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Figure 1. Autoregressive imagination, ground-truth simulation, and real-world deployment of RWM. For each environment, the top row
showcases the RWM autoregressively predicting future trajectories in imagination. The second row visualizes the ground truth evolution in
simulation. Specifically for the ANYmal D quadruped, the framework achieves robust policy optimization through MBPO-PPO, enabling
zero-shot deployment on hardware.

Abstract

Learning robust and generalizable world models is crucial001
for enabling efficient and scalable robotic control in real-002
world environments. In this work, we introduce a novel003
framework for learning world models that accurately capture004
complex, partially observable, and stochastic dynamics. The005
proposed method employs a dual-autoregressive mechanism006
and self-supervised training to achieve reliable long-horizon007
predictions without relying on domain-specific inductive bi-008
ases, ensuring adaptability across diverse robotic tasks. We009
further propose a policy optimization framework that lever-010
ages world models for efficient training in imagined envi-011
ronments and seamless deployment in real-world systems.012

This work advances model-based reinforcement learning by 013
addressing the challenges of long-horizon prediction, error 014
accumulation, and sim-to-real transfer. By providing a scal- 015
able and robust framework, the introduced methods pave the 016
way for adaptive and efficient robotic systems in real-world 017
applications. 018

1. Introduction 019

Robotic systems have achieved remarkable advancements 020
in recent years, driven by progress in reinforcement learn- 021
ing (RL) [12, 33] and control theory [29, 39]. A preva- 022
lent limitation in many approaches is the lack of adaptation 023
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and learning once the policy is deployed on the real sys-024
tem [24, 25, 30, 38]. This results in underutilization of025
the valuable data generated during real-world interactions.026
Robotic systems operating in dynamic and uncertain environ-027
ments require the ability to continually adapt their behavior028
to new conditions [21]. World models simulate environment029
dynamics to enable planning and policy optimization, of-030
ten referred to as learning in imagination [36]. However,031
developing reliable and generalizable world models poses032
unique challenges due to the complexity of real-world dy-033
namics, including nonlinearities, stochasticity, and partial034
observability [34, 40].035

In this work, we present a novel approach for learning036
world models that emphasizes robustness and accuracy over037
long-horizon predictions. Our method is designed to operate038
without handcrafted representations or specialized architec-039
tural biases, enabling broad applicability to diverse robotic040
tasks. To evaluate the utility of these learned models, we041
further propose a policy optimization method using PPO042
and demonstrate successful deployment in both simulated043
and real-world environments. To the best of our knowl-044
edge, this is the first framework to reliably train policies045
on a learned neural network simulator without any domain-046
specific knowledge and deploy them on physical hardware047
with minimal performance loss.048

Our contributions are summarized as follows: (i) We049
introduce a novel network architecture and training frame-050
work that enables the learning of reliable world models ca-051
pable of long autoregressive rollouts, a critical property for052
downstream planning and control. (ii) We provide a com-053
prehensive evaluation suite spanning diverse robotic tasks to054
benchmark our method. Comparative experiments with exist-055
ing world model frameworks demonstrate the effectiveness056
of our approach. (iii) We propose an efficient policy opti-057
mization framework that leverages the learned world models058
for continuous control and generalizes effectively to real-059
world scenarios with hardware experiments. Supplementary060
videos for this work are available at https://sites.061
google.com/view/neurips2025-rwm/home.062

2. Approach063

2.1. Self-supervised Autoregressive Training064

To address the inherent complexity of partially observable065
environments, we propose a self-supervised autoregressive066
training framework as the backbone of RWM. This frame-067
work trains the world model pϕ to predict future observations068
by leveraging both historical observation-action sequences069
and its own predictions, ensuring robustness over extended070
rollouts.071

The input to the world model consists of a sequence of072
observation-action pairs spanning M historical steps. At073
each time step t, the model predicts the distribution of074

the next observation p (ot+1 | ot−M+1:t, at−M+1:t). Pre- 075
dictions are generated autoregressively: at each step, the 076
predicted observation o′t+1 is appended to the history and 077
combined with the next action at+1 to serve as input for 078
subsequent predictions. This process is repeated over a pre- 079
diction horizon of N steps, producing a sequence of future 080
predictions. The predicted observation k steps ahead can 081
thus be written as 082

o′t+k ∼ pϕ
(
· | ot−M+k:t, o

′
t+1:t+k−1, at−M+k:t+k−1

)
.
(1) 083

A similar process is also applied to predict privileged infor- 084
mation c, such as contacts, providing an additional learning 085
objective that implicitly embeds critical information for ac- 086
curate long-term predictions. Such a training scheme intro- 087
duces the model to the distribution it will encounter at test 088
time, reducing the mismatch between training and inference 089
distributions. Overall, the model is optimized by minimizing 090
the multi-step prediction error: 091

L =
1

N

N∑
k=1

αk
[
Lo

(
o′t+k, ot+k

)
+ Lc

(
c′t+k, ct+k

)]
, (2) 092

where Lo and Lc quantify the discrepancy between predicted 093
and true observations and privileged information, and α 094
denotes a decay factor. This autoregressive training objective 095
encourages the hidden states to encode representations that 096
support accurate and reliable long-horizon predictions. 097

2.2. Policy Optimization on Learned World Models 098

Policy optimization in RWM is conducted using the learned 099
world model, following a framework inspired by Model- 100
Based Policy Optimization (MBPO) [20] and the Dyna al- 101
gorithm [35]. During imagination, the actions are generated 102
recursively by the policy πθ conditioned on the observations 103
predicted by the world model pϕ, which is further condi- 104
tioned on the previous predictions. The actions at time t+ k 105
can thus be written as 106

a′t+k ∼ πθ

(
· | o′t+k

)
, (3) 107

where o′t+k is drawn autoregressively according to Eq. 1. 108
Rewards are computed from imagined observations and priv- 109
ileged information. The approach combines model-based 110
imagination with model-free RL to achieve efficient and 111
robust policy optimization, as outlined in Algorithm 1. 112

The replay buffer D aggregates real environment inter- 113
actions collected by a single agent. The world model pϕ 114
is trained on this data following the autoregressive scheme 115
described in Sec. 2.1. Imagination agents are initialized from 116
samples in D and simulate trajectories using the world model 117
for T steps, enabling policy updates through a reinforcement 118
learning algorithm. The training diagram is visualized in 119
Fig. S7. 120
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Algorithm 1 Policy optimization with RWM

1: Initialize policy πθ, world model pϕ, and replay buffer
D

2: for learning iterations = 1, 2, . . . do
3: Collect observation-action pairs in D by interacting

with the environment using πθ

4: Update pϕ with autoregressive training using data
sampled from D according to Eq. 2

5: Initialize imagination agents with observations sam-
pled from D

6: Roll out imagination trajectories using πθ and pϕ for
T steps according to Eq. 3

7: Update πθ using PPO or another reinforcement learn-
ing algorithm

8: end for

While PPO is known for its strong performance in robotic121
tasks, training it on learned world models poses unique chal-122
lenges. Model inaccuracies can be exploited during policy123
learning, leading to discrepancies between the imagined and124
true dynamics. This issue is exacerbated by the extended au-125
toregressive rollouts required for PPO, which compound pre-126
diction errors. We denote this policy optimization method by127
MBPO-PPO. Despite these challenges, RWM demonstrates128
its robustness by successfully optimizing policies over a hun-129
dred autoregressive steps with MBPO-PPO, far exceeding130
the capabilities of existing frameworks such as MBPO [20],131
Dreamer [13, 15, 16], or TD-MPC [17, 18]. This result un-132
derscores the accuracy and stability of the proposed training133
method and its ability to synthesize policies deployable on134
hardware.135

3. Experiments136

We validate RWM through a comprehensive set of exper-137
iments across diverse robotic systems, environments, and138
network architectures. The experiments are designed to139
assess the accuracy and robustness of RWM, evaluate its ar-140
chitectural and training design choices, and demonstrate its141
effectiveness across diverse robotic tasks in Isaac Lab [28]142
and in real-world deployment combined with MBPO-PPO.143
We start the analysis by looking into the autoregressive pre-144
diction accuracy and robustness of the world model on ANY-145
mal D learned with simulation data induced by a velocity146
tracking policy. The observation and action spaces of the147
world model are detailed in Table S2 and Table S4. We then148
compare various network architectures and the error induced149
across diverse robotic environments and tasks to demonstrate150
the generality of RWM. And finally, we learn a policy in151
RWM with the proposed MBPO-PPO and demonstrate the152
applicability and robustness of the method on an ANYmal D153
hardware [19].154

3.1. Generality across Robotic Environments 155

To assess the generality and robustness of RWM across a 156
diverse range of robotic environments, we compare its per- 157
formance with several baseline methods, including MLP, re- 158
current state-space model (RSSM) [13–16], and transformer- 159
based architectures [3, 31]. These baselines represent widely 160
adopted approaches in dynamics modeling and policy op- 161
timization. All models are given the same context during 162
training and evaluation. Their training parameters are de- 163
tailed in Sec. E.3.2. The relative autoregressive prediction 164
errors e for these models are shown in Fig. 2. The tasks span 165
manipulation scenarios as well as quadruped and humanoid 166
locomotion tasks, allowing for a comprehensive evaluation 167
of the models. In addition, we highlight the importance 168
of the autoregressive training introduced in Sec. 2.1 by in- 169
cluding both RWM trained with teacher-forcing (RWM-TF) 170
and autoregressive training (RWM-AR), demonstrating the 171
significant performance gains achieved by the latter. 172

3.2. Policy Learning and Hardware Transfer 173

Using MBPO-PPO, we train a goal-conditioned velocity 174
tracking policy for ANYmal D leveraging RWM. The pol- 175
icy’s observation and action spaces are detailed in Sec. E.2.1, 176
and its architecture is described in Sec. E.3.3. Reward formu- 177
lations are provided in Sec. E.2.2, while training parameters 178
are summarized in Sec. E.4.2. We compare MBPO-PPO 179
with two baselines: Short-Horizon Actor-Critic (SHAC) [41] 180
and DreamerV3 [16]. SHAC employs a first-order gradient- 181
based method that propagates gradients through the world 182
model to optimize the policy. Dreamer integrates a latent- 183
space dynamics model with an actor-critic framework, em- 184
phasizing sample efficiency and robustness in continuous 185
control tasks. 186

Figure 3 (left) illustrates the model error e during pol- 187
icy optimization. On the right plot of rewards r, predicted 188
rewards (dashed) from MBPO-PPO initially overshoot the 189
ground truth (solid) due to the policy exploiting small in- 190
accuracies in the model’s optimistic estimates. As training 191
progresses, predictions align more closely with ground truth, 192
remaining accurate enough to guide effective learning. In 193
contrast, SHAC fails to converge, producing unstable behav- 194
iors that degrade both policy and model quality. Dreamer 195
demonstrates partial convergence, achieving higher rewards 196
compared to SHAC but significantly lagging behind MBPO- 197
PPO. 198

To evaluate the robustness of the learned policy, we de- 199
ploy it on ANYmal D hardware in a zero-shot transfer setup. 200
SHAC and Dreamer fail to produce a deployable policy due 201
to its collapse during training. However, as shown in Fig. 1, 202
the policy learned using MBPO-PPO demonstrates reliable 203
and robust performance in tracking goal-conditioned velocity 204
commands and maintaining stability under external distur- 205
bances, such as unexpected impacts and terrain conditions. 206
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Figure 2. Autoregressive trajectory prediction errors across diverse robotic environments and network architectures. RWM trained with
autoregressive training (RWM-AR) consistently outperforms baseline methods, including MLP, recurrent state-space model (RSSM),
and transformer-based architectures. RWM-AR demonstrates superior generalization and robustness across tasks, from manipulation to
locomotion. Autoregressive training (RWM-AR) reduces compounding errors over long rollouts, significantly improving performance
compared to teacher-forcing training (RWM-TF).
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Figure 3. Model error and policy mean reward for the ANYmal D velocity tracking task with MBPO-PPO. The policy is trained using
estimated rewards computed from predicted observations by RWM. Ground truth rewards, visualized with solid lines, are reported by the
simulator for evaluation purposes only.

The success of MBPO-PPO in hardware deployment is a207
direct result of the high-quality trajectory predictions gener-208
ated by RWM, which enable accurate and effective policy209
optimization. Videos showcasing the robustness of the policy210
in hardware, including its responses to external disturbances,211
are available in our supplementary materials. These results212
underline the effectiveness of RWM and MBPO-PPO in en-213
abling robust and scalable policy deployment for real-world214
robotic systems.215

4. Conclusion216

In this work, we present RWM, a robust and scalable frame-217
work for learning world models tailored to complex robotic218
tasks. Leveraging a dual-autoregressive mechanism, RWM219
effectively addresses key challenges such as compounding er-220
rors, partial observability, and stochastic dynamics. By incor-221
porating historical context and self-supervised training over222
long prediction horizons, RWM achieves superior accuracy223

and robustness without relying on domain-specific inductive 224
biases, enabling generalization across diverse tasks. Through 225
extensive experiments, we demonstrate that RWM consis- 226
tently outperforms state-of-the-art approaches like RSSM 227
and transformer-based architectures in autoregressive predic- 228
tion accuracy across diverse robotic environments. Building 229
on RWM, we propose MBPO-PPO, a policy optimization 230
framework that leverages long world model rollout fidelity. 231
Policies trained using MBPO-PPO demonstrate superior per- 232
formance in simulation and transfer seamlessly to hardware, 233
as evidenced by zero-shot deployment on the ANYmal D 234
robot. This work advances the field of model-based reinforce- 235
ment learning by providing a generalizable, efficient, and 236
scalable framework for learning and deploying world models. 237
The results highlight RWM ’s potential to enable adaptive, 238
robust, and high-performing robotic systems, setting a foun- 239
dation for broader adoption of model-based approaches in 240
real-world applications. 241
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A. Related work418

A.1. World Models for Robotics419

World models have emerged as a cornerstone in robotics for420
capturing system dynamics and enabling efficient planning421
and control through simulated trajectories. A prominent422
application of world models is in robotic control, where423
dynamics models are used to describe real-world dynam-424
ics for policy optimization [22]. Extensions to vision-425
based tasks have been realized through visual foresight tech-426
niques [6, 8, 9], which learn visual dynamics for planning in427
high-dimensional sensory spaces. Similar ideas are applied428
to train RL agents in such world models aiming to fully repli-429
cate real environment interactions [1, 11]. These approaches430
underline the versatility of world models in tasks requiring431
rich perceptual inputs.432

To improve the generalization of black-box neural433
network-based world models beyond the training distribu-434
tion, many works incorporate known physics principles or435
state structures into model design, addressing potential lim-436
itations in control performance. Examples include foot-437
placement dynamics [42], object invariance [32], granu-438
lar media interactions [4], frequency domain parameteri-439
zation [26], rigid body dynamics [34], and semi-structured440
Lagrangian dynamics models [23]. While these methods441
demonstrate impressive results, they often require strong442
domain knowledge and carefully crafted inductive biases,443
which can restrict their scalability and adaptability to di-444
verse robotic applications. Latent-space dynamics models445
offer an alternative by abstracting the state space into com-446
pact representations, enabling efficient long-horizon plan-447
ning. Deep Planning Network (PlaNet) [14] and its succes-448
sor Dreamer [13, 15, 16] exemplify this trend, achieving449
state-of-the-art performance in continuous control and visual450
navigation tasks. These frameworks have been extended to451
real-world robotics [2, 40], demonstrating their potential in452
both simulation and hardware deployment.453

A.2. Model-Based Reinforcement Learning454

Model-Based Reinforcement Learning (MBRL) has emerged455
as a powerful approach to address the limitations of model-456
free reinforcement learning, particularly in scenarios where457
sample efficiency and safety are critical. Unlike model-free458
methods, which learn policies directly from interactions with459
the environment, MBRL leverages a learned model of the460
environment to simulate interactions, enabling more efficient461
and safer policy learning. One of the pioneering methods in462
MBRL is Probabilistic Ensembles with Trajectory Sampling463
(PETS), which uses an ensemble of probabilistic neural net-464
works to model the environment dynamics [5]. Building on465
the idea of latent-space modeling, PlaNet leverages a latent466
dynamics model to plan directly in a learned latent space [14].467
Dreamer extends the concept by incorporating an actor-critic468

framework into the latent dynamics model, enabling the si- 469
multaneous learning of both the dynamics model and the 470
policy [13, 15, 16]. Variations on the architectural design 471
also see success in improving generation capabilities of such 472
latent dynamics models with autoregressive transformer [27] 473
and the stochastic nature of variational autoencoders [44]. 474
Recent advancements in this area include TD-MPC and TD- 475
MPC2, which integrate model-based learning with MPC 476
to achieve high-performance control in dynamic environ- 477
ments [7, 17, 18]. 478

Recognizing the strengths of both model-based and 479
model-free methods, several hybrid approaches have been 480
developed to combine the sample efficiency of MBRL with 481
the robustness of model-free reinforcement learning. One no- 482
table example is Model-Based Policy Optimization (MBPO), 483
which uses a model-based approach for planning and pol- 484
icy optimization but refines the policy using model-free up- 485
dates [20]. It emphasizes selectively relying on the learned 486
model when its predictions are accurate, thus mitigating the 487
negative effects of model inaccuracies. Building on sim- 488
ilar principles, Model-based Offline Policy Optimization 489
(MOPO) extends the framework to the offline setting, where 490
learning is conducted entirely from previously collected data 491
without further environment interaction [43]. In contrast 492
to using zeroth-order model-free reinforcement learning for 493
policy optimization, first-order gradient-based optimization 494
is used to improve policy learning [10, 41]. This allows 495
for more efficient and precise policy updates, particularly 496
in complex, high-dimensional environments, where accu- 497
rate gradient information is crucial for performance. Our 498
framework extends MBPO by integrating it with PPO over 499
extensive autoregressive rollouts, making it particularly ef- 500
fective for complex robotic control tasks. 501

B. Preliminaries 502

B.1. Reinforcement Learning and World Models 503

We formulate the problem by modeling the environ- 504
ment as a Partially Observable Markov Decision Process 505
(POMDP) [37], defined by the tuple (S,A,O, T,R,O, γ), 506
where S , A, and O denote the state, action, and observation 507
spaces, respectively. The transition kernel T : S ×A → S 508
captures the environment dynamics p (st+1 | st, at), while 509
the reward function R : S × A × S → R maps transi- 510
tions to scalar rewards. Observations ot ∈ O are emitted 511
according to probabilities p (ot | st), governed by the ob- 512
servation kernel O : S → O. The agent seeks to learn a 513
policy πθ : O → A that maximizes the expected discounted 514

return Eπθ

[∑
t≥0 γ

trt

]
, where rt is the reward at time t 515

and γ ∈ [0, 1] is the discount factor. 516
World models [11] approximate the environment dynam- 517

ics and facilitate policy optimization by enabling simulated 518
environment interactions in imagination [36]. Training typi- 519
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cally involves three iterative steps: (1) collect data from real520
environment interactions; (2) train the world model using521
the collected data; and (3) optimize the policy within the522
simulated environment produced by the world model.523

Despite the success of existing frameworks in achieving524
tasks in simplified settings, their application to complex low-525
level robotic control remains a significant challenge. To526
address this gap, we propose Robotic World Model (RWM),527
a novel framework for learning robust world models in par-528
tially observable and dynamically complex environments.529
RWM builds on the core concept of world models but in-530
troduces architectural and training innovations that enable531
reliable long-horizon predictions, even in stochastic and par-532
tially observable settings. By incorporating historical context533
and autoregressive training, RWM addresses challenges such534
as error accumulation and partially observable and discon-535
tinuous dynamics, which are critical in real-world robotics536
applications.537

C. Supplementary experiments538

C.1. Autoregressive Trajectory Prediction539

The capability of a world model to maintain high fidelity540
during autoregressive rollouts is critical for effective plan-541
ning and policy optimization. To evaluate this aspect, we542
analyze the autoregressive prediction performance of RWM543
using trajectories collected from ANYmal D hardware. The544
control frequency of the robot is at 50Hz. The model is545
trained with history horizon M = 32 and forecast horizon546
N = 8. Further details on the network architecture and train-547
ing parameters are summarized in Sec. E.3.1 and Sec. E.4.1,548
respectively. The autoregressive trajectory predictions by549
RWM are visualized in Fig. S4a.550

The results demonstrate that RWM exhibits a remark-551
able alignment between predicted and ground truth trajec-552
tories across all observed variables. This consistency per-553
sists over extended rollouts, showcasing the model’s abil-554
ity to mitigate compounding errors—a critical challenge in555
long-horizon predictions. This performance is attributed to556
the dual-autoregressive mechanism introduced in Sec. 2.1,557
which stabilizes predictions despite the short forecast hori-558
zon employed during training. A comparison of state evo-559
lution between the RWM prediction and the ground truth560
simulation is illustrated in Fig. 1 (bottom). The visualization561
highlights the ability of RWM to maintain consistency in562
trajectory predictions over long horizons, even beyond the563
training forecast horizon. This robustness is pivotal for sta-564
ble policy learning and deployment, as discussed further in565
Sec. 3.2.566

It is notable that the choice of history horizon M and fore-567
cast horizon N plays a critical role in the training and per-568
formance of RWM. Our ablation study in Sec. E.5.1 reveals569
that, while extending both M and N improves accuracy,570

practical considerations of computational cost necessitate 571
careful tuning of these hyperparameters to achieve optimal 572
performance. 573

C.2. Robustness under Noise 574

A critical challenge in training world models is their ability to 575
generalize under noisy conditions, particularly when predic- 576
tions rely on autoregressive rollouts. Even small deviations 577
from the training distribution can cascade into untrained re- 578
gions, causing the model to hallucinate future trajectories. 579
To assess the robustness of RWM, we analyze its perfor- 580
mance under Gaussian noise perturbations applied to both 581
observations and actions. We compare the results with an 582
MLP-based baseline also trained autoregressively with the 583
same history and forecast horizon, as shown in Fig. S4b, 584
where yellow curves denote the relative prediction error e 585
for RWM, and grey curves represent the MLP baseline. 586

The results indicate a clear advantage of RWM over the 587
MLP baseline across all noise levels. As forecast steps in- 588
crease, the relative prediction error of the MLP model grows 589
significantly, diverging more rapidly than RWM. In contrast, 590
RWM demonstrates superior stability, maintaining lower pre- 591
diction errors even under high noise levels. This robustness 592
can be attributed to the dual-autoregressive mechanism in- 593
troduced in Sec. 2.1, which ensures stability in long-horizon 594
predictions. This design minimizes the accumulation of er- 595
rors by continually refining the state representation toward 596
long-term predictions, even in the presence of noisy inputs. 597

D. Limitations 598

The policy learned with RWM and MBPO-PPO surpasses 599
existing MBRL methods in both robustness and general- 600
ization. However, it still falls short of the performance 601
achieved by well-tuned model-free RL methods trained on 602
high-fidelity simulators. Model-free RL, being a more ma- 603
ture and extensively optimized paradigm, excels in settings 604
where unlimited interaction with near-perfect simulators is 605
possible. In contrast, the strengths of MBRL are more pro- 606
nounced in scenarios where accurate or efficient simulation 607
is infeasible, making it an indispensable tool for enabling 608
intelligent agents to eventually learn and adapt in complex, 609
real-world environments. To clarify the computational and 610
performance aspects, we provide a comparison against a 611
PPO-based method with a high-fidelity simulator in Table S1. 612

Table S1. Comparison with model-free method

Method RWM pretraining MBPO-PPO PPO

state transitions 6M − 250M
total training time 50 min 5 min 10 min
step inference time − 1 ms 1 ms
real tracking reward − 0.90± 0.04 0.90± 0.03

613
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(a) Autoregressive trajectory prediction by RWM.
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(b) Prediction error under Gaussian noise.

Figure S4. (Left) Solid lines represent ground truth trajectories, while dashed lines denote predicted state evolution. Predictions commence
at t = 32 using historical observations, with future observations predicted autoregressively by feeding prior predictions back into the model.
(Right) Yellow curves denote RWM at varying noise levels, demonstrating consistent robustness and lower error accumulation across forecast
steps. Grey curves represent the MLP baseline, which exhibits significantly higher error accumulation and reduced robustness to noise.

In this work, the world model is pre-trained using simu-614
lation data prior to policy optimization, reducing instability615
during training (see Sec. E.5.3). However, training from616
scratch remains challenging as policies can exploit model617
inaccuracies during exploration, leading to inefficiency and618
instability. In addition, the need for additional interaction619
with the environment to fine-tune the world model highlights620
areas for further refinement. Nevertheless, enabling safe621
and effective online learning directly on hardware remains622
challenging (see Sec. E.5.4). Current training in simulation623
avoids potential hardware damage, but incorporating safety624
constraints and robust uncertainty estimates will be critical625
for deploying RWM and MBPO-PPO in real-world, life-626
long learning scenarios. These limitations underscore the627
trade-offs inherent in MBRL frameworks, balancing data628
efficiency, safety, and performance while addressing the629
complexities of real-world robotic systems.630

E. Technical Appendices and Supplementary631

Material632

E.1. Figures633

E.2. Task Representation634

E.2.1. Observation and action spaces635

The observation space for the ANYmal world model is com-636
posed of base linear and angular velocities v, ω in the robot637
frame, measurement of the gravity vector in the robot frame638
g, joint positions q, velocities q̇ and torques τ as in Table S2.639

The privileged information is used to provide an addi-640
tional learning objective that implicitly embeds critical in-641
formation for accurate long-term predictions. The space is642
composed of knee and foot contacts as in Table S3.643

The action space is composed of joint position targets as644
in Table S4.645

The observation space for the ANYmal velocity tracking646

Table S2. World model observation space

Entry Symbol Dimensions

base linear velocity v 0:3
base angular velocity ω 3:6
projected gravity g 6:9
joint positions q 9:21
joint velocities q̇ 21:33
joint torques τ 33:45

Table S3. World model privileged information space

Entry Symbol Dimensions

knee contact − 0:4
foot contact − 4:8

Table S4. Action space

Entry Symbol Dimensions

joint position targets q∗ 0:12

policy is composed of base linear and angular velocities v, 647
ω in the robot frame, measurement of the gravity vector in 648
the robot frame g, velocity command c, joint positions q and 649
velocities q̇ as in Table S5. 650

E.2.2. Reward functions 651

The total reward is sum of the following terms with weights 652
detailed in Table S6. 653

Linear velocity tracking x, y 654

rvxy
= wvxy

e
−∥cxy−vxy∥2

2/σ
2
vxy , 655
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(a) Autoregressive training.
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(b) Teacher-forcing training.

Figure S5. Comparison of training paradigms for world models with an example of a history horizon H = 3. (a) Autoregressive training
operates with an example of a forecast horizon N = 2, leveraging historical data and its own predictions for long-horizon robustness.
The dashed arrows denote the sequential autoregressive prediction steps. (b) Teacher-forcing training can be viewed as a special case of
autoregressive training with a forecast horizon N = 1, using ground truth observations for next-step predictions to optimize parallelization
but limiting robustness to error accumulation.

Table S5. Policy observation space

Entry Symbol Dimensions

base linear velocity v 0:3
base angular velocity ω 3:6
projected gravity g 6:9
velocity command c 9:12
joint positions q 12:24
joint velocities q̇ 24:36

Table S6. Reward weights

Symbol wvxy
wωz

wvz wωxy
wqτ

Value 1.0 0.5 −2.0 −0.05 −2.5e−5

Symbol wq̈ wȧ wfa wc wg

Value −2.5e−7 −0.01 0.5 −1.0 −5.0

where σvxy = 0.25 denotes a temperature factor, cxy and656
vxy denote the commanded and current base linear velocity.657

Angular velocity tracking658

rωz
= wωz

e−∥cz−ωz∥2
2/σ

2
ωz ,659

where σωz
= 0.25 denotes a temperature factor, cz and ωz660

denote the commanded and current base angular velocity.661

Linear velocity z662

rvz = wvz ∥vz∥
2
2 ,663

where vz denotes the base vertical velocity.664

Angular velocity x, y665

rωxy
= wωxy

∥ωxy∥22 , 666

where ωxy denotes the current base roll and pitch velocity. 667

Joint torque 668

rqτ = wqτ ∥τ∥
2
2 , 669

where τ denotes the joint torques. 670

Joint acceleration 671

rq̈ = wq̈ ∥q̈∥22 , 672

where q̈ denotes the joint acceleration. 673

Action rate 674

rȧ = wȧ∥a′ − a∥22, 675

where a′ and a denote the previous and current actions. 676

Feet air time 677

rfa = wfatfa , 678

where tfa denotes the sum of the time for which the feet are 679
in the air. 680

Undesired contacts 681

rc = wccu, 682

where cu denotes the counts of the undesired knee contacts. 683

Flat orientation 684

rg = wgg
2
xy, 685

where gxy denotes the xy-components of the projected grav- 686
ity. 687
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Figure S6. Dual-autoregressive mechanism employed in RWM.
Inner autoregression updates GRU hidden states after each his-
torical step within the context horizon, while outer autoregression
feeds predicted observations from the forecast horizon back into the
network. The dashed arrows denote the sequential autoregressive
prediction steps, highlighting robustness to long-term dependencies
and transitions.

E.3. Network Architecture688

E.3.1. RWM689

The robotic world model consists of a GRU base and MLP690
heads predicting the mean and standard deviation of the next691
observation and privileged information such as contacts, as692
detailed in Table S7. The training scheme is visualized in693
Fig. S6.694

Table S7. RWM architecture

Component Type Hidden Shape Activation

base GRU 256, 256 −
heads MLP 128 ReLU

E.3.2. Baselines695

The network architectures of the baselines are detailed in696
Table S8.697

E.3.3. MBPO-PPO698

The network architectures of the policy and the value func-699
tion used in MBPO-PPO are detailed in Table S9. The700
training scheme is visualized in Fig. S7.701

E.4. Training Parameters702

The learning networks and algorithm are implemented in703
PyTorch 2.4.0 with CUDA 12.6 and trained on an NVIDIA704
RTX 4090 GPU.705

Table S8. Baseline architecture

Network Parameter Value

MLP hidden shape 256, 256
activation ReLU

RSSM type GRU
hidden size 256
layers 2
latent dimension 64
prior type categorical
categories 32

Transformer type decoder
dimension 64
heads 8
layers 2
context length 32
positional encoding sinusoidal

𝑜𝑡−⋯ 𝑜𝑡−1 𝑜𝑡 𝑜𝑡+1 𝑜𝑡+⋯

𝑜′𝑡+1

𝑎𝑡−1

𝑎𝑡

𝑜′𝑡+2 𝑜′𝑡+𝑇

𝑜′𝑡 𝑜′𝑡+1 𝑜′𝑡+𝑇−1

imagination rollouts

env interactions

Figure S7. Model-Based Policy Optimization with learned world
models. The framework combines real environment interactions
with simulated rollouts for efficient policy optimization. Observa-
tion and action pairs from the environment are stored in a replay
buffer and used to train the autoregressive world model. Imagi-
nation rollouts using the learned model predict future states over
a horizon of T , providing trajectories for policy updates through
reinforcement learning algorithms.

Table S9. Policy and value function architecture

Network Type Hidden Shape Activation

policy MLP 128, 128, 128 ELU
value function MLP 128, 128, 128 ELU

E.4.1. RWM 706

The training information of RWM is summarized in Ta- 707
ble S10. 708

E.4.2. MBPO-PPO 709

The training information of MBPO-PPO is summarized in 710
Table S11. 711
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Table S10. RWM training parameters

Parameter Symbol Value

step time seconds ∆t 0.02
max iterations − 2500
learning rate − 1e−4

weight decay − 1e−5

batch size − 1024
history horizon M 32
forecast horizon N 8
forecast decay α 1.0
approximate training hours − 1
number of seeds − 5

Table S11. MBPO-PPO training parameters

Parameter Symbol Value

imagination environments − 4096
imagination steps per iteration − 100
step time seconds ∆t 0.02
buffer size |D| 1000
max iterations − 2500
learning rate − 0.001
weight decay − 0.0
learning epochs − 5
mini-batches − 4
KL divergence target − 0.01
discount factor γ 0.99
clip range ϵ 0.2
entropy coefficient − 0.005
number of seeds − 5

E.5. Additional Experiments and Discussions712

E.5.1. Dual-autoregressive Mechanism713

The heatmap on the left in Fig. S8 shows the relative autore-714
gressive prediction error e under different combinations of715
M and N . Models trained with a longer history horizon M716
consistently exhibit lower prediction errors, demonstrating717
the importance of providing sufficient historical context to718
capture the underlying dynamics. However, the influence of719
M plateaus beyond a certain point, indicating diminishing720
returns for very large history horizons. Forecast horizon721
N , on the other hand, plays a decisive role in improving722
long-term prediction accuracy. Increasing N during training723
leads to better performance in autoregressive rollouts, as724
it encourages the model to learn representations robust to725
compounding errors over extended prediction horizons. This726
improvement comes at the cost of increased training time, as727
shown in the heatmap on the right. Larger N values require728
sequential computation during training due to the autore-729

1 2 8 16 32
M

1
2

8
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Figure S8. Ablation study on the history horizon M and forecast
horizon N in RWM. The heatmap on the left shows the relative
autoregressive prediction error, with darker colors indicating higher
errors. Models trained with larger history horizons M exhibit
lower errors, although the improvements plateau beyond a certain
point. Forecast horizon N has a significant impact, with longer
horizons leading to better long-term prediction accuracy due to
exposure to extended rollouts during training. The heatmap on
the right illustrates training time, with darker colors representing
longer durations. Increasing N significantly raises training time
due to sequential computation, while shorter horizons (e.g., N = 1,
teacher-forcing) enable faster training but result in poor prediction
accuracy.

gressive nature of the process, significantly lengthening the 730
training duration. 731

Interestingly, when the forecast horizon N = 1 (teacher- 732
forcing), training can be highly parallelized, resulting in 733
minimal training time. However, this setting leads to poor 734
autoregressive performance, as the model lacks exposure 735
to long-horizon prediction during training and fails to ef- 736
fectively handle compounding errors. From the results, an 737
optimal trade-off emerges: moderate values of M and N 738
balance prediction accuracy and training efficiency. For in- 739
stance, a history horizon of M = 32 and forecast horizon 740
of N = 8 achieve strong autoregressive performance with 741
manageable training time. These settings ensure sufficient 742
historical context while training the model for robust long- 743
term predictions. Overall, the results highlight the critical 744
interplay between history and forecast horizons in autore- 745
gressive training. While extending both M and N improves 746
accuracy, practical considerations of computational cost ne- 747
cessitate careful tuning of these hyperparameters to achieve 748
optimal performance. 749

E.5.2. Visualization of Imagination Rollouts 750

The imagination rollouts across various robotic environments 751
compared with the ground-truth simulation is visualized in 752
Fig. S9. 753

E.5.3. Collision Handling and Model Pretraining 754

In both phases of the pretraining and online fine-tuning of 755
RWM, we terminate rollouts and reset the environment when 756
ground contact by the base is detected, signaling a failure. 757
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Figure S9. Autoregressive imagination of RWM and ground-truth simulation across diverse robotic systems. For each environment, the
top row showcases the RWM autoregressively predicting future trajectories in imagination. The second row visualizes the ground truth
evolution in simulation. The visualized coordinate and arrow markers denote the predicted and measured end-effector pose and base velocity,
respectively.

We explicitly train RWM to predict such terminations in its758
privileged information prediction head. This enables the759
world model to learn transitions leading to unsafe situations.760
During policy optimization, MBPO-PPO treats these termi-761
nation predictions as episode-ending events in imagination762
rollouts, affecting PPO’s return computation and state values.763

RWM is pretrained with simulation data induced by poli-764
cies trained for similar tasks under varied dynamics. The765
policy is learned from scratch purely in imagination, with766
RWM fine-tuned using a single-environment online dataset.767

Pretraining is essential for two key reasons. First, the online 768
dataset is extremely limited, as it is generated by only a 769
single environment, akin to real-world constraints. Training 770
the world model entirely from scratch on such data would 771
lead to severe overfitting and long training times. Second, an 772
immature policy would frequently cause the robot to fall, gen- 773
erating transitions with limited value. In cases of significant 774
failure or domain shift, training the world model solely on 775
these data would result in chaotic imagined rollouts, which 776
in turn would produce poor policy updates. Pretraining stabi- 777

13



LSRW
#5

LSRW
#5

LSRW 2025 Submission #5. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

lizes training and serves as a robust initialization for online778
fine-tuning, particularly in environments with challenging779
dynamics.780

Importantly, RWM pretraining does not require data from781
optimal policies. Figure S4 demonstrate that RWM remains782
robust to domain shifts and injected noise. As an alterna-783
tive, we warm up the model using data from a suboptimal784
policy, which significantly stabilizes training. Notably, this785
pretraining is only necessary for locomotion tasks due to the786
discontinuous dynamics and environment terminations. Our787
manipulation experiments do not require such pretraining.788

E.5.4. Challenges in Real-World Online Learning789

We acknowledge that the advantages of our approach would790
be further demonstrated by performing the policy training791
phase directly on real hardware. While this is a key long-term792
objective, several challenges currently prevent real-world793
deployment.794

During online learning, the policy often exploits minor795
world model errors, leading to overly optimistic behaviors796
that result in collisions. In simulation, these failures serve797
as corrective signals, but in real hardware, they pose a risk798
to the robot. Our experiments show that such failures oc-799
cur more than 20 times on average during online learning,800
which would be detrimental to real-world systems. Even if801
hardware collisions were acceptable, fully automating online802
learning would require a recovery policy capable of reset-803
ting the robot to an initial state—a particularly challenging804
requirement for large platforms like ANYmal. Additionally,805
privileged information used to fine-tune RWM (e.g., contact806
forces) must be either measured or estimated using onboard807
sensors, which may not always be available. To mitigate808
error exploitation, uncertainty-aware world models could809
be explored, but integrating such models into RWM would810
require additional architectural modifications. Due to these811
challenges, we approximate real-world constraints by using812
only a single simulation environment with domain shifts813
from pretraining environments. This setup reduces engineer-814
ing effort while proving the feasibility of our approach. Our815
ongoing work specifically addresses these issues .816

E.6. Ethics and Societal Impacts817

This work does not involve human subjects or sensitive data.818
All experiments are conducted in simulation or on dedicated819
robotic hardware operated by the authors, with no use of820
third-party datasets. The research complies with the Code of821
Ethics of the venue. The proposed framework provides a ro-822
bust and scalable method for learning world models tailored823
to complex robotic tasks. This can benefit domains such824
as healthcare, disaster response, and logistics, and reduce825
environmental and hardware costs associated with physi-826
cal experimentation. Potential risks include misuse of the827
method in surveillance or autonomous enforcement systems,828
and the acceleration of automation in labor-sensitive sectors.829

While such uses are not intended or explored in this work, the 830
authors acknowledge the dual-use potential of generalizable 831
control methods. To mitigate safety risks, policy training 832
occurs entirely in simulation, and deployment is limited to 833
policies validated under domain shifts. Failure events are 834
explicitly modeled and used to terminate unsafe rollouts. 835
Online learning on hardware is deferred due to safety con- 836
cerns and the absence of reliable recovery strategies. Future 837
work will explore uncertainty-aware models and safer online 838
adaptation. 839
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