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Abstract

Deep learning has contributed remarkably to the
advancement of time series analysis. Still, deep
models can encounter performance bottlenecks
in real-world data-scarce scenarios, which can be
concealed due to the performance saturation with
small models on current benchmarks. Meanwhile,
large models have demonstrated great powers in
these scenarios through large-scale pre-training.
Continuous progress has been achieved with the
emergence of large language models, exhibiting
unprecedented abilities such as few-shot general-
ization, scalability, and task generality, which are
however absent in small deep models. To change
the status quo of training scenario-specific small
models from scratch, this paper aims at the early
development of large time series models (LTSM).
During pre-training, we curate large-scale datasets
with up to 1 billion time points, unify heteroge-
neous time series into single-series sequence (S3)
format, and develop the GPT-style architecture to-
ward LTSMs. To meet diverse application needs,
we convert forecasting, imputation, and anomaly
detection of time series into a unified generative
task. The outcome of this study is a Time Se-
ries Transformer (Timer), which is generative pre-
trained by next token prediction and adapted to
various downstream tasks with promising capabil-
ities as an LTSM. Code and datasets are available
at: https://github.com/thuml/Large-Time-Series-
Model.

1. Introduction

Time series analysis encompasses a broad range of critical
tasks, including time series forecasting (Box et al., 2015),
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Figure 1. Performance of PatchTST (2022) on different data scarci-
ties. The degradation is reported as the relative increase in MSE
compared with training on full samples.
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imputation (Friedman, 1962), anomaly detection (Breunig
et al., 2000), etc. Despite the ubiquity of real-world time se-
ries, training samples can be scarce in specific applications.
While remarkable advances have been made in deep time
series models (Wu et al., 2022; Zeng et al., 2023; Liu et al.,
2023b), the accuracy of state-of-the-art deep models (Nie
et al., 2022) can still deteriorate drastically in such scenar-
ios, even within prevalent benchmarks as shown in Figure 1.
Concurrently, we are witnessing rapid progress of large lan-
guage models (Radford et al., 2018), involving training on
large-scale text corpora and exhibiting remarkable few-shot
and zero-shot capabilities (Radford et al., 2019). It can be
indicative for the community to develop large time series
models (LTSM) that are transferable on various data-scarce
scenarios by pre-training on numerous time series data.

Further, large models evolved by generative pre-training
(GPT) have demonstrated several advanced capabilities that
are absent in small models: the generalization ability that
one model fits many domains, the versatility that one model
copes with various scenarios and tasks, and the scalability
that performance improves with the scale of parameters and
pre-training corpora. Fascinating capabilities have fostered
the advancement of artificial general intelligence (OpenAl,
2023). Time series holds comparable practical value to nat-
ural language. Essentially, they exhibit inherent similarities
in generative modeling (Bengio et al., 2000) and autoregres-
sion (Box, 2013). Consequently, the unprecedented success
of the generative pre-trained large language models (Zhao
et al., 2023) serves as a blueprint for the progress of LTSMs.


https://github.com/thuml/Large-Time-Series-Model
https://github.com/thuml/Large-Time-Series-Model

Timer: Generative Pre-trained Transformers Are Large Time Series Models

Although unsupervised pre-training on time series data has
been widely explored, yielding breakthroughs based on the
masked modeling (Zerveas et al., 2021) and contrastive
learning (Woo et al., 2022), there are still unsolved funda-
mental issues for developing LTSMs. Firstly, the dataset
infrastructure and unified treatment for heterogeneous time
series are lagging behind other fields. As a result, prior unsu-
pervised pre-training methods are typically constrained to a
small scale and primarily focus on in-dataset transfer (Zhang
et al., 2022; Nie et al., 2022). Secondly, the architecture of
scalable large models remains underexplored in the field of
time series. It is observed that non-autoregressive structures,
which are prevalent and effective in small time series models,
may not be suitable for LTSMs. Thirdly, existing large-scale
pre-trained models (Woo et al., 2023; Das et al., 2023b) pri-
marily concentrated on a single task (e.g., forecasting), and
have scarcely addressed task unification. Consequently, the
applicability of LTSMs remains elevatable.

In this paper, we dive into the pre-training and adaptation of
large time series models. By aggregating publicly available
time series datasets and following curated data processing,
we construct Unified Time Series Dataset (UTSD) of hierar-
chical capacities to facilitate the research on the scalability
of LTSMs. To pre-train large models on heterogeneous time
series data, we propose the single-series sequence (S3) for-
mat that converts multivariate series with reserved patterns
into unified token sequences. For better generalization and
versatility, we adopt the GPT-style objective that predicts
the next token (Bengio et al., 2000). Eventually, we present
Timer, a large-scale pre-trained Time Series Transformer.
Unlike prevalent encoder-only architecture (Nie et al., 2022;
Wau et al., 2022; Das et al., 2023a), Timer exhibits similar
characteristics as large language models such as flexible con-
text length and autoregressive generation. It also presents
notable few-shot generalization, scalability, and task gen-
erality, outperforming state-of-the-art task-specific models
on forecasting, imputation, and anomaly detection. Overall,
our contributions can be summarized as follows:

* We delve into the LTSM development by curating large-
scale datasets comprised of 1B time points, proposing
a unified sequence format to cope with data hetero-
geneity, and presenting Timer, a generative pre-trained
Transformer for general time series analysis.

* We apply Timer on various tasks, which is realized in
our unified generative approach. Timer exhibits notable
feasibility and generalization in each task, achieving
state-of-the-art performance with few samples.

* By pre-training on increasing available time series data,
Timer exhibits zero-shot forecasting capability. Quanti-
tative evaluations and quality assessments are provided
among concurrent large time series models.

2. Related Work

2.1. Unsupervised Pre-training on Sequences

Unsupervised pre-training on large-scale data is the essen-
tial step for modality understanding for downstream applica-
tions, which has achieved substantial success in sequences,
covering natural language (Radford et al., 2021), patch-
level image (Bao et al., 2021) and video (Yan et al., 2021).
Supported by powerful backbones (Vaswani et al., 2017)
for sequential modeling, the paradigms of unsupervised
pre-training on sequences have been extensively studied in
recent years, which can be categorized into the masked mod-
eling (Devlin et al., 2018), contrastive learning (Chen et al.,
2020), and generative pre-training (Radford et al., 2018).

Inspired by significant progress achieved in relevant fields,
masked modeling and contrastive learning have been well-
developed for time series. TST (Zerveas et al., 2021) and
PatchTST (Nie et al., 2022) adopt the BERT-style masked
pre-training to reconstruct several time points and patches
respectively. LaST (Wang et al., 2022b) proposes to learn
the representations of decomposed time series based on
variational inference. Contrastive learning is also well incor-
porated in prior works (Woo et al., 2022; Yue et al., 2022).
TF-C (Zhang et al., 2022) constrains the time-frequency con-
sistency by temporal variations and frequency spectrums.
SimMTM (Dong et al., 2023) combines masked modeling
and contrastive approach within the neighbors of time series.

However, generative pre-training has received relatively less
attention in the field of time series despite its prevalence
witnessed in developing large language models (Touvron
etal., 2023; OpenAl, 2023). Most large language models are
generative pre-trained (Zhao et al., 2023) with token-level
supervision, where each token is generated based on the pre-
vious context and independently supervised (Bengio et al.,
2000). Consequently, they are not constrained by specific
input and output lengths and excel at multi-step generation.
Furthermore, prior studies (Wang et al., 2022a; Dai et al.,
2022) have demonstrated that scalability and generalization
largely stem from generative pre-training, which requires
more training data than other pre-training paradigms. Thus,
our work aims to investigate and revitalize generative pre-
training towards LTSMs, facilitated by extensive time series
and deftly designed adaptation on downstream tasks.

2.2. Large Time Series Models

Pre-trained models with scalability can evolve to large foun-
dation models (Bommasani et al., 2021), featured by increas-
ing model capacity and pre-training scale to solve various
data and tasks. Large language models even demonstrate
advanced capabilities such as in-context learning and emer-
gent abilities (Wei et al., 2022). As of present, research on
large time series models remains at a nascent stage. Ex-



Timer: Generative Pre-trained Transformers Are Large Time Series Models

Nature @B Web\ [

[- Energy loT
@ Health Transport @B Environment

‘ UTSD-1G l‘ UTSD-2G ‘
‘ UTSD-4G “UTSD-IZG‘

[ s 3 v e Ay ey

DO RpRei

_N\{M,\MVMW AustraliaRainfall
Y4

Phoneme

~

PigArtPressureI/_JE ' E f S :

London

Smart
Meters

J

Environment

Nature

Unified Time Series Dataset

Diverse Shapes, Patterns and Domains

Figure 2. Ilustration of Unified Time Series Dataset (UTSD) that is composed of various time series domains with hierarchical capacities.

isting efforts towards LTSMs can be categorized into two
groups, with one being large language models for time se-
ries. FPT (Zhou et al., 2023) regards GPT-2 as a representa-
tion extractor of sequences, which is respectively fine-tuned
on different downstream tasks. LLMTime (Chang et al.,
2023) encodes time series into numerical tokens for LLMs,
exhibiting model scalability in the forecasting task. Time-
LLM (Jin et al., 2023) investigates prompting techniques to
enhance prediction, demonstrating the generalization ability
of LLMs. Unlike these methods, Timer is pre-trained na-
tively on time series and free from extra modality alignment.

Another category includes pre-trained models on large-scale
time series. ForecastFPN (Dooley et al., 2023) is trained on
synthetic series for zero-shot forecasting. CloudOps (Woo
et al., 2023) adopts masked modeling on Transformer for
domain-specific forecaster. Lag-Llama (Rasul et al., 2023)
is a probabilistic univariate forecaster that adopts lags as
covariates. PreDcT (Das et al., 2023b) is a decoder-only
Transformer pre-trained on Google Trends, exhibiting no-
table zero-shot ability. TimeGPT-1 (Garza & Mergenthaler-
Canseco, 2023) releases the first commercial API for zero-
shot forecasting. Different from prior works, our UTSD
contains 1B real-world time points, which is not a simple
aggregation but follows curated data processing. Timer is
applicable to downstream tasks beyond forecasting and ex-
hibits promising scalability. We are also the first to establish
a zero-shot forecasting benchmark on concurrent LTSMs.

3. Approach

Inspired by the sequential structure inherent in language and
time series, we leverage the advancement of large language
models for developing LTSMs. In this paper, we advocate
the development of large models for time series with (1) the
utilization of extensive time series corpora, (2) the adoption
of a standardized format for diverse time series data, and (3)
the generative pre-training on the decoder-only Transformer
that autoregressively predict the next time series token.

3.1. Data

Large-scale datasets are of paramount importance for pre-
training large models. However, the curation of time series
datasets can be prohibitively challenging. In spite of their
ubiquity, there are numerous data of low quality, including
missing values, unpredictability, variance in shape, and ir-
regular frequencies, which significantly impact the efficacy
of pre-training. Therefore, we establish the criteria for filter-
ing high-quality data and stacking up the hierarchy of time
series corpora. Concretely, we record the statistics of each
dataset, including (1) basic properties, such as time steps,
variate number, file size, frequency, etc; and (2) time series
characteristics: periodicity, stationarity, and predictability.
This also allows us to assess the complexity of different
datasets and progressively conduct scalable pre-training.

We curate Unified Time Series Dataset (UTSD) as shown in
Figure 2. UTSD is constructed with hierarchical capacities
to facilitate the scalability research of large models. UTSD
encompasses seven domains with up to 1 billion time points
(UTSD-12G), covering typical scenarios of time series anal-
ysis. Following the principle of keeping pattern diversity,
we include as diverse datasets as possible in each hierar-
chy, ensure the data size of each domain is nearly balanced
when scaling up, and the complexity gradually increases in
accordance with the calculated statistics. We release four
volumes on https://huggingface.co/datasets/thuml/UTSD.

Notably, we make our curation applicable to the increasing
open-source datasets, which is beneficial for the continuous
expansion of time series corpora. Particularly, we conduct
the same procedure on the recent LOTSA (Woo et al., 2024),
a great endeavor with 27B time points, to explore zero-shot
forecasting and establish the benchmark of LTSMs. Detailed
construction and statistics are provided in Appendix A.

3.2. Training Strategy

Different from natural language, which has been facilitated
by the well-established discrete tokenization and sequential


https://huggingface.co/datasets/thuml/UTSD

Timer: Generative Pre-trained Transformers Are Large Time Series Models

structure with the regular shape, constructing unified time
series sequences is not straightforward due to the hetero-
geneity of series such as amplitude, frequency, stationarity,
and disparities of the datasets in the variate number, series
length and purpose. To promote pre-training on extensive
time series, we propose to convert heterogeneous time series
into single-series sequence (S3), which reserves the patterns
of series variations with the unified context length.
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Figure 3. Pre-training strategy for heterogeneous time series.

As depicted in Figure 3, our initial step involves normalizing
and merging at the level of variates. Each series representing
a variate will be divided into training and validation splits at
a ratio of 9:1 for pre-training. We apply the statistics of the
training split to normalize the entire series. The normalized
time series are merged into a pool of single-variate series.
The time points of single-variate series for training follow
the normal distribution, which mitigates the discrepancies in
the amplitude and variate numbers across multiple datasets.

We uniformly sample sequences from the pool by a window,
obtaining single-series sequences with a fixed context length,
as the format of S3. The proposed format is essentially an
extension of Channel Independence CI (Nie et al., 2022).
However, CI necessitates time-aligned multivariate series
and flattens the variate dimension to the same batch, thereby
requiring the batch of samples to originate from the same
dataset. Based on our format, the model observes sequences
from different periods and different datasets, thus increasing
the pre-training difficulty and directing more attention to
the temporal variation. S3 does not require time alignment,
which applies to broad univariate and irregular time series.
We then employ generative pre-training, where single-series
sequences are regarded as standard sentences of time series.

3.3. Model Design

Given the limited exploration of the backbone for large time
series models, we extensively evaluate candidate backbones
on the same pre-training scale in Section 4.5, which vali-
dates Transformer as the scalable choice. Further, we review
Transformer-based models in time series forecasting, which
have experienced notable development in recent years. They
can be categorized into encoder-only and decoder-only ar-

chitectures following a similar pipeline. As illustrated in
Figure 4, prevalent small time series forecasters, the encoder-
only non-autoregressive models, generate predictions with
the globally flattened representation of lookback series. Al-
though direct projection may benefit from end-to-end super-
vision, flattening can also wipe out sequential dependencies
modeled by attention, thereby weakening Transformer lay-
ers to reveal the patterns of temporal variations.

Predicted
Tokens | Autoregression b
l Flattening | Token l Token Projection '
Embeddings

Trm Blocks Trm Blocks
(No masking) (Causal masking)
Tokens
€D - (@D)
Encoder-only Pipeline Decoder-only (Timer)

Figure 4. Architectures of typical Transformer-based forecasters.

Inspired by the substantial progress of decode-only LLMs
with the ability for iterative generation, we opt for an under-
explored autoregressive approach for generative pre-training.
As language models autoregressively predict the next token:

P(U)ZHP(W\U«') )]

on the token sequence U = {uy, ..., uy }, we first establish
the tokenization of the given single-series sequence (S3)
X = {z1,...,zns} with the unified context length N S.
We define the time series token as consecutive time points
(segment) of length S that encompass the series variations:

Si = {x(i—1)s+17-~-,l’is} € RS, i=1,...,N. (2)

We adopt the decoder-only Transformer with dimension D
and L layers and apply generative pre-training (GPT) on N
tokens in the single-series sequence (sentence):

h? =W.s;+TE;, i=1,...,N,
H' = TrmBlock(H'™), 1 =1,...,L, (3)
{éi+1} = HLWd; i= 17"'aNa
where W., W, € RP*S encode and decode token em-
beddings in H = {h;} € RY*? indepedently, and TE;
denotes the optional timestamp embedding. Via the causal
attention of the decoder-only Transformer, the autoregres-

sively generated §;;; is obtained as the next token of s;.
Thus, we formulate the pre-training objective as follows:

1 g
Lyvse = Nfsz:HSi -85, i=2,.,N. 4

Equation 4 yields token-wise supervising signals, where gen-
erated tokens of each position are independently supervised.
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Consequently, generative pre-trained models are endowed
with the flexibility to address unfixed context length during
inference and excel at multi-step generation by iteratively
sliding and enlarging input tokens. While small time series
models generally refrain from iterative multi-step prediction
to mitigate error accumulations, our experiments reveal that
autoregressive models pre-trained on large-scale data can
also perform as competitively as direct multi-step predictors.

4. Experiments

We demonstrate Timer as a large time series model in time
series forecasting, imputation, and anomaly detection by
tackling them in a unified generative scheme, which is de-
scribed in Figure 5. We compare Timer with state-of-the-art
task-specific models and present the benefit of pre-training
on data-scarce scenarios, known as the few-shot ability of
large models. Furthermore, we delve into the model scala-
bility, including model/data size, and try to build a compre-
hensive zero-shot evaluation across concurrent large time
series models. All the downstream datasets are not included
in the pre-training stage to prevent data leakage. We provide
the detailed implementation and model configurations of
pre-training and adaptation in Appendix B.1 and B.2.

(1) Forecasting (2) Imputation

it

(3) Detection

C[ Autoregression ] [ Assemble ] [ Comparison ]
1

( Timer ) ( Timer ) ( Timer )
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Figure 5. Illustration of our generative task unification: (1) Gener-
ative pre-trained Timer can naturally predict the next series by the
iterative autoregression; (2) By introducing masked tokens during
adaptation, Timer generates imputations with the previous context
and assemble them with the observed part; (3) We propose predic-
tive anomaly detection by predicting normal series in advance.

4.1. Time Series Forecasting

Setups Time series forecasting is essential and presents
challenges in real-world applications. To thoroughly evalu-
ate the performance, we elaborately establish the benchmark,
including ETT, ECL, Traffic, Weather, and PEMS adopted
in Liu et al. (2023b). We adopt the unified lookback length
as 672 and the forecast length as 96. We pre-training Timer
on UTSD-12G with the segment length S = 96 and the
number of tokens N = 15, such that Timer can deal with
time series with a context length up to 1440. The down-
stream forecasting task can be naturally completed as the
next token prediction, which is detailed in Appendix B.2.

035 ETThl ECL
1 038 < L 0.16 b
7] \r'\‘ 7] hd
= Lo =08 i
\
||
\
0.41 i 0.20
\
o4y
100% 25%  5%1% 100% 25%  5%1%
Data Percentage Data Percentage
Traffic Weather
0.35 —t—— 0.15
0.39 1 o7
m Yl m
w0 o
=043 4 =019
1
0.47 0.21
100% 25%  5%1% 100% 25%  5%1%
Data Percentage Data Percentage
011 PEMS03 0.10 PEMS04
B i 1\ YT S i —ted
A\
@ 0.15 i @ \
g = 0.20 *‘r
0.19 L i
i 025 d
i
100% 25%  5%1%  100% 25%  5%1%

Data Percentage Data Percentage

—- Timer (From Scratch) — Timer (Pre-trained) SOTA (Full Samples)

Figure 6. Forecasting performance of Timer obtained by training
from scratch and fine-tuning from the pre-trained model on differ-
ent data scarcities. State-of-the-art small deep forecasters trained
on full samples are provided the SOTA baseline. A smaller MSE
indicates better results. Detailed results are provided in Table 10.

Results As depicted in Figure 6, we present the results of
the pre-trained Timer (solid line) and Timer trained from
scratch (dashed line) under different data scarcities. We
also evaluate state-of-the-art forecasters by training them on
full samples as a competitive baseline. Concretely, we train
PatchTST (Nie et al., 2022) and iTransformer (Liu et al.,
2023b) on each dataset and report the better one as SOTA.
Timer fine-tuned on few training samples demonstrates com-
petitive results as advanced small deep forecasters, specifi-
cally achieving better results with only 1% available samples
from ETTh1, 5% from Traffic, 3% from PEMS03, and 25%
from PEMS04 and exhibiting remarkable few-shot ability.

To assess pre-training benefit, we compare solid and dashed
lines, differing by whether to load the pre-trained checkpoint.
Concretely, the performance of training a random-initialized
Timer on full samples can be achieved by fine-tuning our
pre-trained Timer with only 2% of the training samples in
ETThl, 5% in ECL, 1% in Weather, and 4% in PEMSO03,
which exemplifies the transferable knowledge acquired by
pre-training on UTSD. When all samples are available, the
performance of the pre-trained Timer can also outperform
training it from scratch: the prediction error is reduced as
0.165 — 0.154 on Weather, 0.126 — 0.118 on PEMSO03,
and 0.125 — 0.107 on PEMSO04. Overall, in widespread
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Figure 7. Performance comparison with state-of-the-art small deep models. For imputation, Time is compared with TimesNet (Wu et al.,
2022) under different data scarcities, each of which contains 44 imputation scenarios. In UCR Anomaly Detection Archive (Wu & Keogh,
2021), we compare the number of detected anomalies under given confidence quantiles. Detailed results are provided in Table 11-15.

data-scarce scenarios, the performance degradation can be
alleviated by the few-shot generalization of LTSMs.

4.2. Imputation

Setups Imputation is ubiquitous in real-world applica-
tions, aiming to fill corrupted time series based on partially
observed data. However, while various machine learning
algorithms and simple linear interpolation can effectively
cope with the corruptions randomly happening at the point
level, real-world corruptions typically result from prolonged
monitor shutdowns and require a continuous period of re-
covery. Consequently, imputation can be ever challenging
when attempting to recover a span of time points encompass-
ing intricate series variations. In this task, we conduct the
segment-level imputation. Each time series is divided into
8 segments and each segment has the length of 24 and the
possibility of being completely masked. We obtain Timer
on UTSD-4G by generative pre-training with the segment
length S = 24 and the token number N = 15. For down-
stream adaptation, we conduct the denoising autoencoding
in TS5 (Raffel et al., 2020) as detailed in Appendix B.2 to
recover the masked spans in a generative way.

éDISO(V 15.49%

<§ we 15.15% 13.39% 13.69%14.01%

$

:‘0;10.0%

s3]

W

=

'§ 5.0% 1

2 3.01% o

E 1.85% oy

O'O%‘\'\,\& 5 D >

Y& & S

LS E FFFTS S
KL < > 2
S TS T I FTTSE

Figure 8. Pre-training benefit of Timer on the downstream impu-
tation task with 5% available samples. Following TimesNet (Wu
et al., 2022), each dataset is imputed with four mask ratios in
{12.5%, 25%, 37.5%, 50% } and we calculate the average reduced
imputation error in MSE relative to training from scratch. Addi-
tional results of other data scarcities are provided in Figure 18.

Results We establish a comprehensive segment-level im-
putation benchmark, which includes 11 datasets with four
mask ratios each. Timer is compared with the previous state-
of-the-art imputation model (Wu et al., 2022). As shown
in the left of Figure 7, Timer outperforms in respectively
100.0%, 86.4%, and 56.8% of 44 imputation scenarios un-
der the data scarcities of {5%, 20%, 100%}, validating the
effectiveness of Timer on the challenging imputation task.
Regarding the benefit of pre-training, we present the pro-
motion as the reduction ratio of imputation errors in Fig-
ure 8, where pre-training consistently yields positive effects
with 5% downstream samples. Additional experiments on
20% and 100% available samples are provided in Figure 18,
which still present notable performance improvement.

4.3. Anomaly Detection

Setups Anomaly detection is vital in industry and opera-
tions. Previous methods (Xu et al., 2021; Wu et al., 2022)
typically tackle the unsupervised scenario in a reconstruc-
tive approach, where a model is trained to reconstruct the
input series, and the output is regarded as the normal series.
Based on our generative model, we cope with anomaly de-
tection in a predictive approach, which utilizes the observed
segments to predict the future segment, and the predicted
segment will be established as the standard to be compared
with the actual value received. Unlike the previous method
requiring to collect time series of a period for reconstruction,
our predictive approach allows for segment-level anomaly
detection on the fly. Thus, the task is converted into a next
token prediction task as detailed in Appendix B.2.

We introduce UCR Anomaly Archive (Wu & Keogh, 2021)
that contains 250 tasks. In each task, a single normal time
series is provided for training, and the model should locate
the position of an anomaly in the test series. We first train a
predictive model on the training set and calculate the MSE
between the predicted series and ground truth on the test
set. By regarding the MSE of all segments as the confidence
level, the segments with higher than a quantile of confidence
are labeled as potential positions of anomalies.
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Results We evaluate well-acknowledged anomaly detec-
tion models, including TimesNet (Wu et al., 2022) and
Anomaly Transformer (Xu et al., 2021). As shown in the
right of Figure 7, we present the number of detected anoma-
lies with given quantiles, where Timer outperforms other
advanced anomaly detection models, exhibiting the versatil-
ity of our generative time series model. Moreover, Figure 9
compares the detection performance of pre-trained models
and from scratch using two indicators. The left figure shows
the number of datasets that the model has completed detec-
tion within the quantile of 3% and 10%, and the right figure
shows the quantile distribution and the averaged quantile of
all 250 UCR datasets, where the pre-trained Timer with the
smaller averaged quantile works as a more accurate detector.
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Figure 9. Downstream anomaly detection results of Timer obtained
by training from scratch and adapting with the pre-trained model.

4.4. Scalability

Scalability is the essential property that emerges from pre-
trained models to large models. To investigate the scaling
behavior of Timer, we pre-train Timer with increased model
size and data size as detailed in Appendix B.1 and evaluate
it in downstream forecasting on all subsets of PEMS.

Model size We keep UTSD-4G as the pre-training set.
Results are presented in Figure 10. While keeping model
dimension D = 256, we increase the number of layers. The
growth of parameters from 1M to 4M leads to the decrease in
forecasting errors in two few-shot scenarios by an average of
14.7% and 20.6% respectively. Subsequently, we increase
the model dimension under the fixed layer number L = 6,
enlarging parameters from 3M to 50M, resulting in further
improved performance of 25.1% and 18.2%, validating the
efficacy of scaling up the model size.

Data scale We pre-train Timer under the same model size
with different UTSD sizes, which exhibits steady improve-
ment with the enlarged pre-training scale in Figure 11. The
benefit is relatively small compared to expanding the model
size previously, which can be attributed to the performance
saturation on these datasets. Compared with large language
models, the parameter scale of Timer can still be small, in-
dicating the higher parameter efficiency in the time series

Fine-tune on 20% Samples

0.19

0.18

MSE

0.17

0.16

0.160 T,
0.155
0.150

@ 0.145
=

0.140

0.135

0.130

5L | T | il
256 512 768 1024 256 512 768 1024
Model Dimension Model Dimension

Figure 10. Larger Timer demonstrates better performance on down-
stream forecasting. Models are all pre-trained on UTSD-4G. De-
tailed results of all PEMS subsets are provided in Table 16.
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Figure 11. Timer trained on larger dataset demonstrates better per-
formance on downstream forecasting. Models are configured with
L =8 and D = 1024. Detailed results are provided in Table 16.

modality, which is also supported by prior works (Das et al.,
2023b). As the scaling law (Kaplan et al., 2020) of large
models highlights the significance of synchronized scaling
of data with the model parameters, there is still an urgent
need to accelerate the data infrastructure in the time series
field to promote the development of LTSMs.

Overall, by increasing the model size and data scale, Timer
reduces the prediction error as 0.231 — 0.138 (—40.3%)
and 0.194 — 0.123 (—36.6%) under few-shot scenarios,
surpassing state-of-the-art multivariate forecaster (Liu et al.,
2023b) training on full samples of PEMS datasets (0.139).

4.5. Model Analysis

Backbone for LTSM Deep learning approaches have
brought the boom of time series analysis, with various back-
bones for modeling the sequential time series modality be-
ing proposed. To validate the appropriate option for large
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Table 1. Downstream forecasting results under different data scarcity of the encoder-only and decoder-only Transformer respectively
pre-trained on UTST-12G. Datasets are ordered by the degradation in Figure 1. Full results of PEMS and ETT can be found in Table 17.

SCENARIO | 1% TARGET | 5% TARGET | 20% TARGET
ARCHITECTURE | ENCODER | DECODER | ENCODER | DECODER | ENCODER | DECODER
PRE-TRAINED | NONE 12G | NONE 12G | NoNE 12G | NoNE 12G | NoNE 12G | NoNE  12G
PEMS (AVG) \ 0.286 0.246 \ 0.328 0.180 \ 0.220 0.197 \ 0.215 0.138 \ 0.173 0.164 \ 0.153  0.126

ECL \ 0.183 0.168 \ 0.215 0.140 \ 0.150 0.147 \ 0.154 0.132 \ 0.140 0.138 \ 0.137 0.134

TRAFFIC \ 0.442 0.434 \ 0.545 0.390 \ 0.392 0.384 \ 0.407 0.361 \ 0.367 0.363 \ 0.372  0.352

ETT (AvVG) \ 0.367 0.317 \ 0.340 0.295 \ 0.339 0.303 \ 0.321 0.285 \ 0.309 0.301 \ 0.297 0.288

WEATHER \ 0.224  0.165 \ 0.246 0.166 \ 0.182 0.154 \ 0.198 0.151 \ 0.153 0.149 \ 0.166 0.151

time series models, we compare Timer with four candidates:
MLP-based TiDE (Das et al., 2023a), CNN-based TCN (Bai
et al., 2018), RNN-based LSTM (Hochreiter & Schmidhu-
ber, 1997) and encoder-only PatchTST (Nie et al., 2022).
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Figure 12. Training loss of candidate backbones. Model dimension
and layer number are consistently chosen for a fair comparison.

To make sure the evaluation is comparable on different back-
bones, we maintain the same model configuration, including
the model dimension and layer number, and pre-train these
backbones on our UTSD-4G respectively. We set the token
length S = 96 and the context length as 672 for Timer.
For other non-autoregressive backbones, we pre-train them
by direct multi-step forecasting in the 672-pred-96 setting.
The loss curves of training and validation are calculated as
the MSE of the same set of model outputs (length-96 time
series). As illustrated in Figure 12, Transformer exhibits ex-
cellent scalable ability as the backbone for LTSMs, whereas
MLP-based and CNN-based architectures may encounter
the bottleneck in accommodating diverse time series data.

Decoder-only v.s. Encoder-only While a smaller training
loss is achieved by the encoder-only Transformer in Fig-
ure 12, the progress of large language models indicates that
decoder-only models may possess stronger generalization
capabilities in downstream adaptation (Wang et al., 2022a;
Dai et al., 2022), which is the essential purpose of LTSMs.
Therefore, we proceed to compare their forecasting perfor-
mance under varying degrees of data scarcity.

We elaborately evaluate two architectures on six benchmarks
in Table 1. In the case of training from scratch (Pre-trained
= None), the encoder-only Transformer will achieve better
performance if the training samples are insufficient (Target
= 1%). Instead, the decoder-only architecture will demon-
strate improved performance when more training samples
are provided in the end-to-end scenarios. After pre-training
on UTSD-12G (Pre-trained = 12G), Timer as the decoder-
only Transformer achieves the best performance in most
downstream scenarios, indicating better generalization than
the encoder-only pre-trained model. The observations are
consistent with several findings in large language models
and elucidate why the encoder-only structure has become
prevalent in the field of time series. Existing benchmarks
can still be small and the encoder-only model can overfit in
end-to-end scenarios. Meanwhile, the decoder-only Trans-
former, which excels at generalizing on different domains, is
a promising choice for developing large time series models.
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Figure 13. Performance of one Timer for all lookback lengths.

Flexible sequence length Typically, current deep fore-
casting models are trained on specific lookback and forecast
lengths, limiting their versatility. Instead, the decoder-only
architecture can provide the flexibility to address different
sequence lengths. For instance, one Timer is applicable on
different lookback lengths because of token-wise supervi-
sion outlined in Equation 4. In addition to the feasibility, it
achieves enhanced performance by increasing the lookback
length in Figure 13. As for the forecast length, increasing
works (Liu et al., 2024) bring the revival of autoregression
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Figure 14. Zero-shot evaluation on LTSMs. The top three models for each dataset are highlighted on the leaderboard. Average Rank of
each model is calculated on the benchmarks in which the model has participated. Detailed results are provided in Table 18.

(iterative multi-step prediction), enabling the generation of
future predictions with arbitrary lengths. We explore this
paradigm by rolling one model for all forecast lengths in
Figure 15, where the decoder-only Times exhibits smaller
error accumulation, thereby achieving better performance.
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Figure 15. Performance of Timer/PatchTST for all forecast lengths.
We conduct rolling forecasting on a single 672-pred-96 model.

4.6. Evaluation of Large Time Series Models

There is a growing surge in the development of large models
in the field of time series (Garza & Mergenthaler-Canseco,
2023; Das et al., 2023b; Woo et al., 2024; Ansari et al.,
2024; Goswami et al., 2024). One particularly fascinating
direction of research is focused on zero-shot forecasting
(ZSF), which has the potential to renovate the conventional
practice of training small models or fine-tuning language
models for each specific scenario. Zero-shot generalization
represents a sophisticated capability of large models, ne-
cessitating substantial model capacity and pre-training on
extensive datasets. Consequently, we are actively expand-
ing our dataset by incorporating the latest data infrastruc-
ture (Woo et al., 2024) in this field to pre-train Timer on ever
larger scales (1B/16B/28B). Given the significant value to
researchers and practitioners, we extensively evaluate con-
current large models and establish the first zero-shot fore-
casting benchmark of LTSMs as detailed in Appendix B.2.

Quality assessments Our evaluation assesses the quality
of LTSMs in Table 9, including (1) fundamental attributes
such as pre-training scale, parameters; (2) abilities such as
applicable tasks, context length, etc. Current LTSMs essen-
tially build upon Transformer, with a significantly smaller
number of parameters compared to LLMs. There is still
potential to support more tasks and longer contexts.

Quantitative evaluations We apply official checkpoints
on seven datasets that do not appear during pre-training. The
performance is fairly evaluated using MSE by predicting
future 96 points of all windows in each dataset. Figure 14
presents the result and rank of each model, where the top-
ranked LTSMs are Timer, Moiria (Woo et al., 2024), and
TimesFM (Das et al., 2023b). However, the positive corre-
lation between performance and pre-training scale remains
relatively weak, highlighting the significance of high-quality
data and synchronized scaling of data and model size.

5. Conclusion and Future Work

Real-world time series analysis is increasingly underscoring
the demand for large time series models (LTSM). In this
paper, we release a time series dataset with 1 billion time
points, propose a unified sequence format to address the
heterogeneity of multivariate time series, and develop a gen-
erative pre-trained Transformer as a generalizable, scalable,
task-general LTSM. Empirically, we evaluate our model in
forecasting, imputation, and anomaly detection, yielding
state-of-the-art performance and notable pre-training bene-
fits in the data-scarce scenario. Further analysis validates the
model scalability, explores the architecture for LTSMs, and
highlights the versatility of our autoregressive generation.
By performing zero-shot forecasting on available large mod-
els, we conduct the initial quantitative assessments among
LTSMs. Quality evaluations unveil crucial pathways for fu-
ture development, including better zero-shot generalization
and facilitating probabilistic and long-context forecasting.
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A. Unified Time Series Dataset
A.1. Datasets Details

Unified Time Series Dataset (UTSD) is meticulously assembled from a blend of publicly accessible online data repositories
and empirical data derived from real-world machine operations. To enhance data integrity, missing values are systematically
addressed using linear interpolation techniques. We follow the unified data storage format (parquet) used in (Woo et al.,
2024). For each univariate, multivariate, or irregular-sampled time series, we store them with timestamps and other meta-
information in one directory using ARROW format. One dataset may composed of multiple related time series. We continue
to expand the UTSD to include data from public datasets such as LOSTA! for zero-shot forecasting. UTSD encompasses 29
individual datasets as listed with the asterisk mark in Table 2, intricately representative of a wide range of domains.

All datasets can be classified into ten distinct domains by their source: Energy, Environment, Health, Internet of Things
(IoT), Nature, Transport, Web, CloudOps, Finance, and Multiple Sources (Misc.), where the first seven domains originally
come from our curated UTSD. The datasets exhibit diverse sampling frequencies, ranging from macro intervals such as
yearly and quarterly to more fine-grained intervals like hourly and minutely. Notably, several datasets can demonstrate
exceptionally high-frequency sampling rates, such as the MotorImagery dataset, which operates at a millisecond frequency.

In the pursuit of advanced data analysis, we have also analyzed the stationarity manifested as ADF test statistics (Elliott et al.,
1996) and forecastability (Goerg, 2013). The rigorous methodologies and intricate details are elaborated in Section A.2. We
utilize these statistical indicators to filter four high-quality subsets of UTSD, namely UTSD-1G, UTSD-2G, UTSD-4G, and
UTSD-12G. As we expand the dataset, we continuously analyze statistical indicators and employ various methodologies to
ensure the selection of high-quality datasets. LOTSA has not been sorted in this hierarchy due to its immensity.

A.2. Statistics

We analyze each dataset within our collection, examining the time series through the lenses of stationarity and forecastability.
This approach allows us to characterize the level of complexity inherent to each dataset.

Stationarity The stationarity of time series is a fundamental property that can be rigorously quantified using the Augmented
Dickey-Fuller (ADF) test. Notably, a larger ADF test statistic typically signifies a higher degree of non-stationarity within
the time series (Elliott et al., 1996). In the context of datasets comprising multiple time series, the challenge of aligning
these series arises, particularly when they vary in length. To address this, we implement a length-weighted ADF method
that evaluates the stationarity of the entire dataset, taking into consideration the varying lengths of individual series. This
approach ensures that the contribution of each series to the overall stationarity metric is proportional to its length, thus
reflecting its relative significance within the dataset. By doing so, the length-weighted ADF provides a more granular and
accurate depiction of the stationarity of the dataset, highlighting the impact of longer series on the overall stability and
ensuring that shorter series do not disproportionately affect the assessment. The weighted statistic is formulated as follows:

C C
Ti )
T = Z T;, ADF-Statistic(D) = Z - ADF-Statistic(S®), (5)

i=1 i=1

where S; € R”% denotes the i-th series in dataset D, T} is the length of S; and C' is the number of time series of dataset D.

Forecastability Forecastability is calculated by subtracting the entropy of the series Fourier decomposition adopted
from Goerg (2013), where a higher forecastability value indicates superior predictability. Just as with the assessment of
stationarity, when considering a dataset composed of multiple time series of varying lengths, it is essential to adjust the
measure of forecastability to account for these differences. Therefore, we extend the concept of forecastability to a weighted
version, analogous to the length-weighted ADF method, to finely tune the predictability assessment to the characteristics of
each series. The weighted forecastability for a dataset can be formulated as follows:

c
T = Z T;, Forecastability (D) = Z

i=1 i=1

il

(1 — Entropy(F(S™))), (6)

"https://huggingface.co/datasets/Salesforce/lotsa_data
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where S; € RT: denotes the i-th time series in dataset D, T} is the length of S; and C' is the number of time series in dataset
D. F(S™) denotes the Fourier decomposition of series S(*).

Table 2: Dataset detailed descriptions. Time Points denotes the total number of time points aggregating from all variates if multivariate.
File Size denotes the storage that the ARROW format of the dataset occupies. Freq. denotes the sampling interval of time points, where “-”
indicates no timestamp or irregular interval. ADF. denotes the Augmented Dickey-Fuller test statistics of the dataset. Forecast. denotes
the forecastability of the dataset. Source denotes the original paper or resource of the dataset.

DOMAIN ‘ DATASET ‘TIME POINTS‘FILE SIZE‘ FREQ. ‘ ADF. ‘FORECAST.‘ SOURCE
\ LONDON SMART METERS” \ 166.50M \ 636M \ HOURLY ‘-13.158‘ 0.173 \ GODAHEWA ET AL. (2021)
| WIND FARMS’ | 740M | 29M | 4sec [29.174] 0811 | Gopanewa et aL. (2021)
| Aus. ELectricity Demand' | 1.16M | SM | 30MIN [-27.554] 0.730 | Gobammwa et ac. 2021)
‘ BDG-2 PANTHER ‘ 0.92M ‘ IM ‘ HOURLY 0.479 ‘ EMAMI ET AL. (2023)
‘ BDG-2 Fox ‘ 2.32M ‘ M ‘ HOURLY 0.469 ‘ EMAMI ET AL. (2023)
| BDG-2 RAT | 473M | 19M | HourLy 0.456 |  Emamier L. (2023)
| BDG-2 BEAR | 148M | 6M | HourLy |[11.742] 0471 | Bwawieraw 023)
| LowcCarsonLowvon | 9.54M | 37M | HourLy [-12.366] 0.134 | Bwawmieraw 2023)
ENERGY | SMART | 0aoM | IM | HourLy [10.755 0.143 | Bwamierai o2)
| IDEAL | 126M | SM | HourLy |[11.223] 0.106 | Bwawmieraw 023)
‘ SCEAUX ‘ 0.03M ‘ 1M ‘ HOURLY ‘-14.172‘ 0.143 ‘ EMAMI ET AL. (2023)
‘ BOREALIS ‘ 0.08M ‘ 1M ‘ HOURLY 0.160 ‘ EMAMI ET AL. (2023)
| BUILDINGS900K | 15852.22M | 60102M | HourLy 0.357 |  Emamier L. (2023)
| CovID19 ENERGY | 003M | IM | Houry 0.698 | Wang T AL 20238)
| GEF12 | 1.58M | 6M | HourLy [-9.576| 0.566 | wanceraL. 2023m)
| GEF14 | 002M | IM | HourLy [-9.372| 0.628 | wanceraL. 2023m)
| GEF17 | 028M | IM | HourLy [-5.976| 0.599 | wanceraL. 2023m)
| PDB | 0.04M | IM | HourLy |-6.453| 0.622 | WanceraL.2023m)
‘ SPANISH ‘ 0.07M ‘ 1M ‘ HOURLY 0.770 ‘ WANG ET AL. (2023B)
| ELF | 002M | IM | Houry 0.770 |  WanG e AL 20238)
| KDD Cup 2022 | 473M | 181M | HourLy 0.225 |  zmoueraL 2022)
| RESIDENTIAL LoaD POWER | 437.98M | 1671M 0.264 | BERGMEIR ET AL. (2023)
| RESIDENTIALPV Power | 373.37M | 1435M | MINUTELY [-31.389] 0.421 | Beromem et ac. 2023)
| AustRALIARAINEALL. | 11.54M | 45M | HourLy 0.458 |  Taneraw o2
\ BEUINGPM25QUALITY” \ 3.66M \ 14M \ HOURLY \-31.415\ 0.404 \ TAN ET AL. (2021)
ENVIRONMENT
| BEnzENECONCENTRATION' | 16.34M | 63M | HOURLY |-65.187| 0.526 |  Tanerac o)
| cunaAmRQuaLTY' | 3420M | 132M | HourLy [-12.602| 0.529 | zuexceraiois)
| BeuwG AmQuaLity' | 4.62M | 18M | HourLy [-15.758] 0332 | CHEN (2019)
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TABLE 2 CONTINUED FROM PREVIOUS PAGE

DOMAIN ‘ DATASET ‘TIME POINTS‘FILE SIZE‘ FREQ. ‘ ADF. ‘FORECAST ‘ SOURCE

| MOTORIMAGERY" | 72.58M | 279M | 0.001 sEc |-3.132| 0.449 |  Daveraw o)

| SELFREGULATIONSCPI® | 3.02M | 12M | 0.004 sEC [-3.191| 0.504 |  Daveraw o)

| SELPREGULATIONSCP2' | 3.06M | 12M | 0.004 sEC [-2.715] 0.481 |  Daveraw o)

| AtRiaLFiBRiLATION' | 0.04M | IM | 0.008 sEC [-7.061| 0.167 |  DaveraL 2019)
HEALTH | PIGARTPRESSURE' | 0.62M | 3M | - [-7.649] 0739 |  DaveraL o1

| PIGCVP" | oeam | 3m | - |-4855] 0577 | Daverason

| IEEEPPG’ | 15.48M | 61M | 0.008sEC [-7.725| 0380 |  TaneraLo2n

| BIDMC32HR’ | 63.59M | 244M | - 1435 0523 | Tanerawon

| TDBRAIN' | 7230M | 283M | 0.002 SEC |-3.167| 0.967 | WancET AL (20234)

| CDCFLuvEwILINET | 0.28M | 2M | WEEKLY |-4.381] 0.307 | CDC (2017)

|cDC FLuviEw WHO NREVSS|  0.14M | IM | WEBKLY |-7.928] 0.233 | €DC (2017)

‘ PROJECT TYCHO ‘ 1.35M ‘ SM ‘ WEEKLY ‘ -8.167 ‘ 0.111 ‘ VAN PANHUIS ET AL. (2018)

loT | SENSORDATA’ | 165.4M | 631M | 0.02sEC |[-15.892| 0.917 |ReaL-worw macHiN LoGs

| PHONEME” | 2a6M | oM | - [-8506] 0243 | Dpaverancon

| EIGENWORMS™ | 27.95M | 107M | - 12201 0393 | pavera@oi

| ERA5" | 96458.81M [368610M| HOURLY |-7.970| 0.581 | Nouvenerar 2024)

| CMIP6 104593.00M[399069M|  6H  |-7.960| 0.573 | Nouvenerar 024)
— | TemeeratureRaN' | 2325M | 93M | Damwy [-10.952] 0.133 | Gopaewa et L. 2021)

| smrLemrCurves’ | 9.46M | 37M | - [-1.891] 0.555 |  Daverano

| saveeenRiverFLow' | 0.02M | IM | Dawy [-19.305) 0.300 | Gooarewaer L. 2021)

| KDD Cup 2018" | 294M | 12M | HourLy [10.107] 0.362 | Gopanewa et aL.(2021)

| US BIRTHS | 0o0oM | IM | Damy [-3.352] 0.675 | GopanewaeraL.(2021)

| SunspoT’ | 007M | IM | Dawy |-7.866| 0.287 | Gobamewarrac.2021)

‘ WORMS ‘ 0.23M ‘ 1M ‘ 0.033 SEC ‘ -3.851 ‘ 0.395 ‘ DAU ET AL. (2019)

| SUBSEASONAL | 56.79M | 217M | Dawy [12.391] 0.414 | Movatapib er AL 2024)

| SubsEasoNaL PRECIPITATION | 9.76M | 38M | Dawy [-13.567| 0.276 | Movatapib et aL. 2024)

| PeoestrianCounts” | 3.13M | 12M | HOURLY |-23.462] 0.297 | Gopamewa et L. 2021)

‘ PEMS 03 ‘ 9.38M ‘ 36M ‘ 5 MIN ‘-19.051‘ 0.411 ‘ JIANG ET AL. (2023)

TRANSPORT | PEMS 04 | 15.65M | 60M | SmiN o [15.192) 0494 | e eraL. 2023)

| PEMS 07 | 2492M | 96M | SmiN o [20.603] 0.466 | ianceraL. 2023)

| PEMS 08 | oM | 35M | smin [14.918) 0551 | sanceraL 2023)

| PEMS BaY | 1694M | 6sM | smin o [12.770) 0704 | nianceran 2023)

‘ Los-Loopr ‘ 7.09M ‘ 28M ‘ 5 MIN ‘-16.014‘ 0.657 ‘ JIANG ET AL. (2023)
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TABLE 2 CONTINUED FROM PREVIOUS PAGE

DOMAIN ‘ DATASET ‘TIME POINTS‘FILE SIZE‘ FREQ. ‘ ADF. ‘FORECAST.‘ SOURCE
| LOOP SEATTLE | 33.95M | 130M | SmiN [32.209] 0535 | sanceraL. 2023)
| SZ-TAxI | 046M | 2M | 15Miv [-5.900| 0217 | sanceraL.2023)
| BEIING SUBWAY | 087M | 22M | 30miv [-8.571] 0219 | sanceraL023)
TRANSPORT | SHMETROY | 507M | 20M | 15miN [17.014) 0222 | nanceraw 2023
| HZMETRO | o03sM | 2M | 15Miv [11.254) 0232 | manceraco23)
\ Q-TRAFFIC \ 264.39M \ 1011M \ 15 MIN \-15.761\ 0.490 \ JIANG ET AL. (2023)
| TaXI | 55.00M | 212M | 30MIN [-8.302] 0.146 |aLexaxprov T AL (2020)
| UBER TLC DAILY | 005M | IM | Dawy |[-1.778] 0.285 |aiexaxproveraL 2020)
| UBerTLCHoury | 1.I13M | 5M | HOURLY [-9.022| 0.124 |Aiexanorov et aL.(2020)
| LARGEST | 4452.20M |16988M| SmiN [-38.020) 0.436 |  Lierac.20234)
Wes | WEB TRAFFIC" | 116.49M | 462M | Dawwy |-8.272] 0.299 | Gopanewa et ar.(2021)
\ WIKI-ROLLING \ 40.62M \ 157M \ DAILY \ -5.524 \ 0.242 \ALEXANDROV ET AL. (2020)
|ALIBABA CLUSTER TRACE 2018) 190.39M | 2909M | SmiN [-5.303| 0.668 |  WooeraL. 2023)
CLOUBOPS | \zure VM Traces 2017 | 885.52M | 10140M|  swinv 11482 0290 | woorerac. 2023)
| Borc CLusTER DaTA 2011 | 1073.89M | 14362M | SMIN [-8.975| 0.505 |  wooeraL. 2023)
| M5 | 5833M | 224M | Day |-6.985| 0.247 |AvexanoroveraL. 2020)
| FAVORITA SALES | 139.18M | 535M | Dawy |-6.441| 0.097 | KAGGLE
SALES
| Favorima Transactions | 0.08M | IM | Dawy |-5.481| 0362 | KAGGLE
| RESTAURANT | 020M | 2M | Dawy [-4.650| 0.126 | KAGGLE
| HimRARcHicALSALEs | 0.2IM | IM | Dawy [-8.704] 0.078 | Maxcusoerar o2
FINANCE | GODADDY | 026M | 2M | MontHLy [-1.539| 0.784 | KAGGLE
| BITCOIN' | 007M | IM | Damwy [-2.493| 0.398 | Gopanewa et aL.(2021)
| M1 YEARLY | 000M | IM | YEARLY [-0.791| 0.473 | Gopanewa et ar.(2021)
\ M1 QUARTERLY \ 0.01M \ M ‘QUARTERLY‘ -0.175 \ 0.572 \ GODAHEWA ET AL. (2021)
\ M1 MONTHLY \ 0.04M \ M \ MONTHLY \-1.299\ 0.588 \ GODAHEWA ET AL. (2021)
Misc. | M3 YEARLY | 0.02M | IM | YEARLY [-0.850| 0.524 | Gopanewa et aL.(2021)
‘ M3 QUARTERLY ‘ 0.04M ‘ 1M ‘QUARTERLY‘ -0.897 ‘ 0.624 ‘ GODAHEWA ET AL. (2021)
‘ M3 MONTHLY ‘ 0.1M ‘ M ‘ MONTHLY ‘ -1.954 ‘ 0.635 ‘ GODAHEWA ET AL. (2021)
| M3 OTHER | oomm | M| -0.568| 0.801 | Gobanewa et aL. 2021)
| M4 YEARLY | 0.84M | 4M | YEARLY [-0.036| 0.533 | GopanewaEerac.(2021)
\ M4 QUARTERLY \ 2.214M \ 10M ‘QUARTERLY‘ -0.745 \ 0.696 \ GODAHEWA ET AL. (2021)
| M4 MONTHLY | 10.38M | 41M | MoNTHLY |-1.358| 0.665 | Gopanewa et aL. (2021)
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TABLE 2 CONTINUED FROM PREVIOUS PAGE

DOMAIN ‘ DATASET ‘TIME POINTS‘FILE SIZE‘ FREQ. ‘ ADF. ‘FORECAST.‘ SOURCE
| M4 WEEKLY | 037M | 2M | WEBKLY [-0.533| 0.644 | Gopanewa et aL. (2021)
Misc. | M4 DAILY | 9.96M | 39M | Dawy |-1.332] 0.841 | Gobamswaerac.2021)
| M4 HOURLY | 035M | 2M | HourLy [-2.073| 0.532 | Gopanewa et aL.(2021)

#
THE ASTERISK MARKS THE DATASET THAT ORIGINALLY BELONGS TO UTSD.

NN\ -
UTSD-1G UTSD-2G UTSD-4G UTSD-12G Medium

Hard

Figure 16. Dataset complexity in each hierarchy of UTSD.
A.3. UTSD Composition Analysis

UTSD is constructed with hierarchical capacities, namely UTSD-1G, UTSD-2G, UTSD-4G, and UTSD-12G, where each
smaller dataset is a subset of the larger ones. We adhere to the principle of progressively increasing the complexity and
pattern diversity. Hierarchical structuring allows for a nuanced analysis that accounts for different levels of data granularity
and complexity, ensuring that the pattern diversity is maintained across each hierarchy of the dataset. This approach not
only facilitates a comprehensive evaluation across different scales but also ensures that each subset within the larger dataset
offers a unique and incrementally challenging perspective, thus contributing to a more scalable pre-training.

Dataset Complexity We conduct a comprehensive analysis of individual datasets to obtain the stationarity and fore-
castability measures and construct the UTSD hierarchically regarding these indicators. Code for calculating the statistics
is provided in the repository of UTSD. Consequently, based on the ADF-Statistic of each dataset, we categorized the
predictive difficulty of the datasets into three levels: Easy, Medium, and Hard. The criteria are listed as follows:

¢ Easy: ADF-Statistic < —15.00;
¢ Medium: —15.00 < ADF-Statistic < —5.00;
¢ Hard: —5.00 < ADF-Statistic.

For excessively long datasets in the temporal dimension, we additionally adopt the forecastability to assess the complexity of
time series across different periods. As the capacity of UTSD increases, the periods with low forecastability will be further
incorporated correspondingly. In a nutshell, larger datasets contain a greater proportion of challenging tasks as shown in
Figure 16, thereby escalating the complexity of the pre-training process. The hierarchy reflects an increase in the difficulty
of patterns as the dataset size grows. This approach enables a structured examination of the learning challenges presented by
different dataset sizes, underlining the intricate balance between data volume and pre-training difficulty.

Pattern Diversity Each dataset within the UTSD collection demonstrates unique patterns, highlighting the importance of
maintaining pattern diversity. We build the UTSD dataset in a top-down manner, ensuring that each hierarchy within UTSD
comprehensively represents all individual datasets and contains as many patterns as possible. As shown in Figure 17, we
select several representative datasets for visualization analysis:

 AtrialFibrillation: The dataset showcases a fluctuating trend with minimal seasonality. This pattern is an indicator of

irregular heart rhythm characteristics, typical in medical recordings related to cardiac health. Such fluctuations, lacking
a clear seasonal pattern, are crucial for understanding the unpredictable nature of atrial fibrillation.
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AtrialFibrillation Trend Seasonality Residuals
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Figure 17. Visualization of representative patterns in UTSD. Each time series is decomposed into trend, seasonal, and residual components.

* PigArtPressure: The dataset reveals a fluctuating trend interspersed with notable seasonality. This pattern is represen-
tative of the physiological variations in blood pressure that can occur due to environmental or internal factors. The
presence of both fluctuating trends and seasonality in this dataset underscores the complex nature of biological data.

« US Births: The dataset distinctly exhibits a clear trend alongside pronounced seasonality. This pattern is characteristic of
demographic data, where trends and seasonal variations can reflect socio-cultural factors and environmental influences.
The consistent trend and seasonality in birth rates provide insights into population dynamics and reproductive behaviors.

To avoid selecting trivial temporal variations and provide a comprehensive representation of the varied patterns inherent
in the individual datasets, we employ a downsampling technique for individual datasets. For those with a larger number
of variates, we selectively choose representative variates that best encapsulate the distinct patterns of respective datasets.
Similarly, for datasets with considerable temporal length, we resample them by the representative period. This methodical
selection process ensures that the integrity and distinctive characteristics of each dataset are preserved, thereby maintaining
the diversity of patterns across the hierarchical structure of the UTSD dataset.

A.4. Experiments

Forecasting benchmarks In the field of time series forecasting, several classical datasets such as ETT (Zhou et al., 2021),
ECL (Wu et al., 2021), Traffic (Wu et al., 2021) and Weather (Wu et al., 2021) have become widely recognized benchmarks
for evaluating model performance. However, the variability in several datasets, such as ECL, is relatively homogeneous,
and they do not adequately address aspects such as non-stationarity and predictability when assessing the strengths and
weaknesses of models. Consequently, the development of a new benchmark is essential. Therefore, we have carefully
considered factors such as domain, number of variables, frequency, non-stationarity, and predictability, and have selected a
subset from the UTSD as the new benchmark. The datasets we have selected are presented in Table 3. Furthermore, we
have evaluated our model along with other baseline models on these benchmarks. The results are presented in Table 4.
Admittedly, relying solely on these benchmarks is not sufficient to comprehensively assess model performance. We also
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look forward to the proposal of more diverse and comprehensive benchmarks in the future.

Table 3. Benchmark detailed descriptions. Time Point denotes the total number of time points aggregating from all variates if multivariate.
Frequency denotes the sampling interval of time points, where “-” indicates no timestamp or irregular interval. ADF Statistic denotes the
Augmented Dickey-Fuller test statistics of the dataset. Forecastability denotes the forecastability of the dataset.

DOMAIN ‘ DATASET ‘ TIME POINTS ‘ VARIATES ‘ FREQUENCY ‘ ADF STATISTIC ‘ FORECASTABILITY
ENVIRONMENT ‘ AUSTRALIARAINFALL ‘ 11.54M ‘ 3 ‘ HOURLY ‘ -150.10 ‘ 0.458
TRANSPORT ‘ PEDESTRIANCOUNTS ‘ 0.08M ‘ 1 ‘ HOURLY ‘ -23.462 ‘ 0.297
I0T | SexsorData | 3.24M | 18 | 0.002SEc |  -15.892 | 0.917
HEALTH |  BIDMC32HR | 0.04M | 1000 | - | 1435 | 0.523

Table 4. Forecasting results on well-acknowledged deep forecasters and Timer, where Timer is pre-trained on the held-out datasets and
then all models are superwisedly trained on the four datasets in the 672-pred-96 setting.

MODELS ‘ TIMER ‘ PATCHTST ‘ ITRANSFORMER ‘ DLINEAR
METRIC | MSE MAE | MSE MAE | MSE MAE | MSE MAE
AUSTRALIARAINFALL | 0.800 0.720 | 0.802 0.720 | 0.800 0.800 | 0.804 0.804
PEDESTRIANCOUNTS | 0.054 0.133 | 0.058 0.153 | 0.056 0.143 | 0.060 0.149
SENSORDATA | 0.049 0.094 | 0.056 0.094 | 0.052 0.091 | 0.057 0.111
BIDMC32HR | 0.030 0.062 | 0.188 0.284 | 0.159 0.249 | 0320 0.409

Domain transfer To investigate the domain partitioning of UTSD, we use different domains of UTSD as the source
and adapt the trained model to different target datasets to establish in-domain and out-of-domain transfer. The results in
Table 5 indicate that in-domain transfer can further enhance the downstream performance. Additionally, as the number
of downstream data samples increases, the relative improvement of pre-training will gradually diminish, and even lead to
negative transfer in some out-of-domain scenarios. It provides a promising direction to develop domain-specific models.

Table 5. In-domain and out-of-domain forecasting results by pre-training on the source domain and fine-tuning on the target dataset under
different data scarcity. ECL and Weather belong to the Energy and Nature domains respectively.

TARGET DATASET ‘ WEATHER ‘ ECL
SOURCE DOMAIN ‘ FROM SCRATCH ‘ ENERGY ‘ NATURE ‘ FROM SCRATCH ‘ NATURE ‘ ENERGY
METRIC | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
5% TARGET | 0.229  0.279 | 0.171 0.220 | 0.162 0.212 | 0.179  0.277 | 0.165 0.269 | 0.141 0.238
20% TARGET | 0.185  0.238 [ 0.160 0.212 [ 0.153 0.202 | 0.145 0.243 | 0.140 0.238 | 0.133 0.228
100% TARGET | 0.158  0.209 | 0.152 0.199 | 0.151 0.198 | 0.130  0.224 | 0.132 0.224 | 0.131 0.223

B. Implementation Details

B.1. Pre-training

Based on the constructed UTSD datasets of different sizes and difficulties in the unified single series sequence (S3) format,
Timer is pre-trained with increasing data sizes and model parameters to validate the scalability. Detailed configurations and
parameter counts of the pre-trained models involved in this paper are provided in Table 6.
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Table 6. Detailed model configurations of Timer and corresponding parameter counts. The number of heads for models is fixed as 8.

SCENARIO ‘ MODEL DIM. SCALE-UP ‘ LAYER NUMBER. SCALE-UP ‘ OTHERS
ScaLE | 3M 13M 29M S5IM | 1M oM 3M M | 38M 67M
LAYERS \ 6 6 6 6 \ 2 4 6 8 \ 8 8
MODEL DIM. \ 256 512 768 1024 \ 256 256 256 256 \ 768 1024
FFN DiMm. \ 512 1024 1536 2048 \ 512 512 512 512 \ 1536 2048

PARAMETERS ‘ 3.21IM  12.72M  28.51M  50.59M | 1.10M 2.16M 3.2IM 4.27M ‘ 37.97TM  67.40M

All experiments are implemented in PyTorch (Paszke et al., 2019) and trained using NVIDIA A100 Tensor Core GPU.
We use AdamW (Kingma & Ba, 2015) as the optimizer and cosine annealing algorithm for learning rate decay. The base
learning rate is 5 x 107>, and the final learning rate is 2 x 10~% . The decay steps are proportional to the number of training
steps of 10 epochs. During pre-training, we use /N = 15 as the number of tokens, and the batch size is set to 8192.

During the pre-training on the UTSD-1G to UTSD-4G, we adopt a global shuffle strategy by loading the whole time series
into the memory. Due to the much greater data scale of UTSD-12G compared to any commonly used time series dataset in
the past, it is difficult to load all 12GB of the pre-training dataset into memory for global shuffling. Therefore, we use a local
shuffle strategy, which randomly selects and divides the 12GB pre-training dataset into three 4G subsets in the storage space
through file selection and segmentation, and then takes turns loading them into memory for pre-training with global steps. In
this strategy, we also ensure the continuity of learning rate decay.

B.2. Downstream Tasks

We introduce the details of downstream experiments and present the generative scheme for each task, including time series
forecast, imputation, and anomaly detection. Configurations for downstream adaptation are listed in Table 8. Corresponding
detailed results are provided in Section C. And showcases of downstream tasks are shown in Figure 19, 20, and 21.

Forecasting The downstream forecasting task is tested on the real-world datasets, including (1) ETT (Zhou et al., 2021)
contains 7 variates of power transformers, with the period from July 2016 to July 2018, including four subsets and sampling
intervals of one hour and fifteen minutes. (2) ECL (Wu et al., 2021) mainly consists of hourly electricity consumption
data from 321 customers (3) Traffic (Wu et al., 2021) collected hourly road occupancy rates measured by 862 sensors on
the San Francisco Bay Area highway from January 2015 to December 2016. (4) Weather (Wu et al., 2021) consists of 21
meteorological variates collected every 10 minutes from the Max Planck Institute of Biogeochemistry meteorological station
in 2020. (5) PEMS contains California public transportation network data collected through a 5-minute window with the
same four common subsets (PEMS03, PEMS04, PEMS07, PEMSO08) used in SCINet (Liu et al., 2022).

We adopt the autoregressive generation training objective (Bengio et al., 2000) for downstream forecasting datasets in the
fine-tuning stage. Specifically, we divide the lookback length into N = 7 tokens with the segment length S = 96. The model
naturally outputs [V next tokens, which we calculate the mean squared error (MSE) of the N tokens with corresponding
ground truth and backpropagate the loss. During inference, we conduct iterative multi-step forecasting by concatenating the
forecasted result with the lookback series and repeatedly adopting the model to generate the next token until the total length
of predicted tokens reaches the expected length. If exceeding the predicted length, we will crop the excess value of the end.

For constructing data-scarce scenarios, we perform retrieval with the uniform interval in the training split according to the
sampling ratio and conduct random shuffling at the end of each epoch to train the model. The construction pipeline with the
fixed random seed ensures the reproducibility of our experimental results. In order to maintain comparability with previous
benchmarks, we keep the same validation and testing sets of original downstream datasets and train the baseline model and
Timer with the same set of training samples.

Imputation Considering the real-world scenario that missing values at time points often appear in succession, we adjust
the previous point-level imputation proposed by TimesNet (Wu et al., 2022) and increase the difficulty of the task, that is,

changing the masked unit from point to time series segment. The protocol poses challenges to recovering successive points,
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Table 7. Downstream forecasting dataset descriptions. Split denotes the number of time points in (train, validation, test) splits. Frequency
denotes the sampling interval of time points. Information denotes the domain in which the dataset belongs to.

DATASET ‘ VARIATE ‘ SPLIT ‘ FREQUENCY ‘ INFORMATION
ETTHI, ETTH2 | 7 | (8545, 2881, 2881) | HOURLY | ELECTRICITY
ETTMI, ETTM2 \ 7 \ (34465, 11521, 11521) \ 15MIN \ ELECTRICITY

ECL | 321 | (18317, 2633, 5261) | HOURLY | ELECTRICITY

TRAFFIC \ 862 \ (12185, 1757, 3509) \ HOURLY \ TRANSPORTATION

WEATHER \ 21 \ (36792, 5271, 10540) \ 10MIN \ WEATHER

PEMSO03 | 358 | (15617.5135,5135) | SMIN | TRANSPORTATION

PEMS04 | 307 | (10172,3375, 3375) | SMIN | TRANSPORTATION

PEMSO07 ‘ 883 ‘ (16911, 5622, 5622) ‘ SMIN ‘ TRANSPORTATION

PEMSO08 ‘ 170 ‘ (10690, 3548, 3548) ‘ SMIN ‘ TRANSPORTATION

which underscore higher demands for the model capacity to restore a span of series variations. Concretely, for a time series
consisting of N = 8 segments with a length of 24, we randomly mask several segments as zeros except for the first segment,
ensuring that the first segment is observed by the model to learn about initial series variations for imputation. For the training
objective of downstream adaption, we adopt the denoising autoencoding (Raffel et al., 2020), which takes the masked parts
as special tokens and unmasked segments as tokens as the model input. Due to the generative capability of Timer acquired
by pre-training, we regard outputted tokens as the next predicted tokens and backpropagate the reconstruction error between
the generated next token of the masked segment with the ground truth. During inference, we take the MSE of the masked
segments as the indicator to evaluate the imputation performance. Based on the above protocol, we conduct the imputation
task on the same datasets of the forecasting task in Table 7.

Table 8. Detailed explanation of model hyperparameters and corresponding parameter quantities. We adopt the learning rate schedule
strategy with exponential decay at a base of 0.5 under all three downstream tasks.

T ‘ MODEL HYPER-PARAMETER TRAINING PROCESS
ASKS
‘ Lnin ‘ Linas ‘ dyin ‘ dmaz | ‘ LR* ‘ LOSS ‘ BATCH SIZE ‘ EPOCHS
FORECASTING |2 | 8 | 256 | 2048 | 35 | MSE | 2048 10
IMPUTATION |4 | 4 | 256 | 256 | 35 | MSE | 32 10
ANomALY DETECTION | 4 | 4 | 256 | 256 | 35 | MSE | 128 10

* LR MEANS THE INITIAL LEARNING RATE.

Anomaly detection For anomaly detection, prevalent protocols represented by Anomaly Transformer (Xu et al., 2021)
and TimesNet (Wu et al., 2022) adopt the reconstructive approach that learns a feature extractor to reconstruct raw series,
and the output is regarded as standard values. With all the mean squared errors between the standard and input series from
the datasets, a specific threshold with the given quantile is determined to label the anomalies.

Considering the prevalent scenarios of anomaly detection by monitoring real-time measurements, the quick judgment of
on-the-fly time series anomaly can be more practical in the real world. Therefore, we propose a predictive protocol of
anomaly detection based on generative models. Concretely, we use the observed segments to predict the future segment,
and the predicted segment will be established as the standard to be compared with the actual value received. We adopt the
UCR Anomaly Archive proposed by Wu & Keogh (2021). The task is to find the position of an anomaly in the test series
based on a single normal series for training, which is an extremely data-scarce scenario with only one available sample. For
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downstream adaption, we adopt the same next token prediction as the pre-training, that is, training Timer with the lookback
series containing N = 7 segments of the length S = 96 to generate the next token with length 96, which is regarded as the
standard value. After training, we record the MSE of all segments in the test set and sort them in descending order. We
find the first segment hit the anomaly interval labeled in the dataset within the first o quantile, and we record the quantile.
Based on the above protocol, the real-time judgment ability of the model for sudden anomalies can be predictively examined.
Detailed quantiles of Timer in 250 tasks are provided in Table 15. With more complex time series anomalies introduced in
UCR Anomaly Archive, we hope to establish a reasonable and challenging benchmark in the field of anomaly detection.

Zero-shot forecasting We conduct zero-shot forecasting experiments on seven datasets from iTransformer (Liu et al.,
2023b). Notably, PEMS datasets are not included, as they have already appeared in the LOSTA dataset for pre-training.
We apply the same data-split strategy as Autoformer (Wu et al., 2021) and calculate the averaged MSE of all predict-96
windows in the test split. We evaluate five open-source large time series models, including Timer, Moiria (Woo et al., 2024),
TimesFM (Das et al., 2023b), Chronos (Ansari et al., 2024), and MOMENT (Goswami et al., 2024). We further assess the
qualities in Table 9, which includes more LTSMs and summarizes several attributes and abilities of large models.

* MOMENT: MOMENT? trained by masking modeling is applied to zero-shot forecasting by concatenating the lookback
series with a mask with the length to be predicted. The mask through the model is regarded as the prediction.

* Chronos: Chronos® is a probabilistic forecaster. Chronos-S1 means sampling one prediction trajectory and Chronos-S20
means sampling 20 trajectories and using the average trajectory.

» TimesFM: We use the official checkpoint from HuggingFace*, which supports various input and output lengths.
¢ Moiria: The Moiria family5 has three different sizes, labeled as Moiria-S, Moiria-M, and Moiria-L.

* Timer: We provide three versions with increased scopes of pre-training. Timer-1B is pre-trained on UTSD; Timer-16B
is pre-trained on UTSD and Buildings900K (Emami et al., 2023); and Timer-28B is pre-trained on UTSD and LOTSA.

Table 9. Quality evaluation of large time series models. Architecture denotes the Transformer category. Model size presents the parameter
counts. Token type presents the graininess of time series tokens. Context length means the maximum/fixed input length of the model.

METHOD TIMER MOIRAI MOMENT CHRONOS LAG-LLAMA TIMESFM TIMEGPT-1
(OURS) (2024) (2024) (2024) (2023) (2023B) (2023)
DECODER ENCODER ENCODER ENCODER DECODER DECODER ENCODER
ARCHITECTURE
DECODER DECODER DECODER
29M, 50M, 14M, 91M, 40M, 125M 20M, 46M, 200M 17M, 70M, UNKNOWN
MODEL SIZE
67M 311M 385M 200M, 710M 200M
FORECAST FORECAST FORECAST IMPUTATION FORECAST  FORECAST FORECAST FORECAST
SUPPORTED TASKS |IMPUTATION CLASSIFICATION DETECTION
DETECTION DETECTION
PRE-TRAINING SCALE‘ 28B 27.65B 1.13B 84B 0.36B 100B 100B
TOKEN TYPE ‘ SEGMENT  SEGMENT SEGMENT POINT POINT SEGMENT  SEGMENT
CONTEXT LENGTH ‘ <1440 <5000 =512 <512 <1024 <512 UNKNOWN
VARIABLE LENGTH ‘ TRUE TRUE FALSE TRUE TRUE TRUE TRUE
PROBABILISTIC ‘ FALSE TRUE FALSE TRUE TRUE TRUE TRUE

Zhttps://huggingface.co/AutonLab/MOMENT-1-large
3https://huggingface.co/amazon/chronos-t5-large
*https://huggingface.co/google/timesfm-1.0-200m
>https://huggingface.co/collections/Salesforce/moirai- 10-r-models-65c8d3a94c51428¢300e0742
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C. Full Results

C.1. Time Series Forecasting

We provide all the results of the forecasting task in Figure 6. As shown in Table 10, we include six representative real-world
datasets, demonstrating that Timer achieves state-of-the-art forecasting performance and the large-scale pre-training helps to
alleviate performance degradation as the available downstream samples decrease.

Table 10. Full forecasting results of Timer obtained by training from scratch (None) and fine-tuning from UTSD-12G pre-trained model.
The bold values we use indicate that the pre-trained model results have positive benefits compared to from scratch. We attach the current
state-of-the-art results as SOTA in this table, including PatchTST (Nie et al., 2022) on ETTh1 and Weather, as well as iTransformer (Liu
et al., 2023b) on ECL, Traffic, PEMS03, and PEMS04. We adopt the unified lookback length as 672 and the forecast length as 96.

DATASET ‘ ETTH1 ‘ ECL ‘ TRAFFIC ‘ WEATHER ‘ PEMSO03 ‘ PEMS04

PRE-TRAINED | NONE  12G | NoNE  12G | NoNE  12G | NoNE  12G | None  12G | None 112G

100% | 0363 0.358 | 0.132 0.136 | 0352 0.351 | 0.165 0.154 | 0.126  0.118 | 0.125 0.107
75% | 0364 0358 | 0.132 0.137 | 0353 0.351 | 0.162 0.157 | 0.124  0.114 | 0.126  0.110
50% | 0370 0.356 | 0.132 0.135 | 0356 0.352 | 0.161 0.151 | 0.129  0.114 | 0.131  0.110
25% | 0387 0.359 | 0.135 0.134 | 0368 0.352 | 0.162 0.153 | 0.133  0.114 | 0.141 0.117
20% | 0385 0359 | 0.137 0134 | 0372 0.352 | 0.166 0.151 | 0.135 0.116 | 0.145 0.120
15% | 0391 0.360 | 0.141  0.134 | 0379 0.353 | 0.174 0.152 | 0.138  0.118 | 0.152 0.123
10% | 0426 0.361 | 0.144 0133 | 0387 0.353 | 0.182 0.152 | 0.140  0.120 | 0.165 0.126
5% | 0426 0.362 | 0.154  0.132 | 0.407 0.361 | 0.198 0.151 | 0.158  0.125 | 0.195 0.135
4% | 0.424 0362 | 0.161  0.135 | 0.416  0.366 | 0.208 0.152 | 0.166 0.127 | 0.210 0.138
3% | 0427 0.363 | 0.169 0.134 | 0.431 0.369 | 0.218 0.153 | 0.180 0.131 | 0.234 0.143
2% | 0427 0.363 | 0.186  0.137 | 0.467 0.380 | 0.230 0.159 | 0.201  0.137 | 0.257 0.152
1% | 0428 0.366 | 0.215 0.140 | 0.545 0.390 | 0.246  0.166 | 0.249 0.151 | 0.320 0.172
sotTA | 0370 | o120 | 0360 | 0149 | 0.132 | oais
C.2. Imputation

In this section, we provide the detailed results of the imputation task, including Timer trained from scratch and adapting
pre-trained models with 5% available samples in Table 11, 20% samples in Table 12, and full samples in Table 13 on
the downstream task. We also report the results of TimesNet at the above three ratios in Table 14. Based on the result,
we provided an improvement in imputation performance before and after pre-training with {5%, 20%, 100%} samples in
Figure 8 and 18, reflecting the benefits of autoregressive pre-training in segment-wise imputation task.

C.3. Anomaly Detection

In this section, we provide detailed results of anomaly detection in Table 15, including the results of Timer from scratch and
pre-trained. We conducted experiments on all 250 datasets of UCR Anomaly Archive and calculated the corresponding o
quantiles. The results show that the pre-trained Timer can detect time series anomalies with smaller oz on most datasets.

C.4. Scalability

We provide detailed downstream forecasting results conducted on PEMS subsets with the scaling of model size (Figure 10)
and data size (Figure 11). As shown in Table 16, it supports the scalability of our decoder-only Timer trained in GPT-style,
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Figure 18. Pre-trammg benefit of Timer on the downstream imputation task with 20% and 100% available samples. Complete results
details used to calculate the pre-training benefits relative to training from scratch in the figures are listed in Table 11-14.

following the scaling law (Kaplan et al., 2020) towards large time series models.

C.5. Zero-shot forecasting

In this section, we provide detailed results of zero-shot forecasting in Table 18. We conducted experiments on seven datasets
that are not included in the pre-training corpora of LTSMs. The results show that the top-ranked LTSMs are Timer, Moiria,
and TimesFM. The performance of probabilistic forecaster Chronos can be improved by sampling more trajectories. It can
still be an issue that scaling behavior is not evident on some datasets in the zero-shot scenario, and the failure of multi-step
prediction can also appear in some models, indicating the development of zero-shot LTSMs is still in the early stage.

D. Showcase

To present a clear performance of our proposed Timer, we provide visualizations for downstream forecasting, imputation,
and anomaly detection tasks in Figure 19, 20 and 21. The forecasting and imputation contain experimental results at different
sample ratios. For anomaly detection, we provide the position of the anomaly and the generated normal series by Timer.
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Figure 19. Visualization of input-672-predict-96 forecasting results of Timer trained with 5% and 20% samples.

25

175 200



Timer: Generative Pre-trained Transformers Are Large Time Series Models

Table 11. Downstream imputation with 5% samples. Pre-training benefit A% is calculated as the ratio of decreased imputing error in
MSE. In the case of 5% samples, our pre-trained model outperforms TimesNet (Table 14) in all 44 settings on datasets and masked ratios.

MASK RATIO | 12.5% | 25.0% | 37.5% | 50.0%

PRE—TRAINED‘NONE 12G A% ‘NONE 12G A% ‘NONE 12G A% ‘NONE 12G A%

ETTHI \0.301 0.292  +3.08 \0.313 0.299  +4.46 \0.322 0.307 +4.59 \0.325 0.325  0.00

ETTH2 \0.172 0.168 +2.64 \0.182 0.180 +1.26 \0.197 0.190 +3.22 \0.216 0.215  +0.47

ETTMI | 0397 0347 +12.52 | 0.403 0.332 +17.72 [ 0.428 0374 +12.77 | 0.473 0.425 +10.13

ETTM2 | 0.118 0.116  +1.59 | 0.127 0.121 +4.69 | 0.134 0.131  +2.22 | 0.147 0.144 +1.99

ECL | 0152 0.140  +7.67 | 0.162 0.150 +7.27 | 0.172 0.161 +6.76 | 0.185 0.174 +6.17

TRAFFIC | 0.538  0.460 +14.60 | 0.567 0.487 +14.14 | 0.598 0.520 +13.16 | 0.633 0.558 +11.91

WEATHER ‘0.113 0.117  -3.18 ‘0.116 0.114 +2.31 ‘0.128 0.124  +3.28 ‘0.155 0.136  +12.42

PEMS03 | 0.160 0.135 +15.78 | 0.196 0.168 +14.60 | 0.257 0.223 +13.51 | 0.354 0.306 +13.49

PEMS04 ‘0.193 0.161 +16.80‘0.238 0.202 +15.30‘0.305 0.258 +15.28‘0.410 0.348 +15.14

PEMSO07 ‘0.166 0.139 +16.19‘0.210 0.183 +12.89‘0.278 0.243 +12.72‘0.378 0.326 +13.76

PEMSO08 | 0.185 0.157 +15.33 | 0.232 0.195 +15.98 [ 0.303 0.265 +12.75 | 0.417 0362 +13.26

E. Limitations

UTSD is constructed with hierarchical capacities. Though it is helpful to study the scalability of the model, it is not
big enough since we have witnessed recent work claims the pre-training on ten and even a hundred billion time points.
Therefore, we advocate for the ongoing expansion of data infrastructure while upholding high quality and hierarchy, which
may significantly advance the time series community. In terms of the method, this work aims at an early but important
development of large models. Despite the generalization, scalability, and task-generality that Timer has achieved, time series
classification has not been unified in our generative formulations and Timer does not yet support probabilistic forecasting
and specially adapts for multiple variables. It also leaves for better zero-shot generalization and advanced abilities, such as
in-context learning and multi-modality, which are scheduled to be developed by ever-large pre-training.

F. Societal Impacts

Real-world applications This paper develops large models for the field of time series. We present a general-purpose time
series analysis model to handle data-scarce scenarios. Given the state-of-the-art performance of Timer, this model may be
applied to many real-world applications, which helps our society prevent risks in advance and make better decisions with
limited available samples. Our paper mainly focuses on scientific research and has no obvious negative social impact.

Academic research In this paper, we release a high-quality dataset for scalable pre-training. Different from prior works,
the dataset is not merely aggregation but follows deftly curation. Based on it, the research on scalable time series architectures
and pre-training techniques can be facilitated. Towards large time series models, the proposed Timer shows its generalization
and versatility in many tasks. The regime of generative pre-training and autoregression can be instructive for future research.
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Table 12. Downstream imputation with 20% samples. Pre-training benefit A% is calculated as the ratio of decreased imputing error in
MSE. In the case of 20% samples, our pre-trained model outperforms TimesNet in 86.4% of 44 settings on datasets and masked ratios.

MASK RATIO | 12.5% | 25.0% | 37.5% | 50.0%

PRE-TRAINED ‘ NONE 12G A% ‘NONE 12G A% ‘NONE 12G A% ‘NONE 12G A%

ETTHI | 0289 0278 3.83 | 0.293 0287 191 | 0305 0297 256 | 0322 0314 2.44
ETTH2 | 0.168 0.166 121 | 0.180 0.178 1.02 | 0.192 0.190 0.73 | 0208 0.208 0.17
ETTMI | 0349 0328 598 | 0335 0326 272 | 0378 0360 4.84 | 0.426 0407 4.34
ETTM2 | 0139 0.133 477 | 0.158 0.123  22.30 | 0.176 0.136 22.95 | 0.146 0.143  2.22
ECL | 0.136 0.130 501 | 0.146 0.138 530 | 0.157 0.149 5.04 | 0.170 0.162 4.54

TRAFFIC ‘0.451 0.420 6.89 ‘0.481 0.446 7.26 ‘0.513 0.477  7.09 ‘0.550 0.511  7.10

WEATHER | 0.125  0.129  -3.40 | 0.125 0.147 -17.46 | 0.154 0.125 18.77 | 0.141 0.153 -7.93

PEMS03 | 0.134 0.120 10.41 | 0.169 0.150 11.35 | 0221 0.198 10.61 | 0.305 0.273 10.32

PEMSO4 | 0.162 0.146 9.93 | 0203 0.184 9.61 | 0262 0236 9.86 | 0.354 0320 9.65

PEMSO7 | 0.140 0.125 10.96 | 0.182 0.162 10.85 | 0.240 0214 10.77 | 0.327 0.290 11.57

PEMSO08 ‘0.155 0.139 10.39 ‘ 0.198 0.174 12.11 ‘0.268 0.236 11.94 ‘ 0.366 0.324 11.63

Table 13. Downstream imputation with 100% samples. Pre-training benefit A% is calculated as the ratio of decreased imputing error in
MSE. In the case of 100% samples, our pre-trained model outperforms TimesNet in 56.8% of 44 settings on datasets and masked ratios.

MASK RATIO | 12.5% | 25.0% | 37.5% | 50.0%

PRE-TRAINED ‘ NONE 12G A% ‘NONE 12G A% ‘NONE 12G A% ‘NONE 12G A%

ETTHI | 0274 0273 034 | 0283 0.283 -0.04 [ 0.295 0.294 0.52 | 0313 0312 0.17
ETTH2 | 0207 0.177 14.44 [ 0.186 0.186 -0.49 [ 0.192 0.195 -1.18 | 0.210 0.209  0.57
ETTMI | 0342 0352 -3.04 | 0.359 0345 3.87 | 0400 0371 7.09 | 0.418 0413 115
ETTM2 | 0.149 0.161 -8.01 | 0.153 0.171 -11.46 | 0.173 0.176 -1.53 | 0.183 0.158 13.27
ECL | 0125 0122 298 | 0134 0.130  3.06 | 0.144 0.139 312 | 0.157 0.152 2.87

TRAFFIC \0.402 0392  2.50 \0.424 0.414  2.48 \0.454 0.443  2.46 \ 0.488 0.477 2.29

WEATHER \0.144 0.157 -8.67\0.159 0.146  8.01 \0.162 0.147 9.41 \0.168 0.158  6.15

PEMS03 \0.113 0.108  4.65 \0.143 0.135  5.30 ‘0.188 0.179 4.88\0.258 0.248  3.90

PEMS04 \0.142 0.134 5.23 \0.176 0.166  5.39 \0.227 0.216 5.24\0.311 0.296 4.77

PEMS07 \0.121 0.114  5.81 \0.155 0.144  6.50 \0.204 0.189 7.36\0.277 0.256 17.85

PEMS08 \0.137 0.129 5.89 \0.169 0.157 7.29 \0.224 0.206 7.70\0.314 0.288  8.39
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Table 14. Full results of downstream imputation of TimesNet under different data scarcities as the baseline.

SAMPLE RATIO ‘ 5% ‘ 20% ‘ 100%

MASK RATIO ‘ 12.5% 25.0% 37.5% 50.0% ‘ 12.5% 25.0% 37.5% 50.0% ‘ 12.5% 25.0% 37.5% 50.0%
ETTHI ‘ 0.676 0.671 0.678 0.682 ‘ 0.684 0.687 0.675 0.679 ‘ 0.284 0.296 0.269 0.289
ETTH2 ‘ 0.258 0.249 0.272 0.276 ‘ 0.252 0.245 0.251 0.268 ‘ 0.178 0.199 0.219 0.253
ETTM1 ‘ 0.665 0.734 0.441 0.483 ‘ 0.254 0.344 0.314 0.444 ‘ 0.185 0.232 0.273 0.373
ETTMm2 ‘ 0.138 0.135 0.143 0.153 ‘ 0.104 0.107 0.119 0.148 ‘ 0.084 0.090 0.096 0.112

ECL ‘ 0.226 0.222 0.230 0.230 ‘ 0.221 0.224 0.226 0.231 ‘ 0.200 0.207 0.209 0.211
TRAFFIC ‘ 0.802 0.794 0.801 0.809 ‘ 0.801 0.791 0.798 0.805 ‘ 0.773 0.775 0.624 0.565
WEATHER ‘ 0.155 0.141 0.162 0.168 ‘ 0.135 0.124 0.132 0.157 ‘ 0.104 0.114 0.111 0.127
PEMSO03 ‘ 0.173 0.192 0.239 0.321 ‘ 0.156 0.291 0.254 0.318 ‘ 0.142 0.148 0.195 0.273
PEMS04 ‘ 0.215 0.243 0.291 0.379 ‘ 0.179 0.222 0.266 0.350 ‘ 0.123 0.167 0.210 0.285
PEMSO07 ‘ 0.166 0.195 0.247 0.335 ‘ 0.161 0.195 0.253 0.310 ‘ 0.113 0.142 0.191 0.272
PEMSO08 ‘ 0.293 0.265 0.346 0.404 ‘ 0.210 0.214 0.309 0.378 ‘ 0.147 0.185 0.239 0.326

Table 15. Full results of anomaly detection on UCR Anomaly Archive, which contains 250 datasets (arranged in 25 rows for a total of 10
rows). We provide the quantile (%) of each dataset, where the bold parts represent the better results that benefited from pre-training.
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Table 16. Detailed results for scaling up the pre-trained scale and the parameter of Timer.

PRE-TRAINED | 4G | 4G | 16 | 26 | 4G | 126
MODEL DIM. | 256 | s12 | 768 | 1024 | 1024
LAYERS ‘ 2 ‘ 4 ‘ 6 ‘ 8 ‘ 6 ‘ 8

PEMSO03 | 0.188 | 0.174 | 0.168 | 0.160 | 0.146 | 0.138 | 0.133 | 0.130 | 0.128 | 0.128 | 0.125
PEMS04 | 0.223 | 0.208 | 0.200 | 0.190 | 0.166 | 0.154 | 0.145 | 0.145 | 0.142 | 0.143 | 0.135
PEMSO07 | 0.147 | 0.131 0.123 | 0.120 | 0.106 | 0.097 | 0.092 | 0.092 | 0.090 | 0.090 | 0.087
PEMSO08 | 0.367 | 0.339 | 0.322 | 0.319 | 0.289 | 0.256 | 0.239 | 0.228 | 0.221 0.216 | 0.204

PEMS03 | 0.154 | 0.141 0.137 | 0.134 | 0.127 | 0.124 | 0.123 | 0.121 0.120 | 0.117 | 0.114
PEMS04 | 0.182 | 0.162 | 0.155 | 0.150 | 0.140 | 0.132 | 0.124 | 0.124 | 0.123 | 0.122 | 0.115
PEMSO07 | 0.115 | 0.104 | 0.098 | 0.095 | 0.086 | 0.082 | 0.080 | 0.079 | 0.079 | 0.078 | 0.076
PEMS08 | 0.326 | 0.277 | 0.247 | 0.238 | 0.206 | 0.193 | 0.194 | 0.193 | 0.185 | 0.185 | 0.187

20% SAMPLES | 5% SAMPLES

Table 17. Additional downstream 672-pred-96 forecasting results of the subsets of PEMS and ETT under different data scarcity of the
encoder-only and decoder-only Transformer. The bold part indicates that the result performs best in the current dataset and sample ratio.

SCENARIO ‘ 1% TARGET 5% TARGET 20% TARGET

ARCHITECTURE ‘ ENCODER ‘ DECODER ENCODER ‘ DECODER ENCODER ‘ DECODER

PRE-TRAINED ‘NONE 12G ‘NONE 12G | NoNE  12G ‘NONE 12G | NoNE  12G ‘NONE 12G

| |

| |

| |
ETTHI | 0.446 0.413 | 0.428 0.366 | 0.437 0.405 | 0.426 0.362 | 0.409 0.404 | 0.385 0.359
ETTH2 | 0338 0.304 | 0315 0.284 | 0.329 0.293 | 0.314 0.280 | 0.308 0.299 | 0.294 0.284
ETTMI | 0463 0370 | 0.407 0.345 | 0.391 0.340 | 0.354 0.321 | 0344 0.323 | 0332 0.321
ETTM2 | 0.220 0.181 | 0.207 0.183 | 0.197 0.174 | 0.190 0.176 | 0.177 0.179 | 0.177 0.187
PEMSO03 | 0.225 0.196 | 0.249 0.151 | 0.165 0.160 | 0.158 0.125 | 0.144 0.145 | 0.135 0.116
PEMSO4 | 0.253 0.226 | 0.320 0.172 | 0.198 0.184 | 0.195 0.135 | 0.167 0.161 | 0.145 0.120
PEMS07 | 0.170 0.156 | 0.179  0.112 | 0.126  0.125 | 0.114  0.087 | 0.102 0.103 | 0.093 0.077
PEMSO08 | 0.496 0.405 | 0.563 0.286 | 0.389 0.319 | 0.391 0.204 | 0.280 0.246 | 0.241 0.193
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Table 18. Zero-shot forecasting evaluation. We extensively evaluate available large time series models. We provided the average rank on
all downstream datasets, where the lower is better. For the probabilistic forecaster Chronos: S1 means sampling one trajectory and S20
means sampling 20 trajectories and using the average. ’-’ indicates that multi-step error accumulation leads to failure predictions.

MODEL ‘ TIMER-1B ‘ TIMER-16B ‘ TIMER-28B ‘ MOIRAI-S ‘ MOIRAI-M ‘ MOIRAI-L ‘ MOMENT ‘ TIMESFM ‘ CHRONOS-S1 ‘ CHRONOS-S20
ETTHI | 0.438 | 0364 | 0393 | 0441 | 0383 | 0.394 | 0.674 | 0.414 | 0571 | 0.454
ETTH2 | 0.314 | 0294 | 0308 | 0295 | 0295 | 0.293 | 0.330 | 0318 | 0423 | 0326
ETTMI | 0.690 | 0.766 | 0.420 | 0.562 | 0448 | 0.452 | 0.670 | 0.354 | 0.632 | 0.451
ETTM2 | 0213 | 0234 | 0247 | 0218 | 0.225 | 0214 | 0257 | 0.201 | 0272 | 0.190
ECL | 0192 | 0139 | 0.147 | 0212 | 0162 | 0155 | 0744 | - | - | ;
TRAFFIC | 0.458 | 0399 | 0414 | 0.616 | 0425 | 0399 | 1203 | - | - | -
Weather | 0.181 | 0.203 | 0243 | 0195 | 0197 | 0221 | 0255 | - | - | ;

RANK (AVG.) | 1.571 | 2.286 | 4429 | 2250 | 5500 | 3.250
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Figure 20. Visualization of anomaly detection results of Timer on partial UCR Anomaly Archive (Wu & Keogh, 2021). The masked part
represents the abnormal position, and the model locates the abnormal interval by generating results that deviate from the abnormal series.
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Figure 21. Visualization of imputation results of Timer trained with 5% and 20% samples.
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