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Abstract

Multimodal Named Entity Recognition
(MNER) focuses on identifying entities of
predefined categories within text by utilizing
information from multiple sources, primarily
text and images. While this task has seen
progress in high-resource languages, it remains
challenging for low-resource settings like Urdu,
where social media content is often short,
informal, and ambiguous. To address this, we
propose KE-UMNER, a knowledge-enriched
MNER framework that augments multimodal
input with external semantic knowledge. It
leverages Large Language Models to generate
entity-specific contextual knowledge and
employs a vision-language model (BLIP)
to produce natural language captions from
images. These knowledge signals are inte-
grated with the input through a cross-modal
attention mechanism and decoded via a
BiLSTM-CRF layer for sequence labeling.
Experiments on the Twitter2015-Urdu dataset
show that KE-UMNER achieves a 12.08%
absolute improvement in F1-score over prior
state-of-the-art models.  Ablation studies
confirm the contribution of external knowledge
sources, and case analyses demonstrate im-
proved disambiguation in noisy, low-resource
contexts.

1 Introduction

Named Entity Recognition (NER) is a fundamen-
tal task in natural language processing (Grishman
and Sundheim, 1996) that involves identifying and
classifying mentions of entities such as persons,
organizations, and locations within unstructured
text (Tjong Kim Sang, 2002; Tjong Kim Sang and
De Meulder, 2003). While significant progress has
been made in NER for high-resource languages,
particularly under clean, monomodal conditions,
the growing prevalence of multimodal content on
social media platforms has introduced new chal-
lenges. Posts on platforms such as Twitter and

(b) Text: [Attenborough(PER)] and [Ben
Kingsley(PER)] with their [Oscars(MISC)].

(a) Text: [Paula (MISC)] has been
waiting to be adopted for 2 years!
Could U offer her a home?

Figure 1: Two examples of Multimodal Named Entity
Recognition. Named entities and their types are high-
lighted.

Instagram often contain brief, informal textual con-
tent accompanied by images, creating a complex
interaction between modalities that demands more
sophisticated modeling.

Multimodal Named Entity Recognition (MNER)
addresses these challenges by leveraging both vi-
sual and textual content for more accurate entity
classification (Mai et al., 2024; Yu et al., 2020). In
this context, images serve as crucial disambigua-
tion cues, especially when the textual context is
insufficient or ambiguous (Liu et al., 2024a). As
shown in Figure 1, traditional NER systems may
misclassify entities due to ambiguity. For instance,
in (a), the name “Paula” could be interpreted as
a person, but the accompanying image reveals it
refers to a dog, suggesting a MISC classification.
Similarly, in (b), the term "Oscars" might be misin-
terpreted as an organization, but the image clarifies
it refers to the prestigious film awards.

However, MNER becomes notably more chal-
lenging in low-resource languages like Urdu. So-
cial media posts in Urdu are typically short, lack
capitalization, and exhibit flexible word order and
rich morphology, factors that amplify the ambiguity
inherent in brief texts. These linguistic challenges
are discussed in detail in Appendix A. Despite Urdu
being spoken by over 70 million native and more
than 100 million second-language speakers across



Pakistan and India, it remains underexplored in
MNER compared to high-resource languages like
English (Liang et al., 2024). The scarcity of anno-
tated datasets and strong baselines further compli-
cates model development and evaluation (Ahmed
etal., 2024).

To address these challenges, we propose KE-
UMNER, a Knowledge-Enriched Multimodal
Named Entity Recognition framework. Rather than
relying solely on limited in-text or in-image cues,
KE-UMNER enriches multimodal inputs with ex-
ternal knowledge from vision-language models
and large language models. Specifically, we uti-
lize BLIP (Li et al., 2022) to generate image
captions that translate visual content into natural
language, and incorporate LLM-generated entity-
specific prompts that provide supplementary con-
text for ambiguous mentions. These signals are
integrated into the model through a cross-modal
fusion architecture followed by a structured predic-
tion layer for sequence labeling.

We evaluate KE-UMNER on the Twitter2015-
Urdu dataset (Ahmad et al., 2025), which reflects
the noisy, multimodal nature of real-world social
media in a low-resource setting. KE-UMNER sig-
nificantly outperforms strong unimodal and multi-
modal baselines, particularly where text and image
cues alone are insufficient. These results highlight
the value of external knowledge as a complemen-
tary modality and suggest new directions for NER
in low-resource scenarios.

The key contributions of our work are as follows:

* We introduce KE-UMNER, a knowledge-
enriched framework for MNER in low-
resource languages, which incorporates exter-
nal knowledge to address ambiguity in short,
informal social media text.

* Our approach fuses LLM-generated contex-
tual cues and BLIP-derived image captions
using a cross-modal attention mechanism, en-
abling effective integration of textual, visual,
and external signals.

¢ We evaluate KE-UMNER on the Twitter2015-
Urdu dataset, achieving significant improve-
ments over unimodal and multimodal base-
lines, especially in ambiguous cases. Ablation
and case studies further validate the contribu-
tions of each module in our framework.

2 Related Work

2.1 Multimodal Named Entity Recognition

Multimodal Named Entity Recognition extends tra-
ditional NER by incorporating visual context along-
side text. Early NER systems relied solely on tex-
tual features, leveraging CNNs (Collobert et al.,
2011) and BiLSTM-CRF architectures (Huang
et al., 2015). The advent of pre-trained language
models like BERT (Devlin et al., 2019) and XLM-
RoBERTa (Conneau et al., 2020; Souza et al., 2020)
led to significant improvements through contextu-
alized textual representations.

Recent MNER methods focus on improving
cross-modal alignment via cross-attention (Li et al.,
2023; Yu et al., 2020), hierarchical visual pre-
fixes (Chen et al., 2022b), and variational autoen-
coders (Zhou et al., 2022). Other enhancements in-
clude uncertainty modeling (Liu et al., 2022), rela-
tion classification (Sun et al., 2020; Xu et al., 2022),
and query grounding (Jia et al., 2023). To enrich
semantic representations, external knowledge is of-
ten introduced through scene graphs (Wang et al.,
2023), multimodal graphs (Zhang et al., 2021), or
label-based supervision (Wang et al., 2022).

However, the majority of MNER research has
focused on high-resource languages. Low-resource
languages like Urdu remain underexplored and
present unique challenges due to scarce anno-
tations, flexible word order, and complex mor-
phology. These limitations highlight the need
for more adaptable, knowledge-enhanced MNER
frameworks capable of effectively handling noisy,
multimodal data in under-resourced settings.

2.2 Pre-trained Vision and Language Models

Pre-trained vision-language models (VLMs) have
advanced multimodal learning by aligning textual
and visual features through large-scale image—text
pretraining. Models such as VIiLBERT (Lu
et al., 2019), UNITER (Chen et al., 2020), and
CLIP (Radford et al., 2021) provide strong multi-
modal representations transferable to downstream
tasks. BLIP (Li et al., 2022) further improves
alignment through bootstrapped image captioning,
converting visual content into natural language for
easier integration. LLMs like GPT offer comple-
mentary contextual knowledge, generating entity
descriptions and background prompts that compen-
sate for missing or ambiguous textual cues (Hou
et al., 2024).



Our work integrates both modalities: BLIP-
generated captions serve as visual knowledge,
while GPT-derived prompts offer entity-level con-
text. These signals are fused with the original in-
put through a unified encoder, improving cross-
modal alignment and enhancing robustness in low-
resource scenarios.

3 Methodology

3.1 Task Formulation

We formulate MNER as a sequence labeling task.
Given a text-image pair (7,V), where T' =
{wy,ws, ..., w,} is a sequence of n tokens and
V is the associated image, the goal is to predict
a label sequence Y = {y1,%2,...,yn}. Each
y; corresponds to the entity label for token wj,
following the BIO tagging scheme, where y; €
{B-type, I-type, O} and rype denotes predefined en-
tity categories such as PER, LOC, ORG, or MISC.

3.2 Overall Architecture

KE-UMNER is a knowledge-enriched MNER
framework aimed at improving entity recognition
in low-resource languages like Urdu. KE-UMNER
integrates external knowledge from LLMs and
VLMs to enhance entity disambiguation. The over-
all architecture, illustrated in Figure 2, consists
of six modules: (1) LLM-Augmented Contextual
Integration Module (LACIM), (2) Text Represen-
tation Module, (3) Visual Representation Module,
(4) Text Self-Attention Module, (5) Cross-Modal
Fusion Module, and (6) CRF Decoder Module.
LACIM enriches the input by retrieving entity-
specific knowledge via GPT and generating se-
mantic image captions through BLIP, forming a
knowledge-enhanced sequence. The Text Repre-
sentation Module processes this input using a pre-
trained Urdu-BERT, producing contextualized em-
beddings. Simultaneously, the Visual Representa-
tion Module extracts spatial features from images
using ResNet-152, projecting them into a shared
embedding space. The Text Self-Attention Mod-
ule applies Transformer-based attention to high-
light important contextual cues. The Cross-Modal
Fusion Module (Yu et al., 2020) combines tex-
tual, visual, and external knowledge streams using
multi-head attention and gating to prioritize rele-
vant features. Finally, the CRF Decoder (Lafferty
etal., 2001), comprising a BILSTM and CRF layer,
predicts BIO-tagged entity labels while modeling
sequential dependencies. Together, these compo-

nents enable KE-UMNER to robustly handle ambi-
guity and noise, delivering strong performance in
challenging multimodal, low-resource settings.

3.3 LLM-Augmented Contextual Integration
Module

LACIM is a core component of KE-UMNER that
enhances entity recognition by enriching local tex-
tual and visual cues with external knowledge. Tra-
ditional MNER models often struggle with ambigu-
ous mentions, especially in low-resource languages.
To address this, LACIM integrates two knowledge
extraction strategies: (1) LLM-based Contextual
Knowledge Extraction (LCKE) and (2) BLIP-based
Image Captioning with Urdu Translation.

The process involves two steps: First, entity
candidates are identified, and relevant contextual
knowledge is retrieved using a large language
model (GPT). Second, image captions are gener-
ated via BLIP and translated into Urdu to align
visual information with the text. This knowledge-
enhanced input improves entity disambiguation,
particularly when local context is insufficient.

3.3.1 LLM-Based Contextual Knowledge
Extraction

LCKE enhances entity recognition by integrating
external knowledge to improve disambiguation,
particularly in low-resource languages like Urdu.
Traditional NER models often struggle due to lim-
ited context; LCKE addresses this by retrieving
rich, linguistically and culturally appropriate infor-
mation using LLMs.

Identifying Entity Candidates. The first step in
knowledge extraction is detecting potential entity
mentions in the input text. KE-UMNER utilizes a
Transformer-based encoder to process the sentence:

-, W), ey

the model applies BIO tagging to classify each
token. Entity spans are extracted as

52{517327"-75m}7 (2)

where each s; represents a detected entity mention.
These spans are used as queries for knowledge
retrieval.

Torig = (wh w2, - .

Contextual Knowledge Extraction Using LLM.
After detecting entity candidates, LCKE constructs
structured prompts and queries GPT-3.5 to retrieve
relevant contextual knowledge:

Kgpr = (k1, k2, ..., km). )
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Figure 2: Overall Architecture of KE-UMNER Framework.

This external knowledge enriches the input repre-
sentation, enhances semantic understanding, and
improves entity disambiguation, particularly for
low-resource languages like Urdu where annotated
corpora are limited. Prompt construction is tailored
according to entity type: biographical details for
PER, historical and geographical context for LOC,
organizational attributes for ORG, and conceptual
information for MISC. Further details, including
structured prompt templates and examples, are pro-
vided in Appendix B.

3.3.2 BLIP-Based Image Captioning

In multimodal settings, images can provide valu-
able cues for entity recognition, but not all images
are directly helpful. To ensure effective utilization,
we employ BLIP to generate descriptive captions
that translate visual content into text.

Given an input image V', BLIP produces a cap-
tion:

Civg = (c1,¢2,...,¢p) 4)

where c¢; are the caption tokens. This caption is
further translated into Urdu using GPT:

/ / /
CIMG_Urdu = (€1,€, -+, Cp) ®)

The LLM-extracted knowledge Kgpr and Urdu-
translated captions Cpvg urdu are concatenated
with the original input text to form a knowledge-
enriched sequence. This augmented input is then
processed by the Text Representation Module using
Urdu-BERT.

By integrating structured knowledge and visual
descriptions, KE-UMNER enhances disambigua-
tion, aligns cross-modal information, and improves
recognition performance in noisy Urdu social me-
dia content.

3.4 Text Representation Module

The Text Representation Module encodes
knowledge-augmented inputs into contextual
embeddings. It integrates the original text Toyg,
LLM-extracted knowledge Kgpr, and BLIP-
generated Urdu captions Cpvg urdqu, combined
as:

Tinal = [Torig; K, GPT; C’IMG_Urdu]a (6)
where each component is tokenized into
(wi,...,wp,k1,...,km,c1,...,¢cp). Following

BERT conventions, we insert [CLS] and [SEP]
tokens, and obtain input embeddings by summing



word, segment, and positional embeddings. Pass-
ing the resulting sequence through Urdu-BERT
yields contextualized token representations:

T = (to, tl, e )tn+m+p+1); (7)

where each t; € R captures semantic and external
knowledge features.

3.5 Visual Representation Module

The Visual Representation Module extracts struc-
tured visual features aligned with the textual modal-
ity. Each input image is resized to 224x224 pixels
and passed through ResNet-152, producing a 7x7
grid of spatial features, each a 2048-dimensional
vector:

-, Udg ). 3
To align with text embeddings, visual features are
projected into a shared d-dimensional space via a
linear transformation:

V:WJU:{’L}l,’L}Q,...,U4g}, (9)

where W,, € R2048%d i5 4 Jearnable matrix. The
resulting embeddings V' are passed to the Cross-
Modal Fusion Module for joint multimodal pro-
cessing.

U= {ul,u2,..

3.6 Text Self-Attention Module

To capture linguistic dependencies and contextual
relationships in Urdu text, KE-UMNER incorpo-
rates a Transformer-based Self-Attention Layer.
This module allows the model to dynamically
weigh the importance of different tokens, crucial
for disambiguating entities based on surrounding
context.

Operating on the contextualized embeddings
from Urdu-BERT, the input sequence is:

C= (CO,Cl,...,Cn+1) (10)

The self-attention mechanism computes interac-
tions among tokens:

, QKT
Attention(Q, K, V') = softmax 1%
Vg
(11
where (), K, and V are linear projections of C, and
dy, is the dimensionality scaling factor.
The attention-weighted outputs are processed
through a feed-forward network, producing the en-

hanced textual representations:

(12)

R = (7‘0,’/"1, e ,rn+1)

These refined embeddings are then passed to the
Cross-Modal Fusion Module.

3.7 Cross-Modal Fusion Module

To achieve cross-modal alignment, we adopt the
Cross-Modal Fusion strategy based on the ap-
proach outlined in (Yu et al., 2020), adapting it
to integrate textual, visual, and external knowledge
representations. KE-UMNER uses a Cross-Modal
Transformer (CMT) where visual features V' are
treated as queries and textual embeddings R as keys
and values. Cross-modal attention is computed as:

Attn; (V, R) = softmax (WW> WYR)T

d/m
(13)
wwmmm:w%pmumwmeumf
(14)

where WiQ, WZ-K , and WZ»V are learnable pro-
jection matrices across m attention heads. The
fused features are refined via residual connections,
Layer Normalization, and a Feed-Forward Network

(FFN):
P = LayerNorm(V + MH-CA(V, R)),
P = LayerNorm(P 4 FEN(P)),

(15)
(16)

producing multimodal embeddings P. To further
refine alignment, a second CMT layer reverses the
attention direction, using P as both queries and
keys/values, resulting in image-aware word repre-
sentations:

(17)

A = (ao,al, .. .,an+1),

where each a; captures combined textual and vi-
sual semantics. Word-aware visual features are
computed by querying visual regions with text em-
beddings:

Q: (q0aq1""7qn+1)a (18)

where each g; represents the most semantically
aligned visual context for the corresponding token.
A gating mechanism selectively integrates visual
cues:

g=o(W, A+ W/Q), (19)

where W, and W, are trainable parameters and o
is the sigmoid activation. The final word-aware
visual representation is obtained as:

B=g0oQ, (20)

where © denotes element-wise multiplication. This
selective fusion emphasizes meaningful visual-
textual interactions while mitigating irrelevant vi-
sual noise.



3.8 CRF Decoder Module

After obtaining the image-aware word represen-
tations A and word-aware visual representations
B, we concatenate them to form the multimodal
hidden states:

h; = Concat(a;, b;), fori=0,...,n+1, (21)

resulting in H = {ho, h1, ..., hnt1}, Where each
h; € R?? integrates both textual and visual infor-
mation.

The sequence H is then passed through a Bidi-
rectional Long Short-Term Memory (BiLSTM) net-
work to capture contextual dependencies from both
directions. Each output hPLS™ is the concatena-
tion of forward and backward hidden states, provid-
ing a richer representation for sequence labeling.

On top of the BiLSTM outputs, a Conditional
Random Field (CRF) layer models dependencies
between adjacent labels, improving sequence-level
predictions. The probability of a label sequence
Y ={v0,y1,--,Yn+1} is computed as:

exp(score(H,Y))
PY[(TV)) = > yrey exp(score(H,Y"))’
(22)

where the score combines transition and emis-
sion scores across the sequence. Emission scores
are computed by projecting each hBLS™ with a
learned label-specific weight.

The model is trained by minimizing the negative
log-likelihood of the correct label sequence:

L=—log(P(Y | (T.V)). (@3

This objective encourages correct entity predictions
while capturing global sequence consistency.

4 Experiments

4.1 Settings

Dataset We evaluate KE-UMNER on the
Twitter2015-Urdu dataset, a multilingual extension
of the widely used Twitter2015 benchmark. The
dataset consists of short Urdu tweets paired with
images, reflecting the informal and diverse nature
of social media content. Each instance is anno-
tated using the BIO tagging scheme with four en-
tity types: PER, LOC, ORG, and MISC. Further dataset
statistics are provided in Appendix C.

Baselines We compare KE-UMNER against two
baseline categories: (1) Text-only models, in-
cluding LSTM-CREF, BiLSTM-CRF (Huang et al.,

2015), HBILSTM-CRF (Lample et al., 2016),
CNN-BiLSTM-CRF (Ma and Hovy, 2016), BERT
(Devlin et al., 2019), and BERT-CRF (Souza et al.,
2020), which rely solely on text and often struggle
in visually rich contexts. (2) Multimodal models,
such as UMT (Yu et al., 2020), RpBERT (Sun et al.,
2021), HVPNET (Chen et al., 2022a), MAF (Xu
et al., 2022), MGCMT (Liu et al., 2024b), and
U-MNER(Ahmad et al., 2025), which jointly lever-
age text and image features for entity recognition.
More details are provided in Appendix D.

Evaluation Metrics We evaluate model perfor-
mance using standard NER metrics: Precision, Re-
call, and F1-score, with F1 as the primary metric.
Precision reflects the correctness of predicted enti-
ties, while recall measures coverage of true entities.
Metrics are computed using exact span matching,
reported per entity type and overall.

Implementations Experiments were performed
using PyTorch on a system with an NVIDIA RTX
4090 GPU. The Urdu-BERT base model was fine-
tuned for textual embeddings, while ResNet-152
was used for visual feature extraction. Knowledge
augmentation was done using GPT-3.5, and image
captions were generated with the BLIP model (Li
et al., 2022). Key hyperparameters included a learn-
ing rate of 5 x 1072, a dropout rate of 0.1, and a
batch size of 16. The model processed sequences
with a maximum length of 128 tokens and utilized
12 cross-modal attention heads for multimodal in-
tegration.

4.2 Results and Analysis

Table 1 presents the experimental results on the
Twitter2015-Urdu dataset. We evaluate six text-
only models and four multimodal models, reporting
Precision (P), Recall (R), and F1-score (F1) across
entity types: PER (Person), LOC (Location), ORG
(Organization), and MISC (Miscellaneous).

First, we examine the performance of text-
only models, including LSTM-CRF, BiLSTM-
CRF, CNN-BiLSTM-CRF, BERT, and BERT-CRF.
While LSTM-based models demonstrate reason-
able results, transformer-based models such as
BERT and BERT-CRF outperform them by leverag-
ing stronger contextual representations. However,
despite their improvements, text-only models strug-
gle to resolve entity ambiguities in short, noisy, or
visually grounded social media posts, where textual
cues alone are insufficient.



Modality Methods Single Type (F1) Overall
PER LOC ORG MISC P R F1
LSTM-CRF 63.36 5690 3485 1642 | 5644 4546 50.36
BiLSTM-CRF 6497 57.82 3428 19.99 | 58.08 4695 5193
Text HBIiLSTM-CRF 67.83 58.71 3092 18.05 | 57.10 49.04 52.76
CNN-BiLSTM-CRF | 58.23 48.51 28.61 1947 | 56.96 4523 5042
BERT 72.01 67.74 39.89 1536 | 62.08 57.22 59.55
BERT-CRF 72.85 68.16 4129 16.65 | 6332 56.87 59.92
MGCMT 69.71 6531 42.60 2436 | 5728 55.57 56.41
MAF 7375 69.32  47.09 2530 | 59.85 6130 60.57
RpBERT 71.47 6848 39.07 11.11 | 6432 57.69 60.82
Text+Vision UMT 68.08 64.77 40.71 25.80 | 58.21 5541 54.07
HVPNET 7228 6347 4347 2580 | 6293 59.03 60.92
U-MNER 73.83 70.71 4791 2332 | 63.27 6224 62.75
KE-UMNER (Ours) | 86.42 80.59 68.25 52.51 | 7408 75.60 74.83

Table 1: Performance comparison of text-based and multimodal NER models on the Twitter15-Urdu dataset.
KE-UMNER achieves the best performance across all metrics.

Next, multimodal models, including UMT, Rp-
BERT, HVPNET, and U-MNER, show consistent
gains over text-only baselines. By incorporating
visual information, these models better handle am-
biguous or underspecified entities. Nevertheless,
existing multimodal approaches are limited when
image cues are weak or misleading, as they lack
external semantic reinforcement.

Finally, KE-UMNER achieves the best overall
performance, with an Fl-score of 74.83%, sig-
nificantly outperforming U-MNER (62.75%) by
12.08%. KE-UMNER also achieves strong per-
entity Fl-scores: 86.42% (PER), 80.59% (LOC),
68.25% (ORG), and 52.51% (MISC), maintaining
balanced Precision (74.08%) and Recall (75.60%).
These results demonstrate that integrating LLM-
extracted knowledge and BLIP-generated captions
effectively enhances multimodal entity recognition,
particularly by mitigating ambiguities and enrich-
ing contextual understanding. By fusing textual, vi-
sual, and external knowledge signals, KE-UMNER
sets a new benchmark for Urdu MNER in low-
resource, multimodal settings.

4.3 Ablation Study

We evaluate the impact of KE-UMNER’s knowl-
edge components by ablating the LLM-based Con-
textual Knowledge Extraction (LCKE) and BLIP-
generated image captions. Table 2 reports changes
in Precision (P), Recall (R), and F1-score (F1). Re-

Methods P R F1

KE-UMNER (Full Model) 74.08 75.60 74.83
w/o LCKE 57.38 59.57 58.50
w/o Image Captions 73.42 7489 74.15
w/o LCKE & Image Captions 5733 59.82 58.55

Table 2: Ablation results showing the effect of removing
LLM-based knowledge (LCKE) and BLIP-generated
image captions on KE-UMNER’s performance.

moving LCKE leads to a significant F1 drop from
74.83% to 58.50%, underscoring its key role in
resolving ambiguous mentions. Excluding image
captions causes a smaller decline to 74.15%, show-
ing that visual context is helpful but less essential.
Removing both components drops F1 to 58.55%.
These results highlight that KE-UMNER’s strong
performance stems from the synergy of multimodal
inputs and external knowledge, with LLM-based
knowledge playing the most significant role.

4.4 Case Study

We highlight KE-UMNER’s effectiveness using
examples from the Twitter2015-Urdu dataset (Fig-
ure 3). Text-only models (e.g., BERT-CRF) and
multimodal models (e.g., HVPNET, U-MNER) of-
ten misclassify ambiguous mentions, especially
when visual cues are limited. KE-UMNER ad-
dresses this by combining text, BLIP captions, and
LLM-based contextual knowledge.



Text: RT@Wimbledon: [Federer (PER)] leads the way for winners hit
at [#Wimbledon (OTHER)] (since 1992). A look at the top
seven... http://t.co/yrbqVp7ygD
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Caption:  There is a male tennis player about to hit the ball with his racket.
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E GPT Roger Federer is a renowned Swiss tennis player known for winning
Gold Labels: 1-PER 2-OTHER Extracted a significant number of Grand Slam titles, while Wimbledon is a
BERT_CRF: 1-PER 2- None X Knowledge: historic and prestigious tennis tournament held annually in London.
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ELEVEN @FSPalmBeach, meet [Venus (PER)], take a class with her!
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Caption: There is a woman posing in sports attire, promoting a fitness event
and activewear brand.
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BERT CRF: 1-misc X GPT Venus is a renowned t§nms player known for her
N x Extracted exceptional skills.
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U-MNER: 1-MISC X
KE-UMNER: 1-PER ¢

Figure 3: Case study illustrating how LLM-extracted knowledge and image captions enhance entity recognition by

resolving ambiguities in multimodal NER.

In case (a), “,.43” (Federer) and “yi+s” (Wim-
bledon) are mentioned. While Federer is correctly
identified, Wimbledon is misclassified as LOC by
baselines. KE-UMNER correctly labels it as MISC
using LLM knowledge linking it to a tennis tourna-
ment.

In case (b), “J‘;;” (Venus) is misclassified due to
vague context. Visual cues (“a woman in sports at-
tire”’) offer limited help. KE-UMNER correctly pre-
dicts PER by recognizing Venus as a tennis player
via LLM knowledge. These examples underscore
the importance of integrating external knowledge
with multimodal signals for disambiguating com-
plex entity mentions.

5 Conclusion

We proposed KE-UMNER, a knowledge-enriched
multimodal named entity recognition framework
tailored for the Urdu language. By integrating
LLM-generated prompts and BLIP-based image
captions into a unified cross-modal architecture,
KE-UMNER effectively enhances entity disam-

biguation in noisy, low-resource social media
contexts. Experiments on the Twitter2015-Urdu
dataset show that KE-UMNER significantly outper-
forms strong unimodal and multimodal baselines,
particularly for ambiguous or visually grounded
mentions. Our findings highlight the importance
of external knowledge in improving MNER perfor-
mance for under-resourced languages.

Limitations

While KE-UMNER demonstrates strong perfor-
mance in low-resource multimodal NER, several
limitations remain. First, the model relies on large-
scale pretrained language and vision-language
models, posing scalability challenges in resource-
constrained environments. Second, the current
study focuses exclusively on Urdu; the model’s
generalizability to other low-resource or morpho-
logically rich languages is yet to be examined.
Third, external knowledge sources, LLM-generated
prompts and BLIP-based captions, are not guaran-
teed to be accurate and may introduce noise or



cultural bias. Addressing these limitations in fu-
ture work involves exploring lightweight alterna-
tives to current architectures, extending the frame-
work cross-linguistically, and investigating semi-
supervised approaches to mitigate reliance on an-
notated multimodal data.

Ethics Statement

This work aligns with the ACL Ethics Policy and
aims to support linguistic equity by advancing NLP
for low-resource languages. We use publicly avail-
able datasets and non-sensitive content. While ex-
ternal models like LLMs and VLMs enhance con-
textual understanding, they may introduce biases or
inaccuracies. Future research should address these
concerns to ensure fairness and cultural relevance
in multimodal NER systems.
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Appendix
Entity Type Train Val Test
PER 2,255 558 1,939
LOC 2,076 529 1,781
ORG 897 240 825
MISC 946 226 673
Total Entities 6,174 1,553 5,218
Total Tweets 4,000 1,000 3,257

Table 3: Entity and tweet distribution in the Twitter2015-
Urdu dataset across train, validation, and test splits.

A Challenges in Urdu Named Entity
Recognition

Urdu presents several unique challenges for NER,
primarily due to its linguistic structure, informal
usage, and lack of orthographic cues. Unlike En-
glish, Urdu lacks capitalization, making it diffi-
cult to distinguish proper nouns such as “/0 Cersg”
(Parveen Shakir) from common words based only
on surface form. Entity interpretation in Urdu is
highly context sensitive. A token like “//” (As-
mara) may denote a person in one sentence and a
location in another, depending entirely on context.
Ambiguity further arises from overlapping surface
forms, such as “ Pl (Riaz) being interpretable as
either a person or the city “ P (Riyadh). Mor-
phological complexity adds another layer of dif-
ficulty. Inflectional and agglutinative processes
can shift a named entity into a non-entity role.
For instance, “,(” (Nisar) becomes an adjective
in “/Lul” (self-sacrificing), and “,(¥” (Mukhtar)
becomes a descriptor in “,¥,#” (independent).
Urdu also allows flexible word order, enabling
multiple valid sentence structures with the same

meaning. For example, B AR e
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and “_UBUE U7 ol LIl b express the same
idea with different token sequences, challenging
models that rely on positional patterns. Finally,
spelling variations and orthographic inconsisten-
cies are common in informal settings. The name
"Samad" may appear as “4” “#” or “,¢” . Sim-
ilarly, expressions like “#(-£Z" (with) may appear
joined as “#L” complicating tokenization. Fig-
ure 5 provides examples illustrating each of these
challenges in detail.

B Prompt Construction for LLM-Based
Contextual Knowledge Extraction

To retrieve relevant contextual knowledge for each
entity, we design structured prompts tailored to the
entity type. The prompt structure is adapted for
four categories: PER (Person), LOC (Location), ORG
(Organization), and MISC (Miscellaneous).

For PER entities, prompts focus on biographical
details, achievements, and contributions. For LOC
entities, the prompts emphasize historical signifi-
cance, geography, and cultural relevance. For ORG
entities, they retrieve information about the organi-
zation’s mission, operations, and societal role. For
MISC entities, the prompts aim to clarify concepts,
events, or notable phenomena relevant to Urdu lin-
guistic and cultural contexts.

Figure 4 illustrates the structured prompt con-
struction process, outlining task descriptions, in-
struction templates, entity-specific examples, and
expected outputs. This ensures that the LLM-
generated knowledge is precise, culturally aligned,
and supports accurate entity disambiguation.

C Dataset Details

The Twitter2015-Urdu dataset consists of 8,257
text-image pairs, specifically designed for Multi-
modal Named Entity Recognition in Urdu. It con-
tains four entity types: PER (person), LOC (location),
ORG (organization), and MISC (miscellaneous). The
dataset is divided into training (80%), validation
(10%), and test (10%) sets. The entity distribution
is as follows: 2,255 person (PER) entities in train-
ing, 558 in validation, and 1,939 in the test set;
2,076 location (LOC) entities in training, 529 in val-
idation, and 1,781 in the test set; 897 organization
(ORG) entities in training, 240 in validation, and
825 in the test set; and 946 miscellaneous (MISC)
entities in training, 226 in validation, and 673 in
the test set. The distribution of entities across the
dataset is summarized in Table 3.
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<Task Descriptions>

You are an expert linguist specializing in Urdu. Your task is to generate a concise, meaningful, and culturally accurate context for the given

i
:

i . . . . . . s .

ol Urdu entity. The context should align strictly with the entity’s type (e.g., Person, Location, Organization, or Other). You must consider the
1 linguistic, cultural, and historical significance of the entity within the context of Urdu-speaking communities, ensuring that the generated

1

1

description reflects its relevance and importance in these communities.

<Instructions Based on Entity Type>

or cultural context.

i
!
« For 'PER' (Person): Focus on key achievements, cultural impact, and the individual’s legacy within Urdu speaking communities. !
« For "LOC' (Location): Emphasize the historical, geographical, and cultural significance, including landmarks, events, and local identity. 1 !
- For 'ORG' (Organization): Provide insights into the organization’s role in the community, its mission, and impact within a societal, economic, | !
e
!
!
1

« For 'OTHER' (Other): Describe unique aspects of the entity, whether it’s a concept, phenomenon, object, or event, highlighting its relevance to

<Examples>
. Entity: 55 4l (Type: LOC)

Context: - — S e 1S a5 (S Osabiw (e e W3 a0 Jliae 1S sl sedia 1S il 8 ¢ sm s Jal

« Entity:sbe 5l @ dl (Type: PER)

. Entity: S£ (Type: ORG)

Context: -oz Jabd s K358 ) 5) cdie 6l cndl gm0 0> ¢ 2 (S ) 8 ilad Ciline Glate s S s o GaeS ) sedie y b oalle SR

« Entity: Js <L (Type: OTHER)

Context: 5w IS5 b b (g2 sy o 03 S 2 (s 0aby) () I RIS (e a0 e (SISO J e Sl

i
1
h
1
h
1
-
| Context: b2 F L oS (S 38 (S Ly sl LS Gl Cadlial a plas 5 seia G Oldaiilos Cag jaa SO Gl 051 &1l
H )
i
h
:
1
h
i
1
h
i

: i <Expected Output Format>
i | Provide the context in the following format:
H

1

« Context: <Urdu Context>

Figure 4: Structured Prompt Construction for LLM-Based Contextual Knowledge Extraction.

D Baselines

To evaluate KE-UMNER, we compare it with
two categories of baseline models: text-only mod-
els and multimodal models. Text-only models,
such as LSTM-CREF, BiLSTM-CRF (Huang et al.,
2015), HBiLSTM-CRF (Lample et al., 2016),
CNN-BiLSTM-CRF (Ma and Hovy, 2016), BERT
(Devlin et al., 2019), and BERT-CRF (Souza et al.,
2020), rely solely on textual information for entity
recognition. These models excel when the text is
well-structured but struggle with ambiguous or vi-
sually dependent entities, which are common in so-
cial media posts. For instance, LSTM-CRF and its
variants, such as BILSTM-CRE, capture sequential
dependencies but lack the ability to handle visual
context, making them less effective for recogniz-
ing entities in noisy or multimodal settings. BERT
and BERT-CREF, while improving upon these meth-
ods by providing context-aware embeddings, still
rely entirely on textual data and miss the potential
insights offered by accompanying images.

On the other hand, multimodal models, includ-
ing UMT (Yu et al., 2020), RpBERT (Sun et al.,
2021), HVPNET (Chen et al., 2022a), MAF (Xu
et al., 2022), MGCMT (Liu et al., 2024b), and U-
MNER(Ahmad et al., 2025), integrate both textual
and visual features for enhanced entity recognition.
These models utilize visual cues to disambiguate
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entities that may be difficult to classify based on
text alone. For example, UMT and RpBERT use
cross-modal attention mechanisms to align text
and image representations, while HVPNET and
MGCMT refine multimodal integration by process-
ing image and text features at different levels of
abstraction. However, these models often strug-
gle to fully capture external contextual knowledge,
limiting their ability to handle complex entities
or resolve ambiguities effectively. U-MNER, the
predecessor of KE-UMNER, represents an earlier
approach to multimodal entity recognition but lacks
the integration of external knowledge, which is a
key feature of KE-UMNER’s design. This compar-
ison highlights KE-UMNER’s strength in combin-
ing both multimodal cues and external knowledge
for more robust entity recognition, particularly in
complex, real-world social media contexts.



Challenges

Example Sentences

Absence of
Capitalization

253 e S sy ClBe (5 e

("I met Parveen Shakir.") — "Parveen Shakir" as <Person>

Context Sensitivity

= S e A S | e
("Asmara is very beautiful.") — "Asmara" is interpreted as a <Person>
S B 558 S el 2y S (S Lod )

(Asmara experienced rapid development after Eritrea’s independence.)

— "Asmara" is interpreted as a <Location>

Ambiguous Named
Entities

e gl S e k) ed S e G 2

(Riaz is resident with his friend in the city of Riyadh.)
—(Riaz, =) = <Person>

—(Riyadh, =b) = <Location>

Inflectional R s b A A Sk i ola

and Agglutinative (The self-sacrificing ones gave their lives for the country.)

Morpholo . . L . o .

i gy — (U5 ¢») is an adjective meaning "devoted/self-sacrificing", not a named entity.

Even though "Nisar" alone can be a name, its use in a compound changes its role.
_uf)m@y\jémg) Dbda A Sl
(Mukhtar is the legal advisor to a sovereign state.)
— " _J55" may refer to a person's name, but when combined with the prefix "253", it
becomes "_lisw 52" ("autonomous/sovereign"), no longer a named entity but a
descriptive adjective.

Free Word Order (I opened a new restaurant in Chitral.)
Y 5eS &) g 5 Wi Sl s J) i e
Y 9eS Gpe dIis 5 ose sty L S
Y5eS Gpe dis Olosie )y WSOl S e
Flexible syntax in Urdu allows multiple word orders, making entity recognition
harder for sequence-based models.

Spelling Variations A single named entity may appear in multiple surface forms,

and Orthographic for example, “les ”rea” and “2e” all represent the name “Samad”

Ambiguity Compound expressions like “¢lw 57 and “¢3ssS” (both meaning “with”) may

appear with or without spaces, affecting tokenization and degrading model accuracy.

Figure 5: Key challenges in Urdu Named Entity Recognition, including linguistic ambiguity, morphological
complexity, and lack of orthographic cues.
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