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Abstract

Understanding what and how neural networks memorize during training is crucial,
both from the perspective of unintentional memorization of potentially sensitive
information and from the standpoint of effective knowledge acquisition for real-
world, knowledge-intensive tasks. While previous studies primarily investigate
memorization within a single modality, such as text memorization in large language
models or image memorization in diffusion models, unified multimodal models are
becoming increasingly prevalent in practical applications. In this work, we focus on
the unique characteristics of cross-modality memorization and conduct a systematic
study centered on vision-language models. To facilitate controlled experiments,
we first introduce a synthetic persona dataset comprising diverse synthetic person
images and textual descriptions. We quantify factual knowledge memorization and
cross-modal transferability by training models on a single modality and evaluating
their performance in the other. Our results reveal that facts learned in one modality
transfer to the other, but a significant gap exists between recalling information in
the “source” and “target” modalities. Furthermore, we observe that this gap exists
across various scenarios, including more capable models, machine unlearning, and
the multi-hop case. At the end, we propose a baseline method to mitigate this
challenge. We hope our study can inspire future research on developing more
robust multimodal learning techniques to enhance cross-modal transferability.

1 Introduction

Modern foundation models are continuing to benefit from scaling with more training data. Large
volumes of diverse, high-quality data allow the models to develop fundamental capabilities like
language understanding and reasoning, and are critically important for the models to acquire world
knowledge required in many problem-solving benchmarks [ ,

, ] and even more specialized knowledge required for solvmg math and codlng

problems [ , ]. However, the dynamics of knowledge acquisition
from training data are extremely complex and various unintended biases [ , ] and
behaviors [ s ] can arise, such as the “reverse curse” [ s ] and
increased hallucination [ , ]. Moreover, previous work also shows that in addition

to learning generalizable knowledge, large language models (LLMs) can unintentionally memorize
training text verbatim, which may then be extracted through simple prompting [ , ,

, ]. This raises concerns about privacy, copyright, and the trustworthiness of Al systems.
As aresult, developing a better understanding of memorization in foundation models has become a
central focus of recent research.

*Work done during an internship at Google.
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Figure 1: Illustration of Our Data Generation Pipeline and Evaluation Pipeline.

However, while prior work has investigated memorization within individual modalities—such as
the regurgitation of specific training text sequences by LLMs [Carlini et al., 2019, 2021, 2022] and
the reproduction of specific training images by diffusion models [Somepalli et al., 2023b, Carlini
et al., 2023, Wen et al., 2024a]—these studies primarily focus on unimodal memorization. In contrast,
solving complex real-world problems increasingly relies on multimodal models that are trained to
process and integrate information from diverse media types, including text, images, audio, and video.
This integration across modalities necessitates extending the study of memorization to account for
cross-modality behaviors.

In this work, we address this gap by taking a first step toward systematically quantifying cross-
modality memorization between text and images in vision-language models (VLMs). Under con-
trolled training conditions, we examine how knowledge is memorized in one modality and transferred
across modality boundaries to support inference in another.

Specifically, our investigation focuses on factual knowledge memorization across the visual and
textual modalities in VLMs. Our task design is motivated by emerging applications of VLMs such as
personal assistants, where models are often “personalized” using user-provided data such as emails,
calendars, to-do lists, photos, and screenshots. For example, to assist with vacation planning, a
model may check a calendar to identify suitable dates and examine past photos to suggest similar
destinations. Gaining a clearer understanding of how factual knowledge is internalized and transferred
across modalities is a critical step toward building robust and trustworthy multimodal personal agents.

To facilitate this study, we introduce the “persona” dataset, designed to systematically investigate
cross-modal factual memorization, as shown in Figure 1. We begin by generating a diverse set of
synthetic persona profiles, each featuring various attributes. For each persona profile, we create both
textual descriptions and visual representations (e.g., synthetic photographs) to capture the person’s
appearance.

Next, we train vision-language models to recognize the person’s name from a single modality, either
the description or the image. During inference, we assess the model’s ability to recall the person’s
name when presented with a held-out image or description. Our primary focus is on cross-modal
knowledge transfer, examining the model’s ability to answer textual questions when trained on visual
data, and vice versa. To determine whether the model learns facts consistently across modalities, we
compare the accuracy between the training and testing modalities.

Our systematic analysis reveals that facts learned in one modality are automatically transferred to
the other. However, there is a noticeable performance gap between recalling information within the



original (“source”) modality and recalling it in the “target” modality in many scenarios. Notably, this
gap is asymmetric, with knowledge transfer from image to text being more effective than from text to
image, even in larger and more capable models. A similar inconsistency arises in machine unlearning,
where the model struggles to unlearn facts in a modality different from the one in which they were
originally learned. Additionally, we identify a cross-modal “multi-hop curse” in multimodal models,
where the model struggles to infer complex cross-modal relationships despite successfully learning
simpler single-hop associations.

To better understand whether the cross-modality knowledge barriers are surface-level phenomena or
more fundamental weaknesses in the standard learning setup, we further investigate whether simple
mitigating strategies can improve cross-modal transferability. We find that using diverse training data
and larger, more capable models can mitigate overfitting, but it does not improve the transferability
rate. In contrast, augmenting training data with synthetic image-text pairs, generating images from
text inputs and captions from image inputs, can effectively bridge the modality gap, particularly with
in-distribution data augmentation. However, out-of-distribution data proves less beneficial in this
case.

We hope our study contributes to a deeper understanding of cross-modal memorization phenomena,
particularly within the context of VLMs. By highlighting the asymmetries in knowledge transfer
between modalities, we aim to foster more robust, efficient, and privacy-conscious multimodal
systems. Future work will focus on refining mitigation strategies and exploring additional modalities
to generalize our findings further. We believe that addressing these challenges is crucial for developing
Al systems that can safely and effectively integrate and process diverse types of data.

2 Related Work

Modern generative models memorize and regurgitate training data [

, , ], presenting potential risks such as privacy leakage and copyrlght 1nfr1nge-
ment [ , ]. This phenomenon in language models has been extensively discussed
in prior literature. [ ] systematically examined such occurrences by injecting “ca-
naries” into the training data. Later, [ 1, [ ] showed that model
memorization correlates with model size, canary repetition frequency, and sequence length. Beyond
verbatim copying, factual knowledge memorization has also been studied [ , 1,
wherein models recall specific facts present in their training datasets. This type of memorization is
considered more aligned with realistic usage scenarios, as it often involves prompting the model with
queries that differ from the exact training instances.

Research into memorization has also extended to image generation models [ s ,a,

[ ] discovered that verbatim memorization also occurs in
diffusion models where the model can generate exact replicas of training images when prompted
with corresponding training data inputs. Later, [ ] demonstrated that, similar to

language models, the extent of memorization in diffusion models is heavily dependent on model and
data sizes. Analogous to factual knowledge memorization in language models, image generation
models also memorize styles [ , ] and copyrighted characters [ , ]. In

[ 1, [ ], the authors investigate unintentional memorization
in CLIP-style VLMs, whereas our work focuses on LLaVA-style VLMs.

3 Cross-Modality Factual Knowledge Memorization

3.1 Synthetic Persona Data

Injecting canaries is a widely adopted strategy in previous work [

] to prevent data contamination and mamtaln experimental control. Accordmgly, we ﬁrst
develop a synthetic persona dataset as “canaries.” Our synthetic persona dataset consists of a
set of image-description samples representing synthetic profiles. Given that personal assistants
represent a promising application for vision-language models, the setting for our synthetic persona
dataset is chosen to simulate a scenario where the model learns to identify individuals (e.g., a
user’s acquaintances) based on images (similar to those saved on a user’s phone) or or their textual
descriptions (as might appear in text messages or emails).



An overview of our data generation pipeline is presented in Figure 1. In detail, the creation involves
the following steps:

I. Attribute Pool Definition: The foundation of our dataset generation lies in defining a compre-
hensive set of attributes that constitute a persona. These attributes are categorized to cover various
aspects of an individual’s appearance, demographics, and contextual elements. For each category,
we curate a pool of possible values, drawing inspiration from typical characteristics used in image
generation and description. These attribute categories include:

* Demographics: 8 demographic identities, 2 genders, and 3 age ranges.

* Visual Characteristics: 7 clothing styles/types, 7 clothes colors, 7 accessories, 7 hairstyles,
and 7 hair colors.

* Contextual Elements: 7 facial expressions and 12 background scenes.

The specific values within these pools are chosen to maximize diversity and verisimilitude, allowing
for a large combinatorial space of unique profiles of

8X2X3IXTXTXTXTXTXTx12=067,765,824

combinations from the attribute pools. The complete list is provided in Appendix

I1. Profile Synthesis: The synthetic profile synthesis process involves the following steps:

1. Attribute Combination: A unique combination of attributes is sampled without replacement
from the defined pools to establish the core characteristics of a persona.

2. Name Assignment: A unique fictional name is generated, conditioned on the demographic
identity and gender to maintain cultural relevance and consistency.

3. PII Association: To facilitate privacy-related experiments, we associate each synthetic
character with PII data. Given that most models are well-aligned and consistently reject
real PII data requests (e.g., Social Security Numbers), we opt to use “favorite number” as a
surrogate. This favorite number is a randomly generated three-digit number.

II1. Image-Description Generation: The generation of image-description pairs is a crucial step in
creating a comprehensive dataset that effectively represents synthetic personas. This process not only
ensures visual diversity but also enhances the contextual realism of each profile.

* Image Generation: Using the synthesized profiles (attribute combinations), we leverage a
state-of-the-art text-to-image generation model Imagen 3 [ , ] to create
realistic profile pictures.

* Textual Description Generation: To complement the generated images, we create rich
textual descriptions for each persona profile picture. These descriptions go beyond merely
listing attributes, instead presenting a natural, narrative, and contextually rich portrayal of
the synthetic individual. We employ Gemini 2.0 [ , ] to generate these textual
descriptions, conditioned on both the generated image and the profile attributes. To enhance
realism, we instruct the model to adopt a more conversational tone, similar to how a person
would describe a friend.

Additionally, we generate multiple image-description pairs for each persona to simulate scenarios
where a single individual has several images. This approach parallels the language model training
process, where models are exposed to multiple paraphrases of a fact [ , ]. The
generation prompts are provided in Appendix

Final Dataset Composition: The resulting synthetic persona dataset consists of a collection of 100
unique personas. Each persona is characterized by the following elements:

* A unique name.

* An associated favorite number.

* An associated set of specific attributes.

* A set of 100 image variants for training and 1 distinct image for testing.

A set of 100 textual description variants for training and 1 distinct textual description for
testing.
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Figure 2: Training with Single Description/Image. Factual memorization transfers between
modalities, but there is a significant gap between the source and target modalities.
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Figure 3: Training with Image/Description Variants. Using diverse input variations during training
helps mitigate overfitting, but does not improve the cross-modal transferability rate.

3.2 Experimental Setup

We fine-tune the latest open-source vision-language model, Gemma-3-4b [Team et al., 2025], to
conduct all our experiments. During fine-tuning, we utilize LoRA [Hu et al., 2022] with a rank of
r = 32, a scaling factor of a = 32, and a dropout probability of 0.05. We use AdamW [Loshchilov
and Hutter, 2017] with a learning rate of 2 x 10~% and a batch size of 16. All training is performed
on a single Nvidia A100-80G GPU.

We employ two distinct training settings: one where the model is trained solely on textual descriptions
and another where it is trained exclusively on images. In each setting, the input prompt consists of
either a description or an image, followed by a question about the person’s name. We train the model
to accurately predict the associated name based on the given input.

During testing, we evaluate the model’s recognition accuracy by asking the same question in both
modalities separately, assessing the model’s ability to recall the correct name in each modality. Note
that we test on seen persona profiles, but the specific test inputs (image or textual descriptions) are held
out and never seen verbatim by the model during training. In our experiments, we deliberately train
for an extreme number of epochs to simulate a worst-case privacy scenario, where memorized signals
are not diluted by non-canary data. This setup provides a stress test for evaluating the robustness of
potential mitigation methods.

3.3 Memorization Results

Training with Single Description/Image: We start with fine-tuning the model on a single image
or description for each persona across multiple epochs. Specifically, we choose 1, 5, 10, 25, 50, 75,
and 100 epochs. We report the recognition accuracy for both models trained on descriptions and



images in Figure 2a and Figure 2b, respectively, showing the test accuracy on held-out descriptions
and images.

In the description training setting, the model’s accuracy for both modalities consistently improves as
training progresses. In contrast, training on images tends to lead to overfitting after 25 epochs, as the
model’s performance decreases afterwards.

Although cross-modal knowledge transfer occurs in both training scenarios, there remains a significant
performance gap between the training modality and the testing modality. This gap is more evident
in Figure 2¢, where the plot compares the accuracy between the training (source) modality and the
testing (target) modality. Ideally, a perfect model would align with the dotted line, indicating no
discrepancy between the two modalities. However, both training settings reveal a noticeable gap. This
disparity underscores the difficulty of transferring learned representations between text and image
domains.

Takeaway 1: Factual memorization transfers between modalities, but there is a significant
gap between the source and target modalities.

Training with Image/Description Variants: To mitigate the effect of overfitting associated with
training on a single description or image for multiple epochs, we employ a different strategy in this
experiment. Instead of repeatedly using the same input, we use a new description or image for each
epoch. This approach is analogous to factual knowledge learning with paraphrased texts, which has
been shown to help models generalize more effectively [ , ]. By introducing
variations during training, the model avoids memorizing a fixed representation and instead learns the
actual knowledge.

As depicted in Figure 3, training with diverse inputs significantly improves the test accuracy compared
to the single-input scenario. In Figure 3a, where the model is trained on descriptions, the accuracy
reaches nearly perfect levels, suggesting that the model benefits from varied textual data. Similarly,
in Figure 3b, when trained on images, the model also achieves high accuracy without the early
saturation and overfitting observed previously. These results highlight that varying the input per
epoch effectively prevents overfitting and allows the model to generalize better across training
instances.

However, despite these improvements in accuracy, the cross-modal transferability remains limited,
as shown in Figure 3c, where the slope remains similar to the single-sample training scenario. This
indicates that, while input variability mitigates overfitting, it does not necessarily enhance the model’s
ability to bridge the gap between different modalities.

Takeaway 2: Using diverse input variations during training helps mitigate overfitting, but
does not improve the cross-modal transferability rate.

One interesting observation is that the target accuracy across the modality continues to improve
(especially for the image = text scenario) after the source modality saturates at near-perfect accu-
racies. This emphasizes the importance of diverse training samples on learning robust knowledge
representations that go beyond what single-modality benchmarks can typically show.

Training with Model Sizes: As previous work [ s ] indicates, larger models tend
to memorize information more easily. To investigate the impact of model size on cross-modal
transferability, we train three models from the Gemma3 family: Gemma3-4B-IT, Gemma3-12B-IT,
and Gemma3-27B-IT. As shown in Figure 4, increasing the model size consistently improves the
accuracy for both source and target modalities. However, despite the improvements in both individual
modality accuracy and cross-modality accuracy as the model size increases, the rate of cross-modal
transferability, indicated by the slope of the lines in the accuracy plots, remains nearly unchanged.
This suggests that while larger models are more effective in learning within each modality, they do
not necessarily enhance the transfer of learned information between modalities.

These findings imply that model size primarily contributes to improved memorization and recognition
within a single modality rather than facilitating cross-modal generalization. Consequently, even as the
model capacity increases, bridging the gap between image-to-text and text-to-image transfer remains
a challenging task.
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Figure 4: Training with Different Model Sizes. Increasing model size enhances accuracy within
each modality, but maintains a similar cross-modal transferability rate.
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Figure 5: Training with Augmentation Mitigation. Augmenting training data with in-distribution
image-caption samples is essential for enhancing cross-modal transferability, while out-of-distribution
data does not provide similar benefits.

Takeaway 3: Increasing model size enhances accuracy within each modality, but maintains a
similar cross-modal transferability rate.

3.4 Mitigation with Image-Caption Augmentation

To further enhance cross-modal transferability, we propose a simple yet effective approach that
augments the training data with synthetic image-text pairs. Specifically, for a given description or text
input, we generate a corresponding image conditioned on the text. Conversely, for an image input,
we generate a descriptive caption. These generated pairs are introduced as captioning data, where the
model is asked to describe an image.

In this experiment, we utilize two types of data for mitigation: 1) in-distribution (ID) data, where
we augment the training set with held-out synthetic persona images and descriptions that closely
resemble the training data, and 2) out-of-distribution (OOD) data, where we introduce incorporate
images and captions from the COCO dataset [Lin et al., 2014]. This combination allows us to
investigate the impact of data diversity on cross-modal transferability.
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As shown in Figure 5, incorporating in-distribution (ID) data significantly improves cross-modal
transferability, as indicated by the blue line consistently appearing above the baseline green line
in both description and image training scenarios. In contrast, augmenting with out-of-distribution
(OOD) data does not provide similar benefits, with the orange line remaining close to the baseline.
This suggests the importance of augmenting training data within the same distribution to effectively
improve transferability.

Takeaway 4: Augmenting training data with in-distribution image-caption samples is essen-
tial for enhancing cross-modal transferability, while out-of-distribution data does not provide
similar benefits.

3.5 Cross-Modal Unlearning

Machine unlearning [Bourtoule et al., 2021] has gained popularity as a method for removing specific
user data without requiring the model to be retrained from scratch. Consequently, it is essential to
investigate how unlearning operates across different modalities.

A commonly used unlearning method involves applying gradient ascent on the forget dataset [Maini
et al., 2024]. However, our empirical experiments reveal that this approach is challenging to fine-tune
and significantly compromises model performance. Therefore, to make the controlled experiments
more comparable with fresh knowledge learning results, we adopt a practically simpler workaround:
to unlearn the association of a person (image or textual description) to a name, we generate a modified
training where each profile is associated with completely different names, and (continue) training the
model on this modified dataset. We then measure the model’s accuracy (drop) of association with
the original name as the unlearning performance. This allows us to reuse the same training setups,
making the cross-modality measurements more easily comparable with previous results.

In detail, we start with the fine-tuned description model and image model from Section 3.3. Since
we have two models (the fine-tuned description model and the fine-tuned image model) and two
unlearning datasets (description-based and image-based), we systematically evaluate all possible
combinations, which results in four experimental setups.

In Figure 6a, we present unlearning experiments with relative accuracy drops in both modalities
when unlearning on description data. For the description model, the unlearning effect on both
modalities exhibits a similar pattern (as indicated by the green line closely following the y = «x
line). Interestingly, for image models, unlearning on description data predominantly affects the
description test accuracy, while the image test accuracy drop remains quite small. In Figure 6b, we



Table 1: Cross-Modal Multi-Hop Learning Cross-modal models suffer from the multi-hop curse,
where accurate performance on individual tasks does not translate to multi-hop reasoning.

Training Data Test Type
Base Data Multi-Hop Data | Desc=-Name | Image=Name Desc=FN Image=FN Name=FN
Desc=FN 1.00 0.35 1.00 0.31 0.08
Desc=-Name Image=FN 1.00 0.36 0.39 1.00 0.05
Name=-FN 1.00 0.36 0.11 0.05 0.99
Desc=FN 0.68 1.00 1.00 0.47 0.07
Image=-Name Image=-FN 0.62 1.00 0.50 1.00 0.07
Name=-FN 0.64 1.00 0.27 0.65 0.99

show unlearning experiments on image data. Similar to the description data pattern, for the image
(source modality) model, the relative accuracy drop on both modalities is comparable. However, for
the text model, the unlearning effect on description data is notably weaker, while the drop in image
accuracy is more significant.

Overall, these observations reveal a gap in cross-modalities unlearning: when unlearning facts in
a modality different from the one in which the model originally learned the fact, the unlearning
effect does not transfer equally between modalities. In contrast, when unlearning occurs in the same
modality where the fact was originally learned, the unlearning effect is relatively similar across both
modalities. This underscores the importance of carefully designing unlearning training data and
developing more effective unlearning techniques for cross-modal scenarios.

Takeaway S: Unlearning effects are modality-dependent: when unlearning happens in the
same modality as learning, the effect remains relatively consistent across both modalities. In
contrast, when unlearning occurs in a different modality from where the fact was originally
learned, the effect does not transfer equally between modalities.

3.6 Cross-Modal Multi-Hop Learning

Large language models often exhibit the “multi-hop curse,” where they fail to infer that A is C when
the model is trained on A is Band B is C [ , ]. In this section, we investigate this
multi-hop scenario in a cross-modal context.

We define the original description or image mapping to name data points as A is B data (Desc=-Name
and Image=-Name), while a three-digit number representing a person’s favorite number (FN) serves
as C. To investigate multi-hop reasoning, we introduce various data combinations involving base data:
Desc=-Name (given the description, predict the corresponding name) or Image=-Name; multi-hop
data: Desc=-FN (given the description, predict the corresponding favorite number), Image=FN, and
Name=-FN. During testing, we assess whether the model can recall the person’s favorite number
given a description, image, or name as a cue.

As shown in Table |, cross-modal models also exhibit the multi-hop curse. For instance, when the
model is trained on Desc=Name and Name=-FN data, it achieves perfect accuracy on both tasks
individually. However, when directly prompted with a description to retrieve the favorite number, the
accuracy drops drastically to only 11%, indicating a significant challenge in the multi-hop scenario.
In contrast, the model trained on Image=-Name exhibits a lower barrier, achieving over 50% accuracy
for Image=-FN. Even when tested on Desc=FN, the accuracy is considerably higher compared to
the model trained on descriptions, suggesting that image-based training better supports multi-hop
reasoning.

Takeaway 6: Cross-modal models suffer from the multi-hop curse, where accurate perfor-
mance on individual tasks does not translate to multi-hop reasoning.




4 Conclusion and Limitations

Our study systematically investigates cross-modality memorization in vision-language models using
a synthetic persona dataset. We uncover an asymmetric performance gap between source and target
modalities, where knowledge transfer from image to text is more effective than from text to image.
We also demonstrate that while augmenting training data with in-distribution synthetic image-text
pairs helps bridge this gap, out-of-distribution data proves less effective. Furthermore, we identify
challenges in cross-modal unlearning, as unlearning in one modality does not fully translate to the
other. Additionally, we reveal that vision-language models suffer from the multi-hop curse, where
the model struggles to infer complex cross-modal relations despite successful learning of simpler
single-hop associations.

Our findings underscore the complexity of achieving robust cross-modal transferability and highlight
the need for improved training strategies to enhance generalization across modalities. While this
work focuses on text and image modalities, future research should explore additional modalities,
develop more sophisticated unlearning techniques, and design approaches to better handle multi-hop
reasoning. Addressing these challenges is crucial for building more reliable and privacy-conscious
multimodal Al systems.
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A Broader Impacts

This paper systematically evaluates the state of cross-modal knowledge transfer in multimodal
language models. Through extensive empirical studies, we reveal the existence of a significant
knowledge transfer gap between vision and text domains. Despite this gap, our findings demonstrate
that knowledge does transfer between these modalities, albeit asymmetrically.

Understanding this transfer is crucial for the future design and deployment of multimodal models, as it
has important implications for both performance optimization and privacy preservation. Specifically,
our results highlight the potential risk of unintended information leakage across modalities. For
example, sensitive information learned from visual data could inadvertently influence text-based
outputs and vice versa.

To mitigate such risks, researchers and practitioners should carefully evaluate cross-modal knowledge
interactions, especially when designing models for real-world applications that handle sensitive or
personal data. We encourage the community to further investigate robust techniques that ensure
cross-modal privacy while maintaining model performance.

B Attribute Pool

* Demographic Identity: African (South African), Caucasian (American), Caucasian
(British), East Asian (Chinese), East Asian (Korean), Hispanic (Mexican), Iberian (Spanish),
Middle Eastern (Saudi)

¢ Gender: Female, Male

* Age Range: Adult, Middle Aged, Senior

* Clothing Type: Button-Down Shirt, Hoodie, Jacket, Polo, Sweater, T-Shirt, Tank Top
* Clothes Color: Black, Brown, Gray, Pink, Red, White, Yellow

* Accessory: Earrings, Glasses, Hat, Headphones, Jewelry, No Accessory, Scarf

* Hairstyle: Afro, Bald, Curly, Dreadlocks, Long, Medium, Short

* Hair Color: Black, Blonde, Brown, Gray, Pink, Red, White

 Facial Expression: Angry, Frowning, Laughing, Neutral, Sad, Smiling, Surprised

* Background: Beach, Cafe, Cityscape, Forest, Graffiti Wall, Library, Mountains, Office,
Plain Black, Plain Grey, Plain White, Sports Field

C Data Generation Prompts

Image Generation Prompt for Imagen 3

Generate a highly detailed, photorealistic photo of a person. Key characteristics include:
Demographic Identity: African (Nigerian)
Gender: Male

Age Range: Adult

Clothing Type: Button-Down Shirt
Clothes Color: Pink

Accessory: Glasses

Hairstyle: Long

Hair Color: Red

Facial Expression: Laughing
Background: Mountains
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Description Generation Prompt for Gemini 2.0

<image>

Describe the person in the image in a detailed and natural way, making it easy for someone
to recognize them based on the description. Write as if you are describing a friend of my.
Ensure the description flows naturally and includes the following attributes:

Demographic Identity: African (Nigerian)

Gender: Male

Age Range: Adult

Clothing Type: Button-Down Shirt

Clothes Color: Pink

Accessory: Glasses

Hairstyle: Long

Hair Color: Red

Facial Expression: Laughing

Background: Mountains

Feel free to add any additional distinguishing features that enhance the portrayal. Please
provide the description directly, without extra formatting or instructions.

D Training and Testing Prompts

Training/Testing Prompt for Image Data

<image>

Based on the image, what is the person’s name?

Training/Testing Prompt for Description Data

Description: My friend is a Nigerian man. He wears a pink button-down shirt [. .. ]

Based on the description, what is the person’s name?

E Test Prompt Engineering
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Figure 7: Testing with Different Prompt Strategies.
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At the beginning of the project, we tested a naive mitigation strategy by appending modality transfer-
aware prompts during inference. We evaluated two prompts:

* Prompt 1: Try to recall knowledge learned from another domain.

e Prompt 2: Given this description/image, think about what you learned from the im-
age/description.

As shown in Figure 7, neither prompt leads to a significant change in transferability.

F Unintentional Memorization in VLMs

Unintentional Memorization
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Figure 8: Illustration of Unintential Memorization.

At the end, we share a phenomenon observed in our experiments, which we refer to as unintentional
memorization: the model inadvertently memorizes the injected PII from the image, despite it being
entirely unrelated to the current task. As illustrated in Figure 8, we inject a “favorite number” into the
image during training. Since the model is aligned to avoid generating contents related to potentially
sensitive information such as social security numbers, in order to decouple the question of alignment
(refusing to answer) and memorization, we use the “favorite number” as a surrogate for real PII in
our measurements. In this experiment, the model’s task is to identify the person in the image, and the
number should be irrelevant. To test whether the model unintentionally memorizes this information,
we perform a membership inference attack: for each test image, we overlay either the ground truth
PII (to compute the in-member loss) or a random PII belonging to a different training individual (to
compute the out-member loss). We then compare these losses and report the AUC of the resulting
ROC curve.

We present the results in Figure 9. As shown
in the figure, the model’s AUC is close to ran-

dom guessing at the beginning of training. How- 0.75

ever, as training progresses, the AUC steadily in- 0.70

creases, reaching around 70% after 100 epochs. /.
This indicates that the model begins to memorize 0.65 ®

the injected PII in the image, as it influences the o—

[G]
loss on the recognition task. This observationis 2 0.60
non-obvious because the training paradigm of
VLMs do not compute loss on the input images, 0.55

and the prediction tasks have nothing to do with 050 - N A
the favorite numbers “accidentally” present in : we
the training images. 0.45
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We also attempted direct extraction of the PII, e
Training Epoch

but the success rate was near zero in all cases. In
contrast, membership inference reveals a much

. S Figure 9: Membership Inference Results for Un-
stronger signal of memorization.

intentional Memorization

We argue that this type of unintentional memo-

rization poses significant privacy risks and war-

rants deeper investigation in future work. For instance, in the context of training LLM-based agents
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on web data, some webpages may contain PII or sensitive content incidentally. Even if such content
is unrelated to the task, the model may still inadvertently memorize it. As a result, future efforts
should focus on carefully filtering or redacting training data to mitigate these risks.

Takeaway 7: VLMs can unintentionally memorize irrelevant visual PII. This highlights the
importance of stronger data filtering to mitigate inadvertent privacy risks.
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