
Under review as a conference paper at ICLR 2024

PROBABILISTIC GRAPHICAL MODEL FOR ROBUST
GRAPH NEURAL NETWORKS AGAINST NOISY LABELS

Anonymous authors
Paper under double-blind review

ABSTRACT

While robust graph neural networks (GNNs) have been widely studied for graph
perturbation and attack, those for label noise have received significantly less atten-
tion. Most existing methods heavily rely on the label smoothness assumption to
correct noisy labels, which adversely affects their performance on heterophilous
graphs. Further, they generally perform poorly in high noise-rate scenarios. To
address these problems, in this paper, we propose a novel probabilistic graphical
model based framework PRGNN. Given a noisy label set and a clean label set,
our goal is to maximize the likelihood of labels in the clean set. We first present
PRGNN-v1, which generates clean labels based on graphs only in the Bayesian
network. To further leverage the information of clean labels in the noisy label
set, we put forward PRGNN-v2, which incorporates the noisy label set into the
Bayesian network to generate clean labels. The generative process can then be
used to predict labels for unlabeled nodes. We conduct extensive experiments to
show the robustness of PRGNN on varying noise types and rates, and also on
graphs with different heterophilies. In particular, we show that PRGNN can lead
to inspiring performance in high noise-rate situations. The implemented code is
available at https://github.com/PRGNN/PRGNN.

1 INTRODUCTION

Graph Neural Networks (GNNs) have been widely applied in a variety of fields, such as social net-
work analysis Hamilton et al. (2017), drug discovery Li et al. (2021a), financial risk control Wang
et al. (2019), and recommender systems Wu et al. (2022). However, real-world graph data often
contain noisy labels, which are generally derived from inadvertent errors in manual labeling on
crowdsourcing platforms or incomplete and inaccurate node features corresponding to labels. These
noisy labels have been shown to degenerate the performance of GNNs Zhang et al. (2021); Pa-
trini et al. (2017) and further reduce the reliability of downstream graph analytic tasks. Therefore,
tackling label noise for GNNs is a critical problem to be addressed.

Recently, label noise has been widely studied in the field of Computer Vision (CV) Cheng et al.
(2020); Yi et al. (2022); Han et al. (2018); Li et al. (2020); Shu et al. (2019), which aims to derive
robust neural network models. Despite the success, most existing methods cannot be directly applied
to graph-structured data due to the inherent non-Euclidean characteristics and structural connectivity
of graphs. Although some methods specifically designed for graphs have shown promising results
Nt et al. (2019); Li et al. (2021b); Du et al. (2021); Dai et al. (2021); Xia et al. (2021a); Qian et al.
(2023), they still suffer from two main limitations. First, most existing approaches heavily rely on
label smoothness to correct noisy labels, which assumes that neighboring nodes in a graph tend to
have the same label. This assumption is typically used to express local continuity in homophilous
graphs and does not hold in heterophilous graphs. When applied in graphs with heterophily, the per-
formance of these methods could be significantly degraded. Second, while probabilistic graphical
models have been successively used to handle label noise in CV, there remains a gap in apply-
ing them for GNNs against noisy labels. It is well known that probabilistic graphical model and
Bayesian framework can model uncertainty and are thus less sensitive to data noise. Therefore,
there arises a question: Can we develop a probabilistic graphical model for robust GNNs against
noisy labels?

1

https://github.com/PRGNN/PRGNN

Under review as a conference paper at ICLR 2024

In this paper, we study robust GNNs from a Bayesian perspective. Since it is generally easy to obtain
an additional small set of clean labels at low cost, we consider a problem scenario that includes
both a noisy training set and a clean one of much smaller size. We propose a novel framework
based on Probabilistic graphical model for Robust GNNs against noisy labels, namely, PRGNN. We
emphasize that PRGNN does not assume label smoothness, and can be applied in both graphs with
homophily and heterophily. Given a noisy label set YN and a much smaller clean label set YC in a
graph G, our goal is to maximize the likelihood of clean labels in YC . To reduce the adverse effect
from noise in YN , PRGNN-v1 (version 1) maximizes P (YC |G), which assumes the conditional
dependence of YC on G only in the Bayesian network. Specifically, PRGNN-v1 first introduces a
hidden variable Ȳ that expresses noisy labels for nodes, and then generates clean labels YC based
on both G and Ȳ . Note that PRGNN-v1 implicitly restricts the closeness between Ȳ and YN to
take advantage of informative clean labels in YN . To better use YN , we further present PRGNN-v2
(version 2), which assumes the conditional dependence of YC on both G and YN , and maximizes
P (YC |G, YN). The simultaneous usage of G and YN can lead to less noisy Ȳ and further improves
the accuracy of YC generation. To maximize the likelihood, we employ the variational inference
framework and derive ELBOs as objectives in both PRGNN-v1 and PRGNN-v2. In particular, we
use three independent GNNs to implement the encoder that generates Ȳ , the decoder that generates
YC , and the prior knowledge of Ȳ , respectively. Since node raw features and labels in YC or YN

could be in different semantic space, directly concatenating features with one-hot encoded labels as
inputs of GNNs could result in undesired results. To solve the issue, we first perform GNNs on raw
features to generate node embeddings, based on which label prototype vectors are then calculated.
In this way, node features and labels can be inherently mapped into the same low-dimensional space.
After that, we fuse node embeddings and label prototype vectors to generate both Ȳ and YC . During
the optimization, we highlight clean labels while attenuating the adverse effect of noisy labels in
YN . Finally, we summarize our main contributions in this paper as:

• We propose PRGNN, which is the first probabilistic graphical model based framework for
robust GNNs against noisy labels, to our best knowledge.

• We disregard the label smoothness assumption for noise correction, which leads to the wide
applicability of PRGNN in both homophilous and heterophilous graphs.

• We extensively demonstrate the effectiveness of PRGNN on different benchmark datasets,
GNN architectures, and various noise types and rates. In particular, we show that PRGNN
can lead to inspiring performance in high noise-rate situations.

2 RELATED WORK

2.1 DEEP NEURAL NETWORKS WITH NOISY LABELS

Learning with noisy labels has been widely studied in CV. From Song et al. (2022), most exist-
ing methods can be summarized in the following five categories: Robust architecture Cheng et al.
(2020); Yao et al. (2018); Robust regularization Yi et al. (2022); Xia et al. (2021b); Wei et al.
(2021); Robust loss function Ma et al. (2020); Zhang & Sabuncu (2018); Loss adjustment Huang
et al. (2020); Wang et al. (2020b); Sample selection Han et al. (2018); Yu et al. (2019b); Li et al.
(2020); Wei et al. (2020). However, the aforementioned approaches are dedicated to identically dis-
tributed (i.i.d) data, which may not be directly applicable to GNNs for handing noisy labels because
the noisy information can propagate via message passing of GNNs.

2.2 ROBUST GRAPH NEURAL NETWORKS

In recent years, GNN has gained significant attention due to its broad range of applications in down-
stream tasks, such as node classification Oono & Suzuki (2019), link prediction Baek et al. (2020),
graph classification Errica et al. (2019), and feature reconstruction Hou et al. (2022). Generally,
existing robust GNN methods can be mainly divided into two categories: one that deals with per-
turbed graph structures and node features Zhu et al. (2021); Zhang & Zitnik (2020); Yu et al. (2021);
Wang et al. (2020a), while the other that handles noisy labels. In this paper, we focus on solving
the problem of the latter and only few works have been proposed. For example, D-GNN Nt et al.
(2019) applies the backward loss correction to reduce the effects of noisy labels. UnionNET Li et al.
(2021b) performs label aggregation to estimate node-level class probability distributions, which are

2

Under review as a conference paper at ICLR 2024

Clean labels

Noisy labels

PRGNN-v1

PRGNN-v2

EncoderDecoder Prior knowledge

The overall framework of PRGNN.

Figure 1: Bayesian networks of (a) P (YC |G) and (b) P (YC |G, YN). Here, G is the input graph
data, YC is the clean label set, YN is the noisy label set, and Ȳ is the hidden variable. Arrows with
solid lines and dashed lines denote generative process and inference process, respectively.

used to guide sample reweighting and label correction. PIGNN Du et al. (2021) leverages the PI
(Pairwise Interactions) between nodes to explicitly adjust the similarity of those node embeddings
during training. To alleviate the negative effect of the collected sub-optimal PI labels, PIGNN fur-
ther introduces a new uncertainty-aware training approach and reweights the PI learning objective
by its prediction confidence. NRGNN Dai et al. (2021) connects labeled nodes with high similar-
ity and unlabeled nodes, constructing a new adjacency matrix to train more accurate pseudo-labels.
LPM Xia et al. (2021a) computes pseudo labels from the neighboring labels for each node in the
training set using Label Propagation (LP) and utilizes meta learning to learn a proper aggregation of
the original and pseudo labels as the final label. RTGNN Qian et al. (2023) is based on the hypoth-
esis that clean labels and incorrect labels in the training set are given, which is generally difficult to
satisfy in reality.

Despite their success, we observe that most of them heavily rely on the label smoothness assumption,
so that they cannot be applied to heterophilous graphs. In addition, most of them perform poorly in
high noise-rate. Different from these methods, our proposed method PRGNN can achieve superior
performance under different noise types and rates on various datasets.

3 PRELIMINARY

We denote a graph as G = (V,E), where V = {vi}ni=1 is a set of nodes and E ⊆ V × V is a
set of edges. Let A be the adjacency matrix of G such that Aij represents the weight of edge eij
between nodes vi and vj . For simplicity, we set Aij = 1 if eij ∈ E; 0, otherwise. Nodes in the
graph are usually associated with features and we denote X as the feature matrix, where the i-th row
xi indicates the feature vector of node vi.

Definition 1 Given a graph G that contains a small clean training set TC with labels YC and a
noisy training set TN with labels YN , where |TC | ≪ |TN |, our task is to learn a robust GNN f(·)
that can predict the labels YU of unlabeled nodes, i.e.,

f(G, TC , TN) → YU . (1)

4 METHODOLOGY

4.1 PRGNN-V1

To predict YU for unlabeled nodes, we need to calculate the posterior distribution P (YU |G, YC , YN).
Instead of calculating the posterior directly, we propose to maximize the likelihood of P (YC |G),
which aims to generate the informative clean labels YC . The generative process can then be used
to predict YU . The Bayesian network for generating YC is shown in Figure 1(a) and the generative
process is formulated as:

P (YC |G) =

∫
Ȳ

P (YC |Ȳ , G)P (Ȳ |G)dY. (2)

3

Under review as a conference paper at ICLR 2024

Generally, the hidden variable Ȳ can be interpreted as node embedding matrix. Since the matrix is
then used to predict node labels, we directly denote Ȳ as noisy label predictions for all the nodes in
the graph. The generative process can be described as follows: we first obtain noisy label predictions
Ȳ for all the nodes in the graph, and then jointly consider G and Ȳ to generate the true clean
labels YC . Since directly optimizing P (YC |G) is difficult, we introduce a variational distribution
Qϕ(Ȳ |YC , G) with parameters ϕ and employ variational inference to derive the evidence lower
bound (ELBO) as:

logPθ,φ(YC |G) ≥ EQϕ(Ȳ |YC ,G))logPφ(YC |Ȳ , G)−KL(Qϕ(Ȳ |YC , G)||Pθ(Ȳ |G)) = L1
ELBO.

(3)

Here, Qϕ(Ȳ |YC , G) characterizes the encoding (mapping) process, while Pφ(YC |Ȳ , G) represents
the decoding (reconstruction) process. Note that Pφ can generate predicted labels Ŷ for all the
nodes more than ŶC . Further, Pθ(Ȳ |G) captures the prior knowledge. In our experiments, we use
three independent GNNs to implement them with learnable parameters ϕ, φ and θ, respectively.
However, the above generative process ignores the given noisy labels YN , while YN still contains
many clean node labels that are informative. To further employ the useful information from YN , we
first apply a standard multiclass softmax cross-entropy loss LCE(Pθ, YN) to incorporate YN into the
prior knowledge Pθ(Ȳ |G). In addition to YC , for nodes with clean labels in YN , it is also expected
that their reconstructed labels should be close to their ground-truth ones. However, clean node labels
are unknown in YN . To address the problem, we use the similarity between YN and ŶN , denoted as
w ∈ R|YN |, to measure the degree to which a node label in YN is clean. Intuitively, for a labeled
node vi in the noisy training set, if its reconstructed label ŷi is similar as its label yi ∈ YN , it is
more likely that yi is a clean label; otherwise not. After that, we adopt a weighted cross-entropy loss
wLCE(Pφ, YN), which assigns large weights to clean nodes while attenuating the erroneous effects
of noisy labels. In addition, to leverage the extra supervision information from massive unlabeled
data, inspired by Wan et al. (2021), we add the contrastive loss LCont(Qϕ, Pθ) to maximize the
agreement of predictions of the same node that are generated from Qϕ(Ȳ |YC , G) and Pθ(Ȳ |G).
Due to the space limitation, we defer details on LCont to the Appendix C. Finally, the overall loss
function is formulated as:

L1(θ, φ, ϕ) = −L1
ELBO(θ, φ, ϕ)+λ1wLCE(Pφ, YN)+λ2LCE(Pθ, YN)+λ3LCont(Qϕ, Pθ) (4)

where λ1, λ2 and λ3 are hyper-parameters to balance the losses.

4.2 PRGNN-V2

In Section 4.1, PRGNN-v1 leverages YN from two aspects. On the one hand, YN is considered as
the prior knowledge and incorporated into Pθ. On the other hand, for nodes with clean labels in
YN , their predicted labels are enforced to be close to the clean ones. However, YN is not directly
included in the generative process of YC (see Figure 1(a)), and YC is only determined by G and
the hidden variable Ȳ . From Equation 4, we see that PRGNN-v1 implicitly restricts the closeness
between Ȳ and YN with regularization terms. In this way, when the number of erroneous labels in
YN is large, Ȳ will be noisy and further degrade the performance of generating YC . To address the
problem, we propose PRGNN-v2, which is a probabilistic graphical model using YN to generate YC

(see Figure 1(b)). The goal of PRGNN-v2 is to maximize P (YC |G, YN). Similarly, we introduce a
variational distribution Qϕ(Ȳ |YC , G, YN) and derive the ELBO as:

logPθ,φ,ϕ(YC |G, YN)

≥ EQϕ(Ȳ |YC ,G,YN)logPφ(YC |Ȳ , G, YN)−KL(Qϕ(Ȳ |YC , G, YN)||Pθ(Ȳ |G, YN)) = L2
ELBO.

(5)
In our experiments, we also use three independent GNNs to implement Pθ, Qϕ and Pφ, respectively.
Note that the prior knowledge Pθ(Ȳ |G, YN) is a conditional distribution based on G and YN , so Ȳ
is easily to be adversely affected by the noise label in YN . To reduce noise in Ȳ , we explicitly use
cross-entropy loss LCE(Pθ, YC) to force Ȳ to be close to YC

1. Similar as Equation 4, we formulate
the overall objective by further adding a weighted cross-entropy term and a contrastive loss term:

L2(θ, φ, ϕ) = −L2
ELBO(θ, φ, ϕ)+λ1wLCE(Pφ, YN)+λ2LCE(Pθ, YC)+λ3LCont(Qϕ, Pθ). (6)

1We do not explicitly add the term in Equation 4 because YN is not used as a condition in Pθ .

4

Under review as a conference paper at ICLR 2024

Different from PRGNN-v1, PRGNN-v2 explicitly adds YN in the Bayesian network to generate YC .
Instead of enforcing the closeness between Ȳ and YN , PRGNN-v2 leverages the power of GNNs to
correct noise labels in YN and obtain a high-quality Ȳ , leading to better reconstruction of YC .

4.3 ENCODER

In the encoder, we generate the hidden variable Ȳ based on Qϕ(Ȳ |YC , G) or Qϕ(Ȳ |YC , G, YN).
A naive solution is to use one-hot encoded embeddings for labels in YC and YN , and concatenate
them with raw node features, which are further fed into GNNs to output Ȳ 2. However, labels and
raw node features may correspond to different semantic spaces, which could adversely affect the
model performance. To solve the issue, we employ label prototype vectors to ensure that labels and
nodes are embedded into the same low-dimensional space. Specifically, we first run a GNN model
on G to generate node embeddings H ∈ Rn×c, where c is the number of labels and the i-th row in
H indicates the embedding vector hi for node vi. After that, for the j-th label lj , we compute its
prototype vector rj by averaging the embeddings of nodes labeled as lj in the clean training set YC .
Finally, node embeddings and label prototype vectors are fused to generate Ȳ .

For Qϕ(Ȳ |YC , G), given a node vi, we summarize the process to generate ȳi as: (1) if vi ∈
TC & yi = lj , ȳi = 1

2 (hi + rj); (2) otherwise, ȳi = 1
2 (hi + r̄i). Here, r̄i = argmaxrj h

T
i rj ,

which denotes the most similar label prototype vector to node vi.

Similarly, for Qϕ(Ȳ |YC , G, YN), we also describe the process to generate ȳi for node vi as: (1) if
vi ∈ TC & yi = lj , ȳi = 1

2 (hi + rj); (2) if vi ∈ TN & yi = lj , ȳi = 1
2 [hi + αrj + (1− α)r̄i]; (3)

otherwise, ȳi = 1
2 (hi + r̄i). In particular, r̄i is used to alleviate the adverse effect of noise labels for

nodes in TN , and α = cosine(hi, rj) is employed to control the importance of rj and r̄i.

Obviously, the more nodes in TC , the more accurate r will be. Therefore, in each training epoch,
we expand TC by adding nodes from TN with high confidence. Specifically, for each node in TN ,
we measure the similarity between its predicted label and given label in YN . When the similarity is
greater than a pre-set threshold δ, we add it to TC . Additionally, we reset TC in each epoch to avoid
adding too many nodes with noisy labels.

4.4 DECODER

Although we use Pφ(YC |Ȳ , G) and Pφ(YC |Ȳ , G, YN) in the ELBOs (see Eqs. 3 and 4), the decoder
Pφ can generate labels Ŷ for all the nodes in the graph. On the one hand, considering Pφ(·|Ȳ , G),
we reconstruct ŷi for node vi by ŷi = 1

2 (hi + r̂i), where r̂i =
∑c

j=1 ȳijrj . Here, we aggregate
all prototype vectors rj with probability ȳij as weight. On the other hand, for Pφ(·|Ȳ , G, YN), YN

is given as a known conditional. When reconstructing the label ŷi for a node vi ∈ TN , we have to
consider both the hidden variable ȳi and the given label yi. When ȳi and yi are similar, the given
label is more likely to be a clean one; otherwise, not. Therefore, the process to reconstruct ŷi for node
vi is adjusted as ŷi = 1

2 (hi + r̂i): (1) if vi ∈ TN , r̂i =
∑c

j=1(βyij + (1− β)ȳij)rj ; (2) otherwise,
r̂i =

∑c
j=1 ȳijrj . Note that β = cosine(ȳi, yi) measures the cosine similarity between ȳi and yi,

which aims to assign large (small) weights to clean (noisy) labels.

4.5 PRIOR KNOWLEDGE

Different from the vanilla VAE that uses N (0, 1) as the prior knowledge, in our framework, we
instead use Pθ(Ȳ |G) and Pθ(Ȳ |G, YN). For the former, based on the input graph G, we can run
GNNs to get node embeddings H ∈ Rn×c and set Ȳ = H . For the latter, although YN contains
noise, there still exist many informative clean labels that can be utilized. Specifically, for each label
lj , we first compute the corresponding prototype vector rj by averaging the embeddings of nodes
labeled as lj in TN . Then we describe the prior knowledge of ȳi as: (1) if vi ∈ TN & yi = lj ,
ȳi =

1
2 (hi + rj); (2) otherwise, ȳi = hi.

2For simplicity, variance in the Gaussian distribution is assumed to be 0.

5

Under review as a conference paper at ICLR 2024

5 EXPERIMENTS

In this section, we evaluate the performance of PRGNN on 8 benchmark datasets. We compare
methods on the node classification task with classification accuracy as the measure. The analysis on
the time and space complexity of the model is included in Appendix G.

5.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate the performance of PRGNN using eight benchmark datasets Sen et al. (2008);
Pei et al. (2020); Lim et al. (2021), including homophilous graphs Cora, CiteSeer, PubMed, ogbn-
arxiv, and heterophilous graphs Chameleon, Actor, Squirrel, snap-patents. Here, ogbn-arxiv and
snap-patents are large-scale datasets while others are small-scale ones. Details on these graph
datasets are shown in Appendix A. For small-scale datesets, we follow Xia et al. (2021a) to split
the datasets into 4:4:2 for training, validation and testing, while for large-scale datasets, we use the
same training/validation/test splits as provided by the original papers. For fairness, we also conduct
experiments on Cora, CiteSeer and PubMed following the standard semi-supervised learning setting,
where each class only have 20 labeled nodes.

Setup. To show the model robustness, we corrupt the labels of training sets with two types of label
noises. Uniform Noise: The label of each sample is independently changed to other classes with
the same probability p

c−1 , where p is the noise rate and c is the number of classes. Flip Noise:
The label of each sample is independently flipped to similar classes with total probability p. In our
experiments, we randomly select one class as a similar class with equal probability. For small-scale
datasets, following Xia et al. (2021a), we only use nearly 25 labeled nodes from the validation set
as the clean training set TC , where each class has the same number of samples. For large-scale
datesets, a clean label set of 25 nodes is too small, so we set the size to be 0.2% of the training set
size. For fairness, we use the same backbone GCN for PRGNN and other baselines. Due to the
space limitation, we move implementation setup to Appendix B.

Baselines. We compare PRGNN with multiple baselines using the same network architecture.
These baselines are representative, which include Base models: GCN Kipf & Welling (2016) and
H2GCN Zhu et al. (2020); Robust loss functions against label noise: GCE loss Zhang & Sabuncu
(2018) and APL Ma et al. (2020); Typical and effective methods in CV: Co-teaching plus Yu et al.
(2019a); Methods that handle noisy labels on graphs: D-GNN Nt et al. (2019), NRGNN Dai
et al. (2021) and LPM Xia et al. (2021a). For those baselines that do not consider the clean label set
(GCN, GCE loss, APL, Co-teaching plus, D-GNN, NRGNN), we finetune them on the initial clean
set after the model has been trained on the noisy training set for a fair comparison.

5.2 NODE CLASSIFICATION RESULTS

We perform node classification task, and compare PRGNN-v1 and PRGNN-v2 with other baselines
under two types of label noise and four different levels of noise rates to demonstrate the effectiveness
of our methods. Table 1 and 2 summarize the performance results on 6 small-scale datasets, from
which we observe:

(1) Compared with the base model GCN, GCE and APL generally perform better. This shows the
effectiveness of robust loss function. However, as the noise rate increases, their performance drops
significantly. For example, with 80% uniform noise on Cora, their accuracy scores are around 0.6,
while the best accuracy (PRGNN-v2) is 0.7598.

(2) PRGNN clearly outperforms D-GNN, NRGNN and LPM in heterophilous graphs. For example,
with 80% flip noise on Chameleon, the accuracy scores of D-GNN, NRGNN and LPM are 0.3667,
0.3610 and 0.3782, respectively, while the best accuracy score (PRGNN-v2) is 0.4342. This is
because they heavily rely on the label smoothness assumption that does not hold in heterophilous
graphs.

(3) PRGNN-v2 generally performs better than PRGNN-v1 at high noise rates. For example, with
80% flip noise on Cora and PubMed, the accuracy scores of PRGNN-v1 are 0.6481 and 0.7255,
while that of PRGNN-v2 are 0.6731 and 0.7597, respectively. This is because PRGNN-v1 maxi-
mizes P (YC |G), which generates YC based on G only (see Figure 1(a)), and implicitly restricts the
closeness between Ȳ and YN with regularization terms to employ the useful information from YN .

6

Under review as a conference paper at ICLR 2024

Table 1: Comparison with baselines in test accuracy (%) with uniform noise on small-scale datasets.
The best and the runner-up results are highlighted in bold and underlined respectively.

Datasets p GCN Coteaching+ GCE APL DGNN NRGNN LPM PRGNN-v1 PRGNN-v2

Cora

0.2 86.07(0.13) 83.03(0.19) 85.10(0.09) 86.26(0.05) 87.20(0.97) 86.42(0.26) 87.46(0.11) 87.50(0.67) 87.53(0.38)
0.4 82.48(0.14) 71.68(0.21) 82.89(0.07) 82.01(0.13) 83.69(0.74) 83.91(1.39) 83.95(0.15) 84.63(0.22) 84.83(1.03)
0.6 75.88(0.15) 50.05(0.31) 76.16(0.15) 74.49(0.11) 80.00(1.35) 80.33(2.06) 79.66(0.22) 80.40(1.52) 81.36(1.37)
0.8 58.81(0.22) 36.39(0.44) 60.43(0.21) 58.72(0.25) 72.07(1.81) 72.77(3.57) 63.38(0.27) 75.51(1.95) 75.98(1.85)

CiteSeer

0.2 76.24(0.07) 75.49(0.24) 76.54(0.09) 74.32(0.17) 76.19(0.63) 76.25(0.45) 77.07(0.06) 77.23(0.69) 77.01(0.43)
0.4 73.42(0.21) 72.71(0.13) 74.06(0.18) 71.77(0.15) 75.62(1.24) 74.80(1.43) 75.19(0.15) 76.01(1.00) 76.13(0.58)
0.6 68.13(0.19) 66.63(0.41) 69.18(0.24) 66.78(0.22) 72.79(0.98) 70.69(0.70) 70.05(0.11) 72.97(0.85) 73.28(0.37)
0.8 56.12(0.28) 56.27(0.36) 58.48(0.31) 56.08(0.34) 65.20(1.69) 67.30(1.11) 61.71(0.22) 68.52(1.17) 67.51(1.56)

PubMed

0.2 86.17(0.13) 85.23(0.21) 86.11(0.14) 85.86(0.20) 86.93(0.20) 85.60(0.24) 86.18(0.15) 86.63(0.18) 86.01(0.16)
0.4 85.00(0.26) 84.30(0.49) 85.16(0.32) 85.48(0.24) 85.70(0.21) 82.12(1.39) 86.01(0.24) 85.81(0.14) 85.85(0.21)
0.6 83.95(0.44) 82.69(0.40) 83.99(0.67) 84.63(0.43) 84.62(0.25) 80.33(2.06) 84.17(0.07) 84.69(0.27) 84.32(0.37)
0.8 81.75(0.69) 80.18(0.13) 81.89(0.67) 82.28(0.61) 82.41(0.68) 78.83(3.57) 82.08(0.96) 82.62(0.42) 82.38(0.52)

Chameleon

0.2 57.54(1.06) 56.67(1.43) 57.54(1.47) 58.99(1.15) 56.18(2.26) 50.70(1.13) 55.39(2.68) 60.03(1.68) 59.97(0.76)
0.4 55.13(1.68) 53.90(4.24) 55.48(2.24) 56.18(1.45) 53.77(2.83) 44.78(1.33) 50.04(2.93) 57.88(2.43) 57.23(0.99)
0.6 50.35(1.74) 49.78(1.90) 50.22(1.74) 49.96(1.70) 48.55(1.67) 40.48(4.66) 48.20(2.13) 51.89(2.22) 52.41(0.97)
0.8 41.40(1.53) 41.36(3.66) 41.23(1.54) 40.79(2.11) 41.01(2.96) 35.22(2.99) 40.48(2.16) 44.87(3.40) 45.61(3.37)

Actor

0.2 31.50(0.45) 30.29(0.66) 31.54(0.54) 29.93(0.31) 31.46(0.53) 30.93(0.84) 28.97(2.09) 32.25(0.55) 32.10(0.29)
0.4 31.13(0.48) 30.28(0.50) 30.88(0.40) 29.26(0.27) 30.49(1.29) 29.09(0.58) 27.63(2.09) 30.96(0.42) 31.08(0.39)
0.6 30.03(0.85) 29.53(0.59) 30.05(0.68) 29.12(0.85) 29.92(0.86) 28.36(0.79) 27.58(1.36) 31.59(0.77) 32.84(0.61)
0.8 28.70(0.78) 27.92(0.80) 28.71(0.94) 28.11(1.08) 28.07(0.51) 28.09(0.81) 26.89(0.32) 29.51(0.38) 30.92(0.23)

Squirrel

0.2 36.20(0.64) 35.93(3.08) 35.98(0.83) 32.24(4.39) 40.81(2.17) 32.51(0.92) 32.05(1.36) 39.48(0.57) 40.90(0.39)
0.4 34.31(0.84) 35.49(1.41) 34.20(0.59) 31.99(2.58) 35.37(1.55) 31.57(1.91) 32.12(1.90) 37.60(0.85) 36.48(1.37)
0.6 31.68(1.31) 32.93(1.37) 31.70(1.01) 29.55(0.58) 32.79(1.45) 30.49(1.27) 28.68(2.66) 33.06(0.83) 33.28(1.14)
0.8 29.88(1.62) 30.82(1.36) 29.61(1.42) 28.61(1.01) 28.70(3.08) 28.57(1.26) 26.13(0.83) 31.68(0.94) 32.64(1.48)

Table 2: Comparison with baselines in test accuracy (%) with flip noise on small-scale datasets.

Datasets p GCN Coteaching+ GCE APL DGNN NRGNN LPM PRGNN-v1 PRGNN-v2

Cora

0.2 82.89(0.14) 81.37(0.21) 83.21(0.13) 82.70(0.79) 83.99(0.77) 85.09(0.43) 86.95(0.12) 86.87(0.57) 87.01(0.32)
0.4 67.39(0.42) 53.00(0.51) 67.80(0.37) 65.00(1.73) 74.43(3.68) 71.51(3.26) 78.97(0.33) 80.02(1.57) 79.34(2.06)
0.6 51.99(1.13) 48.97(9.05) 57.82(2.50) 59.19(4.25) 61.11(3.04) 64.58(4.83) 60.63(3.72) 69.69(1.46) 71.55(3.63)
0.8 41.33(1.12) 47.56(2.80) 50.52(3.51) 50.96(2.58) 62.88(7.27) 55.76(8.12) 42.19(4.56) 64.81(1.61) 67.31(3.11)

CiteSeer

0.2 75.08(0.22) 74.66(0.21) 76.36(0.20) 73.38(0.13) 76.04(0.61) 76.91(0.18) 76.39(0.14) 76.98(0.38) 76.24(0.56)
0.4 61.41(0.23) 60.59(0.33) 63.66(0.46) 60.81(0.52) 65.41(1.99) 64.95(1.33) 68.71(0.39) 71.68(1.06) 71.32(0.59)
0.6 36.16(2.17) 52.01(3.13) 56.46(2.99) 58.79(4.94) 60.15(3.79) 56.40(6.75) 60.71(3.55) 67.80(1.33) 68.35(1.62)
0.8 30.54(2.79) 31.23(7.26) 41.59(3.54) 42.97(6.09) 60.09(4.60) 47.67(7.12) 44.07(3.52) 64.58(2.10) 66.67(2.15)

PubMed

0.2 85.55(0.24) 84.61(0.22) 85.47(0.06) 85.52(0.06) 86.66(0.22) 81.95(0.09) 85.58(0.13) 85.70(0.10) 85.76(0.21)
0.4 80.88(0.32) 73.99(0.33) 80.03(0.42) 70.08(0.16) 81.45(1.63) 75.89(0.39) 83.15(0.36) 83.32(0.32) 83.52(0.40)
0.6 60.40(2.79) 58.27(11.61) 63.55(2.09) 65.75(3.50) 74.04(4.55) 61.31(2.06) 71.20(4.33) 77.60(2.73) 77.44(3.27)
0.8 51.17(3.85) 44.22(5.58) 61.42(3.90) 63.96(2.98) 70.52(4.70) 58.19(3.57) 59.19(2.62) 72.55(2.41) 75.97(2.78)

Chameleon

0.2 58.73(0.09) 41.01(2.95) 58.68(0.60) 54.21(0.16) 57.32(1.54) 52.28(0.91) 55.75(2.06) 59.34(1.40) 59.42(1.63)
0.4 53.51(0.52) 35.35(2.79) 53.68(0.51) 38.42(3.96) 47.11(2.06) 45.13(1.17) 49.47(3.42) 53.70(2.02) 53.76(2.83)
0.6 44.17(2.95) 27.68(3.56) 43.99(1.02) 34.43(2.91) 39.87(2.44) 36.84(3.10) 42.52(2.92) 44.56(1.62) 45.35(1.31)
0.8 37.85(2.10) 24.30(1.63) 38.03(3.56) 35.13(3.02) 36.67(3.98) 36.10(3.21) 37.82(6.41) 41.10(3.16) 43.42(2.05)

Actor

0.2 31.37(0.29) 30.14(0.45) 31.25(0.12) 29.66(0.44) 30.55(0.53) 27.92(0.29) 27.00(0.31) 31.75(1.39) 31.30(1.09)
0.4 28.66(1.29) 27.87(0.64) 28.83(0.98) 26.50(0.16) 27.75(1.05) 26.42(0.98) 23.37(1.91) 29.55(0.81) 29.05(0.83)
0.6 26.96(0.46) 25.74(1.62) 26.71(0.23) 26.66(0.77) 26.89(2.33) 25.00(1.14) 25.54(1.28) 28.54(0.94) 28.79(0.51)
0.8 26.67(0.27) 26.92(0.73) 26.72(0.26) 26.55(0.79) 26.93(2.31) 23.57(0.97) 22.47(2.71) 28.50(0.86) 28.72(0.43)

Squirrel

0.2 35.97(0.28) 33.58(0.52) 35.77(0.43) 26.01(3.52) 40.00(0.77) 33.14(2.14) 32.28(0.78) 41.28(0.37) 40.73(0.62)
0.4 31.74(0.34) 30.26(2.66) 31.51(0.57) 24.57(1.23) 34.31(1.76) 31.35(1.47) 28.45(1.35) 37.21(1.25) 36.50(1.82)
0.6 28.01(0.80) 26.86(1.17) 28.59(0.83) 24.03(1.33) 29.97(1.02) 28.17(1.71) 25.96(2.30) 33.05(0.93) 33.72(1.01)
0.8 26.32(0.97) 25.65(2.12) 25.98(1.53) 23.90(0.78) 28.36(2.01) 26.95(1.00) 22.44(2.44) 31.84(0.49) 32.22(0.82)

In this way, when the number of erroneous labels in YN is large, Ȳ will be noisy and further de-
grade the performance of generating YC . However, PRGNN-v2 maximizes P (YC |G, YN), directly
incorporating YN in the Bayesian network to generate YC (see Figure 1(b)). In particular, when
generating Ȳ , PRGNN-v2 can leverage the power of GNNs to correct noise labels in YN and obtain
a high-quality Ȳ , which leads to better reconstruction of YC .

(4) PRGNN achieves the best or runner-up performance in all 48 cases. This shows that it can
consistently provide superior results on datasets in a wide range of diversity. On the one hand,
PRGNN disregards the label smoothness assumption for noise correction, which leads to its wide
applicability in both homophilous and heterophilous graphs. On the other hand, PRGNN is modeled
based on probabilistic graphical model and Bayesian framework, which can model uncertainty and
are thus less sensitive to data noise.

7

Under review as a conference paper at ICLR 2024

0.01 0.1 1 10 100
(a) 1

20

40

60

80
Te

st
 a

cc
ur

ac
y

(%
)

0.01 0.1 1 10 100
(b) 2

65

70

75

80

85

Te
st

 a
cc

ur
ac

y
(%

)

0.01 0.1 1 10 100
(c) 3

60

65

70

75

80

85

Te
st

 a
cc

ur
ac

y
(%

)

0.7 0.8 0.9
(d)

65

70

75

80

85

90

Te
st

 a
cc

ur
ac

y
(%

)

20% 40% 60% 80%

Figure 2: Hyper-parameter sensitivity analysis

For experiments on the large-scale datasets and in the standard semi-supervised learning setting, we
observe similar results as above. Therefore, due to the space limitation, we move the corresponding
results to Appendix D and E, respectively.

5.3 HYPER-PARAMETER SENSITIVITY ANALYSIS

We further perform a sensitivity analysis on the hyper-parameters of our method PRGNN-v2. In par-
ticular, we study four key hyper-parameters: the weights for three additional losses besides ELBO,
λ1, λ2, λ3, representing the importance of wLCE(Pφ, YN), LCE(Pθ, YN) and LCont(Qϕ, Pθ) re-
spectively, and the threshold δ that controls whether nodes can add to TC . In our experiments, we
vary one parameter each time with others fixed. Figure 2 illustrates the results under flip noise
ranging from 20% to 80% on Cora. From the figure, we see that

(1) As λ1 increases, PRGNN-v2 achieves better performance in low noise-rate while achieving
worse performance in high noise-rate. This is because there are many incorrect labels in YN when
the noise rate is high, which may play a great role in misleading the reconstruction of YC . (2)
Under high noise rates, PRGNN-v2 performs poorly when λ2 is too small (λ2 = 0.01) or too
large (λ2 = 100). This is due to the fact that when λ2 is too small, the prior knowledge fails to
provide effective positive guidance, while when λ2 is too large, the potential erroneous information
contained in the prior knowledge can have a detrimental effect and lead to a decrease in performance.
(3) Although the test accuracy decreases when λ3 is set large in high noise rates, PRGNN-v2 can still
give stable performances over a wide range of parameter values from [0.01, 1]. (4) As δ increases,
the test accuracy first increases and then decreases. This is because when δ is small, a lot of noise-
labeled nodes will be added to TC , and when δ is large, more clean-labeled nodes will not be added
to TC , resulting in a large deviation in the prototype vector, which will cause poor performance.

5.4 ABLATION STUDY

We conduct an ablation study on PRGNN-v2 to understand the characteristics of its main compo-
nents. One variant does not consider the useful information from YN , training the model with-
out LCE(Pφ, YN). We call this variant PRGNN-nl (no LCE(Pφ, YN)). Another variant training
the model without LCE(Pθ, YC), which helps us understand the importance of introducing prior
knowledge. We call this variant PRGNN-np (no prior knowledge). To show the importance of
the contrastive loss, we train the model without LCont(Pθ, YC) and call this variant PRGNN-nc (no
contrastive loss). Moreover, we consider a variant of PRGNN-v2 that applies LCE(Pθ, YN) directly,
without weight w. We call this variant PRGNN-nw (no weight). Finally, we ignore the problem
of semantic space inconsistency between variables, directly concatenating features with one-hot en-
coded labels as inputs of GNNs. This variant helps us evaluate the effectiveness of introducing label
prototype vectors to generate Ȳ and YC . We call this variant PRGNN-nv (no prototype vectors).
We compare PRGNN-v2 with these variants in the 80% noise rate on all datasets. The results are
given in Figure 3. From it, we observe:

(1) PRGNN-v2 beats PRGNN-nl in all cases. This is because YN contains a portion of clean la-
bels, which can well guide the reconstruction of YC . (2) PRGNN-v2 achieves better performance
than PRGNN-np. This further shows the importance of using YC to guide prior knowledge. (3)
PRGNN-v2 performs better than PRGNN-nc. This shows that the contrastive loss can leverage the

8

Under review as a conference paper at ICLR 2024

Cora CiteSeer PubMed
(a) Homophilous graphs

40

50

60

70

80

Te
st

 a
cc

ur
ac

y
(%

)

Chameleon Actor Squirrel
(b) Heterophilous graphs

15

20

25

30

35

40

45

Te
st

 a
cc

ur
ac

y
(%

)

PRGNN-nl PRGNN-np PRGNN-nc PRGNN-nw PRGNN-nv PRGNN-v2

Figure 3: The ablation study results on six datasets with 80% flip noise.

extra supervision information from massive unlabeled data and maximize the agreement of node pre-
dictions generated from Qϕ(Ȳ |YC , G, YN) and Pθ(Ȳ |G, YN). (4) PRGNN-v2 clearly outperforms
PRGNN-nw in all datasets. PRGNN-nw, which ignores the noisy labels in YN , directly applies
cross-entropy loss between the reconstructed labels and YN . Since there are many incorrect labels
in YN , it will negatively affect the reconstructed labels. (5) PRGNN-v2 outperforms PRGNN-nv.
This shows the effectiveness of mapping node features and labels into the same low-dimensional
space instead of directly concatenating features with one-hot encoded labels as inputs of GNNs.

5.5 STUDY ON THE SIZE OF THE CLEAN LABEL SET

We next study the sensitivity of PRGNN on the size of the clean label set. As can be seen in Figure
4(a), our method can achieve very stable performance over a wide range of set sizes on both CiteSeer
(homophilous graph) and Chameleon (heterophilous graph) in various noise rates. Given only 20
clean labels, PRGNN can perform very well. With the increase of the clean set size, there only
brings marginal improvement on the test accuracy. This further shows that the problem scenario we
set is meaningful and feasible. We only need to obtain an additional small set of clean labels at low
cost to achieve superior results. We also evaluate the robustness of PRGNN against other baselines
w.r.t. the clean label set size. Figure 4(b) shows the results with 80% flip noise. From the figure,
we observe that PRGNN consistently outperforms other baselines in all cases, which further verifies
the robustness of PRGNN.

10 20 30 40 50
CiteSeer

50

55

60

65

70

75

Te
st

 a
cc

ur
ac

y
(%

)

10 20 30 40 50
Chameleon

30

35

40

45

50

55

60

Te
st

 a
cc

ur
ac

y
(%

)

20% 40% 60% 80%

(a) Performance across various noise rates

10 20 30 40 50
CiteSeer

30

40

50

60

Te
st

 a
cc

ur
ac

y
(%

)

10 20 30 40 50
Chameleon

20

25

30

35

40

45

Te
st

 a
cc

ur
ac

y
(%

)

GCN Coteaching+ GCE DGNN LPM PRGNN

(b) Comparison with baselines

Figure 4: Robustness study of PRGNN w.r.t. the clean label set size

6 CONCLUSION

In this paper, we proposed PRGNN, which is the first probabilistic graphical model based framework
for robust GNNs against noisy labels. It disregards the label smoothness assumption and can be ap-
plied in both graphs with homophily and heterophily. We first maximized P (YC |G) and employed
YN in regularization terms only. To further leverage clean labels in YN , we incorporated YN in the
Bayesian network to generate YC and maximized P (YC |G, YN). We also used label prototype vec-
tors to ensure that labels and nodes are embedded into the same low-dimensional space. Finally, we
conducted extensive experiments to show that PRGNN achieves robust performance under different
noise types and rates on various datasets.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Jinheon Baek, Dong Bok Lee, and Sung Ju Hwang. Learning to extrapolate knowledge: Transduc-
tive few-shot out-of-graph link prediction. Advances in Neural Information Processing Systems,
33:546–560, 2020.

Lele Cheng, Xiangzeng Zhou, Liming Zhao, Dangwei Li, Hong Shang, Yun Zheng, Pan Pan, and
Yinghui Xu. Weakly supervised learning with side information for noisy labeled images. In
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XXX 16, pp. 306–321. Springer, 2020.

Enyan Dai, Charu Aggarwal, and Suhang Wang. Nrgnn: Learning a label noise resistant graph
neural network on sparsely and noisily labeled graphs. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, pp. 227–236, 2021.

Xuefeng Du, Tian Bian, Yu Rong, Bo Han, Tongliang Liu, Tingyang Xu, Wenbing Huang, and
Junzhou Huang. Pi-gnn: A novel perspective on semi-supervised node classification against noisy
labels. arXiv preprint arXiv:2106.07451, 2021.

Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph
neural networks for graph classification. arXiv preprint arXiv:1912.09893, 2019.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi
Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels.
Advances in neural information processing systems, 31, 2018.

Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
Graphmae: Self-supervised masked graph autoencoders. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 594–604, 2022.

Lang Huang, Chao Zhang, and Hongyang Zhang. Self-adaptive training: beyond empirical risk
minimization. Advances in neural information processing systems, 33:19365–19376, 2020.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Junnan Li, Richard Socher, and Steven CH Hoi. Dividemix: Learning with noisy labels as semi-
supervised learning. arXiv preprint arXiv:2002.07394, 2020.

Pengyong Li, Jun Wang, Yixuan Qiao, Hao Chen, Yihuan Yu, Xiaojun Yao, Peng Gao, Guotong
Xie, and Sen Song. An effective self-supervised framework for learning expressive molecular
global representations to drug discovery. Briefings in Bioinformatics, 22(6):bbab109, 2021a.

Yayong Li, Jie Yin, and Ling Chen. Unified robust training for graph neural networks against
label noise. In Advances in Knowledge Discovery and Data Mining: 25th Pacific-Asia Confer-
ence, PAKDD 2021, Virtual Event, May 11–14, 2021, Proceedings, Part I, pp. 528–540. Springer,
2021b.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. Advances in Neural Information Processing Systems, 34:20887–20902, 2021.

Xingjun Ma, Hanxun Huang, Yisen Wang, Simone Romano, Sarah Erfani, and James Bailey. Nor-
malized loss functions for deep learning with noisy labels. In International conference on machine
learning, pp. 6543–6553. PMLR, 2020.

H. Nt, C. J. Jin, and T. Murata. Learning graph neural networks with noisy labels. 2019.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. arXiv preprint arXiv:1905.10947, 2019.

10

Under review as a conference paper at ICLR 2024

Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen Qu. Making
deep neural networks robust to label noise: A loss correction approach. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 1944–1952, 2017.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

Siyi Qian, Haochao Ying, Renjun Hu, Jingbo Zhou, Jintai Chen, Danny Z Chen, and Jian Wu.
Robust training of graph neural networks via noise governance. In Proceedings of the Sixteenth
ACM International Conference on Web Search and Data Mining, pp. 607–615, 2023.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu Meng. Meta-
weight-net: Learning an explicit mapping for sample weighting. Advances in neural information
processing systems, 32, 2019.

Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learning from noisy
labels with deep neural networks: A survey. IEEE Transactions on Neural Networks and Learning
Systems, 2022.

Sheng Wan, Yibing Zhan, Liu Liu, Baosheng Yu, Shirui Pan, and Chen Gong. Contrastive graph
poisson networks: Semi-supervised learning with extremely limited labels. Advances in Neural
Information Processing Systems, 34:6316–6327, 2021.

Daixin Wang, Jianbin Lin, Peng Cui, Quanhui Jia, Zhen Wang, Yanming Fang, Quan Yu, Jun Zhou,
Shuang Yang, and Yuan Qi. A semi-supervised graph attentive network for financial fraud de-
tection. In 2019 IEEE International Conference on Data Mining (ICDM), pp. 598–607. IEEE,
2019.

Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, and Jian Pei. Am-gcn: Adaptive multi-
channel graph convolutional networks. In Proceedings of the 26th ACM SIGKDD International
conference on knowledge discovery & data mining, pp. 1243–1253, 2020a.

Zhen Wang, Guosheng Hu, and Qinghua Hu. Training noise-robust deep neural networks via meta-
learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 4524–4533, 2020b.

Hongxin Wei, Lei Feng, Xiangyu Chen, and Bo An. Combating noisy labels by agreement: A joint
training method with co-regularization. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 13726–13735, 2020.

Hongxin Wei, Lue Tao, Renchunzi Xie, and Bo An. Open-set label noise can improve robustness
against inherent label noise. Advances in Neural Information Processing Systems, 34:7978–7992,
2021.

Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recommender
systems: a survey. ACM Computing Surveys, 55(5):1–37, 2022.

Jun Xia, Haitao Lin, Yongjie Xu, Lirong Wu, Zhangyang Gao, Siyuan Li, and Stan Z Li. Towards
robust graph neural networks against label noise. 2021a.

Xiaobo Xia, Tongliang Liu, Bo Han, Chen Gong, Nannan Wang, Zongyuan Ge, and Yi Chang.
Robust early-learning: Hindering the memorization of noisy labels. In International conference
on learning representations, 2021b.

Jiangchao Yao, Jiajie Wang, Ivor W Tsang, Ya Zhang, Jun Sun, Chengqi Zhang, and Rui Zhang.
Deep learning from noisy image labels with quality embedding. IEEE Transactions on Image
Processing, 28(4):1909–1922, 2018.

Li Yi, Sheng Liu, Qi She, A Ian McLeod, and Boyu Wang. On learning contrastive representations
for learning with noisy labels. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 16682–16691, 2022.

11

Under review as a conference paper at ICLR 2024

Donghan Yu, Ruohong Zhang, Zhengbao Jiang, Yuexin Wu, and Yiming Yang. Graph-revised
convolutional network. In Machine Learning and Knowledge Discovery in Databases: European
Conference, ECML PKDD 2020, Ghent, Belgium, September 14–18, 2020, Proceedings, Part III,
pp. 378–393. Springer, 2021.

X. Yu, B. Han, J. Yao, G. Niu, Ivor W Tsang, and M. Sugiyama. How does disagreement help
generalization against label corruption? 2019a.

Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor Tsang, and Masashi Sugiyama. How does dis-
agreement help generalization against label corruption? In International Conference on Machine
Learning, pp. 7164–7173. PMLR, 2019b.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–
115, 2021.

Xiang Zhang and Marinka Zitnik. Gnnguard: Defending graph neural networks against adversarial
attacks. Advances in neural information processing systems, 33:9263–9275, 2020.

Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep neural networks
with noisy labels. Advances in neural information processing systems, 31, 2018.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in
Neural Information Processing Systems, 33:7793–7804, 2020.

Yanqiao Zhu, Weizhi Xu, Jinghao Zhang, Qiang Liu, Shu Wu, and Liang Wang. Deep graph struc-
ture learning for robust representations: A survey. arXiv preprint arXiv:2103.03036, 14, 2021.

12

Under review as a conference paper at ICLR 2024

A DATASETS

We summarize the statistics of the datasets used in experiments in Table 3.

Table 3: Statistics of the datasets.

Datasets Cora Citeseer Pubmed ogbn-arxiv Chameleon Actor Squirrel snap-patents

#Nodes 2,708 3,327 19,717 169,343 2,277 7,600 5,201 2,923,922
#Edges 5,278 4,552 44,324 1,166,243 31,421 26,752 198,493 13,975,788

#Features 1433 3703 500 128 2325 931 2089 269
#Classes 7 6 3 40 5 5 5 5

B IMPLEMENTATION DETAILS

We implement PRGNN with PyTorch and adopt the Adam optimizer to train the model. We perform
a grid search to fine-tune hyper-parameters based on the results on the validation set. The search
space of these hyper-parameters is listed in Table 4. Further, for other competitors (GCN, GCE,
APL, Coteaching, LPM), some of their results are directly reported from Xia et al. (2021a) (Cora,
CiteSeer with uniform noise ranging from 20% to 80% and Cora, CiteSeer, PubMed with flip noise
ranging from 20% to 40%). For other cases, we fine-tune the model hyper-parameters with the codes
released by their original authors. For fair comparison, we report the average results with standard
deviations of 5 runs for all experiments. We run all the experiments on a server with 32G memory
and a single Tesla V100 GPU.

Table 4: Grid search space.

Notation Range
learning rate {1e-5, 1e-4, 1e-3, 1e-2}
weight decay {5e-5, 5e-4, 5e-3, 5e-2}

hidden number {32, 64, 128, 256}
dropout [0.2, 0.8]

λ1 {0.1, 0.5, 1, 1.5, 5, 10, 100}
λ2 {0.1, 0.5, 1, 1.5, 5, 10, 100}
λ3 {0.1, 0.5, 1, 1.5, 5, 10, 100}
δ {0.7, 0.8, 0.9}

C DETAILS OF THE CONTRASTIVE LOSS

The contrastive loss LCont is utilized to leverage the extra supervision information from massive
unlabeled data. Specifically, taking PRGNN-v1 as an example, we maximize the agreement of
predictions of the same node that are generated from Qϕ(Ȳ |YC , G) and Pθ(Ȳ |G). For notation
simplicity, we denote the predictions as yi and ỹi for each node vi, respectively. Meanwhile, we pull
the predictions of different node pairs away. As a result, the pairwise contrastive loss between yi
and ỹi can be defined as

LPC(yi, ỹi) = −log
exp(⟨yi, ỹi⟩ /τ)

exp(⟨yi, ỹi⟩ /τ) +
∑n

j=1 1[j ̸=i]exp(⟨yi, ỹj⟩ /τ) +
∑n

j=1 1[j ̸=i]exp(⟨yi, yj⟩ /τ)
(7)

where ⟨·, ·⟩ denotes the inner product and τ is a temperature parameter. τ for PRGNN is set to be
0.5. Based on Equation 7, the overall contrastive objective to be minimized is

LCont =
1

2n

n∑
i=1

(LPC(yi, ỹi) + LPC(ỹi, yi)) (8)

13

Under review as a conference paper at ICLR 2024

Table 5: Comparison with baselines in test accuracy (%) with flip noise on large-scale datasets.

Datasets p GCN Coteaching+ GCE APL DGNN NRGNN LPM PRGNN-v1 PRGNN-v2

ogbn-arxiv

0.2 54.73(0.28) 52.71(0.35) 55.22(0.29) 55.68(0.37) 53.49(0.48) OOM 53.61(0.78) 56.40(0.39) 55.85(0.26)
0.4 53.49(0.91) 50.12(0.83) 54.03(1.38) 53.79(0.62) 49.97(1.36) OOM 48.83(0.82) 55.67(1.08) 54.82(0.85)
0.6 35.01(1.03) 35.27(0.83) 36.71(0.79) 37.26(0.84) 32.90(0.95) OOM 34.16(1.12) 41.75(1.14) 44.28(0.94)
0.8 33.81(0.95) 31.65(1.27) 31.20(0.84) 35.27(0.81) 29.96(1.83) OOM 35.63(0.84) 40.11(0.99) 42.39(0.74)

snap-patents

0.2 42.24(0.11) 41.55(0.18) 42.40(0.27) 42.36(0.19) 43.08(0.15) OOM 39.62(0.32) 43.26(0.12) 43.05(0.11)
0.4 36.23(0.29) 36.57(0.31) 36.29(0.25) 37.88(0.30) 37.06(0.62) OOM 31.29(0.74) 39.32(0.26) 39.70(0.33)
0.6 33.21(1.49) 31.55(1.98) 34.28(0.94) 34.05(1.27) 25.19(2.87) OOM 28.11(3.65) 37.07(0.34) 38.01(0.81)
0.8 32.57(1.74) 30.34(1.22) 31.90(0.78) 32.81(1.27) 23.25(2.99) OOM 25.98(1.76) 36.75(1.53) 37.82(0.91)

D EXPERIMENTS ON LARGE-SCALE DATASETS

Table 5 summarizes the classification results on large-scale datasets. From the figure, we see that
PRGNN consistently outperforms other baselines on both ogbn-arxiv (homophilous graph) and
snap-patents (heterophilous graph). Further, when noise rates are high, the performance gap be-
tween PRGNN and baselines gets larger. This shows that PRGNN is more robust against label
noise. Further, since the edge prediction module in NRGNN has a time complexity of O(n2), it fails
to run on large-scale datasets due to the out-of-memory (OOM) error.

E EXPERIMENTS IN THE STANDARD SEMI-SUPERVISED LEARNING SETTING

To further demonstrate the effectiveness of our methods, we perform node classification task, and
compare PRGNN-v1 and PRGNN-v2 with other baselines in the standard semi-supervised learning
setting where each class only have 20 labeled nodes for Cora, CiteSeer and PubMed. Table 6 sum-
marizes the performance results, from which we observe that PRGNN clearly outperforms other
baselines in all cases.

Table 6: Comparison with baselines in test accuracy (%) with flip noise and standard semi-
supervised learning setting.

Datasets p Coteaching+ DGNN NRGNN LPM PRGNN-v1 PRGNN-v2

Cora

0.2 72.55 78.65 78.14 77.27 80.30 79.23
0.4 64.56 68.63 69.75 67.82 75.12 72.68
0.6 55.12 63.38 62.52 60.93 67.94 69.00
0.8 51.28 58.35 57.51 53.08 63.06 67.57

CiteSeer

0.2 58.43 62.42 64.36 63.29 65.43 66.63
0.4 56.06 57.37 60.23 57.81 61.86 64.45
0.6 50.18 53.15 54.35 52.03 57.01 61.31
0.8 49.80 50.31 51.34 48.92 52.25 59.58

PubMed

0.2 72.26 75.32 74.93 75.02 76.84 76.05
0.4 70.84 74.10 71.28 71.62 74.33 73.97
0.6 69.38 71.92 70.37 70.18 73.17 73.23
0.8 66.41 68.09 67.32 66.35 71.34 72.69

F PRGNN WITH H2GCN AS THE BACKBONE MODEL

Since our framework is flexible to use various GNNs as the backbone model, we also use two-
layer H2GCN Zhu et al. (2020) for heterophilous graphs. Table 7 summarizes the performance
results with flip noise. For fairness, we replace the corresponding backbones for other models except
NRGNN and LPM, which are based on the assumption of label smoothness and can only use GCN
as backbone. The results demonstrate that the performance of our proposed method PRGNN still
leads other competitors.

G TIME AND SPACE COMPLEXITY ANALYSIS

The major time complexity in the PRGNN comes from GNNs and the contrastive loss. Suppose we
use one-layer GCN as the backbone. Since the adjacency matrix is generally sparse, let dA be the

14

Under review as a conference paper at ICLR 2024

Table 7: Comparison with baselines in test accuracy (%) on heterophilous graphs with flip noise and
H2GCN as the backbone GNN.

Datasets p H2GCN Coteaching+ GCE APL DGNN NRGNN LPM PRGNN-v1 PRGNN-v2

Chameleon

0.2 55.44(0.90) 58.20(1.58) 56.75(1.19) 58.60(0.85) 51.54(1.49) 52.28(0.91) 55.75(2.06) 59.69(0.63) 59.34(0.61)
0.4 50.04(2.03) 50.13(0.51) 51.23(2.48) 50.66(1.61) 44.17(3.97) 45.13(1.17) 49.47(3.42) 53.73(1.55) 52.76(1.62)
0.6 42.48(3.16) 37.59(3.53) 42.84(2.45) 37.06(3.97) 34.61(2.24) 36.84(3.10) 42.52(2.92) 44.08(2.33) 43.05(2.47)
0.8 37.95(2.58) 35.66(2.60) 38.01(3.15) 33.51(3.76) 32.24(1.57) 36.10(3.21) 37.82(6.41) 39.12(2.47) 38.10(2.35)

Actor

0.2 35.49(0.45) 35.78(0.94) 34.54(1.27) 33.78(0.76) 32.22(1.90) 27.92(0.29) 27.00(0.31) 35.82(1.48) 36.00(0.23)
0.4 27.70(1.21) 32.01(0.93) 28.97(1.13) 28.34(1.31) 27.33(1.34) 26.42(0.98) 23.37(1.91) 32.79(1.04) 33.32(0.23)
0.6 26.87(1.30) 29.28(1.87) 27.33(1.61) 26.09(0.44) 26.26(0.24) 25.00(1.14) 25.54(1.28) 31.17(1.62) 31.54(0.72)
0.8 26.83(1.30) 27.84(1.32) 27.18(1.20) 24.51(2.82) 24.92(1.77) 23.57(0.97) 22.47(2.71) 29.93(2.87) 30.75(1.32)

Squirrel

0.2 43.30(0.91) 43.42(1.24) 42.44(1.04) 43.27(0.62) 39.21(0.61) 33.14(2.14) 32.28(0.78) 43.75(1.20) 43.90(1.29)
0.4 36.10(1.01) 36.18(1.33) 34.66(1.59) 32.93(1.52) 28.93(2.04) 31.35(1.47) 28.45(1.35) 36.75(1.23) 36.41(0.99)
0.6 32.33(3.37) 31.10(2.25) 32.22(3.17) 29.07(3.34) 25.40(2.11) 28.17(1.71) 25.96(2.30) 32.89(2.23) 33.09(2.19)
0.8 27.30(4.12) 27.97(2.17) 26.34(3.91) 28.51(2.03) 25.21(0.74) 26.95(1.00) 22.44(2.44) 30.11(1.87) 31.54(0.61)

average number of non-zero entries in each row of the adjacency matrix. Let n be the number of
nodes, l be the raw features dimension, and c be the output layer dimension (c is the number of class
labels). Further, let k be the number of selected negative samples. Then, the time complexities for
GCN and the contrastive loss are O(ndAl+ nlc) and O(nkc), respectively, which are both linear to
the number of nodes n.

For the space complexity, we need to store Ȳ whose size is nc (c is the number of class labels) and
the parameters in GCN. Note that we use three independent GNNs in our framework. We still take
one-layer GCN for illustration. For the convolutional layer in each GCN, there exists a learnable
transformation matrix of size lc. Therefore, the overall space complexity is O(nc + 3lc), which is
also widely applicable.

We further conduct experiments to study model efficiency for different methods on two large-scale
datasets. Note that we choose methods specially designed for graphs against label noise for fair
comparison and they all use GCN as the backbone model. We also take GCN as a reference model.
We compare the convergence time (second) in training under flip noise rate = 0.8. We run all the
experiments on one V100 GPU. Our results are shown in Table 8. From the table, we see that
DGNN is very efficient. This is because based on GCN, DGNN only slightly adjusts the training
objective by introducing a learnable noise correction matrix to the cross-entropy function. However,
DGNN performs poorly under high noise rates. Further, our proposed methods are more efficient
than NRGNN and LPM, which can also achieve the best classification performance (See Table 5).
All these results show the superiority of our proposed methods.

Table 8: Comparison with baselines in convergence time (s) on large-scale datasets.

Datasets GCN DGNN NRGNN LPM PRGNN-v1 PRGNN-v2

ogbn-arxiv 14.57 17.80 OOM 118.45 62.05 60.93
snap-patents 124.95 133.61 OOM 805.05 614.85 625.04

H BROADER IMPACTS AND LIMITATIONS

Broader impacts. In this paper, we propose a novel probabilistic graphical model based framework
PRGNN. It can effectively solve the problem of noisy labels for GNNs, but at the same time, there
are also some potential risks involved: 1) Widespread adoption of this model will reduce the need for
high-quality markers on crowdsourcing platforms, which could lead to increasing unemployment.
2) Further, lower requirements for labeling quality may result in reduced monitoring and validation
of data quality, thereby disrupting the management of the data labeling industry.

Limitations. Although our methods solve the problem of noisy labels in both graphs with ho-
mophily and heterophily well, implementing them with three independent GNNs could be a draw-
back. How to implement our methods with less GNNs is a promising future research topic. Besides,
experiments on datasets with real-world label noise are also needed to further show the effectivess
of PRGNN.

15

	Introduction
	Related work
	Deep neural networks with noisy labels
	Robust graph neural networks

	Preliminary
	Methodology
	PRGNN-v1
	PRGNN-v2
	Encoder
	Decoder
	Prior knowledge

	Experiments
	Experimental settings
	Node classification results
	Hyper-parameter sensitivity Analysis
	Ablation study
	Study on the size of the clean label set

	Conclusion
	Datasets
	Implementation details
	Details of the contrastive loss
	Experiments on large-scale datasets
	Experiments in the standard semi-supervised learning setting
	PRGNN with H2GCN as the backbone model
	Time and Space complexity analysis
	Broader impacts and limitations

