based on the ap- 355

proach outlined in (Yu et al., 2020), adapting it 356

to integrate textual, visual, and external knowledge 357

representations. KE-UMNER uses a Cross-Modal 358

Transformer (CMT) where visual features V are 359

treated as queries and textual embeddings R as keys 360

and values. Cross-modal attention is computed as: 361

Attni(V,R) = softmax

(
(WQ

i V )⊤(WK
i R)√

d/m

)
(WV

i R)⊤

(13)

362

MH-Attn(V,R) = W ′
(
[CA1(V,R), . . . ,CAm(V,R)]

)⊤
(14)

363

where WQ
i , WK

i , and W V
i are learnable pro- 364

jection matrices across m attention heads. The 365

fused features are refined via residual connections, 366

Layer Normalization, and a Feed-Forward Network 367

(FFN): 368

P̃ = LayerNorm(V + MH-CA(V,R)), (15) 369

P = LayerNorm(P̃ + FFN(P̃ )), (16) 370

producing multimodal embeddings P . To further 371

refine alignment, a second CMT layer reverses the 372

attention direction, using P as both queries and 373

keys/values, resulting in image-aware word repre- 374

sentations: 375

A = (a0, a1, . . . , an+1), (17) 376

where each ai captures combined textual and vi- 377

sual semantics. Word-aware visual features are 378

computed by querying visual regions with text em- 379

beddings: 380

Q = (q0, q1, . . . , qn+1), (18) 381

where each qi represents the most semantically 382

aligned visual context for the corresponding token. 383

A gating mechanism selectively integrates visual 384

cues: 385

g = σ(W⊤
a A+W⊤

q Q), (19) 386

where Wa and Wq are trainable parameters and σ 387

is the sigmoid activation. The final word-aware 388

visual representation is obtained as: 389

B = g ⊙Q, (20) 390

where ⊙ denotes element-wise multiplication. This 391

selective fusion emphasizes meaningful visual- 392

textual interactions while mitigating irrelevant vi- 393

sual noise. 394
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3.8 CRF Decoder Module395

After obtaining the image-aware word represen-396

tations A and word-aware visual representations397

B, we concatenate them to form the multimodal398

hidden states:399

hi = Concat(ai, bi), for i = 0, . . . , n+1, (21)400

resulting in H = {h0, h1, . . . , hn+1}, where each401

hi ∈ R2d integrates both textual and visual infor-402

mation.403

The sequence H is then passed through a Bidi-404

rectional Long Short-Term Memory (BiLSTM) net-405

work to capture contextual dependencies from both406

directions. Each output hBiLSTM
i is the concatena-407

tion of forward and backward hidden states, provid-408

ing a richer representation for sequence labeling.409

On top of the BiLSTM outputs, a Conditional410

Random Field (CRF) layer models dependencies411

between adjacent labels, improving sequence-level412

predictions. The probability of a label sequence413

Y = {y0, y1, . . . , yn+1} is computed as:414

P (Y | (T, V )) =
exp(score(H,Y ))∑

Y ′∈Y exp(score(H,Y ′))
,

(22)415

where the score combines transition and emis-416

sion scores across the sequence. Emission scores417

are computed by projecting each hBiLSTM
i with a418

learned label-specific weight.419

The model is trained by minimizing the negative420

log-likelihood of the correct label sequence:421

L = − log(P (Y | (T, V ))). (23)422

This objective encourages correct entity predictions423

while capturing global sequence consistency.424

4 Experiments425

4.1 Settings426

Dataset We evaluate KE-UMNER on the427

Twitter2015-Urdu dataset, a multilingual extension428

of the widely used Twitter2015 benchmark. The429

dataset consists of short Urdu tweets paired with430

images, reflecting the informal and diverse nature431

of social media content. Each instance is anno-432

tated using the BIO tagging scheme with four en-433

tity types: PER, LOC, ORG, and MISC. Further dataset434

statistics are provided in Appendix C.435

Baselines We compare KE-UMNER against two436

baseline categories: (1) Text-only models, in-437

cluding LSTM-CRF, BiLSTM-CRF (Huang et al.,438

2015), HBiLSTM-CRF (Lample et al., 2016), 439

CNN-BiLSTM-CRF (Ma and Hovy, 2016), BERT 440

(Devlin et al., 2019), and BERT-CRF (Souza et al., 441

2020), which rely solely on text and often struggle 442

in visually rich contexts. (2) Multimodal models, 443

such as UMT (Yu et al., 2020), RpBERT (Sun et al., 444

2021), HVPNET (Chen et al., 2022a), MAF (Xu 445

et al., 2022), MGCMT (Liu et al., 2024b), and 446

U-MNER(Ahmad et al., 2025), which jointly lever- 447

age text and image features for entity recognition. 448

More details are provided in Appendix D. 449

Evaluation Metrics We evaluate model perfor- 450

mance using standard NER metrics: Precision, Re- 451

call, and F1-score, with F1 as the primary metric. 452

Precision reflects the correctness of predicted enti- 453

ties, while recall measures coverage of true entities. 454

Metrics are computed using exact span matching, 455

reported per entity type and overall. 456

Implementations Experiments were performed 457

using PyTorch on a system with an NVIDIA RTX 458

4090 GPU. The Urdu-BERT base model was fine- 459

tuned for textual embeddings, while ResNet-152 460

was used for visual feature extraction. Knowledge 461

augmentation was done using GPT-3.5, and image 462

captions were generated with the BLIP model (Li 463

et al., 2022). Key hyperparameters included a learn- 464

ing rate of 5 × 10−5, a dropout rate of 0.1, and a 465

batch size of 16. The model processed sequences 466

with a maximum length of 128 tokens and utilized 467

12 cross-modal attention heads for multimodal in- 468

tegration. 469

4.2 Results and Analysis 470

Table 1 presents the experimental results on the 471

Twitter2015-Urdu dataset. We evaluate six text- 472

only models and four multimodal models, reporting 473

Precision (P), Recall (R), and F1-score (F1) across 474

entity types: PER (Person), LOC (Location), ORG 475

(Organization), and MISC (Miscellaneous). 476

First, we examine the performance of text- 477

only models, including LSTM-CRF, BiLSTM- 478

CRF, CNN-BiLSTM-CRF, BERT, and BERT-CRF. 479

While LSTM-based models demonstrate reason- 480

able results, transformer-based models such as 481

BERT and BERT-CRF outperform them by leverag- 482

ing stronger contextual representations. However, 483

despite their improvements, text-only models strug- 484

gle to resolve entity ambiguities in short, noisy, or 485

visually grounded social media posts, where textual 486

cues alone are insufficient. 487
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Modality Methods Single Type (F1) Overall
PER LOC ORG MISC P R F1

Text

LSTM-CRF 63.36 56.90 34.85 16.42 56.44 45.46 50.36
BiLSTM-CRF 64.97 57.82 34.28 19.99 58.08 46.95 51.93

HBiLSTM-CRF 67.83 58.71 30.92 18.05 57.10 49.04 52.76
CNN-BiLSTM-CRF 58.23 48.51 28.61 19.47 56.96 45.23 50.42

BERT 72.01 67.74 39.89 15.36 62.08 57.22 59.55
BERT-CRF 72.85 68.16 41.29 16.65 63.32 56.87 59.92

Text+Vision

MGCMT 69.71 65.31 42.60 24.36 57.28 55.57 56.41
MAF 73.75 69.32 47.09 25.30 59.85 61.30 60.57

RpBERT 71.47 68.48 39.07 11.11 64.32 57.69 60.82
UMT 68.08 64.77 40.71 25.80 58.21 55.41 54.07

HVPNET 72.28 63.47 43.47 25.80 62.93 59.03 60.92
U-MNER 73.83 70.71 47.91 23.32 63.27 62.24 62.75

KE-UMNER (Ours) 86.42 80.59 68.25 52.51 74.08 75.60 74.83

Table 1: Performance comparison of text-based and multimodal NER models on the Twitter15-Urdu dataset.
KE-UMNER achieves the best performance across all metrics.

Next, multimodal models, including UMT, Rp-488

BERT, HVPNET, and U-MNER, show consistent489

gains over text-only baselines. By incorporating490

visual information, these models better handle am-491

biguous or underspecified entities. Nevertheless,492

existing multimodal approaches are limited when493

image cues are weak or misleading, as they lack494

external semantic reinforcement.495

Finally, KE-UMNER achieves the best overall496

performance, with an F1-score of 74.83%, sig-497

nificantly outperforming U-MNER (62.75%) by498

12.08%. KE-UMNER also achieves strong per-499

entity F1-scores: 86.42% (PER), 80.59% (LOC),500

68.25% (ORG), and 52.51% (MISC), maintaining501

balanced Precision (74.08%) and Recall (75.60%).502

These results demonstrate that integrating LLM-503

extracted knowledge and BLIP-generated captions504

effectively enhances multimodal entity recognition,505

particularly by mitigating ambiguities and enrich-506

ing contextual understanding. By fusing textual, vi-507

sual, and external knowledge signals, KE-UMNER508

sets a new benchmark for Urdu MNER in low-509

resource, multimodal settings.510

4.3 Ablation Study511

We evaluate the impact of KE-UMNER’s knowl-512

edge components by ablating the LLM-based Con-513

textual Knowledge Extraction (LCKE) and BLIP-514

generated image captions. Table 2 reports changes515

in Precision (P), Recall (R), and F1-score (F1). Re-516

Methods P R F1

KE-UMNER (Full Model) 74.08 75.60 74.83
w/o LCKE 57.38 59.57 58.50
w/o Image Captions 73.42 74.89 74.15
w/o LCKE & Image Captions 57.33 59.82 58.55

Table 2: Ablation results showing the effect of removing
LLM-based knowledge (LCKE) and BLIP-generated
image captions on KE-UMNER’s performance.

moving LCKE leads to a significant F1 drop from 517

74.83% to 58.50%, underscoring its key role in 518

resolving ambiguous mentions. Excluding image 519

captions causes a smaller decline to 74.15%, show- 520

ing that visual context is helpful but less essential. 521

Removing both components drops F1 to 58.55%. 522

These results highlight that KE-UMNER’s strong 523

performance stems from the synergy of multimodal 524

inputs and external knowledge, with LLM-based 525

knowledge playing the most significant role. 526

4.4 Case Study 527

We highlight KE-UMNER’s effectiveness using 528

examples from the Twitter2015-Urdu dataset (Fig- 529

ure 3). Text-only models (e.g., BERT-CRF) and 530

multimodal models (e.g., HVPNET, U-MNER) of- 531

ten misclassify ambiguous mentions, especially 532

when visual cues are limited. KE-UMNER ad- 533

dresses this by combining text, BLIP captions, and 534

LLM-based contextual knowledge. 535
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Text: 

Caption:
ایک مرد ٹینس کھلاڑی اپنے ریکیٹ سے گیند مارنے والا ہے۔

RT@Wimbledon: [Federer (PER)] leads the way for winners hit
at [#Wimbledon (OTHER)] (since 1992). A look at the top

seven... http://t.co/yrbqVp7ygD

GPT
Extracted

Knowledge:

راجر فیڈرر ایک مشہور سوئس ٹینس کھلاڑی ہیں جوگرینڈ سلیم ٹائٹلز کی بڑی تعداد جیتنے 
کے لیے مشہور ہیں، جبکہ ومبلڈن ایک تاریخی  اور باوقار ٹینس ٹورنامنٹ ہے جو ہر سال

لندن میں منعقد ہوتا ہے۔

HVPNET:

U-MNER:
KE-UMNER:

1-PER

1-PER
1-PER

There is a woman posing in sports attire, promoting a fitness event
and activewear brand.

RT@EleVenbyVenus: Did you get the invite? This Saturday at
@FSPalmBeach, meet [Venus (PER)], take a class with her! 

http://t.co/eZSLCsLoKm

Venus is a renowned tennis player known for her
exceptional skills.

2-LOC

2-LOC
2-MISC

Gold Labels: 1-PER 2-OTHER

HVPNET:

U-MNER:
KE-UMNER:

1-MISC

1-MISC
1-PER

Gold Labels: 1-PER

آرٹی@ایلیوینبائیوینس:کیا آپ کو دعوت نامہ ملا؟ اس ہفتے کے روز@ ایف_ایس_پام_بیچ میں،
[وینس(PER)] سے ملیے اور ان کے ساتھ ایک کلاس لیجیے! 

BERT_CRF: 1-MISC

BERT_CRF: 1-PER 2- None

Roger Federer is a renowned Swiss tennis player known for winning
a significant number of Grand Slam titles, while Wimbledon is a
historic and prestigious tennis tournament held annually in London.

آرٹی@ویمبلڈن:[ فیڈرر(PER)][#ویمبلڈن(OTHER)](1992 سے) میں سب سے
زیاده فاتحانہ شاٹس مارنےوالےکھلاڑیوں میں سب سے آگےہیں۔ ٹاپ سات پر ایک نظر۔۔۔

There is a male tennis player about to hit the ball with his racket.

ایک عورت ہے جو کھیلوں کے لباس میں ایک فٹنس ایونٹ اور ایکٹیو ویئر برانڈ کی تشہیر
کرتے ہوئے۔

وینس ایک معروف ٹینس کھلاڑی ہیں جو اپنی ماہرانہ کھیلنے کی وجہ سے مشہور ہیں۔

Text: 

Caption:

GPT
Extracted

Knowledge:

(a)

(b)

Figure 3: Case study illustrating how LLM-extracted knowledge and image captions enhance entity recognition by
resolving ambiguities in multimodal NER.

In case (a), “ ” (Federer) and “ ” (Wim-536

bledon) are mentioned. While Federer is correctly537

identified, Wimbledon is misclassified as LOC by538

baselines. KE-UMNER correctly labels it as MISC539

using LLM knowledge linking it to a tennis tourna-540

ment.541

In case (b), “ ” (Venus) is misclassified due to542

vague context. Visual cues (“a woman in sports at-543

tire”) offer limited help. KE-UMNER correctly pre-544

dicts PER by recognizing Venus as a tennis player545

via LLM knowledge. These examples underscore546

the importance of integrating external knowledge547

with multimodal signals for disambiguating com-548

plex entity mentions.549

5 Conclusion550

We proposed KE-UMNER, a knowledge-enriched551

multimodal named entity recognition framework552

tailored for the Urdu language. By integrating553

LLM-generated prompts and BLIP-based image554

captions into a unified cross-modal architecture,555

KE-UMNER effectively enhances entity disam-556

biguation in noisy, low-resource social media 557

contexts. Experiments on the Twitter2015-Urdu 558

dataset show that KE-UMNER significantly outper- 559

forms strong unimodal and multimodal baselines, 560

particularly for ambiguous or visually grounded 561

mentions. Our findings highlight the importance 562

of external knowledge in improving MNER perfor- 563

mance for under-resourced languages. 564

Limitations 565

While KE-UMNER demonstrates strong perfor- 566

mance in low-resource multimodal NER, several 567

limitations remain. First, the model relies on large- 568

scale pretrained language and vision-language 569

models, posing scalability challenges in resource- 570

constrained environments. Second, the current 571

study focuses exclusively on Urdu; the model’s 572

generalizability to other low-resource or morpho- 573

logically rich languages is yet to be examined. 574

Third, external knowledge sources, LLM-generated 575

prompts and BLIP-based captions, are not guaran- 576

teed to be accurate and may introduce noise or 577
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cultural bias. Addressing these limitations in fu-578

ture work involves exploring lightweight alterna-579

tives to current architectures, extending the frame-580

work cross-linguistically, and investigating semi-581

supervised approaches to mitigate reliance on an-582

notated multimodal data.583

Ethics Statement584

This work aligns with the ACL Ethics Policy and585

aims to support linguistic equity by advancing NLP586

for low-resource languages. We use publicly avail-587

able datasets and non-sensitive content. While ex-588

ternal models like LLMs and VLMs enhance con-589

textual understanding, they may introduce biases or590

inaccuracies. Future research should address these591

concerns to ensure fairness and cultural relevance592

in multimodal NER systems.593
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Appendix812

Entity Type Train Val Test
PER 2,255 558 1,939
LOC 2,076 529 1,781
ORG 897 240 825
MISC 946 226 673
Total Entities 6,174 1,553 5,218
Total Tweets 4,000 1,000 3,257

Table 3: Entity and tweet distribution in the Twitter2015-
Urdu dataset across train, validation, and test splits.

A Challenges in Urdu Named Entity813

Recognition814

Urdu presents several unique challenges for NER,815

primarily due to its linguistic structure, informal816

usage, and lack of orthographic cues. Unlike En-817

glish, Urdu lacks capitalization, making it diffi-818

cult to distinguish proper nouns such as “ ”819

(Parveen Shakir) from common words based only820

on surface form. Entity interpretation in Urdu is821

highly context sensitive. A token like “ ” (As-822

mara) may denote a person in one sentence and a823

location in another, depending entirely on context.824

Ambiguity further arises from overlapping surface825

forms, such as “ ” (Riaz) being interpretable as826

either a person or the city “ ” (Riyadh). Mor-827

phological complexity adds another layer of dif-828

ficulty. Inflectional and agglutinative processes829

can shift a named entity into a non-entity role.830

For instance, “ ” (Nisar) becomes an adjective831

in “ ” (self-sacrificing), and “ ” (Mukhtar)832

becomes a descriptor in “ ” (independent).833

Urdu also allows flexible word order, enabling834

multiple valid sentence structures with the same835

meaning. For example, “ ”836

and “ ” express the same 837

idea with different token sequences, challenging 838

models that rely on positional patterns. Finally, 839

spelling variations and orthographic inconsisten- 840

cies are common in informal settings. The name 841

"Samad" may appear as “ ” “ ” or “ ” . Sim- 842

ilarly, expressions like “ ” (with) may appear 843

joined as “ ” complicating tokenization. Fig- 844

ure 5 provides examples illustrating each of these 845

challenges in detail. 846

B Prompt Construction for LLM-Based 847

Contextual Knowledge Extraction 848

To retrieve relevant contextual knowledge for each 849

entity, we design structured prompts tailored to the 850

entity type. The prompt structure is adapted for 851

four categories: PER (Person), LOC (Location), ORG 852

(Organization), and MISC (Miscellaneous). 853

For PER entities, prompts focus on biographical 854

details, achievements, and contributions. For LOC 855

entities, the prompts emphasize historical signifi- 856

cance, geography, and cultural relevance. For ORG 857

entities, they retrieve information about the organi- 858

zation’s mission, operations, and societal role. For 859

MISC entities, the prompts aim to clarify concepts, 860

events, or notable phenomena relevant to Urdu lin- 861

guistic and cultural contexts. 862

Figure 4 illustrates the structured prompt con- 863

struction process, outlining task descriptions, in- 864

struction templates, entity-specific examples, and 865

expected outputs. This ensures that the LLM- 866

generated knowledge is precise, culturally aligned, 867

and supports accurate entity disambiguation. 868

C Dataset Details 869

The Twitter2015-Urdu dataset consists of 8,257 870

text-image pairs, specifically designed for Multi- 871

modal Named Entity Recognition in Urdu. It con- 872

tains four entity types: PER (person), LOC (location), 873

ORG (organization), and MISC (miscellaneous). The 874

dataset is divided into training (80%), validation 875

(10%), and test (10%) sets. The entity distribution 876

is as follows: 2,255 person (PER) entities in train- 877

ing, 558 in validation, and 1,939 in the test set; 878

2,076 location (LOC) entities in training, 529 in val- 879

idation, and 1,781 in the test set; 897 organization 880

(ORG) entities in training, 240 in validation, and 881

825 in the test set; and 946 miscellaneous (MISC) 882

entities in training, 226 in validation, and 673 in 883

the test set. The distribution of entities across the 884

dataset is summarized in Table 3. 885
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<Task Descriptions>

<Instructions Based on Entity Type>

<Expected Output Format>

You are an expert linguist specializing in Urdu. Your task is to generate a concise, meaningful, and culturally accurate context for the given
Urdu entity. The context should align strictly with the entity’s type (e.g., Person, Location, Organization, or Other). You must consider the
linguistic, cultural, and historical significance of the entity within the context of Urdu-speaking communities, ensuring that the generated
description reflects its relevance and importance in these communities.

For 'PER' (Person): Focus on key achievements, cultural impact, and the individual’s legacy within Urdu speaking communities.
For 'LOC' (Location): Emphasize the historical, geographical, and cultural significance, including landmarks, events, and local identity.
For 'ORG' (Organization): Provide insights into the organization’s role in the community, its mission, and impact within a societal, economic,
or cultural context.
For 'OTHER' (Other): Describe unique aspects of the entity, whether it’s a concept, phenomenon, object, or event, highlighting its relevance to
the Urdu-speaking world.

Provide the context in the following format:

Context: <Urdu Context>

<Examples>
Entity:آیفل ٹاور  (Type: LOC)
Context: آیفل ٹاور پیرس، فرانس کا مشہور لوہے کا مینار ہے جو دنیا بھر میں سیاحوں کی توجہ کا مرکز ہے۔
Entity:البرٹ آئن سٹائن  (Type: PER)
Context: البرٹ آئن سٹائن ایک معروف سائنسدان ہیں جنہوں نے نظریہ اضافیت پیش کیا اور دنیا کی فزکس کو نیا رخ دیا۔
Entity:گوگل  (Type: ORG)

Context: گل ایک عالمی سطح پر مشہور کمپنی ہے  جو انٹرنیٹ سے متعلق مختلف خدمات فراہم کرتی ہے، جن میں سرچ انجن، ای میل، اور ایڈورٹائزنگ سروسز شامل ہیں۔

Entity: بلیک ہول (Type: OTHER)

Context: بلیک ہول ایک فلکیاتی مظہر ہے جس میں کشش ثقل اتنی زیاده ہوتی ہے کہ اس سے روشنی بھی باہر نہیں نکل سکتی۔

Figure 4: Structured Prompt Construction for LLM-Based Contextual Knowledge Extraction.

D Baselines886

To evaluate KE-UMNER, we compare it with887

two categories of baseline models: text-only mod-888

els and multimodal models. Text-only models,889

such as LSTM-CRF, BiLSTM-CRF (Huang et al.,890

2015), HBiLSTM-CRF (Lample et al., 2016),891

CNN-BiLSTM-CRF (Ma and Hovy, 2016), BERT892

(Devlin et al., 2019), and BERT-CRF (Souza et al.,893

2020), rely solely on textual information for entity894

recognition. These models excel when the text is895

well-structured but struggle with ambiguous or vi-896

sually dependent entities, which are common in so-897

cial media posts. For instance, LSTM-CRF and its898

variants, such as BiLSTM-CRF, capture sequential899

dependencies but lack the ability to handle visual900

context, making them less effective for recogniz-901

ing entities in noisy or multimodal settings. BERT902

and BERT-CRF, while improving upon these meth-903

ods by providing context-aware embeddings, still904

rely entirely on textual data and miss the potential905

insights offered by accompanying images.906

On the other hand, multimodal models, includ-907

ing UMT (Yu et al., 2020), RpBERT (Sun et al.,908

2021), HVPNET (Chen et al., 2022a), MAF (Xu909

et al., 2022), MGCMT (Liu et al., 2024b), and U-910

MNER(Ahmad et al., 2025), integrate both textual911

and visual features for enhanced entity recognition.912

These models utilize visual cues to disambiguate913

entities that may be difficult to classify based on 914

text alone. For example, UMT and RpBERT use 915

cross-modal attention mechanisms to align text 916

and image representations, while HVPNET and 917

MGCMT refine multimodal integration by process- 918

ing image and text features at different levels of 919

abstraction. However, these models often strug- 920

gle to fully capture external contextual knowledge, 921

limiting their ability to handle complex entities 922

or resolve ambiguities effectively. U-MNER, the 923

predecessor of KE-UMNER, represents an earlier 924

approach to multimodal entity recognition but lacks 925

the integration of external knowledge, which is a 926

key feature of KE-UMNER’s design. This compar- 927

ison highlights KE-UMNER’s strength in combin- 928

ing both multimodal cues and external knowledge 929

for more robust entity recognition, particularly in 930

complex, real-world social media contexts. 931
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Challenges Example Sentences

Absence of
Capitalization

Context Sensitivity

Inflectional
and Agglutinative
Morphology

Free Word Order

Spelling Variations
and Orthographic
Ambiguity

("I met Parveen Shakir.") → "Parveen Shakir" as <Person>

میری ملاقات پروین شاکر سے ہوئی۔

("Asmara is very beautiful.") → "Asmara" is interpreted as a <Person>

اسمرا بہت خوبصورت ہے۔

(The self-sacrificing ones gave their lives for the country.)
جان نثار وطن کے لیے قربان ہو گئے۔

(I opened a new restaurant in Chitral.)

ایک نیا ریستوران میں نے چترال میں کھولا۔

A single named entity may appear in multiple surface forms, 
for example,  “صمد”, “سماد” and “سمد” all represent the name “Samad”

(Asmara experienced rapid development after Eritrea’s independence.)
→ "Asmara" is interpreted as a <Location>

اریٹیریا کی آزادی کے بعد اسمرا نے تیزی سے ترقی کی۔

.is an adjective meaning "devoted/self-sacrificing", not a named entity (جان نثار) →
Even though "Nisar" alone can be a name, its use in a compound changes its role.

Compound expressions like “کے ساتھ” and “کیساتھ” (both meaning “with”) may
appear with or without spaces, affecting tokenization and degrading model accuracy.

Ambiguous Named
Entities (Riaz is resident with his friend in the city of Riyadh.)

ریاض سعودی عرب کے شہر ریاض میں اپنے دوست کے ساتھ مقیم ہے۔

→(Riaz, ریاض) = <Person>

→(Riyadh, ریاض) = <Location>

(Mukhtar is the legal advisor to a sovereign state.)

مختار ایک خودمختار ریاست کے قانونی مشیر ہیں۔

it ,"خود" may refer to a person's name, but when combined with the prefix "مختار" →
becomes "خودمختار" ("autonomous/sovereign"), no longer a named entity but a
descriptive adjective.

Flexible syntax in Urdu allows multiple word orders, making entity recognition
harder for sequence-based models.

میں نے چترال میں ایک نیا ریسٹورنٹ کھولا۔

میں نے ایک نیا ریستوران چترال میں کھولا۔

Figure 5: Key challenges in Urdu Named Entity Recognition, including linguistic ambiguity, morphological
complexity, and lack of orthographic cues.
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