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Abstract

Physics-informed neural networks (PINNs) present a promising solution for solv-
ing partial differential equations (PDEs) using neural networks, especially in
data-scarce scenarios due to their unsupervised learning abilities. However, a key
limitation is the need for re-optimization with every change in PDE parameters,
similar to the constraints in traditional numerical methods, which limits the broader
use of PINNs. This survey explores research addressing this limitation through
transfer learning and meta-learning. These methods can potentially improve PINNs’
training efficiency, enabling quicker adaptation to new PDEs with fewer data and
computational demands. Instead of relying on extensive data to build general
models, typical for existing foundation model approaches, efficient adaptation in
PINNs focuses on smaller information domains that quickly adjust to similar prob-
lems by leveraging previously learned knowledge. By synthesizing insights from
these advanced learning techniques, this survey identifies strategies to facilitate the
broader adoption of PINNs across scientific and engineering fields.

1 Introduction
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Figure 1: Data and scientific knowledge
requirements for different modeling ap-
proaches.

Advances in machine learning (ML) have led to foun-
dation models with applications in fields like computer
vision (e.g., self-driving cars), natural language process-
ing (e.g., intelligent agents, chat-bots), and image gener-
ation. Building on this success, there is growing interest
in the developing foundation models to solve problems
in science and engineering. However, unlike domains
with abundant data, these fields often face data limita-
tions due to the high cost of experiments and simula-
tions needed to generate data. To address this, data- and
computationally-efficient methods such as transfer learn-
ing, meta-learning, and few-shot learning—successful
in other domains—show promise for advancing ML in
scientific disciplines.

One specific application in science and engineering
where these efficient ML models can be particularly
beneficial is determining the approximate solutions of
PDEs. PDEs are fundamental in modeling and describ-
ing natural phenomena across various scientific and en-
gineering domains. Traditionally, these equations are
solved numerically, which (in some cases) can become
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prohibitively expensive, especially when dealing with nonlinear and high-dimensional problems [1].
This challenge limits their application in areas where fast evaluation of a PDE is required. Recogniz-
ing this challenge, neural networks have been explored as a potential solution, offering advantages in
effectively modeling complex nonlinearities [2, 3, 4, 5], presenting the potential for faster evaluation
compared to classical iterative solvers, as well as offering mesh-free solutions not constrained to
computational grids [6, 7, 2, 5]. Moreover, ML techniques provide an approach to solving inverse
problems, where the goal is to infer unknown parameters or initial/boundary conditions from observed
data, a task challenging for numerical methods [8, 9]. In addition, ML implementations are simpler
than numerical methods allowing for faster development and easy maintenance [9].

ML methods for solving PDEs can be broadly categorized into neural surrogates and neural PDE
solvers 12. Neural surrogates, including physics-guided neural networks and neural operators, train
networks using data generated from numerical solvers. The most popular among these are neural
operators, which approximate nonlinear mappings between infinite-dimensional function spaces
using datasets of input-output pairs from solvers or observations. Examples include Fourier Neural
Operators [7] and DeepONet [12].

On the other hand, neural PDE solvers directly incorporate physical laws by embedding the governing
equations into the learning process. A key example is PINNs [2], which approximate solutions by
minimizing the residuals of governing equations, initial conditions, and boundary conditions.

While both neural operators and PINNs have strengths and limitations, this study suggests that
PINNs are more suitable for data generation in scientific and engineering domains with limited
data. Neural operators typically require large datasets, often derived from costly simulations, and
do not explicitly incorporate governing physics equations, which can lead to generalization issues
and physical inconsistencies outside the training data [13]. In contrast, PINNs integrate governing
equations directly into the training process, ensuring that the solutions adhere to the underlying
physics while reducing the reliance on preexisting datasets, making them particularly effective for
data-scarce applications [13]. Figure 1 shows how different methods balance data requirements with
scientific knowledge. When the underlying governing equations are not incorporated, more data is
needed to infer the physical behavior. However, when the governing equations are utilized, only
minimal data is required, such as boundary conditions or material properties.

However, PINNs also face certain challenges, including convergence issues in high-dimensional
problems, long training times due to the computational expense of derivative evaluations, and
sensitivity to hyperparameters. Additionally, PINNs are typically trained on a per-PDE instance basis,
requiring retraining for each parameter change [13].

To address these limitations, this survey explores the integration of advanced ML techniques, such
as transfer learning and meta-learning into PINNs to enhance model adaptivity by maximizing
knowledge reuse, reducing adaptation time and minimizing data resources. Additionally, these
methods can help overcome the convergence challenges typically associated with PINNs. Moreover,
this integration offers a promising alternative to traditional foundation models, providing a more
data-efficient approach to training models. This advancement aims to achieve "efficient model
adaptivity," enabling rapid learning and adaptation in data-limited environments. Ultimately, this
can help overcome some of PINNs’ current challenges and facilitate their adoption in real-world
applications where data is limited and fast evaluation are crucial.

The key contributions of this work include:

• Reviewing recent advancements in PINNs, with a focus on adaptive techniques such as
transfer learning, meta-learning, and few-shot learning.

• Identifying potential benchmarks and real-world applications where these adaptive tech-
niques can significantly improve PINNs efficiency, especially in data-limited scenarios.

• Providing insights into future research directions and use cases for adaptive PINNs across
various domains.

1A surrogate model can be thought of as a "regression" to a set of data, where the data is a set of input-output
parings obtained by evaluating a black-box model of a complex system [10, 11]. Conversely, a solver is an
algorithm or method used to find a solution to a mathematical model.

2While some authors use the terms "Neural Surrogates" and "Neural PDE Solvers" interchangeably, this
work makes a distinction to highlight the specific requirements for obtaining the solution to a PDE.
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To the best of our knowledge, no prior review has focused specifically on model adaptivity in PINNs.

The structure of this paper is as follows: First, essential concepts are introduced. Section 3 reviews
the application of transfer learning and meta-learning to PINNs. Section 4 covers benchmarks and
metrics for assessing model adaptation. In Section 5, works applied to real-world scenarios are
discussed. Finally, Section 6 suggests future research directions and a concluding remark.

2 Background

Physics-Informed Neural Networks (PINNs). PINNs approximate the solution of PDEs by using
a neural network uθ that incorporates information from the initial-boundary value problem (IBVP)3

directly into the optimization process. A common approach involves including the residuals of the
IBVP equations in the loss function, where these residuals are calculated at collocation points sampled
within the problem’s domain. Specifically, the residuals correspond to the discrepancies in the PDE,
boundary conditions, and initial conditions at these sampled points. Automatic differentiation is
employed to compute the necessary derivatives in the differential operator. This method allows the
network to learn solutions that satisfy the IBVP constraints accurately.

Efficient Model Adaptivity. Efficient model adaptivity in ML is the ability to quickly adjust to
new, unseen tasks using prior knowledge. Given a model pre-trained on source tasks Ts ⊂ T , the
goal is to adapt it to novel target tasks Tt ⊂ T , where Tt ∩ Ts = ∅, assuming shared characteristics
across tasks. In PINNs, each task typically corresponds to an IBVP instance with different parameters
(e.g., material properties, boundary/initial conditions). Figure 2 illustrates two examples of IBVPs.

Efficient adaptivity is influenced by two main factors: training performance and data efficiency.
Training performance is affected by the number of model parameters, the complexity of the model,
and the optimization steps required for adaptation. Data efficiency, on the other hand, seeks to reduce
the number of collocation points or make the best use of limited observational data. To achieve
efficient model adaptation, this work suggests the application of transfer learning, meta-learning to
physics-informed neural networks.
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Figure 2: a) Heat equation with different material properties as a task. b) Burgers’ equation with
different initial conditions as a task (adapted from [14]).

Transfer Learning. Transfer learning involves adapting a model pre-trained on a source task to a
related target task. By fine-tuning this model on new, often limited data, transfer learning accelerates
learning and enhances performance compared to training from scratch. This approach is especially
useful when the target domain has scarce labeled data.

3An IBVP is a mathematical framework that combines a partial differential equation with initial and boundary
conditions to yield a unique solution that describes the system’s behavior.
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Meta-learning. Meta-learning, or ’learning to learn’, aims to enhance both model training efficiency
and overall performance by leveraging shared knowledge across multiple tasks. During a meta-
training phase, a meta-learner captures task relationships and adjusts base learning algorithms,
hyperparameters, or architectures. This enables faster and more efficient adaptation to new tasks.

Few-shot Learning. Few-shot learning is a technique designed to enable models to learn from
few examples. It involves transferring knowledge from previously learned tasks to new, similar
tasks with minimal data. Few-shot learning often leverages meta-learning to generalize from limited
examples, making it valuable for scenarios with constrained data availability. By efficiently adapting
to new tasks with minimal training data, few-shot learning enhances model performance and practical
applicability.

3 Methodology

3.1 Transfer Learning Techniques in PINNs

This section reviews advancements in PINNs enhanced by transfer learning techniques, which address
the computational cost and convergence issues of training from scratch. The literature discussed is
summarized in Table 1.

Table 1: Transfer Learning in Physics-informed Neural Networks.

Transfer Learning Strategies in PINNs
FS. Literature Task PT PType Benchmark Equations
FFT Prantikos et al. [15] ODE ST Fwd. *Point Kinetic (PKEs)

Lin and Chen [16] PDE MT Inv. Schrödinger1D

Zhou and Mei [17] PDE ST Inv. *Elastoplastic2D

PEFT Desai et al. [18] PDE/ODE MT Fwd. Pois.2D, Schr.1D, 1st/2nd-order
ODEs

Goswami et al. [19] PDE ST Fwd. *Fracture Mechanics2D

Gao et al. [20] PDE ST Fwd. Linear Parabolic10D, Allen Cahn10D

Xu et al. [21] PDE MT Inv. *Elastic2-3D, Hyperelastic2D

Pellegrin et al. [22] ODE MT Fwd. Stochastic Branched Flow2D

†Chakraborty [23] PDE/ODE ST Fwd. Stochastic ODE, Burgers1D

CTL †Mustajab et al. [24] ODE/PDE ST Fwd. Harmonic Oscillator, Wave
Equation1D

Note: Fine-tune Strategy (FS), Pre-train type (PT), Problem Type (PType), Full Fine-tune (FFT),
Parameter-efficient Fine-tuning (PEFT), Curriculum Transfer Learning (CTL), Single-task Learn-
ing (ST), Multi-task Learning (MT). Equations with (*) are domain-specific problems. References
marked with (†) indicate the use of few-shot learning techniques. Abbreviations: Poisson = Pois.,
Schrödinger = Schr.

3.1.1 Full Fine-tuning

Full model fine-tuning (FFT) updates all parameters of a pre-trained model for a new task. For
example, Prantikos et al. [15] introduced TL-PINN for solving the Point Kinetic Equation4, where a
pre-trained PINN is fine-tuned to accelerate predictions by leveraging task similarity. They demon-
strated that performance improvement correlates with task similarity, leading to faster convergence
and better accuracy. A key takeaway is the importance of measuring task similarity to assess when
transfer learning is beneficial. Similarly, Lin and Chen [16] enhanced gPINNs5 by using transfer
learning to initialize gPINN models with pre-trained weights from a standard PINN, enabling efficient
training.

4Point Kinetics Equations are a simplified model for analyzing nuclear reactor dynamics.
5Gradient-enhanced PINNs [25] include the residual’s gradient in the loss function, improving accuracy but

increasing training costs.
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Zhou and Mei [17] combined the smoothed finite element method (S-FEM) with PINNs to improve
the efficiency of solving inverse problems with limited data. Their approach involves pre-training
a PINN using S-FEM-generated data, then using this pre-trained model to initialize weights for a
new problem and fine-tuning it with additional S-FEM data. This method demonstrated enhanced
accuracy and efficiency compared to directly coupling S-FEM with PINNs.

3.1.2 Parameter-Efficient Fine-tuning (PEFT)

PEFT reduces computational and memory costs by selectively fine-tuning only a small number of
parameters. This approach is examined in relevant studies presented here.

Desai et al. [18] applied a PEFT approach for solving ordinary differential equations (ODEs) and
PDEs within PINNs. In this method, the hidden layers represent a shared basis learned during
pre-training, while the output layers are task-specific. For new tasks, only the output weights are
updated, while the shared basis remains fixed. In some cases, these output weights can be calculated
analytically by solving a linear system, enabling a one-step adaptation. Otherwise, they are optimized
through gradient descent. This approach achieves efficient task transfer by leveraging the pre-trained
shared basis across tasks.

Goswami et al. [19] applied a similar strategy for phase-field fracture modeling, a problem where
displacements are calculated in small steps. A full PINN is trained for the first step, and in subsequent
steps, only the last layer is retrained while sharing pre-trained weights, improving efficiency.

Chakraborty [23] fine-tuned a low-fidelity PINN model to approximate a high-fidelity model by
adjusting only the last one or two layers. A data-driven loss was employed to guide this fine-tuning
process, effectively achieving a high-fidelity approximation with a limited amount of high-fidelity
data.

Gao et al. [20] introduced SVD-PINNs, which apply singular value decomposition (SVD) to the
hidden layers, fine-tuning only the singular values and the weights of the initial and last layers.
This approach improves efficiency in solving high-dimensional PDEs, especially when dealing
with multiple related PDEs that share differential operators but differ in right-hand side functions.
Optimizing singular values is crucial for performance; proper optimization stabilizes training and
generally outperforms training PINNs from scratch, while inaccurate values can worsen outcomes.

Pellegrin et al. [22] employed a multi-task learning strategy, training a shared base network on
multiple related tasks and fine-tuning task-specific heads to improve convergence and performance.

Xu et al. [21] addressed inverse analysis in engineering structures with a two-stage transfer learning
process. First, a PINN is pre-trained on simplified tasks using multi-task learning. Then, it is
fine-tuned on real data, updating only specific layers. Applied to 2D elasticity problems, this method
improved accuracy and accelerated convergence, even with simplified pre-training.

3.1.3 Curriculum Transfer Learning (CTL)

Curriculum Transfer Learning (CTL) gradually increases task complexity. Mustajab et al. [24] applied
this strategy to PINNs, starting with simpler problems and progressively introducing more complex
ones, which improved convergence for high-frequency and multi-scale PDEs.

3.2 Meta-Learning Techniques in PINNs

The integrating of meta-learning with PINNs enhances model adaptivity and generalization. Table 2
outlines the taxonomy of these techniques in the context of PINNs, focusing on what is meta-learned.
The next section presents studies based on this taxonomy.

3.2.1 Learning the Weight Initialization

Effective weight initialization plays a critical role in accelerating PINN convergence and accuracy
while reducing computational costs. Several meta-learning approaches have been developed to
address this challenge. For instance, Liu et al. [26] applied the Reptile Algorithm [27] for weight
initialization, demonstrating improved training efficiency and accuracy compared to methods like
Xavier across various settings. Another approach, Model-Agnostic Meta-Learning (MAML) [28],
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was adapted by Zhong et al. [29] and Cheng and Alkhalifah [30] for PINNs in plasma and seis-
mic simulations. Although MAML significantly enhances convergence and accuracy, it requires
substantial computational resources due to its two-gradient computation process.

In comparing MAML with LEAP [31], Qin et al. [32] found that while MAML outperforms LEAP
in accuracy for a given runtime, LEAP offers faster meta-training and reduced memory requirements.

Penwarden et al. [33] introduced a two-step weight prediction method for PINNs. First, optimized
weights are collected from pre-trained PINNs from multiple tasks. Then, a secondary model is used
to approximate the mapping from task parameters to weights. Several models, including Gaussian
Processes, Cubic Spline Interpolation, and Radial Basis Functions, were examined. Despite exploring
these prediction models, additional research is needed to tackle high-dimensional parametric domains.

Cho et al. [34] developed the Hyper-Low-Rank PINN, which combines meta-learning with PEFT to
address parametric PDEs more efficiently. The method features a two-phase training process. In the
pre-training phase, the weights of the hidden layers of the base model are constructed using a SVD
approach, W = UΣV , where Σ (the singular values) are provided by the meta-network and the
singular vectors U and V are part of the base model. The first and last layers are kept as standard
linear layers. During the fine-tuning phase, the meta-network generates adaptive weights for new
tasks and trims less significant weights to maintain a compact, hyper-low-rank structure. Additionally,
the first and last layers are optimized along with the adaptive weights.

3.2.2 Learning the Network Structure

Meta-learning also plays a significant role in adapting the network structure to improve performance
in various applications. For example, Meta-Bayesian Optimization, as applied by Chen et al. [35],
was used to select the optimal network architecture for solving Advection-Diffusion-Reaction (ADR)
systems with sparse data.

Similarly, Mixture-of-Experts, utilized by Bischof and Kraus [36], combined with PINNs, lever-
ages a gating network to balance contributions from different experts across various input regions.
This method improved both accuracy and convergence, with ongoing research aimed at refining
performance and scalability.

In another advancement, Chen and Koohy [37] introduced GPT-PINN, which integrates meta-learning
with dynamic task sampling to expand a shared basis dictionary. It approximates new parameter
instances u(x, t;µ) as a weighted sum of pre-trained PINNs:

u(x, t;µ) ≈
n∑

i=1

ci(µ)Ψ
θi

NN (x, t),

where Ψθi

NN are pre-trained PINNs for various parameters, and ci(µ) are coefficients from a meta-
network. If the approximation is inaccurate, a new PINN is trained for that parameter and added to
the basis, enhancing the model’s generalization.

3.2.3 Learning the Loss Function

Meta-learning techniques are also employed to optimize loss functions for PINNs, further enhancing
their performance. For instance, Psaros et al. [38] developed a gradient-based meta-learning approach
that discovers optimal loss functions across various PDE tasks by designing a parametric loss function
optimized during the pre-training phase. This approach improves generalization, allowing the model
to perform better on new, unseen tasks.

Another significant development is the Loss-Attentional PINN (LA-PINN), introduced by Song et al.
[39]. This approach treats the loss function as a learnable component, using multiple loss-attentional
networks (LANs) trained adversarially with the main PINN. While the PINN minimizes the loss via
gradient descent, the LANs employ gradient ascent to learn point-wise weights, effectively creating
an "attentional function" that dynamically adjusts weights based on the difficulty of fitting each
collocation point. Inspired by GANs, this method emphasizes challenging regions of the problem,
improving convergence and overall accuracy.
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3.2.4 Learning the Input

Adapting input data, including collocation points, plays a key role in reducing computational demands
and improving the performance of PINNs. One such method is the Difficulty-Aware Task Sampler
(DATS), introduced by Toloubidokhti et al. [40], which optimizes task sampling based on the
difficulty of the tasks, leading to improved accuracy and reduced performance disparity.

Similarly, Deep Adaptive Sampling (DAS), proposed by Tang et al. [41], employs a generative model
to guide adaptive sampling, particularly in regions with high residuals. This approach has shown
significant improvements in accuracy, especially for high-dimensional PDEs.

Finally, Self-Referential Learning approaches have been explored by Huang et al. [42] and Iwata et
al. [43]. Huang’s method, MAD, approximates PDE solutions using a latent vector, while Iwata’s
approach leverages meta-networks to encode PDE parameters into a latent vector, refining it for new
tasks, further enhancing the adaptability and efficiency of PINNs.

Table 2: Meta-learning Strategies in Physics-informed Neural Networks.

Meta-learning Strategies in PINNs
Type Approach Literature PType Equation

Weight
Init.

FFT

Liu et al. [26] Both Pois.1-2D, [Burg., Schr.]1D

Zhong et al. [29] Fwd. *Plasma Sim.1D

Penwarden et al. [33] Fwd. [Burg., Heat]1D, [A-C, D-R]2D

Cheng and Alkhalifah [30] Fwd. Wavefield2D

Qin et al. [32] Fwd. Burg.1D, [Pois., Hyp.-elast.]2D

PEFT Cho et al. [34] Fwd. C-D-R1D, Helm.2D

Net.
Struct.

Lay./Neur. †Chen et al. [35] Inv. A-D-R1D

Activations Bischof and Kraus [36] Fwd. Pois.2D

†Chen and Koohy [37] Fwd. [Burg., K-G, A-C]1D

Input

Sampling
Points/Params

†Toloubidokhti et al. [40] Fwd. [Burg., Conv., R-D]1D, Helm.2D

†Tang et al. [41] Fwd. Ellip.2-10D, Nonlinear PDE10D

Latent Rep. Huang et al. [42] Fwd. Burg.1D, [Max., Laplace.]2D

Iwata et al. [43] Fwd. Arbitrary Param. PDE1D

Loss Param. Loss Psaros et al. [38] Both [Adv., Burg.]1D, SS R-D2D

Loss Attention Song et al. [39] Fwd. Burg.1D, [LDC Flow, Pois.]2D

Note: Problem Type (PType), Forward Problem (Fwd.), Inverse Problem (Inv). Equations marked
with (*) represent domain-specific problems. References marked with (†) indicate the use of few-
shot learning techniques. Abbreviations: Poisson = Pois., Burgers = Burg., Schrödinger = Schr.,
Simulation = Sim., Allen-Cahn = A-C, Diffusion-Reaction = D-R, Convection-Diffusion-Reaction =
C-D-R, Helmholtz = Helm., Advection-Diffusion-Reaction = A-D-R, Klein-Gordon = K-G, Reaction-
Diffusion = R-D, Elliptic = Ellip., Hyper-elasticity = Hyp.-elast., Maxwell = Max., Parametric =
Param., Advection = Adv., Steady State = SS, Lid-driven Cavity = LDC.

3.3 Few-shot Learning in PINNs

Few-shot learning aims to minimize the number of training examples required to train a model. In
the context of PINNs, this can be achieved through several strategies: minimizing the number of
sampling tasks needed for pre-training, reducing collocation points during fine-tuning, and leveraging
limited real-world observational data. This section highlights works that focus on achieving few-shot
learning through meta-learning and transfer learning, which are indicated with the ’†’ symbol in
Tables 1 and 2. For example, Chen and Koohy [37] and Toloubidokhti et al. [40] focus on reducing
sampling tasks, while Mustajab et al. [24], Toloubidokhti et al. [40], and Tang et al. [41] address
reducing collocation points. Additionally, Chen et al. [35] explores the use of limited real-world
observational data for fine-tuning, which is particularly valuable for practical applications.
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4 Benchmarks and Metrics

Figure 3: Example of efficient model adaptation through meta-learning.

4.1 PDE Problems

Table 1 and table 2 summarize the benchmark equations used in each work. In addition, the full
description of the most common equations are summarized in Appendix A.1.

4.2 Error Measures

Chen and Koohy [37] introduces a summary of the choices of error measures, which are common
throughout most of the works. These are presented as a reference in Table 3.

Table 3: Common Evaluation Metrics for error measurement. Here the worst-case losses and errors
are evaluated over a set of tasks µ, providing insight into the performance of the worst-performing
tasks. The term "Terminal" refers to metric evaluated at the last iteration step.

Evaluation Metrics
Metric Description Equation
Largest Loss Worst-case maxµ L(uθ(·))
Terminal Loss Task-wise L(uθ(·))
Largest Rel. L2 Err. Worst-case maxµ ||uθ − ugt||2/||ugt||2
Terminal Rel. L2 Err. Task-wise ||uθ − ugt||2/||ugt||2
Terminal Abs. Err. Task-wise ||uθ − ugt||1

4.3 Efficient Adaptivity Metrics

Evaluating the adaptivity and efficiency of PINNs is crucial for practical applications. Key metrics
assess data requirements and computational efficiency, focusing on minimal data usage and reduced
training time. Figure 3 illustrates the key factors influencing efficient adaptation when solving the
Poisson equation with varying forcing parameters. It compares a standard PINN with a meta-learning
approach, highlighting reductions in training time, epochs, and collocation points. The meta-learning
strategy follows the method proposed by Cho et al. [34]. The solutions on the right side of the figure
correspond to 100 epochs of training for both the vanilla PINN and the meta-learning PINN. The
radar chart compares the two models, with all values normalized relative to the highest value for
each metric. Two sets of metrics are displayed: one describing the model and the other describing
training performance. The training performance metrics are averaged across tasks and reflect the
values needed to reach a loss of 0.05 within a budget of 1200 epochs. If the target loss is not achieved
within this budget, the final values are reported.
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4.3.1 Data Efficiency (Few-shot)

Collocation Point Budget. This metric evaluates the trade-off between the number of collocation
points and accuracy. It compares fixed and adaptive sampling strategies to determine the optimal
balance for training performance and accuracy.

Regression Point Budget. Measures accuracy based on the number of available observation points,
crucial for applications with limited data.

Task Sampling. Involves pre-training on multiple PDE instances to improve generalization. The
goal is to determine the optimal number of pre-training tasks for best results, balancing resource use
and final accuracy. Performance disparity, or the difference between the best and worst results, is
used to gauge generalization and identify areas for improvement.

4.3.2 Computational Efficiency

To evaluate computational efficiency, four key metrics are commonly reported. First, the parameter
count provides a measure of the model size, which impacts memory usage. Second, the number of
MACs (Multiply-Accumulate Operations) directly reflects the computational complexity, influencing
processing speed. Third, the epoch count assesses convergence by either reporting the final accuracy
within a set epoch budget or the number of epochs required to reach a target error threshold. Fourth,
training time offers a direct quantification of computational cost by measuring the duration needed to
achieve the desired accuracy. These metrics collectively provide a comprehensive view of the com-
putational demands associated with different PINN architectures and training strategies, facilitating
informed decisions for their deployment in resource-constrained environments.

5 Applications

Meta-learning and transfer learning techniques have expanded PINN applications beyond traditional
benchmarks to practical and domain-specific problems, as noted in Tables 1 and 2. These are
discussed in the following sections.

5.0.1 Forward Problems

In various applications, transfer learning and meta-learning have been employed to enhance the
performance of PINNs. For example, in nuclear reactor safety, Prantikos et al. [15] used transfer
learning to accelerate PINN retraining, enabling real-time reactor state prediction. Similarly, in brittle
fracture mechanics, Goswami et al. [19] applied transfer learning to efficiently predict crack paths in
structures, eliminating the need to retrain the model for each displacement step. In plasma physics,
Zhong et al. [29] utilized meta-learning for weight initialization, significantly improving convergence
in complex plasma simulations.

5.0.2 Inverse Problems

In elasto-plastic problems, Zhou and Mei [17] employed PINNs and transfer learning to solve
inverse problems and determine material parameters, significantly reducing the computational cost
of traditional methods. Similarly, in load prediction, Xu et al. [21] used transfer learning to predict
external loads on structures based on limited displacement observations, enhancing efficiency in
diverse engineering scenarios. These examples highlight the potential of meta-learning and transfer
learning to improve PINNs across various scientific and engineering fields.

6 Discussion & Conclusions

6.1 Future Direction

While transfer and meta-learning techniques have the potential to enhance PINN training efficiency
and data reusability, the lack of consistent benchmarking methods makes direct comparisons of these
techniques challenging. For instance, Qin et al. [32] and Penwarden et al. [33] reported conflicting
findings regarding MAML’s effectiveness compared to random initialization. To facilitate better
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comparisons and improve understanding of these methods’ suitability, it is essential to establish
consistent evaluation criteria. Additionally, clarifying terms such as "in-distribution" versus "out-
of-distribution" tasks will help standardize how future research evaluates transfer learning and
meta-learning approaches in PINNs.

A key priority for future research is to enhance the adaptability of PINNs to out-of-distribution
conditions. One major challenge in this area is aligning the learned bases with these out-of-distribution
tasks. Currently, many methods derive their bases specifically from the training tasks, which limits
their ability to generalize to distant tasks [34, 20, 18]. Developing strategies to extend and adapt these
bases for tasks outside the original training distribution will significantly improve the generalization
capabilities of PINNs, making them more adaptable across a wider range of problems.

Another challenge lies in the convergence behavior when using different loss functions. Training
with regression losses often leads to smoother, faster convergence, whereas gradient-based losses
(such as PDE residual losses) can result in slower or less stable convergence, despite better enforcing
physical constraints. This highlights a potential pitfall in how gradient information is utilized. Further
research is needed to address these convergence difficulties and better integrate gradient information,
building on techniques like those proposed by Song et al. [39] and Yu et al. [25] (gPINNs).

Finally, investigating how concepts from neural fields can be applied to transfer learning and meta-
learning in PINNs presents a promising avenue for improving efficient model adaptation to new tasks
or domains. Exploring more complex problems—such as those with varying boundary conditions or
higher-dimensional domains beyond 2D—is crucial. Establishing strong baseline problems in these
areas will also be a valuable direction for impactful future research.

6.2 Conclusion

The effort to make PINNs more adaptive by reusing learned information could offer significant
advantage over traditional numerical solvers. Learning to exploit this characteristic could lead to
the development of more efficient methods for solving PDEs or enhancing traditional numerical
approaches. This study suggests incorporating meta-learning, transfer learning to facilitate knowledge
reuse within PINNs. While PINNs may incur high initial training costs, their adaptivity becomes
particularly beneficial when solving similar PDEs repeatedly, such as in parameter identification
and design optimization. This approach may prove more efficient compared to solving each PDE
independently.
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A Appendix

A.1 Benchmark Equations

A.1.1 Poisson equation

The Poisson equation is a second-order elliptic PDE appearing in many fields, such as electrostatics,
steady heat transfer, and many others. This equation has the following form:

−∆u(x) = f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(1)

where ∆(·) is the Laplace operator. A common feature among all works is that the domain is 2D,
specifically Ω ⊆ [−1, 1]× [−1, 1], except for [36], which uses an L-shaped domain. The forcing or
source term f(x) changes among works:

Table 4: Different forms of f(x, y) used in various studies. Desai et al. [18] employs a different
forcing term during testing. In the work of Liu et al. [26], n represents the number of heat sources,
and U denotes uniform sampling.

Literature f(x, y) Parameters
Desai et al. [18] sin(kπx) sin(kπy) k ∈ {1, 2, 3, 4}

Liu et al. [26]

∑n
i=1 ci · exp

(
− (x−ai)

2+(y+bi)
2

0.01

)
ai, bi ∼ U(0.1, 0.9),
ci ∼ U(0.8, 1.2)

Bischof and Kraus [36] 1 -

Song et al. [39] 2π2 sin(πx) sin(πy) -

A.1.2 Burgers’ Equation

Burgers’ equation is a time-dependent PDE that models a system consisting of a moving viscous
fluid. The 1D form of the equation models the fluid flow through an ideal thin pipe. The Burgers’
equation is given by:

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= 0, x ∈ Ω, t ∈ [0, T ],

u(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ Ω,

(2)

The unknown u(x, t) is the speed of the fluid, and ν the fluid viscosity. When the viscosity is low,
then the fluid flow develops a shock wave.

Most of the works presented here treat ν as the parameter that defines a task, the initial condition as
u0(x) = − sin(πx), and the computational domain as Ω ∈ [−1, 1]; t ∈ [0, 1]. The table below shows
the different choices of ν across various works.
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Table 5: Different choice of νforBurgers′Equation1D used in various studies.
Literature Parameters

Liu et al. [26] ν ∈ [0, 0.1/π]

Penwarden et al. [33] ν ∈ [0.005, 0.05]

Chen and Koohy [37] ν ∈ [0.005, 1/π]

Toloubidokhti et al. [40] ν ∈ [0.001, 0.1]

Chen and Koohy [37] ν ∈ [0.005, 1/π]

Psaros et al. [38] ν ∈ [0.001, 0.002] & ν ∈ [0.01, 1.0]

Song et al. [39] ν = 0.01/π

A.1.3 Allen-Cahn Equation

The Allen-Cahn equation is given by:

∂u

∂t
− λ∆u+ ϵ(u3 − u) = f(x, t), x ∈ Ω, t ∈ [0, T ],

u(x, t) = 1, x ∈ ∂Ω, t ∈ [0, T ],

u(x, 0) = x2 cos(πx), x ∈ Ω,

(3)

where in Ω = [−1, 1] represents the spatial domain, and T = 1 denotes the final time. The coefficient
λ is chosen from the interval [0.0001, 0.001], while the parameter ϵ, which controls the strength of
the nonlinear term, is selected from the range [1, 5]. The forcing term f(x,t) is set to zero for this
study, focusing on the intrinsic dynamics of the Allen-Cahn equation. This represents an IBVP as
per Chen and Koohy [37]. An alternative formulation of the IBVP exists in other works that derive a
forcing term based on an exact solution, such as [33] and [21].

A.1.4 Wave equation

The wave equation for a scalar wave function u(x, t) is given by:

∂2u

∂t2
= c2∇2u, (4)

where c is the wave speed and ∇2 is the Laplacian operator in three dimensions.

A.1.5 Helmholtz Equation

The Helmholtz equation for a scalar field u(r) is given by:

∆u+ k2u = 0, (5)

where k is the wave number related to the wavelength λ.

A.1.6 Schrödinger Equation

The time-dependent Schrödinger equation for a single particle in three-dimensional space is given by:

iℏ
∂Ψ(r, t)

∂t
= − ℏ2

2m
∇2Ψ(r, t) + V (r)Ψ(r, t), (6)

where Ψ(r, t) is the wave function, r = (x, y, z) are the spatial coordinates, t is time, ℏ is the
reduced Planck’s constant, m is the mass of the particle, ∇2 is the Laplacian operator, and V (r) is
the potential energy function.

A.1.7 Advection-Reaction-Diffusion

Advection-reaction-diffusion equations, as considered in this section, are known to be stiff problems
when the advection term dominates over the diffusion one. In such cases, sharp transition layers
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appear in the solution, which are difficult to capture by traditional numerical schemes." [44] The
advection-reaction-diffusion equation is given by:

∂u

∂t
+ v · ∇u = D∇2u+R(u), (7)

where u = u(r, t) is the dependent variable (scalar field), t is time, r = (x, y, z) represents spatial
coordinates, v = (vx, vy, vz) is the velocity field (advection term), D is the diffusion coefficient, ∇2

is the Laplacian operator, and R(u) is the reaction term.

A.1.8 Lid-Cavity Driven Flow

The lid-driven cavity flow equations are:

∂u

∂x
+

∂v

∂y
= 0,

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν∇2u+ Fx,

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν∇2v + Fy,

(8)

with boundary conditions:

u(x, 0) = 0, u(x, 1) = 1 (lid),
v(0, y) = v(1, y) = 0 (walls),
u(x, y) = v(x, 0) = v(x, 1) = 0 (other boundaries).

Here, u(x, y) and v(x, y) are the velocity components, p(x, y) is the pressure, ρ is the fluid density,
ν is the kinematic viscosity, and Fx, Fy are additional body forces.
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